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Numbers of animal species react to the natural phenomenon of fire, but only

humans have learnt to control it and to make it at will. Natural fires caused

overwhelmingly by lightning are highly evident on many landscapes. Birds

such as hawks, and some other predators, are alert to opportunities to catch

animals including invertebrates disturbed by such fires and similar benefits

are likely to underlie the first human involvements with fires. Early homi-

nins would undoubtedly have been aware of such fires, as are savanna

chimpanzees in the present. Rather than as an event, the discovery of fire

use may be seen as a set of processes happening over the long term. Even-

tually, fire became embedded in human behaviour, so that it is involved in

almost all advanced technologies. Fire has also influenced human biology,

assisting in providing the high-quality diet which has fuelled the increase

in brain size through the Pleistocene. Direct evidence of early fire in archae-

ology remains rare, but from 1.5 Ma onward surprising numbers of sites

preserve some evidence of burnt material. By the Middle Pleistocene, recog-

nizable hearths demonstrate a social and economic focus on many sites. The

evidence of archaeological sites has to be evaluated against postulates of

biological models such as the ‘cooking hypothesis’ or the ‘social brain’,

and questions of social cooperation and the origins of language. Although

much remains to be worked out, it is plain that fire control has had a

major impact in the course of human evolution.

This article is part of the themed issue ‘The interaction of fire and mankind’.
1. Introduction
Fire is universally accepted as important to human life, with myriad expressions

and uses in the modern world [1–7]. It was regarded by Darwin as the greatest dis-

covery made by humanity, excepting only language [8]. Although open fire tends

to be built out of Western technology, it persists in many forms as hidden fire, as in

the internal combustion engine. Fire has underpinned the development of all

modern technologies—from ceramics, to metal working, to the nuclear industry.

This paper starts with the view that such human fire use is an offshoot or

outgrowth of far older natural fire regimes [9–15] (figure 1), and it aims to

address two main issues: when and how humans came to be engaged with

fire; and what are the main long-term impacts that their fire use has had on

the natural environment? In the first place, large numbers of lightning strikes

would have made fire evident to early humans in the form of bush fires,

even aside from other rarer forms of natural ignition such as volcanic activity

[16]. Archaeology and anthropology have often treated fire as a technological

‘add on’ or invention, but fire awareness must inevitably go back to very

early times because of the high visibility of natural fires. The early encounters

have been followed by an intensification of use which has had profound

impacts on human culture and even biology [17]. Fire has played a major

role in transforming human diet [18], and apart from its major impact on

environments, it has become socially embedded, even to the point of having

religious significance and being incorporated in ritual [1,19,20].
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Figure 1. A putative general outline for the development of human fire use,
showing its emergence from and interchanges with natural wildfire. All
boundaries can be regarded as highly fluid: it is highly likely that there
are different fire histories on different latitudes and continents.

rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

371:20150164

2

The evolution of the primates from about 70 Ma [21,22]

provides the ultimate background for encounters with fires in

landscapes. Their development is largely owed to the ‘angios-

perm revolution’ [10,11,23], in which flowering and fruiting

trees provided niches for tree-living insectivores and espe-

cially frugivores as well as folivores. By 35 Ma ape-like and

monkey-like primates had appeared. For more than 20 Myr,

recognizable apes were widespread as denizens of forests

[24]. Although lightning can on occasion cause tropical forest

fires, in general they would not have been considerably

exposed to fire in these moist densely vegetated environments

[25,26]. Within the last 10 Myr, however, pivotal climate and

vegetation changes led to new habitats and new adaptations

across the Old World, and in that context the evolution of

the hominids [27]. Along with C4 plants such as grasses,

mammal groups such as horses were able to disperse through

Africa [23,28,29], and tropical forest was replaced over large

areas by wooded, bushy or more open habitats.

The earliest hominins probably diverged from apes around

6–8 Ma [30], and their evolution can be seen as a response to

these changes—apes who, as the final part of a Miocene ape

radiation, adapted to new wooded environments [31]. Rather

than apes who came down from the trees, as traditionally

seen, our ancestors were the bush country apes, and as such,

through the last 3 Myr especially, some of them became

exposed to more open habitats where natural fire was much

more prevalent and obvious. The period 6–3 Ma, the first

half of this evolution—the time of Ardipithecus and its relatives

[32]—involved adaptations of bipedalism and life in wooded

environments, accompanied by features such as reduction of

jaws and teeth and lengthening of the thumb [31–33]. The

second half indicates, for Homo lineages at least, a new complex

of adaptation committed to long ranging, open environments,

meat eating and other new foods [34–36]. In this context,

encounters with fire must have become far more frequent

and significant (figure 2).

A series of recent finds has given us a changed deep pic-

ture of the hominins, showing that their engagement with

technology reaches back as much as 50% of the way to homi-

nin origins. Stone tool finds from Lomekwi 3 at West Turkana

in northern Kenya push back the hard record of technology

from 2.6 to 3.3 Ma [37]. Such finds are important, because

they almost certainly indicate a knowledge of working wood
as well as stone, and hence of properties of friction and heat.

At the same time, new finds from northern Ethiopia set the ori-

gins of our own genus, Homo, as early as 2.8 Ma [38]. These

discoveries square with others that indicate a dispersal of homi-

nins across the Old World far earlier than was expected a few

years ago—dates of 1.8 Ma in Georgia and eastern Syria,

1.7 Ma in northern China and more than 1.5 Ma in Java are

strong indicators that the actual dispersal goes back further,

perhaps more than 2 Myr [39–43]. It has the effect of putting

hominids as far north as 408N, at this early date, indicating

that unlike the great majority of primates they had evolved

means to cope with summer–winter seasonality.

Altogether, a more complex picture of early Homo has

emerged, with regional diversity, smaller brains than were

expected, and coexistence with other hominins such as the

robust australopithecines for at least 1.5 Myr. Stone tool

transport distances show that these animals ranged over

large territories which were often open in character [44,45].

Recent research has also given a broader picture of other pri-

mate behaviour. The sophistication of ape behaviour has

been recognized, including their technology. In West Africa,

Pruetz and LaDuke have shown the use of wood weapons

by savanna chimpanzees, and their awareness of fire [46].

We must be alert then to possibilities that hominins could

have been interacting with fire in simple ways from an

early date [47].
2. Origins of interactions with fire
Archaeological research has tended to concentrate narrowly

on the presence or the absence of hearths, largely because

of its own focus on living sites [48]. In broader evolutionary

scenarios, it is evident that we have to consider at least

three distinct but potentially intergrading forms of fire use:

first, fire foraging for resources across landscapes; second,

social/domestic hearth fire, for protection and cooking; and

third, fires used as tools in technological process, e.g. for

firing pottery.

Modern fire use is highly complex, but its origins are likely

to have been simple: a common biological rationale is that there

is one main selective pressure for a new development of this

kind [49]. For humans, fire became important for many

reasons, including cooking, protection and warmth, but most

of these presuppose some degree of control. Fire foraging, in

contrast, demands only an attraction towards fires, in the

hope of benefitting from additional resources [17,49]. For homi-

nins, benefits could include retrieval of birds eggs, rodents,

lizards and other small animals, as well as of invertebrates.

Although fire does not create such resources, it renders them

far more visible, and chance cooking might well improve

their digestibility.

Support for the primacy of foraging comes from the

animal world. Although only humans have full mastery of

fire, and it has been said that there is no analogue, there

are occasional instances, largely anecdotal, of mammalian

predators such as cheetahs positioning themselves to spring

on prey fleeing fires. Bird ‘fire followers’ are much better

recorded. They amount to many species across continents

[50]. They show the availability of resources, the potential

selective advantage, and by inference that this kind of fire

harvesting would be within the cognitive capabilities of

early hominins [51].
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Figure 2. The emergence of the hominins: chart indicating the relationships with chimpanzees and bonobos (Pan troglodytes and Pan paniscus), and the staging of
the major hominin adaptations and culture. Of these, hard technology, fire and language can be seen as ‘the big three’, deeply connected in the end and perhaps at
earlier stages. LCA, last common ancestor of hominins and Pan.
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From simple interactions, the challenge to hominins would

be to stretch fire, both in space and time, to enhance its utility.

In Alaska—a reasonable proxy for parts of ice age Europe—the

fires burn largely from June to September. Thus, fire would not

be available through the cold parts of the year, unless it could

be maintained effectively. In Africa, the challenge might be to

maintain fires through the wet seasons. Any such efforts,

indeed almost all fire management, pushes towards a division

of labour. Slow-burning materials such as animal dung or

plant material tapers need to be selected and guarded, while

other subsistence activities go on.

Without doubt, natural fire was available on the landscapes

inhabited by hominins. Of the millions of lightning strikes that

are recorded each year [16], many lead to bush and forest fires,

especially at the start of a rainy season: then lightning from the

first thunder storms often strikes when much of the vegetation

remains dry [52–58]. Most of the instances of relevance are in

forest, woodland and savanna, but the fire regimes operate sur-

prisingly far north. Farukh & Hayasaka [59] give the example

of Alaska, where up to 100 fires are burning on a given day

in the summer season, and important for hominins, they

have an average duration of more than 20 days.
3. Sampling the record of early fire
In total, the early archaeological record documents many

thousands of events of hominin activity, but the chances of

fire being preserved are exceptionally small. This is in part

because of its ‘disappearing act’—there remain scant traces

of burning, rather than the fire itself [5]—and partly because

of the overall low density of sampling. As stone tools endure

far better, their record is full enough to give some insights

into sampling. When the Lomekwi 3 site at West Turkana

in Kenya was published it took the record back from 2.6

to 3.3 Ma [37]—amounting to one sampling of the ‘new’

700 000 years. If hominins had actually made tools (say)

10 times a year, then with a population of (say) 10 000,

current sampling would give a 1 in 70 billion chance of recov-

ery. If that seems excessively hypothetical, we can come

forward to the period 2–1 Ma: there are some hundreds of
archaeological occurrences in total, but currently a maximum

of five preserving evidence of burning (mentioned below).

Fire is therefore about 10–100 times less likely to feature

than hard artefacts. In that light, it seems remarkable that

overall we do have so much fire in the record.
4. Major biological models
Fire foraging would lead inevitably to consumption of foods

cooked accidentally, including the ‘roots made digestible’

mentioned by Darwin. The basis of the cooking hypothesis

as set out by Wrangham and colleagues is that hominins

living in more open environments would be unable to feed

through the year from the fruit and herb resources which sus-

tain apes in tropical forest. They would need to adopt other

foods, particularly during dry seasons [34]. Extending their

use of meat and particularly of carbohydrates in the form

of roots and tubers would be necessary for filling this gap

[35,36,60]. Large teeth—megadonty—hint at dietary stress

in the period before 3 Ma, and isotopic studies at the incor-

poration of new foods such as grasses and sedges [61,62].

From as early as 2.6 Ma, increased meat eating is well attested

by archaeological sites that link stone tools and cut-marked

bones [44,63].

But the new foods are hard to digest. Cooking greatly

increases their digestibility: in the view of Wrangham and col-

leagues, this would have come with Homo erectus at about

1.7 Ma [64–66]. Part of the evidence advanced is that a

modern human body plan emerges at this time, with features

including lengthened hindlimbs [67], and reduction of sexual

dimorphism [68]. In particular, the teeth of Homo erectus are

reduced in size, sometimes as much as those of modern

humans making allowance for body size ([68], cf. [69]).

In a sense, the cooking hypothesis is proved, in that all

modern humans need cooked food [66]: the question there-

fore is whether the hypothesis can be locked into a fixed

position in the past, a rapid switch of adaptation. This is

far harder to demonstrate, given our inadequate picture of

early hominin species variation, and the variety of environ-

ments which they inhabited. As a working hypothesis,
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however, this set of ideas brings to life the problems that

early hominins were working against in terms of processing

foods, and living alongside large predators.

A striking increase in human brain size is also one of the

major developments in Homo. It has risen from an average ca
600 to 1300 cc in the course of the Pleistocene [70,71]. As a

larger brain is costly in energy, it needs explanation. The

social brain hypothesis aims to explain the phenomenon in

terms of increases in group size and pressures towards

social cognition [72–74]. High-quality diets are a necessity

of fuelling the larger brain, from early times and especially

from half a million years ago [68,72,75]. Social brain calcu-

lations suggest rapid change at this stage, and a link with

language origins [71,76].

These hypotheses can be seen as promoting ‘step changes’ in

hominin evolution—but the genetic comparisons now possible

from whole genome studies indicate a steady progression of

many complex changes, rather than any Rubicon [77].
 1:20150164
5. Recognizing fire in the record
Fire on landscape is of deep interest, but it is practically

impossible to distinguish between wildfires and similar

fires that may have been started by humans. Some of our

best clues as to how this might be done come from Australia.

In a modern instance, the Martu people of the western desert

only gave up their traditional fire stick farming methods in

the 1960s. The change led to a great rise in the size of individ-

ual fires [78,79]. Through the systematic use of small fires the

aborigines had habitually managed small mammal commu-

nities in a way that appears to enhance resources [80]; other

hunter–gatherer studies imply also a concern for enhancing

vegetation [54].

More generally, archaeological methodology has to focus

on the restricted domains of sites where there has been

notable human activity—possible home bases. The idea of

the home base has been much debated [80–82], but dense

concentrations of stone tools as much as 2.5 Ma show that

hominins remained in one place long enough or frequently

enough that overnight stays were likely [83,84]—and if fire

was in use it was likely to be employed on some of these,

although the chances of preservation are very slight.

On occasion archaeology is capable of recognizing artefact

evidence of fire beyond all doubt. One case is a preserved

wooden fire ‘hearth’ from Guitarrero Cave in Peru, directly

dated by radiocarbon to around 2000 years BP; cord and

dowels from the site date to ca 10 ka [85,86]. The sockets

where the fire drill was inserted are plainly visible.

Another is lumps of pitch preserved from a Neanderthal

site at Königsaue in the foothills of the Harz Mountains in

Germany [87]. Pitch, probably used as a fixative in hafting,

can be made from tree bark only by maintaining high temp-

eratures in a controlled fire for several hours. This can be

regarded as almost the ideal case of fire documentation,

since one piece of pitch retained a human fingerprint, and

direct radiocarbon dating gave an age of ca 48 000 BP, on

the limits of the technique, and compatible with a geological

age of approximately 80 000 years. The use of gypsum plaster

for hafting in the Middle East also implies the use of fire [88].

Occasionally, elsewhere, wooden artefacts may be part

burnt or burnt. At Kalambo Falls in Zambia burnt wooden

artefacts were found on Acheulean sites dating to ca 0.5 Ma
[89,90]. At Beeches Pit, mentioned below, a refitting flint arte-

fact set included two burnt specimens in the set of 27, a

circumstance not readily consistent with natural fire [91,92].

Such examples emphasize the importance of context,

and the point that an organized methodology is necessary

for fire enquiries. In archaeology, a first general treatment

was provided by Bellomo in the 1990s [93,94]; subsequen-

tly, micromorphological studies of sediments, magnetic

methods—including magnetic susceptibility and palaeomag-

netic techniques—and thermoluminescence measurements

have all proved highly useful [95,96].

No technique on its own completely addresses the pro-

blems of enquiry. The strength of micromorphology is

obviously its ability to look at the small scale. The scaling up

to provide evidence of specific human actions is therefore

more likely to come from archaeology; but multiple techniques

are necessary for any full picture. Thermoluminescence and

magnetic methods can provide estimates of critical factors

such as temperatures and duration of burning [97].
6. Fire origins in the archaeological record
The two earliest sites are in Kenya: FxJj20 at East Turkana, and

site GnJi 1/6E in the Chemoigut Formation at Chesowanja near

Lake Baringo (figure 3). These are both open sites. According to

the original publications, FxJj20 preserves burned sediments

and some heat-altered stone tools [98,99]. The site remains a

strong candidate for early fire use and is currently under

complete reinvestigation (S. Hlubik 2015, personal communi-

cation). Chesowanja preserves somewhat similar information,

but the burnt material at the centre of the site consists not of

a burnt patch, but of a few large clasts of baked clay

[100,101]. The possibility that they could come from an adja-

cent (but lost) natural burning feature is difficult to exclude

on present evidence, although the clasts are directly associated

with numerous stone tools and faunal remains. A site at Gadeb

in Ethiopia is also of similar age [102].

Several sites then range through the period approximately

1.0–0.5 Ma. They include the very different cave sites of

Swartkrans and Wonderwerk in southern Africa, and the

open site of Kalambo Falls in Zambia (mentioned above).

At Swartkrans, in Member 3, described as a roofed gully,

fragments of burnt bone were found in 17 excavation squares,

arguing against their creation by occasional savanna fires

sweeping up to the site [103–107]. They include several speci-

mens also showing cutmarks from butchery. At Wonderwerk

Cave, micromorphology studies in stratum 10, dating to

approximately 1 Ma, indicate that quantities of grass and

other vegetation were introduced far into the cave and

became burnt along with bone preserved as microscopic frag-

ments [108,109]. The important site of Gesher Benot Ya’aqov

in Israel preserves burnt materials at numerous levels in a

30 m sequence dating to ca 700 000 years [110–112]. Charcoal

was identified at 10 levels, and burnt wood at 4. Most specifi-

cally, burnt flint microartefacts were found in clusters which

mark out ‘phantom hearth’ areas [110,112]. Macroscopic

burnt flints and burnt pebbles have also been found, for

example, 24 in total from the layer I1–6 L-7 [112].

Zhoukoudian near Beijing in China has been known for

more than 80 years as a fire site [113,114]. Critiques have

been made of its context, and on the nature of the ‘burnt’

material [115–118], much of which resulted from other
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natural processes. Nonetheless, the site is a record of the activi-

ties of Homo erectus in the period 0.4–0.7 Ma, with more than

100 000 artefacts, and preserving burnt bone [117,119,120].

The repeated associations argue for controlled fire [120].

From around 400 000 years ago, traces of fire become

much more numerous on many sites, including numbers in

Europe and the Middle East as well as Africa and Asia

[80,121,122]. Qesem in Israel preserves a large hearth main-

tained over a period [123,124]; fire traces also appear

regularly at nearby Tabun Cave at about the same time

[125]. In northwest Europe, Beeches Pit, a 400 000 year old

interglacial site in eastern England, has various traces of

fire, suggesting that large hearths were maintained by the

side of a creek. The traces include burnt bone, shells, combus-

tion features, and most particularly the evidence of a refitting

set of flint artefacts [91,92,122]. Of 27 flakes discarded in the

process of shaping an intended handaxe, only two became

heated and reddened, indicating highly localized burning.

Despite the increasing numbers of fire sites, their relative
scarcity is still notable [126], as is the fact that some very major

sites in Europe are totally lacking in fire evidence. These include

lower levels at the Caune d’Arago at Tautavel in southern

France, where among more than half a million finds of flints

and bone there are no burnt traces older than 400 000 years

[121]. At a later date, too, there are significant gaps in the fire

representation in Mousterian sites [127]. By contrast, at approxi-

mately 300 000 years ago, Vertesszollos in Hungary, Terra

Amata and Menez Dregan in France and Bolomor in Spain

show frequent evidence of fire [121,128–131], continued in

Spain on later Neanderthal sites such as Abric Romani [132].

It has been argued a number of times that fire management

may have improved markedly around 400 000 years ago

[81,121–123,126]. The Levallois technique of stone working
originates around the same period, and gives strong indi-

cations of the beginnings of hafting [133–135] (figure 4). This

is also implied at two German sites, notably Schöningen,

where short wooden staves are preserved with deep notches

in the ends [136]. Effective hafted systems require glue or

twine—it may be highly significant that two of the main

glues require heat treatment for their production [87,88].

The question of ignition is an important one [127,137], but

perhaps less crucial to effective fire use than often assumed. If

hominins could not ignite fire, however, they would need to be

able to maintain it robustly, and hence probably be reliant on a

strong social network allowing its replacement [138]. They

would need good knowledge of slow-burning materials,

although field studies show that animal dung is useful in this

respect. Ignition is often assumed to have required a cognitive

advance. Yet the simplest kindling technique of rubbing a stick

in a groove in a wooden ‘hearth’ requires no more than power

and basic skill. It does not seem a more complex process than

hafting, which it closely resembles in that two component

parts require understanding and use of an intermediary:

fixative in the one, and tinder in the other (figure 5).

By 120 000 years ago, pierced shell beads [141] indicate a

knowledge of twine or leather cord, which would have been

necessary for operating a fire drill. Before this date at Pinnacle

Point in South Africa, stone was being warmed to improve its

working qualities [142]. Such finds are a further early indi-

cation of the use of fire in technological processes: with its

need for fuelling and maintenance domestic fire becomes

a firm stimulus towards division of labour, planning and

focusing of attention [17].

From this point, fire use can be seen as almost universal,

as it is among living modern humans (e.g. [143–145]).

Even so, there are puzzles in the record, where fire is
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seemingly inexplicably absent (as in some parts of the record

in Middle Palaeolithic France [127]), and it remains

possible—balanced against the vicissitudes of sampling and

preservation—that the costs and risks of using it sometimes

outweighed the benefits.
7. The impact of fire
Over a long period, human interventions have grown to the

point that in the modern world fires started by humans

usually vastly outnumber those started by nature. Even so,

in areas such as the Great Basin of the southwest USA, light-

ning-started fires still outnumber anthropogenic fires by a
factor of 2 or 3 to 1 [146]. In general, however, longstanding

natural fire regimes have been interrupted and superseded.

Recent syntheses make plain the importance of knowing

when that becomes true in terms of landscape, and it is evident

that geographical, ecological, archaeological and anthropolo-

gical studies can come together far more effectively (e.g.

[147]). The issues are complex for three main reasons which

have to be meshed with the studies of natural fire regimes

[10,12,15,149–171]. First, the dispersal of modern humans is

marked by different arrival times in different regions—of the

order of 50–60 ka for Australia and 40 ka for Europe

[172,173], and 10–20 ka for the Americas [174], far later

again for New Zealand and the Pacific [175]. Second, the arri-

vals and recolonizations sometimes cut across the immense

climate changes involved in the transition from the last glacial

maximum to the Holocene. A third key factor is that hunting

and gathering economies began to be replaced by agricultural

and pastoralist economies from about 10 000 years ago [176].

Until then, populations were relatively low, of the order

of 1 person km– 2, but farming raised population densities

by at least 10 or 100 times: the significance of this is that

most major human impacts are likely to be relatively recent,

occupying less than 0.5% of the Pleistocene.

Modern hunter–gatherers do however demonstrate that

people in small numbers can have significant effects [78,79].

Humanly influenced regimes are found across the world of

hunter–gatherers [54,78,79,177–181], but to varied and

debated extents. Principal questions are how far back they go

in time, and how great their influence was. For Africa,

Archibald et al. [54] have argued for a potentially greater influ-

ence through the last approximately 100 000 years, as early

modern human populations increased. The main archaeologi-

cal evidence comes from the shaping of the African Middle

Stone Age (MSA), including greater transport distances for

artefacts, and the eventual dispersal out of Africa [182,183].

The other signs of complex fire management, mentioned

above [87,88,142] also suggest the possibility that the landscape

scale interventions may extend back to 100–200 000 years ago,

if not further. A rare study based on elemental carbon in a deep

sea core indicates an increase in fire at about 400 000 years
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ago [184], but in the view of its specific association with inter-

glacial to glacial transitions, there may be no anthropogenic

implications.

As has been seen, in many parts of the world first inter-

ventions by colonizing modern humans would occur only

at more recent dates. Accordingly, local fire histories may

have far greater validity than global ones, and the time differ-

ences in human occupation give scope to compare records,

especially across the southern continents.

Within the last 20 000 years, there came major new fire

interactions, the first associated with pottery, which appears

to have originated in China [185,186]. From around 10 000

years ago, agriculture would potentially have widespread

effects. Fixed Neolithic settlements, such as Çatalhöyök,

would have required wide-ranging foraging for firewood

[187], but there are indications in the Levant that woodland

was sometimes managed [188]. Soon afterwards, from roughly

5000 years ago come the beginnings of metalworking, first

copper and bronze, and then iron. Such interventions involve

the raising of temperatures far above those of open fires—the

development of a true pyrotechnology [189]. Lead aerosols

from arctic ice cores provide an index of lead and silver pro-

duction through the last 5000 years [139], and can perhaps

also be used as a rough proxy for the scale of burning across

the Northern Hemisphere through the last 5000 years. They

are consonant with local records of mining evidence, e.g.

from the Basque country [140], where there are signs of peri-

odic deforestation. The main impact came from the time of

the Roman Empire onwards (figure 5).

It remains to consider the impact of fire on human biology

and sociality. The change in the genus Homo over 2 Myr has

been remarkable. There are signs that a considerable part of

this can be put down to the influence of fire. Particularly strik-

ing is that modern adult humans have an exceptionally long

waking day, of 16 h or more, compared with 8 h in many

mammal species [190,191]. Whereas other primates such as

chimpanzees and gorillas rise with the dawn and go to sleep

around sundown [192], humans have peak alertness in the

early evening [13,193,194]. The several additional hours of

wakefulness appear to have been made possible by fire and

its ‘daylight extension’. The reasons appear to have been

for social time (hence a probable link with language:

[49,71,72,138,195]), as well as protection against predators.

Changes in the size and proportion of stomach, small intestine

and large intestine may be part of the same complex—owed to

changed diet, necessary for sustained movement on the

ground, and following the expensive tissue hypothesis a

possible co-requisite of the large human brain [75].

It is probably not an exaggeration to say that there was

also a re-organization of human sociality focused on fire

and the hearth. Earlier mention was made of the needs for

division of labour. Costs of fire can be high, too: the longer

a settlement is inhabited, often the greater the distances cov-

ered in fuel-foraging. Such aspects can probably be related to

the emergence of larger group sizes, these also entailing the

active support of a post-mature generation—grandfathers

and grandmothers [196,197]—and of children [20].

From all this, it is clear that fire has had both direct and

indirect impacts. Apart from its effects on the environment

and human sociality, its influence has reached in some way

into the human psyche, expressed in religion, in ritual,

in ceremony [198] and through ubiquitous myths about fire

origins [149,199].
8. Conclusion
The deep importance of fire, and the longstanding nature of

human interactions with it in the past, are both beyond

doubt. The vanishing act of early fire ensures that it remains

difficult to investigate, so that widely varying views remain

both about its first take-up and subsequent use, but recen-

tly a changed perception has emerged. First, there is an

increasing recognition of a need to move beyond simple

‘presence/absence’ judgements about archaeological hearths

as an index for the ‘when’ of human fire use. Regular

human–fire interactions could long precede fixed hearths in

settlements. Second, an understanding is emerging that fire

use is not a single technology or process, but that several

scales of use, and probably several intensifying technologies,

evolved over a long period, intertwined, and sometimes

eventually became bound together.

In total, we know a good deal, if much remains to be found

out of the ‘why and when?’. We know that our nearest relatives,

the chimpanzees, are not intimidated by fire, but behave sensi-

bly in relation to it; that humans were exposed to fire frequently

from the time that they moved into open savanna environments

more than 2 Ma; from isotopic evidence and changes in teeth,

that their diet altered considerably around this time. We

know that burning evidence occurs on numbers of archaeologi-

cal sites from about 1.5 Ma onwards (there is evidence of actual

hearths from around 0.7 to 0.4 Ma); that more elaborate technol-

ogies existed from around half a million years ago, and that

these came to employ adhesives that require preparation by

fire. We know that both early modern humans and Nean-

derthals had sophisticated fire technologies, at least some of

the time. Despite the huge biases of disappearance and preser-

vation, a new phase of early fire research is emerging in which

interdisciplinary approaches offer the chance of addressing

questions with increased success. In the grand sweep of

human evolution, ‘intensification’ is a dominant theme in the

practices and culture of Homo: fire use is entirely in step with

other lines of evidence.
9. Meeting discussion
N. Roberts (University of Edinburgh). What information is

available regarding the size of the groups that would congre-

gate around and use fires across archaeological times and in

different regions of the world? Is there a latitude dependence

perhaps relating to the need to provide warmth?

J. Gowlett. It is an important question, but up to 400 000

years ago any information we have relates to site size and

group size, rather than how many congregated around a

hearth. From around 400 000–300 000 years ago when num-

bers of structured hearths can be seen, they appear to

include both large and small in different contexts. Size may

depend on immediate purpose and available fuel more than

climate. Social factors are also likely to determine whether

fires are communal, or specific to nuclear families. We have

Late Pleistocene sites such as Meer in Belgium where there

are numbers of hearths of different sizes in a small settlement.

C. Roos (Southern Methodist University, USA). I appreci-

ate your recommendation that we look to non-human animal

analogies for how our hominin ancestors may have seen fire

as an opportunity. Do you think that opportunistic fire-

margin hunting or scavenging might account for the evidence
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for increased meat consumption around the time of early

encephalization (instead of the cooking hypothesis)?

J. Gowlett. The analogy with other animals might suggest

that in the first instance early hominins would go to fires

simply to take advantage of any additional opportunities of

gaining prey, regardless of whether the resources were

cooked. For example, fire may reveal a clutch of eggs—so

much the better if it has baked them. For encephalization,

new cranial finds are altering the figures rapidly, but at the

moment it would seem that the average cranial capacity for

early Homo at 1.8 Ma is 600–650 cc, 40–50% greater than

for most apes and australopithecines—and yet this is earlier

than Richard Wrangham’s postulated date of 1.7 Ma for

applying the cooking hypothesis. Perhaps the fire foraging

is one important element, and the cooking hypothesis

comes into play more strongly later, but other factors operate

alongside both.
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6. Perlès C. 1977 La préhistoire du feu. Paris, France:
Masson.

7. Frazer JG. 1922 The golden bough. London, UK:
Macmillan.

8. Darwin C. 1871 The descent of man. London, UK:
John Murray.

9. Whelan RJ. 1995 The ecology of fire. Cambridge, UK:
Cambridge University Press.

10. Bond WJ, Keeley JE. 2005 Fire as a global
‘herbivore’: the ecology and evolution of current
flammable ecosystems. Trends Ecol. Evol. 20,
387 – 394. (doi:10.1016/j.tree.2005.04.025)

11. Belcher CM, Collinson ME, Scott AC. 2013 A 450
million year record of fire. In Fire phenomena in the
earth system—an interdisciplinary approach to fire
science (ed. CM Belcher), pp. 229 – 249. London,
UK: John Wiley and Sons.

12. Bowman DMJS et al. 2011 The human dimension of
fire regimes on Earth. J. Biogeogr. 38, 2223 – 2236.
(doi:10.1111/j.1365 – 2699.2011.02595.x)

13. Scott AC. 2009 Forest fire in the fossil record. In Fire
effects on soils and restoration strategies (eds
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