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Abstract

The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical
treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the
structural brain connectome. Specifically, the brain connectome is reconstructed using white
matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage
connectome-based prediction framework is developed that gradually selects a small number of
abnormal network connections that contribute to the surgical treatment outcome, and in each stage
a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a
10-fold cross validation strategy, the first stage in the connectome-based framework is able to
separate patients with TLE from normal controls with 80% accuracy, and second stage in the
connectome-based framework is able to correctly predict the surgical treatment outcome of
patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use
VBM data, the proposed two-stage connectome-based prediction framework is a suitable
alternative with comparable prediction performance. Our results additionally show that machine
learning algorithms that exclusively use structural connectome data can predict treatment
outcomes in epilepsy with similar accuracy compared with “expert-based” clinical decision. In
summary, using the unprecedented information provided in the brain connectome, machine
learning algorithms may uncover pathological changes in brain network organization and improve
outcome forecasting in the context of epilepsy.
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Introduction

Improvements in computational analyses of neuroimaging data now permit the assessment
of whole brain maps of structural connectivity. The combination of gray and white matter
maps from anatomical magnetic resonance imaging (MRI) with white matter fiber
tractography from the diffusion tensor imaging (DTI), MRI sequences enables the
reconstruction of the architecture of medium and large connections in the brain, commonly
referred to as the brain connectome (Sporns, 2013). The brain connectome provides
unprecedented information about global and regional conformations of neuronal network
architecture. This information is particularly relevant as it relates to neurological or
psychiatric disorders such as epilepsy (Richardson, 2012; Engel et al., 2013; Taylor et al.,
2014), schizophrenia (Rubinov and Bullmore, 2013; Crossley et al., 2014; Griffa et al.,
2015), and Alzheimer's disease (Xie and He, 2011; Daianu et al., 2013; Zhu et al., 2014),
which are believed to be directly associated with restructuring of complex neuronal
networks.

In this context, epilepsy is a neurological disorder directly associated with pathological
changes in brain network organization. Even though most forms of epilepsy are believed to
arise from epileptogenic activity emerging from localized brain areas, there is a growing
body of evidence suggesting that focal seizures are in reality the result of hyperexcitation of
localized networks, rather than isolated cortical regions (Spencer, 2002; Richardson, 2012).
Likewise, the propagation of seizures may be due to the abnormal rearrangement of
networks adjacent to the seizure onset zone, which, instead of inhibiting the epileptogenic
activity and aborting the seizure, provides the framework for anatomical dissemination of
pathological excitability.

Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy. It is defined by
seizures arising from the medial temporal lobe, and the proportion of patients with epilepsy
who are, or become, clinically resistant to pharmacotherapy ranges from 30 to 40% (Sander,
1993; Hart and Shorvon, 1995; Devinsky, 1999; Brodie and Kwan, 2002;Kwan and Brodie,
2004). Surgery for TLE is a potentially curative form of treatment, but the presurgical
diagnostics use expert clinical information (i.e., human knowledge, conventional imaging,
and neurophysiology) and seizure freedom after surgery is only achieved approximately
70% of the time (Wiebe et al., 2001; Keller et al., 2007; Bien et al., 2013). Furthermore,
other studies (Bonilha et al., 2012a; Bonilha et al., 2013) have demonstrated that refractory
TLE is associated, on average, with connectome reorganization and the strengthening of
temporal-extratemporal connectivity. Thus, the evaluation of the brain connectome in the
context of epilepsy is of utmost importance, since it can provide unprecedented information
regarding the organization of neuronal architecture that may be crucial to the neurobiology
of the disease.
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The development of automated algorithms that can select subtle tissue features capable of
differentiating pathological conditions is a challenging problem in the medical image
analysis community. Recently, classification methods based on voxel-based morphometry
(VBM) (Ashburner and Friston, 2000) data have proposed the use of MRI white and/or gray
matter tissue structures to predict TLE with hippocampal sclerosis (Focke et al., 2012) or
predict the surgical treatment outcome of a patient with TLE (Feis et al., 2013). In general,
methods that use VBM data have several limitations that include estimating the amount of
noise in the gray scale pixel intensity values, accurately detecting relevant tissue structure
patterns in regions with poor contrast differences, and the number of tissue features (i.e.,
number of dimensions) is typically much greater than the total number of samples (i.e.,
number of individual MRI images) in the study. Even though experts may debate
(Bookstein, 2001; Ashburner and Friston, 2001) about the validity of VBM approaches,
classification methods based on VBM data have been shown to perform well in Alzheimer's
disease applications (Kloppel et al., 2008; Cuingnet et al., 2011; Casanova et al., 2011). To
overcome some of these limitations in TLE classification applications, a ranked grid search
approach (Feis et al., 2013) is proposed to pre-select the most important tissue features prior
to model construction. However, this approach is based on a heuristic algorithm that requires
human input to guide the pre-selection process so the resulting subset of selected tissue
features can be sub-optimal (Gu et al., 2011). Hand-crafted local weighting maps (Focke et
al., 2012) have also been proposed, however, this approach typically works well for
localized tissue structures and not well for ones that are spatially distributed (Focke et al.,
2011; Kloppel et al., 2009). In either case, the proposed tissue feature selection approaches
may produce classifiers that are over-tuned to one particular neuroimaging training data set,
and thus may perform poorly when applied to unseen neuroimaging data.

To complement conventional structural MRI analysis methods based on VBM data, a new
connectome-based prediction framework is proposed that uses the elastic net (Zou and
Hastie, 2005) regularization and feature selection algorithm to identify abnormal network
connections, or network features, in connectomes reconstructed using white matter fiber
tracts from presurgical DTI. In particular, elastic net is a supervised sparse learning
technique that combines a least squares linear regression algorithm with a #; regularization
term (Tibshirani, 1994) and a ¢, regularization term (Hoerl and Kennard, 2004). Over the
last several years, sparse learning techniques have been successfully applied to several
neuroimaging applications to improve the accuracy of the constructed model (Carroll et al.,
2009; Ryali et al., 2010; Bunea et al., 2011; Ryali et al., 2012; Casanova et al., 2011, 2012;
Mohr et al., 2015). Specifically, in Ryali et al. (2012) elastic net is used to better estimate
partial correlations between brain regions in functional networks reconstructed from resting-
state fMRI (rs-fMRI) time series data, and in Casanova et al. (2012) linear regression with ¢;
only regularization (i.e., lasso method, Tibshirani, 1994) is used to better identify gender
associated differences in brain connectivity networks reconstructed from rs-fMRI time series
data. Even though sparse learning techniques have been applied on brain connectivity
networks reconstructed from fMRI data, such techniques have not been consistently applied
to brain connectivity networks reconstructed from DTI white matter fiber tract data, epilepsy
or epilepsy surgical outcome predictions. Unfortunately, our connectome-based prediction
framework still suffers from one significant limitation, the number of subjects in the training
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population is much less than the number of network features defined in the connectome. To
overcome this limitation, two new techniques are introduced: 1) A two-stage elastic net
feature selection and regularization approach is proposed that gradually selects a small
subset of presurgical network features that can be used to train an SVM classifier capable of
predicting the surgical treatment outcome of patients with TLE, and 2) prior to SVM
training a linear kernel operation is performed that creates a highly compact and symetric
feature matrix. This operation ensures that the learned SVM decision boundary will have an
exact solution.

In this study we evaluate whether these new sparse machine learning techniques can
accurately differentiate patients with epilepsy from healthy controls and predict surgical
treatment outcomes regarding seizure controls within the epilepsy group. We hypothesized
that these methods would permit an accurate estimate of surgical outcome groups that is at
least equal or superior to the current clinical standards. Importantly, we aimed to evaluate
whether this accuracy in surgical outcome estimation could be derived from connectome
data alone, and not in combination with other clinical or imaging data, thus implying a role
of structure network organization in the pathophysiology of epilepsy.

Methods and materials

Participants

We retrospectively studied a cohort of 35 consecutive patients with refractory TLE who
were treated at the Comprehensive Epilepsy Center at the Medical University of South
Carolina (MUSC), and 35 patients with refractory TLE treated at the University of Bonn in
Germany. The demographic information for these patients are provided in Table 1. All
patients had medically refractory TLE due to hippocampal sclerosis, or with medical
refractory lesional TLE. All patients were diagnosed according to the criteria defined by the
International League Against Epilepsy (ILAE) (Commission on Classification Terminology
of the International League Against Epilepsy, 1989), including a comprehensive
neurological evaluation, ictal electroencephalography (EEG) recordings, diagnostic MRI,
and, when appropriate, nuclear medicine studies. All cases exhibited unilateral temporal
lobe seizure onset during ictal EEG monitoring. All patients had routine diagnostic MRI
revealing unilateral hippocampal atrophy (concordant with the side of ictal EEG seizure
onset). Patients with structural abnormalities on MRI other than hippocampal atrophy or T2
signal hyper-intensity were excluded from this study.

All patients were refractory to at least two first-line anti-epileptic medications. All MUSC
patients underwent anterior temporal lobectomy, and all Bonn patients underwent
amygdalohippocampectomy. We assessed surgical outcome based on the Engel Surgical
Outcome scale (Engel et al., 2003) defined at least one year after surgery. Patients were
classified into two groups: 1) free of disabling of seizures (i.e., seizure-free), equivalent to
Engel Class | (including Class 1b patients with auras only) (18 MUSC patients and 23 Bonn
patients); and 2) not seizure-free, equivalent to Engel Classes I, Il or IV (17 MUSC
patients and 12 Bonn patients).
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As local control groups, we studied 18 healthy individuals at MUSC and 30 healthy
individuals at Bonn. The demographic information for normal control group is provided in
Table 1. All individuals in the control group had no significant past medical history of
neurological or psychiatric problems.

The Medical University of South Carolina and the University Bonn Institutional Review
Boards approved this study. Written informed consent was obtained from all control
subjects. Data from patients was obtained retrospectively through chart review and MRI
analysis. Patient data were obtained as standard of care for medication refractory epilepsy
and were reviewed under the “waiver of consent” category.

MRI acquisition

The same imaging protocol was applied to all MUSC study participants (patients and
controls). Images were acquired on a Siemens 3 T Verio MRI scanner equipped with a 12-
channel head coil. The imaging protocol yielded a high-resolution T1-weighted image, with
an isotropic voxel size of 1 mm (TR = 2250 ms, TE = 41 ms, FOV = 256 x 256 mm?2).
Diffusion-weighted images were obtained using two diffusion weightings (b = 0 and 1000
s/mm2) along 30 diffusion-encoding directions (TR = 10,600 ms, TE=100 ms, FOV=224 x
224 mm2, parallel imaging factor of 2, slice thickness = 2 mm, and 60 axial slices, isotropic
voxel size of 3 mm).

Similarly, the same imaging protocol was applied to all Bonn study participants (patients
and controls). Images were acquired on a Siemens 3 T Trio scanner equipped with an 8-
channel head coil. The imaging protocol yielded a high-resolution T1-weighted image, with
an isotropic voxel size of 1 mm (TR = 1300 ms, TE = 3.97 ms, FOV = 256 x 256 mm?).
Diffusion-weighted images were obtained using two different diffusion weightings (b =0
and 1000 s/mm?) along 60 diffusion-encoding directions (TR = 12,000 ms, TE = 100 ms,
FOV = 220 x 220 mm?, parallel imaging factor of 2, slice thickness = 1.7 mm, and 72 axial
slices, isotropic voxel size of 1.726 mm).

Image processing

DICOM images were converted to NIfT1 format (with extraction of diffusion gradient
directions) using dem2nii in the MRIcron? software toolbox. The FMRIB Software Library
(FSL) Diffusion Toolkit (FDT)2 was used for preprocessing diffusion-weighted images and
also for diffusion tensor estimation (Behrens et al., 2007; Heiervang et al., 2006). The
images underwent eddy current correction through affine transformation of each DWI to the
base b = 0, T2-weighted image.

White matter fiber tract reconstruction

Probabilistic tractography was used to define the number of white matter streamlines
connecting each pair of cortical regions, which were defined according to an anatomical
atlas. This step was iteratively performed until the connectivity between all possible pairs of

lhttp://www.mccauslandcenter.sc.edu/mricro/mricron/dcmZnii.htmI.
http://www.fmrib.ox.ac.uk/fsl.
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cortical regions was determined. The connectivity information was then compiled in a brain
connectome (i.e., symmetric two-dimensional connectivity matrix) using the steps outlined
below.

Structural connectivity was obtained by applying FDT's probabilistic method for fiber
tracking (Behrens et al., 2007; Ciccarelli et al., 2006; Behrens et al., 2003). Probabilistic
tractography was performed on diffusion data after voxel-wise calculation of diffusion
tensor. FDT's BEDPOST was used to build default distributions of diffusion parameters at
each voxel. Probabilistic tractography was obtained using FDT's probtrackx with 5000
individual streamlines drawn through the probability distributions on the principal fiber
direction. We chose to employ probabilistic tractography in this study, since it is
theoretically capable of accommodating intra-voxel fiber crossings (Behrens et al., 2007;
Nucifora et al., 2007).

Cortical seed regions for tractography were obtained from an automatic segmentation
process, employing FreeSurfer3 on the T1lweighted images. This process subdivides the
human cerebral cortex into sulcogyral based cortical and subcortical regions of interest
(ROIs) by automatically assigning a neuroanatomical label to each location on a cortical
surface model, based on the probabilistic information estimated from a manually labeled
training set (the Lausanne anatomical atlas, distributed as part of the Connectome Mapping
Toolkit,# yielding 82 ROIs in the subjects native T1-weighted space (41 regions in each
hemisphere)). All processed images were visually inspected to ensure the cortical
segmentation quality.

The ROIs were transformed into each subject's DTI space using an affine transformation
obtained with FSL's FLIRT. Probabilistic tractography was performed using each of the 82
cortical ROIs in diffusion space as the seed region. Supplementary Table 1 provides an
anatomical description of all ROIs employed in this study.

Presurgical connectome reconstruction

For each subject, a comprehensive presurgical neural connectivity map, or connectome, is
calculated, where the connectivity is measured by the number of probabilistic white matter
fiber tract streamlines arriving at ROI j when ROI i was seeded, averaged with the number
of probabilistic white matter fiber tract streamlines arriving at ROl i when ROI j was seeded.
The step is iteratively repeated to ensure all 82 cortical ROIs were treated as seed regions.
Once all iterations are completed, a symmetric 82 x 82 density connectivity map D is
constructed, where Dj;j corresponds to the weighted network connection (or network
connection for short) between ROIs i and j. Since the number of streamlines between i to j
and j to i are averaged, D is symmetric with respect to the main diagonal, i.e., Djj = 0 when i
= j. Example connectomes using the described reconstruction procedure can be seen in Fig.
1. In particular, three different connectomes are shown: 1) normal control, 2) patient with
TLE that is seizure-free after surgery is performed, and 3) patient with TLE who is not
seizure-free (i.e., continue to experience seizures) after surgery.

3http://surfer.nmr.mgh.harvard.edu/.
http://www.connectome.ch.
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Two-stage connectome-based prediction framework

The block diagram shown in Fig. 2 illustrates the basic design and operation of the proposed
two-stage connectome-based prediction framework. In particular, the proposed framework
defines a Stage-1 prediction pipeline that is able to separate patients with TLE from normal
controls, and a Stage-2 prediction pipeline that is able to predict the surgical treatment
outcome of patients with TLE. It is important to point out that the Stage-2 prediction
pipeline is dependent on the Stage-1 prediction pipeline. That is, the output of the Stage-1
connectome feature selection component is the input to the Stage-2 connectome feature
selection component. Furthermore, each prediction pipeline defines three trained
components, i.e., connectome feature selection, linear kernel operation, and linear SVM
classifier, which are sequentially applied one after the other. The technical details describing
how each of the three pipeline components are constructed and trained is provided in the
Connectome feature selection pipeline component, Linear kernel operation pipeline
component and Support vector machine classifier pipeline component sections.

The rationale behind the two-stage design is directly related to the number of network
connections (i.e., features) defined in the connectome. Specifically, using only one stage to
identify a small subset of features (less than a hundred) from thousands that contribute to the
surgical treatment outcome is a very challenging feature selection problem for any machine
learning algorithm. Instead, the proposed two-stage design takes a more controlled approach
by gradually reducing a high-dimension connectome feature space to a lower-dimension
one, thus making the problem more tractable.

In general, the three trained components in the Stage-1 prediction pipeline are sequentially
applied as follows: Given a presurgical high-dimension connectome feature vector v not
included in the training data set, the connectome feature selection component estimates a
new sparse connectome feature vector st by applying the learned binary mask to v. The
binary mask used by the connectome feature selection component in this stage identifies
network connections in v that are able to differentiate patients with TLE from normal
controls (i.e., multiply these features by one), and connectome features that are not able to
differentiate patients with TLE from normal controls (i.e., multiply these features by zero).
Next, only the non-zero features output from the connectome feature selection component
are input into the linear kernel operation component and a highly compact feature vector 81
using a well-known kernel transformation technique is created. Lastly, the output of the
linear kernel operation component is input into linear two-class SVM classifier component
to predict the group outcome y? (i.e., patient with TLE or normal control).

The three trained components in the Stage-2 prediction pipeline are sequentially applied as
follows: Given the sparse connectome feature vector st found in the first stage, the
connectome feature selection component in the second stage estimates a new sparse
connectome feature vector s2 by applying a different learned binary mask to s'. In particular,
the binary mask used by the connectome feature selection component in the second stage
identifies network connections in s! that are able to differentiate seizure-free from not
seizure-free patients after surgery (i.e., multiply these features by one), and connectome
features that are not able to differentiate seizure-free from not seizure-free patients after
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surgery (i.e., multiply these features by zero). Next, only the non-zero features output from
the connectome feature selection component are input into the linear kernel operation
component and a highly compact feature vector §2 using a well-known kernel transformation
technique is created. Lastly, the output of the linear kernel operation is input into the linear
two-class SVM classifier component to predict the surgical treatment outcome y2 (i.e.,
seizure-free or not seizure-free).

Connectome feature selection pipeline component

Given an x m training data matrix A = [ay, ay, ..., @j, ..., a,]' of n subjects, where row
vector a; = (aj1, ---, &jm) IS @ m dimension presurgical connectome feature vector for subject
i whose elements are the upper diagonal values of their connectivity map developed in the
Presurgical connectome reconstruction section, and y = (y1, Y2, ..., Yn) iS an n dimension
vector whose values are the class labels (binary value indicating the clinical outcome) of
subjects in the training data set, i.e., the class label for row vector a; is y;. Because m > n,
the elastic net (Zou and Hastie, 2005) technique is used to find a sparse m dimension weight
vector x that minimizes

min |4z — o[+ el Al @

where \|x||1 is the ¢; regularization (sparsity) term, Bllrllg is the ¢, regularization
(smoothness) term, and A is a n x m matrix with normalized training data. Specifically, A(,
1) = (aij = Wyj)/oj where ajj is network connection j for subject i, ; is the mean value of
column vector j in matrix A, and oj is the standard deviation of column vector j in matrix A.

After optimization, x has weight values in [0 1], where weight values equal to zero indicate
network connections that do not contribute to the clinical outcome, and weight values
greater than zero indicate network connections that do contribute to the clinical outcome. In
general, x is referred to as the sparse representation of training data set. Lastly, each weight
value in x greater than zero is set to one. Therefore, the resulting sparse representation can
be perceived as a binary mask, i.e., the network connection is turned on (value of 1) or
turned off (value of 0). A new sparse training data matrix S = [sq, Sy, ..., Sp]tis created,
where row vector Sj = (aj1X1, 8j2X2, ---, &jmXm)-

The cost function in Eq. (1) is optimized using the LeastR method in the sparse learning with
efficient projections (SLEP) software package,5 and the A and p values used by the sparse
learning algorithm were set to 0.5 and 1.0, respectively, for each prediction pipeline in the
proposed two-stage connectome-based framework.

Linear kernel operation pipeline component

Even though the learned sparse representation can greatly reduce the dimension of the input
connectome feature vector, the number of non-zero features in the newly created sparse
training data matrix will most likely not be equal to the number of training data subjects.

5http://www.public.asu.edu/jyeOZ/Software/SLEP/.
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This condition may result in an over-determined system of equations (with more subjects
than features), or an under-determined system of equations (with more features than
subjects). In both cases, there may be an infinite number of solutions, or no solution, to this
system of linear equations, which in turn may severely impact the accuracy of the trained
classifier. To overcome this limitation, a symmetric m x m Gramian (Lanckriet et al., 2004)
matrix Sis constructed using the linear transformation

S=Sts, (2

where St is the matrix transpose and m is the number of non-zero features in the sparse
representation. It is important to note that these more compact features cannot be mapped
back to a single network connection. In fact, each feature in this newly formed mathematical
space is the inner product of two network connection vectors.

Support vector machine classifier pipeline component

Finally, Sandy are used to train a linear two-class SVM classifier based on the LIBSVM
library.6 Once the SVM classifier is trained, the surgical treatment outcome of an m
dimension presurgical connectome feature vector, say v = (vq, Vo, ..., Vi), Not included in the
training data set, can be predicted using the sequence of steps provided below.

1. Normalize each value in v using the learned centering and magnitude scaling
values for the j = 1, ..., m network connection features, % = (vj = lj)/oj.

2. Create sparse connectome feature vector s = (X1, X2, ..., VinXm) by applying
learned binary mask. All features that have a zero value are removed, resulting in a
m dimension connectome feature vector.

3. Apply learned linear transformation to obtain m-dimension feature vector s = (3,
%, ..., Smywhere

fori=1,...,m.

4. Calculate the predicted class label

Y=Y a;k(¢;, §)+b,

i=1

where k() is the inner product of two vectors, and a; is the weight, o; is the support vector,
and b is the bias that defines the linear hyperplane (decision boundary) learned by the SVM
classifier. The sign of the calculated prediction value (i.e., y =0 or y < 0 y < 0) determines
the class label the testing subject is assigned to.

6http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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Prediction framework performance evaluation

The performance of the prediction framework is evaluated using a 10-fold cross-validation
strategy. In particular, the Bonn and MUSC subjects are first combined into one data set,
and then partitioned into 10 different folds, where each fold contains connectomes of
randomly selected patients (i.e., a mixture of seizure free and not seizure free) and/or
randomly selected normal controls. The prediction framework is iteratively trained using the
connectome data in 9 of the 10 folds, and then tested using the connectome data in the
remaining (or left-out) fold. This iterative process terminates when each fold has been
selected as the test one. Using the combined confusion matrix (TP = true positive, FP = false
positive, FN = false negative, and TN = true negative) results of each test fold, the
prediction performance is reported using the specificity, sensitivity, positive predictive
value, negative predictive value, and accuracy measures, where

e Sensitivity (SEN) =TP /(TP + FN),

»  Specificity (SPE) = TP / (FP + TN),

»  Positive predictive value (PPV) = TP / (TP + FP),

*  Negative predictive value (NPV) = TN/ (TN + FN), and
» Accuracy (ACC) = (TP + TN) /(TP + FN + FP + TN).

Feature selection using sparse canonical correlation analysis

For performance comparison purposes, SVM classifiers are also trained using presurgical
connectome features selected by a sparse canonical correlation analysis (SCCA) method.
This is accomplished by simply replacing the elastic net algorithm outlined in the
Connectome feature selection pipeline component section with SCCA. Using the SCCA
method described in Avants et al. (2010), the sparse representation x = xg U X, was found
that maximizes

o
mazx, x;XaAaAsxs — (Nsllxsl; +AallXall1) s @)

where A, is a normalized training data matrix that only contain subjects with class label a
(e.g., disorder condition), Ag is a normalized training data matrix that only contain subjects
with class label § (e.g., normal condition), and Ag|[xg|l1 and A [Xll1 are ¢4 regularization
(sparsity) terms. In general, after the cost function in Eq. (3) is optimized, the canonical
weight values in vectors X, and xg maximize the correlation between normalized training
data matrices A, and Ag. Like the approach in Avants et al. (2010),we took only the first
component of the SCCA solution, however, we only selected the canonical weight values
that were less than zero. In general, a negative value indicates that the same connectome
feature is negatively correlated in the two normalized training data sets, which suggests that
these connectome features are more likely to differentiate the disorder condition from the
normal one. As a result, each canonical weight value in X, and xg that is less than zero is set
to one, and the remaining ones are set to zero. Finally, the sparse representation x is found
by finding the union of the binary values in x, and xp.
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The SCCA cost function in Eq. (3) is optimized using a modified version of the LS_CCA
method,’ and the Ao and Ag values used by the ¢; regularization (sparsity) terms were both
set to 0.5 for the prediction pipeline results reported in the Results section.

Feature selection using a deep non-linear hierarchical model

For performance comparison purposes, SVM classifiers are also trained using low
dimension presurgical connectome feature codes found by a deep learning method (Hinton
and Salakhutdinov, 2006; Lee et al., 2009; Le et al., 2011). Since elastic net and sparse
canonical correlation analyses are both based on linear models, deep learning is an attractive
machine learning alternative because it is capable of encoding latent, non-linear
relationships in high dimension data. In particular, the basic concept is to learn the highly
compact hierarchical feature representations by inferring simple ones first and then
progressively building up more complex ones from the previous levels.

In general, a deep network is trained in two sequential steps: 1) an unsupervised step, i.e.,
training individual auto-encoders (AE) as illustrated in Figs. 3(a), and 2) a supervised step,
i.e., stacking the initialized AEs (creating the deep network) and then fine-tuning by the
known binary training labels as illustrated in Fig. 3(b). In the unsupervised step, each AE is
trained separately producing weights and bias values that increase the likelihood of finding
the global optimum, or at least a very good local minimum, during the supervised step. In
the supervised step, one additional layer is added (a training label layer that include the
binary class label), and the resulting deep network is treated like a traditional feed forward
neural network that uses back propagation to fine-tune the initial weight values. Once the
supervised step completes, the training label layer is removed, and the number of nodes in
last hidden layer represents the final dimension of the output low dimension code (LDC).
The resulting LDCs along with the binary class labels are then used to train a SVM
classifier. Finally, the outcome of brain connectomes not included in the training data set
can be predicted by first estimating the LDCs using the trained deep network, and then
classifying the LDCs using the learned SVM classifier.

The deep networks were implemented using the DeepLearnToolbox software package.8 For
both stages, the momentum and learning rate was set to 0.3 and 1.5, respectively. The
architecture used to generate the prediction results in the Stage-1: TLE prediction pipeline
section was set to [3321 1000 500 200 100] (i.e., 5 layers, with the first layer having 3321
nodes, the second layer having 1000 nodes, the third layer having 500 nodes, the fourth
layer having 200 nodes, and the last layer having 100 nodes), where the output dimension of
the LDC found by the deep learning network is 100. The architecture used to generate the
prediction results in the Stage-2: surgical treatment outcome prediction pipeline was set to
[383 100 50 15] (i.e., 4 layers, with the first layer having 383 nodes, the second layer having
100 nodes, the third layer having 50 nodes, and the last layer having 15 nodes), where the
output dimension of the LDC found by the deep learning network is 15.

7http://www.public.asu.edu/jyeOZ/Software/CCA/.
https://github.com/rasmusbergpalm/DeepLearnToolbox.
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Single-stage surgical treatment prediction framework with optimal elastic net
regularization parameters

For performance comparison purposes, a single-stage connectome-based framework with
only one pipeline trained to predict the surgical treatment outcome is constructed as shown
in Fig. 4. There are two significant differences between the trained connectome feature
selection pipeline component in the single-stage framework, and the trained connectome
feature selection pipeline component in the proposed two-stage framework shown in Fig. 2.
Specifically, in the single-stage connectome feature selection pipeline component the elastic
net feature selection and regularization algorithm is trained: 1) using all m connectome
features, and 2) using the optimal ¢; and ¢, regularization parameter values.

In general, the three trained components in single-stage surgical outcome prediction pipeline
are sequentially applied as follows: Given a presurgical m-dimension connectome feature
vector v not included in the training data set, a new sparse connectome feature vector s is
found by applying a learned binary mask to v, where the binary mask identifies only those
presurgical network connections in v that are able to differentiate seizure-free patients from
patients that continue to have seizures after surgery is performed. Only the non-zero features
output from the connectome feature selection component are then input into the linear kernel
operation component and a highly compact feature vector § is created. Lastly, the output of
the linear kernel operation is input into the linear two-class SVM classifier component to
predict the surgical treatment outcome y (i.e., seizure-free or not seizure-free).

To estimate the optimal ¢; regularization parameter (X)~value and ¢, regularization
parameter (pfvalue used by the elastic net algorithm in the single-stage feature selection
pipeline component, a two-nested grid search scheme, similar to the scheme in Casanova et
al. (2012), is executed. In particular, the external and internal cross-validation procedures
both use the 10-fold cross-validation strategy described in Section 2.5. For each training step
in the internal cross-validation procedure, the A grid point is sequentially changed from 0.05
to 1.0 at increments of 0.05, the p grid point is sequentially changed from0.6 to 2.5 at
increments of 0.1, and for each pair of (A, p) grid points a single-stage surgical treatment
outcome prediction pipeline is trained using connectome data in 9 of the 10 folds and then
tested using the remaining fold. When an internal 10-fold cross-validation procedure
completes the (X,Np)~grid points that produce the maximum average PPV measure are
selected. Lastly, for each training step in the external cross-validation procedure the optimal
()\,~ p)~ regularization values estimated in the corresponding internal step are then used to train
a new single-stage surgical treatment outcome prediction pipeline using connectome data in
9 of the 10 folds and then tested using the remaining fold. Finally, when the external cross-
validation procedure completes the average PPV, NPV, sensitivity, specificity, and accuracy
are calculated.

Site differences and prediction framework over fitting

One common problem encountered during the training procedure is for the sparse machine
learning technique to over fit the constructed model to connectome data acquired from the
same MRI scanner at the same site. In the ideal environment, at training completion the
sparse representation estimated by the elastic net algorithm should only keep network
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connections that contribute to the surgical treatment outcome, and remove network
connections that are specific to the scanner or the scanning site. In the over fitting case, a
significant number of these unwanted network connections will be included in the sparse
representation. As a result, when given unseen connectome data derived from subjects
scanned using a different scanner at a different site, the over fit sparse representation could
be too specific and may adversely affect prediction performance. Additionally, the over fit
sparse representation estimated in the first stage will likely be propagated to the second
stage, which may limit the performance of the entire prediction framework.

Since the MRI data was collected at two different MRI scanners (Siemens Verio and Trio) at
two different sites (MUSC and Bonn), there is a unique opportunity to evaluate whether the
over fitting issue is occurring, and to what extent. In particular, experiments that evaluate the
TLE prediction pipeline and the surgical outcome prediction pipeline were both repeated.
However, this time a 10-fold cross validation was not used, and the train and test data sets
did not combine subjects from the two different sites. Instead, the training data only
included the connectomes from MUSC subjects, while the testing data only included the
connectomes from Bonn subjects.

The results reported in this section are obtained with prediction pipelines trained and tested
only using presurgical structural brain connectome data (i.e., no demographic or EEG data
was used).

Stage-1: TLE prediction pipeline

In this experiment, the total number of subjects in the connectome data set is 118, including
70 patients with TLE (35 MUSC and 35 Bonn), and 48 normal controls (18 MUSC and 30
Bonn). This data set was randomly partitioned into 10-folds, where 8 of the 10 folds have 12
subjects, and 2 of the 10 folds have 11 subjects. Furthermore, the outcome (patient/normal
control) and the site (MUSC/Bonn) ratios were maintained across each fold. The number of
subjects in the training population is approximately 106, and each training subject is defined
by a (81 x 82) / 2 = 3321 dimension connectome feature vector. Lastly, the binary class
labels used to train the prediction pipeline are 0 = patient with TLE and 1 = normal control.

Table 2 shows the 10-fold results for three different prediction pipelines, i.e., training a
SVM classifier with the connectome features selected by 1) elastic net (proposed), 2) SCCA,
and 3) deep learning machine learning algorithms. The best performance (PPV = 90%, NPV
=70%, and ACC = 80%) was achieved by the first prediction pipeline that uses elastic net
for feature selection.

The total number of non-zero network connections |w;| selected by the elastic net algorithm,

which can, wtzu}‘):lwf is the union of each learned sparse representation for each fold.
Using a two-sample t-test with a. = 0.05, a paired® p-value is calculated for each non-zero
network connection in w; and then sorted in ascending order, where the null hypothesis

9Corresponded network connections between the TLE group and normal control group.
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represents data that are independent random samples from normal distributions with equal
means and equal but unknown variances. The top 15 non-zero network connections with the
smallest p-values, i.e., those with the greatest difference between the two groups, can be
seen in Table 3 and are also visualized in Fig. 5 using the Brainnet viewer (Xia et al., 2013)
software package. The complete list of network connections (i.e., all 383) are provided in
Supplementary Table 2.

Stage-2: surgical treatment outcome prediction pipeline

In this experiment, the total number of patients with TLE in the connectome data set is 70
(including 35 MUSC patients and 35 Bonn patients). This data set was partitioned into 10-
folds, where each fold has 7 subjects. Furthermore, the outcome (seizure-free/not-seizure-
free) and the site (MUSC/Bonn) ratios were maintained across each fold. The number of
patients in the training population is 63, and each training subject is represented by a
connectome feature vector that only includes the 383 connectome features found by the
Stage-1 connectome feature selection pipeline component (see Fig. 2). Lastly, the binary
class labels used to train the prediction pipeline are 0 = not-seizure-free and 1 = seizure-free.

Table 4 shows the 10-fold results for four different prediction pipelines, i.e., training a SVM
classifier with the connectome features selected by 1) elastic net (proposed two-stage
framework), 2) SCCA, 3) deep learning, and 4) elastic net (single-stage framework) machine
learning algorithms. The best performance (PPV = 63%, NPV = 72%, and ACC = 70%) was
achieved by the prediction pipeline that only use the 383 found by the Stage-1 connectome
feature selection pipeline component and the elastic net algorithm. Note: the learned binary
mask found by the elastic net algorithm in the single-stage framework uses all 3321
connectome features. Additionally, the reported performance measures for the single-stage
framework are the average values found using a two-nested grid search scheme that also
estimates the optimal elastic net regularization parameters.

The total number of non-zero network connections |wy| selected by the elastic net algorithm
(in the second stage of the proposed two-stage framework), which can differentiate the
seizure-free post-surgery group from the not-seizure-free post-surgery group, is 132. Using a
two-sample t-test with a = 0.05, a paired p-value is calculated for each non-zero network
connection in w; and then sorted in ascending order, where the null hypothesis represents
data that are independent random samples from normal distributions with equal means and
equal but unknown variances. The top 15 non-zero network connections with the smallest p-
values, i.e., those with the greatest difference between the two groups, can be seen in Table
5 and are also visualized in Fig. Fig. 6 using the Brainnet viewer (Xia et al., 2013) software
package. The complete list of network connections (i.e., all 132) are provided in
Supplementary Table 3.

Site differences and prediction framework over fitting assessment

Table 6 shows the performance of the TLE prediction and surgical treatment outcome
prediction pipelines trained using the connectomes of MUSC subjects, and tested using the
connectomes of Bonn subjects. These results suggest that the proposed two-stage
connectome-based prediction framework is robust to site and/or scanner differences.
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Furthermore, if an over fitting condition is indeed happening, this type of training error has a
minimal impact on the performance of the proposed prediction framework.

Discussion

Using a 10-fold cross validation strategy, the performance of the two-stage connectome-
based prediction framework is assessed using SVM classifiers trained with connectome
features selected by the proposed elastic net learning algorithm, SVM classifiers trained with
connectome features selected by a sparse conical correlation analysis algorithm, and SVM
classifiers trained with connectome features selected by a deep learning algorithm. In each
case, SVM classifiers trained with connectome features selected by elastic net were
significantly more accurate than those trained with connectome features selected by sparse
conical correlation analysis and by deep learning. Specifically, the connectome-based
prediction framework is able to separate patients with TLE from normal control with 80%
accuracy, and is able to predict the surgical treatment outcome of patients with TLE with
70% accuracy.

Surgical treatment outcome and model selection

In this study three different two-stage connectome-based prediction frameworks are
evaluated, where each framework implements a different machine learning algorithm that is
based on a particular mathematical model (or model for short). In general, two different
types of models are compared in this study: 1) linear models such as elastic net and SCCA,
and 2) a hierarchical non-linear model such as deep learning. Based on the 10-fold PPV,
NPV, and accuracy results as reported in the Stage-2: surgical treatment outcome prediction
pipeline section, a few important observations can be made:

» Compared to the classifiers trained using presurgical connectome features selected
by a non-linear model, the classifiers trained using presurgical connectome features
selected by a linear model are 1) approximately 8% more likely to recognize
patients that are not seizure-free after surgery (PPV), 2) approximately 14% more
likely to recognize patients that are seizure-free after surgery (NPV), and 3)
approximately 13% more likely to correctly identify the surgical outcome
(accuracy).

»  Compared to the classifiers trained using presurgical connectome features selected
by the SCCA model, the classifiers trained using presurgical connectome features
selected by the elastic net model are 1) approximately 2% more likely to recognize
patients that are not seizure-free after surgery (PPV), 2) approximately 13% more
likely to recognize patients that are seizure-free after surgery (NPV), and 3)
approximately 10% more likely to correctly identify the surgical outcome
(accuracy).

The above observations suggest the relationship between the network connections in
presurgical connectome and the surgical outcome are more linear than non-linear. Therefore,
a linear model may be more suitable for surgical treatment outcome prediction in
connectome-based classification applications.
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Small sample size and high dimension data

One potential concern is that the number of subjects in the training population n is
significantly less than the total number of network connections m defined in the brain
connectome, i.e., m > n. To mitigate this issue, the proposed connectome-based prediction
framework employs the following two techniques:

A two-stage feature selection approach. In the first stage, the elastic net algorithm
selected 383 presurgical network connections from the original 3321 that are likely
to differentiate patients with TLE from normal controls. This accounts for roughly
an 88% reduction in network connections. In the second stage, the elastic net
algorithm further selected 132 presurgical network connections from 383 that are
now likely to differentiate patients that continue to have seizures from those that
are seizure-free after surgery is performed. This accounts for roughly a 66%
reduction in network connections. As also seen in Table 4, the two-stage feature
selection approach is significantly more accurate than the single-stage feature
selection approach with optimal elastic net regularization parameters. In general,
breaking a larger feature selection problem into two smaller ones allows the elastic
net algorithm to gradually and more accurately identify only those network
connections that contribute most to the surgical treatment outcome.

Linear kernel operation prior to classifier training. The two-stage feature selection
approach outlined above can significantly reduce the number of features used to
train a classifier, however, it is highly unlikely that the number of subjects in the
training population will be equal to the number of non-zero features in the learned
sparse representation. To ensure that the classification algorithm will converge to a
unique solution, a linear kernel operation is performed. This mathematical
operation produces the well known Gramian matrix (Lanckriet et al., 2004), which
is widely used by machine-learning algorithms (Aizerman et al., 1964) that suffer
from this same problem. As a result, the number of features used to train the
classifier will be identical to the number of subjects in the training population.

Since the 10-fold accuracy, PPV, and NPV performance values reported in Tables 2 and 4
both show the reasonably good results, the linear kernel operation and two-stage feature
reduction techniques used by the connectome-based prediction framework are very intuitive
and sensible ones that help overcome this challenging problem.

Clinical interpretation of prediction results

The result from this study also support the notion that, epilepsy in general, and specifically
TLE, are associated with temporal and extratemporal network architecture abnormalities
(Bonilha et al., 2012b; Liu et al., 2014; Bonilha et al., 2013; DeSalvo et al., 2014). They also
indicate that a pattern of network abnormalities may be relevant on an individual basis to
guide the estimation of clinical outcomes. While most studies to date have demonstrated the
average effects on TLE on the structural connectome, the application of machine learning to
the connectome can disclose how the complexity of the connectome can be abridged to yield
classifiers with clinical relevance. Importantly, the connectome is a rich and complex data
set, and individuals with TLE may harbor abnormalities with inter-individual variability.
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Thus, the use of machine learning can overcome some of these challenges, while
incorporating the crucial parameters in the connectome that are relevant to epilepsy
management.

In this context, the connectome can be used not only to provide information about the
neurobiology of the disease, but also to provide information about the personalized clinical
trajectory. This trajectory cannot be accurately defined based on the existing clinical
measures, and machine learning applied to the connectome may unveil a completely new
avenue for additional clinical phenotyping and management planning.

One very interesting observation is that the two-stage connectome-based prediction
framework can achieve roughly the same accuracy as the expert clinical opinion.
Historically speaking, presurgical diagnostics using expert-based clinical information is
approximately 70% accurate for patients that choose to have surgery. In this study, the
prediction framework is also 70% accurate. This level of accuracy is achieved based on the
connectome alone, which is pretty remarkable, and is an important clinical finding that may
advance outcome prediction for patients with epilepsy.

Performance comparison to existing VBM-based methods

Compared to the white matter classification method developed in (Focke et al., 2012) that
uses VBM data, and does not use local weights, the prediction accuracy of the two-stage
connectome-based framework is consistently better. Specifically, our accuracy is 80%, while
the reported mean accuracy of the DTI T2map is 75.3% (RHS vs. controls + LHS vs.
controls divided by two), the reported mean accuracy of the T1 stream is 73.2%, and the
reported mean accuracy of the T1 stream with hippocampal masking is 74.5%.

Compared to the white matter classification method developed in (Feis et al., 2013) that uses
VBM data, the prediction accuracy of the two-stage connectome-based framework is
considerably less. Specifically, our accuracy is 70%, while the reported accuracy in (Feis et
al., 2013) is 95%. It is very difficult to compare our connectome-based method with a VBM-
based method that uses heuristic grid-based search algorithm. In general, since this type of
algorithm requires several iterations to finely tune different search parameters to one
particular training data set acquired from a single site and/or MRI scanner, the resulting
classifier may suffer from an over fitting condition. However, as shown in Section 3.3, our
connectome-based prediction framework appears to be robust to this type of over fitting
issue.

Additionally, the authors of these two VBM-based approaches did not report the amount of
time needed to fully train their prediction models. In the proposed framework, only two
parameters are required by the elastic net algorithm, namely the ¢; regularization parameter
(M) and the ¢, regularization parameter (p). Both regularization parameters produce stable
performance results (approximately + 1% variation in PPV, NPV, sensitivity, specificity,
and accuracy) when values are independently or jointly changed. Lastly, the time needed to
train both pipelines in the two-stage framework is approximately 5 s, which means the entire
10-fold cross validation requires approximately 1 min to complete.
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Conclusion

In this study a sparse machine learning approach is used to select abnormal network
connections defined in structural brain connectomes reconstructed using white matter fiber
tracts from presurgical DTI data. The selected network connections were then used to train a
classifier to predict the treatment outcome after anterior temporal lobectomy, or
amygdalohippocampectomy, surgery is performed. Due to the large number of network
connections defined in a connectome, and the small number of subjects in the training
population, two new techniques are used to improve the accuracy of the connectome-based
prediction framework. Specifically, a two-stage elastic net feature selection and
regularization approach that gradually reduces the number of network connections is used to
train a classifier capable of predicting the surgical treatment outcome, and a linear kernel
operation is used to further improve the accuracy of the trained classifier. Using 10-fold
cross validation, the first stage in the two-stage connectome-based framework is able to
separate patients with TLE from normal controls with 80% accuracy, and the second stage in
the two-stage connectome-based framework is able to correctly predict the surgical
treatment outcome of patients with TLE with 70% accuracy. Compared to the existing state-
of-the-art methods that use VBM data, our two-stage connectome-based framework provides
a suitable alternative with comparable, or better, prediction performance. Lastly, our
connectome-based prediction framework achieves roughly the same accuracy for predicting
surgical treatment outcome as the expert clinical opinion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
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Example symmetric 82 x 82 connectivity map constructed using method outlined in the
Presurgical connectome reconstruction section for normal control, seizure-free, and not
seizure-free patients, respectively. The brain structures are numbered from 1 to 82 in
accordance with the atlas provided in Supplementary Table 1. Regions 1 to 42 represent the
hemisphere contralateral to seizure onset, and 43 to 82 represent the hemisphere ipsilateral
to seizure onset. Within each hemisphere, the regions are grouped as follows: frontal lobe,
temporal lobe, basal nuclei, parietal lobe, and occipital lobe.
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Stage-1: TLE prediction pipeline
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Stage-2: Surgical treatment outcome prediction pipeline

Fig. 2.

BI%ck diagram that illustrates the basic design and operation of the proposed two-stage
connectome-based prediction framework. The framework defines two different prediction
pipelines, specifically a Stage-1 prediction pipeline, and a Stage-2 prediction pipeline. Each
prediction pipeline has three trained components: 1) connectome feature selection, 2) linear
kernel operation, and 3) linear SVM classifier. Note that the superscript value identifies the
stage.
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Training of deep learning (DL) network includes an unsupervised and a supervised training
procedure. In particular, (a) in the unsupervised training step each auto-encoder (i.e., AE1
and AEZ2) is trained separately, and each AE only defines two layers (visible and hidden).
Once training is completed, the hidden layer of the current auto-encoder (AE1) becomes the
visible layer of the next auto-encoder (AE2), and the unsupervised training step repeats itself
with AE2. (b)When each AE has been trained, they are stacked to form a deep network. At
this point a training label layer (that defines the known diagnosis labels) is added and the
supervised training step is initialed to create a fine-tuned deep network.
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Surgical treatment outcome prediction pipeline

Fig. 4.

Si%gle—stage connectome-based prediction framework that only has one pipeline trained to
predict the surgical treatment outcome of a patient with TLE. In general, the pipeline
includes three trained components: 1) connectome feature selection, 2) linear kernel
operation, and 3) linear SVM classifier.
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Contralateral
to seizure onset

i3

Posterior view

The top 15 connected regions with the smallest p-value (i.e., the network connections with
the greatest difference between patients with TLE and normal controls). The p-values are
calculated using a two-sample t-test. Note that the brain regions (defined using the Lausanne
anatomical atlas) are represented by the red nodes, and the edge connecting two brain

regions represents a network connection in the connectome.
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Fig. 6.
The top 15 connected regions with the smallest p-value (i.e., the network connections with

the greatest difference between the patients that are seizure-free after surgery and the
patients that are not seizure-free after surgery). The p-values are calculated using a two-
sample t-test. Note that the brain regions (defined using the Lausanne anatomical atlas) are
represented by the red nodes, and the edge connecting two brain regions represents a
network connection in the connectome.
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The top 15 connected regions in the brain with the smallest p-value (i.e., presurgical network connections with

the greatest difference between patients with TLE and normal controls).

Region

Region

Ipsilateral insula

Contralateral insula

Ipsilateral precentral
Contralateral parsorbitalis
Ipsilateral superiorfrontal
Ipsilateral caudate

Contralateral precentral
Ipsilateral medialorbitofrontal
Contralateral lateralorbitofrontal
Contralateral rostralanteriorcingulate
Ipsilateral precentral

Ipsilateral temporal pole
Ipsilateral medialorbitofrontal
Contralateral parahippocampal

Contralateral superiorparietal

Ipsilateral putamen

Contralateral putamen

Ipsilateral postcentral
Contralateral parstriangularis
Ipsilateral rostralanteriorcingulate
Ipsilateral accumbensarea
Contralateral postcentral
Ipsilateral superiorfrontal
Contralateral parsorbitalis
Ipsilateral rostralanteriorcingulate
Ipsilateral insula

Ipsilateral amygdala

Ipsilateral rostralanteriorcingulate
Contralateral hippocampus

Contralateral precuneus
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Table 5

The top 15 connected regions in the brain with the smallest p-value (i.e., presurgical network connections with
the greatest difference between the seizure-free and not-seizure-free post-surgery groups).
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Region

Region

Contralateral posterior cingulate
Contralateral paracentral
Contralateral insula

Contralateral inferior temporal
Ipsilateral medial orbitofrontal
Contralateral pericalcarine
Contralateral rostral anterior cingulate
Contralateral isthmus cingulate
Contralateral parsorbitalis
Contralateral pars triangularis
Contralateral rostral anterior cingulate
Contralateral precentral

Contralateral caudate

Ipsilateral rostral middle frontal

Contralateral isthmus cingulate

Ipsilateral frontal pole

Ipsilateral postcentral
Contralateral amygdala
Contralateral accumbens area
Ipsilateral rostral anterior cingulate
Ipsilateral inferior temporal
Ipsilateral paracentral

Ipsilateral middle temporal
Contralateral caudate

Contralateral inferior temporal
Contralateral entorhinal
Contralateral postcentral
Contralateral putamen

Ipsilateral caudal anterior cingulate

Ipsilateral insula
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Table 6

Performances of connectome-based prediction framework by using MUSC subjects for training while Bonn
subjects for testing. Note that only the proposed elastic-net based feature selection algorithm was used in these
experiments.

SEN SPE PPV NPV ACC

Stage-1 TLE vs. normal control.

% 1% 9% T74% TT%
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Stage-2 seizure-free vs. not-seizure-free.

% 58% 74%

54%

66%
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