
Evaluation of machine learning algorithms for treatment 
outcome prediction in patients with epilepsy based on structural 
connectome data

Brent C. Munsella,*, Chong-Yaw Weeb, Simon S. Kellerc, Bernd Weberd, Christian Elgerd, 
Laura Angelica Tomaz da Silvaa, Travis Neslandf, Martin Stynere, Dinggang Shenb,*, and 
Leonardo Bonilhaf

aDepartment of Computer Science, College of Charleston, Charleston, SC, USA

bDepartment of Radiology and BRIC, University of North Carolina at Chapel Hill, NC, USA

cDepartment of Molecular and Clinical Pharmacology, Institute of Translational Medicine, 
University of Liverpool, UK

dDepartment of Epileptogy, University of Bonn, Germany

eDepartment of Psychiatry, University of North Carolina at Chapel Hill, NC, USA

fDepartment of Neurology, Medical University of South Carolina, Charleston, SC, USA

Abstract

The objective of this study is to evaluate machine learning algorithms aimed at predicting surgical 

treatment outcomes in groups of patients with temporal lobe epilepsy (TLE) using only the 

structural brain connectome. Specifically, the brain connectome is reconstructed using white 

matter fiber tracts from presurgical diffusion tensor imaging. To achieve our objective, a two-stage 

connectome-based prediction framework is developed that gradually selects a small number of 

abnormal network connections that contribute to the surgical treatment outcome, and in each stage 

a linear kernel operation is used to further improve the accuracy of the learned classifier. Using a 

10-fold cross validation strategy, the first stage in the connectome-based framework is able to 

separate patients with TLE from normal controls with 80% accuracy, and second stage in the 

connectome-based framework is able to correctly predict the surgical treatment outcome of 

patients with TLE with 70% accuracy. Compared to existing state-of-the-art methods that use 

VBM data, the proposed two-stage connectome-based prediction framework is a suitable 

alternative with comparable prediction performance. Our results additionally show that machine 

learning algorithms that exclusively use structural connectome data can predict treatment 

outcomes in epilepsy with similar accuracy compared with “expert-based” clinical decision. In 

summary, using the unprecedented information provided in the brain connectome, machine 

learning algorithms may uncover pathological changes in brain network organization and improve 

outcome forecasting in the context of epilepsy.
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Introduction

Improvements in computational analyses of neuroimaging data now permit the assessment 

of whole brain maps of structural connectivity. The combination of gray and white matter 

maps from anatomical magnetic resonance imaging (MRI) with white matter fiber 

tractography from the diffusion tensor imaging (DTI), MRI sequences enables the 

reconstruction of the architecture of medium and large connections in the brain, commonly 

referred to as the brain connectome (Sporns, 2013). The brain connectome provides 

unprecedented information about global and regional conformations of neuronal network 

architecture. This information is particularly relevant as it relates to neurological or 

psychiatric disorders such as epilepsy (Richardson, 2012; Engel et al., 2013; Taylor et al., 

2014), schizophrenia (Rubinov and Bullmore, 2013; Crossley et al., 2014; Griffa et al., 

2015), and Alzheimer's disease (Xie and He, 2011; Daianu et al., 2013; Zhu et al., 2014), 

which are believed to be directly associated with restructuring of complex neuronal 

networks.

In this context, epilepsy is a neurological disorder directly associated with pathological 

changes in brain network organization. Even though most forms of epilepsy are believed to 

arise from epileptogenic activity emerging from localized brain areas, there is a growing 

body of evidence suggesting that focal seizures are in reality the result of hyperexcitation of 

localized networks, rather than isolated cortical regions (Spencer, 2002; Richardson, 2012). 

Likewise, the propagation of seizures may be due to the abnormal rearrangement of 

networks adjacent to the seizure onset zone, which, instead of inhibiting the epileptogenic 

activity and aborting the seizure, provides the framework for anatomical dissemination of 

pathological excitability.

Temporal lobe epilepsy (TLE) is one of the most common forms of epilepsy. It is defined by 

seizures arising from the medial temporal lobe, and the proportion of patients with epilepsy 

who are, or become, clinically resistant to pharmacotherapy ranges from 30 to 40% (Sander, 

1993; Hart and Shorvon, 1995; Devinsky, 1999; Brodie and Kwan, 2002;Kwan and Brodie, 

2004). Surgery for TLE is a potentially curative form of treatment, but the presurgical 

diagnostics use expert clinical information (i.e., human knowledge, conventional imaging, 

and neurophysiology) and seizure freedom after surgery is only achieved approximately 

70% of the time (Wiebe et al., 2001; Keller et al., 2007; Bien et al., 2013). Furthermore, 

other studies (Bonilha et al., 2012a; Bonilha et al., 2013) have demonstrated that refractory 

TLE is associated, on average, with connectome reorganization and the strengthening of 

temporal–extratemporal connectivity. Thus, the evaluation of the brain connectome in the 

context of epilepsy is of utmost importance, since it can provide unprecedented information 

regarding the organization of neuronal architecture that may be crucial to the neurobiology 

of the disease.
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The development of automated algorithms that can select subtle tissue features capable of 

differentiating pathological conditions is a challenging problem in the medical image 

analysis community. Recently, classification methods based on voxel-based morphometry 

(VBM) (Ashburner and Friston, 2000) data have proposed the use of MRI white and/or gray 

matter tissue structures to predict TLE with hippocampal sclerosis (Focke et al., 2012) or 

predict the surgical treatment outcome of a patient with TLE (Feis et al., 2013). In general, 

methods that use VBM data have several limitations that include estimating the amount of 

noise in the gray scale pixel intensity values, accurately detecting relevant tissue structure 

patterns in regions with poor contrast differences, and the number of tissue features (i.e., 

number of dimensions) is typically much greater than the total number of samples (i.e., 

number of individual MRI images) in the study. Even though experts may debate 

(Bookstein, 2001; Ashburner and Friston, 2001) about the validity of VBM approaches, 

classification methods based on VBM data have been shown to perform well in Alzheimer's 

disease applications (Kloppel et al., 2008; Cuingnet et al., 2011; Casanova et al., 2011). To 

overcome some of these limitations in TLE classification applications, a ranked grid search 

approach (Feis et al., 2013) is proposed to pre-select the most important tissue features prior 

to model construction. However, this approach is based on a heuristic algorithm that requires 

human input to guide the pre-selection process so the resulting subset of selected tissue 

features can be sub-optimal (Gu et al., 2011). Hand-crafted local weighting maps (Focke et 

al., 2012) have also been proposed, however, this approach typically works well for 

localized tissue structures and not well for ones that are spatially distributed (Focke et al., 

2011; Kloppel et al., 2009). In either case, the proposed tissue feature selection approaches 

may produce classifiers that are over-tuned to one particular neuroimaging training data set, 

and thus may perform poorly when applied to unseen neuroimaging data.

To complement conventional structural MRI analysis methods based on VBM data, a new 

connectome-based prediction framework is proposed that uses the elastic net (Zou and 

Hastie, 2005) regularization and feature selection algorithm to identify abnormal network 

connections, or network features, in connectomes reconstructed using white matter fiber 

tracts from presurgical DTI. In particular, elastic net is a supervised sparse learning 

technique that combines a least squares linear regression algorithm with a ℓ1 regularization 

term (Tibshirani, 1994) and a ℓ2 regularization term (Hoerl and Kennard, 2004). Over the 

last several years, sparse learning techniques have been successfully applied to several 

neuroimaging applications to improve the accuracy of the constructed model (Carroll et al., 

2009; Ryali et al., 2010; Bunea et al., 2011; Ryali et al., 2012; Casanova et al., 2011, 2012; 

Mohr et al., 2015). Specifically, in Ryali et al. (2012) elastic net is used to better estimate 

partial correlations between brain regions in functional networks reconstructed from resting-

state fMRI (rs-fMRI) time series data, and in Casanova et al. (2012) linear regression with ℓ1 

only regularization (i.e., lasso method, Tibshirani, 1994) is used to better identify gender 

associated differences in brain connectivity networks reconstructed from rs-fMRI time series 

data. Even though sparse learning techniques have been applied on brain connectivity 

networks reconstructed from fMRI data, such techniques have not been consistently applied 

to brain connectivity networks reconstructed from DTI white matter fiber tract data, epilepsy 

or epilepsy surgical outcome predictions. Unfortunately, our connectome-based prediction 

framework still suffers from one significant limitation, the number of subjects in the training 
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population is much less than the number of network features defined in the connectome. To 

overcome this limitation, two new techniques are introduced: 1) A two-stage elastic net 

feature selection and regularization approach is proposed that gradually selects a small 

subset of presurgical network features that can be used to train an SVM classifier capable of 

predicting the surgical treatment outcome of patients with TLE, and 2) prior to SVM 

training a linear kernel operation is performed that creates a highly compact and symetric 

feature matrix. This operation ensures that the learned SVM decision boundary will have an 

exact solution.

In this study we evaluate whether these new sparse machine learning techniques can 

accurately differentiate patients with epilepsy from healthy controls and predict surgical 

treatment outcomes regarding seizure controls within the epilepsy group. We hypothesized 

that these methods would permit an accurate estimate of surgical outcome groups that is at 

least equal or superior to the current clinical standards. Importantly, we aimed to evaluate 

whether this accuracy in surgical outcome estimation could be derived from connectome 

data alone, and not in combination with other clinical or imaging data, thus implying a role 

of structure network organization in the pathophysiology of epilepsy.

Methods and materials

Participants

We retrospectively studied a cohort of 35 consecutive patients with refractory TLE who 

were treated at the Comprehensive Epilepsy Center at the Medical University of South 

Carolina (MUSC), and 35 patients with refractory TLE treated at the University of Bonn in 

Germany. The demographic information for these patients are provided in Table 1. All 

patients had medically refractory TLE due to hippocampal sclerosis, or with medical 

refractory lesional TLE. All patients were diagnosed according to the criteria defined by the 

International League Against Epilepsy (ILAE) (Commission on Classification Terminology 

of the International League Against Epilepsy, 1989), including a comprehensive 

neurological evaluation, ictal electroencephalography (EEG) recordings, diagnostic MRI, 

and, when appropriate, nuclear medicine studies. All cases exhibited unilateral temporal 

lobe seizure onset during ictal EEG monitoring. All patients had routine diagnostic MRI 

revealing unilateral hippocampal atrophy (concordant with the side of ictal EEG seizure 

onset). Patients with structural abnormalities on MRI other than hippocampal atrophy or T2 

signal hyper-intensity were excluded from this study.

All patients were refractory to at least two first-line anti-epileptic medications. All MUSC 

patients underwent anterior temporal lobectomy, and all Bonn patients underwent 

amygdalohippocampectomy. We assessed surgical outcome based on the Engel Surgical 

Outcome scale (Engel et al., 2003) defined at least one year after surgery. Patients were 

classified into two groups: 1) free of disabling of seizures (i.e., seizure-free), equivalent to 

Engel Class I (including Class 1b patients with auras only) (18 MUSC patients and 23 Bonn 

patients); and 2) not seizure-free, equivalent to Engel Classes II, III or IV (17 MUSC 

patients and 12 Bonn patients).
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As local control groups, we studied 18 healthy individuals at MUSC and 30 healthy 

individuals at Bonn. The demographic information for normal control group is provided in 

Table 1. All individuals in the control group had no significant past medical history of 

neurological or psychiatric problems.

The Medical University of South Carolina and the University Bonn Institutional Review 

Boards approved this study. Written informed consent was obtained from all control 

subjects. Data from patients was obtained retrospectively through chart review and MRI 

analysis. Patient data were obtained as standard of care for medication refractory epilepsy 

and were reviewed under the “waiver of consent” category.

MRI acquisition

The same imaging protocol was applied to all MUSC study participants (patients and 

controls). Images were acquired on a Siemens 3 T Verio MRI scanner equipped with a 12-

channel head coil. The imaging protocol yielded a high-resolution T1-weighted image, with 

an isotropic voxel size of 1 mm (TR = 2250 ms, TE = 41 ms, FOV = 256 × 256 mm2). 

Diffusion-weighted images were obtained using two diffusion weightings (b = 0 and 1000 

s/mm2) along 30 diffusion-encoding directions (TR = 10,600 ms, TE=100 ms, FOV=224 × 

224 mm2, parallel imaging factor of 2, slice thickness = 2 mm, and 60 axial slices, isotropic 

voxel size of 3 mm).

Similarly, the same imaging protocol was applied to all Bonn study participants (patients 

and controls). Images were acquired on a Siemens 3 T Trio scanner equipped with an 8-

channel head coil. The imaging protocol yielded a high-resolution T1-weighted image, with 

an isotropic voxel size of 1 mm (TR = 1300 ms, TE = 3.97 ms, FOV = 256 × 256 mm2). 

Diffusion-weighted images were obtained using two different diffusion weightings (b = 0 

and 1000 s/mm2) along 60 diffusion-encoding directions (TR = 12,000 ms, TE = 100 ms, 

FOV = 220 × 220 mm2, parallel imaging factor of 2, slice thickness = 1.7 mm, and 72 axial 

slices, isotropic voxel size of 1.726 mm).

Image processing

DICOM images were converted to NIfTI format (with extraction of diffusion gradient 

directions) using dcm2nii in the MRIcron1 software toolbox. The FMRIB Software Library 

(FSL) Diffusion Toolkit (FDT)2 was used for preprocessing diffusion-weighted images and 

also for diffusion tensor estimation (Behrens et al., 2007; Heiervang et al., 2006). The 

images underwent eddy current correction through affine transformation of each DWI to the 

base b = 0, T2-weighted image.

White matter fiber tract reconstruction

Probabilistic tractography was used to define the number of white matter streamlines 

connecting each pair of cortical regions, which were defined according to an anatomical 

atlas. This step was iteratively performed until the connectivity between all possible pairs of 

1http://www.mccauslandcenter.sc.edu/mricro/mricron/dcm2nii.html.
2http://www.fmrib.ox.ac.uk/fsl.
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cortical regions was determined. The connectivity information was then compiled in a brain 

connectome (i.e., symmetric two-dimensional connectivity matrix) using the steps outlined 

below.

Structural connectivity was obtained by applying FDT's probabilistic method for fiber 

tracking (Behrens et al., 2007; Ciccarelli et al., 2006; Behrens et al., 2003). Probabilistic 

tractography was performed on diffusion data after voxel-wise calculation of diffusion 

tensor. FDT's BEDPOST was used to build default distributions of diffusion parameters at 

each voxel. Probabilistic tractography was obtained using FDT's probtrackx with 5000 

individual streamlines drawn through the probability distributions on the principal fiber 

direction. We chose to employ probabilistic tractography in this study, since it is 

theoretically capable of accommodating intra-voxel fiber crossings (Behrens et al., 2007; 

Nucifora et al., 2007).

Cortical seed regions for tractography were obtained from an automatic segmentation 

process, employing FreeSurfer3 on the T1weighted images. This process subdivides the 

human cerebral cortex into sulcogyral based cortical and subcortical regions of interest 

(ROIs) by automatically assigning a neuroanatomical label to each location on a cortical 

surface model, based on the probabilistic information estimated from a manually labeled 

training set (the Lausanne anatomical atlas, distributed as part of the Connectome Mapping 

Toolkit,4 yielding 82 ROIs in the subjects native T1-weighted space (41 regions in each 

hemisphere)). All processed images were visually inspected to ensure the cortical 

segmentation quality.

The ROIs were transformed into each subject's DTI space using an affine transformation 

obtained with FSL's FLIRT. Probabilistic tractography was performed using each of the 82 

cortical ROIs in diffusion space as the seed region. Supplementary Table 1 provides an 

anatomical description of all ROIs employed in this study.

Presurgical connectome reconstruction

For each subject, a comprehensive presurgical neural connectivity map, or connectome, is 

calculated, where the connectivity is measured by the number of probabilistic white matter 

fiber tract streamlines arriving at ROI j when ROI i was seeded, averaged with the number 

of probabilistic white matter fiber tract streamlines arriving at ROI i when ROI j was seeded. 

The step is iteratively repeated to ensure all 82 cortical ROIs were treated as seed regions. 

Once all iterations are completed, a symmetric 82 × 82 density connectivity map D is 

constructed, where Dij corresponds to the weighted network connection (or network 

connection for short) between ROIs i and j. Since the number of streamlines between i to j 

and j to i are averaged, D is symmetric with respect to the main diagonal, i.e., Dij = 0 when i 

= j. Example connectomes using the described reconstruction procedure can be seen in Fig. 

1. In particular, three different connectomes are shown: 1) normal control, 2) patient with 

TLE that is seizure-free after surgery is performed, and 3) patient with TLE who is not 

seizure-free (i.e., continue to experience seizures) after surgery.

3http://surfer.nmr.mgh.harvard.edu/.
4http://www.connectome.ch.
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Two-stage connectome-based prediction framework

The block diagram shown in Fig. 2 illustrates the basic design and operation of the proposed 

two-stage connectome-based prediction framework. In particular, the proposed framework 

defines a Stage-1 prediction pipeline that is able to separate patients with TLE from normal 

controls, and a Stage-2 prediction pipeline that is able to predict the surgical treatment 

outcome of patients with TLE. It is important to point out that the Stage-2 prediction 

pipeline is dependent on the Stage-1 prediction pipeline. That is, the output of the Stage-1 

connectome feature selection component is the input to the Stage-2 connectome feature 

selection component. Furthermore, each prediction pipeline defines three trained 

components, i.e., connectome feature selection, linear kernel operation, and linear SVM 

classifier, which are sequentially applied one after the other. The technical details describing 

how each of the three pipeline components are constructed and trained is provided in the 

Connectome feature selection pipeline component, Linear kernel operation pipeline 

component and Support vector machine classifier pipeline component sections.

The rationale behind the two-stage design is directly related to the number of network 

connections (i.e., features) defined in the connectome. Specifically, using only one stage to 

identify a small subset of features (less than a hundred) from thousands that contribute to the 

surgical treatment outcome is a very challenging feature selection problem for any machine 

learning algorithm. Instead, the proposed two-stage design takes a more controlled approach 

by gradually reducing a high-dimension connectome feature space to a lower-dimension 

one, thus making the problem more tractable.

In general, the three trained components in the Stage-1 prediction pipeline are sequentially 

applied as follows: Given a presurgical high-dimension connectome feature vector v not 

included in the training data set, the connectome feature selection component estimates a 

new sparse connectome feature vector s1 by applying the learned binary mask to v. The 

binary mask used by the connectome feature selection component in this stage identifies 

network connections in v that are able to differentiate patients with TLE from normal 

controls (i.e., multiply these features by one), and connectome features that are not able to 

differentiate patients with TLE from normal controls (i.e., multiply these features by zero). 

Next, only the non-zero features output from the connectome feature selection component 

are input into the linear kernel operation component and a highly compact feature vector ŝ1 

using a well-known kernel transformation technique is created. Lastly, the output of the 

linear kernel operation component is input into linear two-class SVM classifier component 

to predict the group outcome y1 (i.e., patient with TLE or normal control).

The three trained components in the Stage-2 prediction pipeline are sequentially applied as 

follows: Given the sparse connectome feature vector s1 found in the first stage, the 

connectome feature selection component in the second stage estimates a new sparse 

connectome feature vector s2 by applying a different learned binary mask to s1. In particular, 

the binary mask used by the connectome feature selection component in the second stage 

identifies network connections in s1 that are able to differentiate seizure-free from not 

seizure-free patients after surgery (i.e., multiply these features by one), and connectome 

features that are not able to differentiate seizure-free from not seizure-free patients after 
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surgery (i.e., multiply these features by zero). Next, only the non-zero features output from 

the connectome feature selection component are input into the linear kernel operation 

component and a highly compact feature vector ŝ2 using a well-known kernel transformation 

technique is created. Lastly, the output of the linear kernel operation is input into the linear 

two-class SVM classifier component to predict the surgical treatment outcome y2 (i.e., 

seizure-free or not seizure-free).

Connectome feature selection pipeline component

Given a n × m training data matrix A = [a1, a2, …, ai, …, an]t of n subjects, where row 

vector ai = (ai1, …, aim) is a m dimension presurgical connectome feature vector for subject 

i whose elements are the upper diagonal values of their connectivity map developed in the 

Presurgical connectome reconstruction section, and y = (y1, y2, …, yn) is an n dimension 

vector whose values are the class labels (binary value indicating the clinical outcome) of 

subjects in the training data set, i.e., the class label for row vector ai is yi. Because m ≫ n, 

the elastic net (Zou and Hastie, 2005) technique is used to find a sparse m dimension weight 

vector x that minimizes

(1)

where λ‖x‖1 is the ℓ1 regularization (sparsity) term,  is the ℓ2 regularization 

(smoothness) term, and Ã is a n × m matrix with normalized training data. Specifically, Ã(i, 

j) = (aij − μj)/σj where aij is network connection j for subject i, μj is the mean value of 

column vector j in matrix A, and σj is the standard deviation of column vector j in matrix A.

After optimization, x has weight values in [0 1], where weight values equal to zero indicate 

network connections that do not contribute to the clinical outcome, and weight values 

greater than zero indicate network connections that do contribute to the clinical outcome. In 

general, x is referred to as the sparse representation of training data set. Lastly, each weight 

value in x greater than zero is set to one. Therefore, the resulting sparse representation can 

be perceived as a binary mask, i.e., the network connection is turned on (value of 1) or 

turned off (value of 0). A new sparse training data matrix S = [s1, s2, …, sn]t is created, 

where row vector si = (ai1x1, ai2x2, …, aimxm).

The cost function in Eq. (1) is optimized using the LeastR method in the sparse learning with 

efficient projections (SLEP) software package,5 and the λ and ρ values used by the sparse 

learning algorithm were set to 0.5 and 1.0, respectively, for each prediction pipeline in the 

proposed two-stage connectome-based framework.

Linear kernel operation pipeline component

Even though the learned sparse representation can greatly reduce the dimension of the input 

connectome feature vector, the number of non-zero features in the newly created sparse 

training data matrix will most likely not be equal to the number of training data subjects. 

5http://www.public.asu.edu/jye02/Software/SLEP/.
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This condition may result in an over-determined system of equations (with more subjects 

than features), or an under-determined system of equations (with more features than 

subjects). In both cases, there may be an infinite number of solutions, or no solution, to this 

system of linear equations, which in turn may severely impact the accuracy of the trained 

classifier. To overcome this limitation, a symmetric m̃ × m̃ Gramian (Lanckriet et al., 2004) 

matrix Ŝ is constructed using the linear transformation

(2)

where St is the matrix transpose and m̃ is the number of non-zero features in the sparse 

representation. It is important to note that these more compact features cannot be mapped 

back to a single network connection. In fact, each feature in this newly formed mathematical 

space is the inner product of two network connection vectors.

Support vector machine classifier pipeline component

Finally, Ŝ and y are used to train a linear two-class SVM classifier based on the LIBSVM 

library.6 Once the SVM classifier is trained, the surgical treatment outcome of an m 

dimension presurgical connectome feature vector, say v = (v1, v2, …, vm), not included in the 

training data set, can be predicted using the sequence of steps provided below.

1. Normalize each value in v using the learned centering and magnitude scaling 

values for the j = 1, …, m network connection features, ṽi = (vi − μj)/σj.

2. Create sparse connectome feature vector s = (ṽ1x1, ṽ2x2, …, ṽmxm) by applying 

learned binary mask. All features that have a zero value are removed, resulting in a 

m̃ dimension connectome feature vector.

3. Apply learned linear transformation to obtain m̃-dimension feature vector s = (ŝ1, 

ŝ2, …, ŝm̃) where

for i = 1, …, m̃.

4. Calculate the predicted class label

where k(·) is the inner product of two vectors, and αi is the weight, ϕi is the support vector, 

and b is the bias that defines the linear hyperplane (decision boundary) learned by the SVM 

classifier. The sign of the calculated prediction value (i.e., y ≥ 0 or y < 0 y < 0) determines 

the class label the testing subject is assigned to.

6http://www.csie.ntu.edu.tw/ cjlin/libsvm/.
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Prediction framework performance evaluation

The performance of the prediction framework is evaluated using a 10-fold cross-validation 

strategy. In particular, the Bonn and MUSC subjects are first combined into one data set, 

and then partitioned into 10 different folds, where each fold contains connectomes of 

randomly selected patients (i.e., a mixture of seizure free and not seizure free) and/or 

randomly selected normal controls. The prediction framework is iteratively trained using the 

connectome data in 9 of the 10 folds, and then tested using the connectome data in the 

remaining (or left-out) fold. This iterative process terminates when each fold has been 

selected as the test one. Using the combined confusion matrix (TP = true positive, FP = false 

positive, FN = false negative, and TN = true negative) results of each test fold, the 

prediction performance is reported using the specificity, sensitivity, positive predictive 

value, negative predictive value, and accuracy measures, where

• Sensitivity (SEN) = TP / (TP + FN),

• Specificity (SPE) = TP / (FP + TN),

• Positive predictive value (PPV) = TP / (TP + FP),

• Negative predictive value (NPV) = TN / (TN + FN), and

• Accuracy (ACC) = (TP + TN) / (TP + FN + FP + TN).

Feature selection using sparse canonical correlation analysis

For performance comparison purposes, SVM classifiers are also trained using presurgical 

connectome features selected by a sparse canonical correlation analysis (SCCA) method. 

This is accomplished by simply replacing the elastic net algorithm outlined in the 

Connectome feature selection pipeline component section with SCCA. Using the SCCA 

method described in Avants et al. (2010), the sparse representation x = xβ ∪ xα was found 

that maximizes

(3)

where Āα is a normalized training data matrix that only contain subjects with class label α 

(e.g., disorder condition), Āβ is a normalized training data matrix that only contain subjects 

with class label β (e.g., normal condition), and λβ‖xβ‖1 and λα‖xα‖1 are ℓ1 regularization 

(sparsity) terms. In general, after the cost function in Eq. (3) is optimized, the canonical 

weight values in vectors xα and xβ maximize the correlation between normalized training 

data matrices Āα and Āβ. Like the approach in Avants et al. (2010),we took only the first 

component of the SCCA solution, however, we only selected the canonical weight values 

that were less than zero. In general, a negative value indicates that the same connectome 

feature is negatively correlated in the two normalized training data sets, which suggests that 

these connectome features are more likely to differentiate the disorder condition from the 

normal one. As a result, each canonical weight value in xα and xβ that is less than zero is set 

to one, and the remaining ones are set to zero. Finally, the sparse representation x is found 

by finding the union of the binary values in xα and xβ.
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The SCCA cost function in Eq. (3) is optimized using a modified version of the LS_CCA 

method,7 and the λα and λβ values used by the ℓ1 regularization (sparsity) terms were both 

set to 0.5 for the prediction pipeline results reported in the Results section.

Feature selection using a deep non-linear hierarchical model

For performance comparison purposes, SVM classifiers are also trained using low 

dimension presurgical connectome feature codes found by a deep learning method (Hinton 

and Salakhutdinov, 2006; Lee et al., 2009; Le et al., 2011). Since elastic net and sparse 

canonical correlation analyses are both based on linear models, deep learning is an attractive 

machine learning alternative because it is capable of encoding latent, non-linear 

relationships in high dimension data. In particular, the basic concept is to learn the highly 

compact hierarchical feature representations by inferring simple ones first and then 

progressively building up more complex ones from the previous levels.

In general, a deep network is trained in two sequential steps: 1) an unsupervised step, i.e., 

training individual auto-encoders (AE) as illustrated in Figs. 3(a), and 2) a supervised step, 

i.e., stacking the initialized AEs (creating the deep network) and then fine-tuning by the 

known binary training labels as illustrated in Fig. 3(b). In the unsupervised step, each AE is 

trained separately producing weights and bias values that increase the likelihood of finding 

the global optimum, or at least a very good local minimum, during the supervised step. In 

the supervised step, one additional layer is added (a training label layer that include the 

binary class label), and the resulting deep network is treated like a traditional feed forward 

neural network that uses back propagation to fine-tune the initial weight values. Once the 

supervised step completes, the training label layer is removed, and the number of nodes in 

last hidden layer represents the final dimension of the output low dimension code (LDC). 

The resulting LDCs along with the binary class labels are then used to train a SVM 

classifier. Finally, the outcome of brain connectomes not included in the training data set 

can be predicted by first estimating the LDCs using the trained deep network, and then 

classifying the LDCs using the learned SVM classifier.

The deep networks were implemented using the DeepLearnToolbox software package.8 For 

both stages, the momentum and learning rate was set to 0.3 and 1.5, respectively. The 

architecture used to generate the prediction results in the Stage-1: TLE prediction pipeline 

section was set to [3321 1000 500 200 100] (i.e., 5 layers, with the first layer having 3321 

nodes, the second layer having 1000 nodes, the third layer having 500 nodes, the fourth 

layer having 200 nodes, and the last layer having 100 nodes), where the output dimension of 

the LDC found by the deep learning network is 100. The architecture used to generate the 

prediction results in the Stage-2: surgical treatment outcome prediction pipeline was set to 

[383 100 50 15] (i.e., 4 layers, with the first layer having 383 nodes, the second layer having 

100 nodes, the third layer having 50 nodes, and the last layer having 15 nodes), where the 

output dimension of the LDC found by the deep learning network is 15.

7http://www.public.asu.edu/jye02/Software/CCA/.
8https://github.com/rasmusbergpalm/DeepLearnToolbox.

Munsell et al. Page 11

Neuroimage. Author manuscript; available in PMC 2016 January 05.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.public.asu.edu/jye02/Software/CCA/
https://github.com/rasmusbergpalm/DeepLearnToolbox


Single-stage surgical treatment prediction framework with optimal elastic net 
regularization parameters

For performance comparison purposes, a single-stage connectome-based framework with 

only one pipeline trained to predict the surgical treatment outcome is constructed as shown 

in Fig. 4. There are two significant differences between the trained connectome feature 

selection pipeline component in the single-stage framework, and the trained connectome 

feature selection pipeline component in the proposed two-stage framework shown in Fig. 2. 

Specifically, in the single-stage connectome feature selection pipeline component the elastic 

net feature selection and regularization algorithm is trained: 1) using all m connectome 

features, and 2) using the optimal ℓ1 and ℓ2 regularization parameter values.

In general, the three trained components in single-stage surgical outcome prediction pipeline 

are sequentially applied as follows: Given a presurgical m-dimension connectome feature 

vector v not included in the training data set, a new sparse connectome feature vector s is 

found by applying a learned binary mask to v, where the binary mask identifies only those 

presurgical network connections in v that are able to differentiate seizure-free patients from 

patients that continue to have seizures after surgery is performed. Only the non-zero features 

output from the connectome feature selection component are then input into the linear kernel 

operation component and a highly compact feature vector ŝ is created. Lastly, the output of 

the linear kernel operation is input into the linear two-class SVM classifier component to 

predict the surgical treatment outcome y (i.e., seizure-free or not seizure-free).

To estimate the optimal ℓ1 regularization parameter (λ̃) value and ℓ2 regularization 

parameter (ρ̃) value used by the elastic net algorithm in the single-stage feature selection 

pipeline component, a two-nested grid search scheme, similar to the scheme in Casanova et 

al. (2012), is executed. In particular, the external and internal cross-validation procedures 

both use the 10-fold cross-validation strategy described in Section 2.5. For each training step 

in the internal cross-validation procedure, the λ grid point is sequentially changed from 0.05 

to 1.0 at increments of 0.05, the ρ grid point is sequentially changed from0.6 to 2.5 at 

increments of 0.1, and for each pair of (λ, ρ) grid points a single-stage surgical treatment 

outcome prediction pipeline is trained using connectome data in 9 of the 10 folds and then 

tested using the remaining fold. When an internal 10-fold cross-validation procedure 

completes the (λ̃, ρ̃) grid points that produce the maximum average PPV measure are 

selected. Lastly, for each training step in the external cross-validation procedure the optimal 

(λ̃, ρ̃) regularization values estimated in the corresponding internal step are then used to train 

a new single-stage surgical treatment outcome prediction pipeline using connectome data in 

9 of the 10 folds and then tested using the remaining fold. Finally, when the external cross-

validation procedure completes the average PPV, NPV, sensitivity, specificity, and accuracy 

are calculated.

Site differences and prediction framework over fitting

One common problem encountered during the training procedure is for the sparse machine 

learning technique to over fit the constructed model to connectome data acquired from the 

same MRI scanner at the same site. In the ideal environment, at training completion the 

sparse representation estimated by the elastic net algorithm should only keep network 
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connections that contribute to the surgical treatment outcome, and remove network 

connections that are specific to the scanner or the scanning site. In the over fitting case, a 

significant number of these unwanted network connections will be included in the sparse 

representation. As a result, when given unseen connectome data derived from subjects 

scanned using a different scanner at a different site, the over fit sparse representation could 

be too specific and may adversely affect prediction performance. Additionally, the over fit 

sparse representation estimated in the first stage will likely be propagated to the second 

stage, which may limit the performance of the entire prediction framework.

Since the MRI data was collected at two different MRI scanners (Siemens Verio and Trio) at 

two different sites (MUSC and Bonn), there is a unique opportunity to evaluate whether the 

over fitting issue is occurring, and to what extent. In particular, experiments that evaluate the 

TLE prediction pipeline and the surgical outcome prediction pipeline were both repeated. 

However, this time a 10-fold cross validation was not used, and the train and test data sets 

did not combine subjects from the two different sites. Instead, the training data only 

included the connectomes from MUSC subjects, while the testing data only included the 

connectomes from Bonn subjects.

Results

The results reported in this section are obtained with prediction pipelines trained and tested 

only using presurgical structural brain connectome data (i.e., no demographic or EEG data 

was used).

Stage-1: TLE prediction pipeline

In this experiment, the total number of subjects in the connectome data set is 118, including 

70 patients with TLE (35 MUSC and 35 Bonn), and 48 normal controls (18 MUSC and 30 

Bonn). This data set was randomly partitioned into 10-folds, where 8 of the 10 folds have 12 

subjects, and 2 of the 10 folds have 11 subjects. Furthermore, the outcome (patient/normal 

control) and the site (MUSC/Bonn) ratios were maintained across each fold. The number of 

subjects in the training population is approximately 106, and each training subject is defined 

by a (81 × 82) / 2 = 3321 dimension connectome feature vector. Lastly, the binary class 

labels used to train the prediction pipeline are 0 = patient with TLE and 1 = normal control.

Table 2 shows the 10-fold results for three different prediction pipelines, i.e., training a 

SVM classifier with the connectome features selected by 1) elastic net (proposed), 2) SCCA, 

and 3) deep learning machine learning algorithms. The best performance (PPV = 90%, NPV 

= 70%, and ACC = 80%) was achieved by the first prediction pipeline that uses elastic net 

for feature selection.

The total number of non-zero network connections |wt| selected by the elastic net algorithm, 

which can,  is the union of each learned sparse representation for each fold. 

Using a two-sample t-test with α = 0.05, a paired9 p-value is calculated for each non-zero 

network connection in wt and then sorted in ascending order, where the null hypothesis 

9Corresponded network connections between the TLE group and normal control group.
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represents data that are independent random samples from normal distributions with equal 

means and equal but unknown variances. The top 15 non-zero network connections with the 

smallest p-values, i.e., those with the greatest difference between the two groups, can be 

seen in Table 3 and are also visualized in Fig. 5 using the Brainnet viewer (Xia et al., 2013) 

software package. The complete list of network connections (i.e., all 383) are provided in 

Supplementary Table 2.

Stage-2: surgical treatment outcome prediction pipeline

In this experiment, the total number of patients with TLE in the connectome data set is 70 

(including 35 MUSC patients and 35 Bonn patients). This data set was partitioned into 10-

folds, where each fold has 7 subjects. Furthermore, the outcome (seizure-free/not-seizure-

free) and the site (MUSC/Bonn) ratios were maintained across each fold. The number of 

patients in the training population is 63, and each training subject is represented by a 

connectome feature vector that only includes the 383 connectome features found by the 

Stage-1 connectome feature selection pipeline component (see Fig. 2). Lastly, the binary 

class labels used to train the prediction pipeline are 0 = not-seizure-free and 1 = seizure-free.

Table 4 shows the 10-fold results for four different prediction pipelines, i.e., training a SVM 

classifier with the connectome features selected by 1) elastic net (proposed two-stage 

framework), 2) SCCA, 3) deep learning, and 4) elastic net (single-stage framework) machine 

learning algorithms. The best performance (PPV = 63%, NPV = 72%, and ACC = 70%) was 

achieved by the prediction pipeline that only use the 383 found by the Stage-1 connectome 

feature selection pipeline component and the elastic net algorithm. Note: the learned binary 

mask found by the elastic net algorithm in the single-stage framework uses all 3321 

connectome features. Additionally, the reported performance measures for the single-stage 

framework are the average values found using a two-nested grid search scheme that also 

estimates the optimal elastic net regularization parameters.

The total number of non-zero network connections |wt| selected by the elastic net algorithm 

(in the second stage of the proposed two-stage framework), which can differentiate the 

seizure-free post-surgery group from the not-seizure-free post-surgery group, is 132. Using a 

two-sample t-test with α = 0.05, a paired p-value is calculated for each non-zero network 

connection in wt and then sorted in ascending order, where the null hypothesis represents 

data that are independent random samples from normal distributions with equal means and 

equal but unknown variances. The top 15 non-zero network connections with the smallest p-

values, i.e., those with the greatest difference between the two groups, can be seen in Table 

5 and are also visualized in Fig. Fig. 6 using the Brainnet viewer (Xia et al., 2013) software 

package. The complete list of network connections (i.e., all 132) are provided in 

Supplementary Table 3.

Site differences and prediction framework over fitting assessment

Table 6 shows the performance of the TLE prediction and surgical treatment outcome 

prediction pipelines trained using the connectomes of MUSC subjects, and tested using the 

connectomes of Bonn subjects. These results suggest that the proposed two-stage 

connectome-based prediction framework is robust to site and/or scanner differences. 
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Furthermore, if an over fitting condition is indeed happening, this type of training error has a 

minimal impact on the performance of the proposed prediction framework.

Discussion

Using a 10-fold cross validation strategy, the performance of the two-stage connectome-

based prediction framework is assessed using SVM classifiers trained with connectome 

features selected by the proposed elastic net learning algorithm, SVM classifiers trained with 

connectome features selected by a sparse conical correlation analysis algorithm, and SVM 

classifiers trained with connectome features selected by a deep learning algorithm. In each 

case, SVM classifiers trained with connectome features selected by elastic net were 

significantly more accurate than those trained with connectome features selected by sparse 

conical correlation analysis and by deep learning. Specifically, the connectome-based 

prediction framework is able to separate patients with TLE from normal control with 80% 

accuracy, and is able to predict the surgical treatment outcome of patients with TLE with 

70% accuracy.

Surgical treatment outcome and model selection

In this study three different two-stage connectome-based prediction frameworks are 

evaluated, where each framework implements a different machine learning algorithm that is 

based on a particular mathematical model (or model for short). In general, two different 

types of models are compared in this study: 1) linear models such as elastic net and SCCA, 

and 2) a hierarchical non-linear model such as deep learning. Based on the 10-fold PPV, 

NPV, and accuracy results as reported in the Stage-2: surgical treatment outcome prediction 

pipeline section, a few important observations can be made:

• Compared to the classifiers trained using presurgical connectome features selected 

by a non-linear model, the classifiers trained using presurgical connectome features 

selected by a linear model are 1) approximately 8% more likely to recognize 

patients that are not seizure-free after surgery (PPV), 2) approximately 14% more 

likely to recognize patients that are seizure-free after surgery (NPV), and 3) 

approximately 13% more likely to correctly identify the surgical outcome 

(accuracy).

• Compared to the classifiers trained using presurgical connectome features selected 

by the SCCA model, the classifiers trained using presurgical connectome features 

selected by the elastic net model are 1) approximately 2% more likely to recognize 

patients that are not seizure-free after surgery (PPV), 2) approximately 13% more 

likely to recognize patients that are seizure-free after surgery (NPV), and 3) 

approximately 10% more likely to correctly identify the surgical outcome 

(accuracy).

The above observations suggest the relationship between the network connections in 

presurgical connectome and the surgical outcome are more linear than non-linear. Therefore, 

a linear model may be more suitable for surgical treatment outcome prediction in 

connectome-based classification applications.
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Small sample size and high dimension data

One potential concern is that the number of subjects in the training population n is 

significantly less than the total number of network connections m defined in the brain 

connectome, i.e., m ≫ n. To mitigate this issue, the proposed connectome-based prediction 

framework employs the following two techniques:

• A two-stage feature selection approach. In the first stage, the elastic net algorithm 

selected 383 presurgical network connections from the original 3321 that are likely 

to differentiate patients with TLE from normal controls. This accounts for roughly 

an 88% reduction in network connections. In the second stage, the elastic net 

algorithm further selected 132 presurgical network connections from 383 that are 

now likely to differentiate patients that continue to have seizures from those that 

are seizure-free after surgery is performed. This accounts for roughly a 66% 

reduction in network connections. As also seen in Table 4, the two-stage feature 

selection approach is significantly more accurate than the single-stage feature 

selection approach with optimal elastic net regularization parameters. In general, 

breaking a larger feature selection problem into two smaller ones allows the elastic 

net algorithm to gradually and more accurately identify only those network 

connections that contribute most to the surgical treatment outcome.

• Linear kernel operation prior to classifier training. The two-stage feature selection 

approach outlined above can significantly reduce the number of features used to 

train a classifier, however, it is highly unlikely that the number of subjects in the 

training population will be equal to the number of non-zero features in the learned 

sparse representation. To ensure that the classification algorithm will converge to a 

unique solution, a linear kernel operation is performed. This mathematical 

operation produces the well known Gramian matrix (Lanckriet et al., 2004), which 

is widely used by machine-learning algorithms (Aizerman et al., 1964) that suffer 

from this same problem. As a result, the number of features used to train the 

classifier will be identical to the number of subjects in the training population.

Since the 10-fold accuracy, PPV, and NPV performance values reported in Tables 2 and 4 

both show the reasonably good results, the linear kernel operation and two-stage feature 

reduction techniques used by the connectome-based prediction framework are very intuitive 

and sensible ones that help overcome this challenging problem.

Clinical interpretation of prediction results

The result from this study also support the notion that, epilepsy in general, and specifically 

TLE, are associated with temporal and extratemporal network architecture abnormalities 

(Bonilha et al., 2012b; Liu et al., 2014; Bonilha et al., 2013; DeSalvo et al., 2014). They also 

indicate that a pattern of network abnormalities may be relevant on an individual basis to 

guide the estimation of clinical outcomes. While most studies to date have demonstrated the 

average effects on TLE on the structural connectome, the application of machine learning to 

the connectome can disclose how the complexity of the connectome can be abridged to yield 

classifiers with clinical relevance. Importantly, the connectome is a rich and complex data 

set, and individuals with TLE may harbor abnormalities with inter-individual variability. 
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Thus, the use of machine learning can overcome some of these challenges, while 

incorporating the crucial parameters in the connectome that are relevant to epilepsy 

management.

In this context, the connectome can be used not only to provide information about the 

neurobiology of the disease, but also to provide information about the personalized clinical 

trajectory. This trajectory cannot be accurately defined based on the existing clinical 

measures, and machine learning applied to the connectome may unveil a completely new 

avenue for additional clinical phenotyping and management planning.

One very interesting observation is that the two-stage connectome-based prediction 

framework can achieve roughly the same accuracy as the expert clinical opinion. 

Historically speaking, presurgical diagnostics using expert-based clinical information is 

approximately 70% accurate for patients that choose to have surgery. In this study, the 

prediction framework is also 70% accurate. This level of accuracy is achieved based on the 

connectome alone, which is pretty remarkable, and is an important clinical finding that may 

advance outcome prediction for patients with epilepsy.

Performance comparison to existing VBM-based methods

Compared to the white matter classification method developed in (Focke et al., 2012) that 

uses VBM data, and does not use local weights, the prediction accuracy of the two-stage 

connectome-based framework is consistently better. Specifically, our accuracy is 80%, while 

the reported mean accuracy of the DTI T2map is 75.3% (RHS vs. controls + LHS vs. 

controls divided by two), the reported mean accuracy of the T1 stream is 73.2%, and the 

reported mean accuracy of the T1 stream with hippocampal masking is 74.5%.

Compared to the white matter classification method developed in (Feis et al., 2013) that uses 

VBM data, the prediction accuracy of the two-stage connectome-based framework is 

considerably less. Specifically, our accuracy is 70%, while the reported accuracy in (Feis et 

al., 2013) is 95%. It is very difficult to compare our connectome-based method with a VBM-

based method that uses heuristic grid-based search algorithm. In general, since this type of 

algorithm requires several iterations to finely tune different search parameters to one 

particular training data set acquired from a single site and/or MRI scanner, the resulting 

classifier may suffer from an over fitting condition. However, as shown in Section 3.3, our 

connectome-based prediction framework appears to be robust to this type of over fitting 

issue.

Additionally, the authors of these two VBM-based approaches did not report the amount of 

time needed to fully train their prediction models. In the proposed framework, only two 

parameters are required by the elastic net algorithm, namely the ℓ1 regularization parameter 

(λ) and the ℓ2 regularization parameter (ρ). Both regularization parameters produce stable 

performance results (approximately ± 1% variation in PPV, NPV, sensitivity, specificity, 

and accuracy) when values are independently or jointly changed. Lastly, the time needed to 

train both pipelines in the two-stage framework is approximately 5 s, which means the entire 

10-fold cross validation requires approximately 1 min to complete.
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Conclusion

In this study a sparse machine learning approach is used to select abnormal network 

connections defined in structural brain connectomes reconstructed using white matter fiber 

tracts from presurgical DTI data. The selected network connections were then used to train a 

classifier to predict the treatment outcome after anterior temporal lobectomy, or 

amygdalohippocampectomy, surgery is performed. Due to the large number of network 

connections defined in a connectome, and the small number of subjects in the training 

population, two new techniques are used to improve the accuracy of the connectome-based 

prediction framework. Specifically, a two-stage elastic net feature selection and 

regularization approach that gradually reduces the number of network connections is used to 

train a classifier capable of predicting the surgical treatment outcome, and a linear kernel 

operation is used to further improve the accuracy of the trained classifier. Using 10-fold 

cross validation, the first stage in the two-stage connectome-based framework is able to 

separate patients with TLE from normal controls with 80% accuracy, and the second stage in 

the two-stage connectome-based framework is able to correctly predict the surgical 

treatment outcome of patients with TLE with 70% accuracy. Compared to the existing state-

of-the-art methods that use VBM data, our two-stage connectome-based framework provides 

a suitable alternative with comparable, or better, prediction performance. Lastly, our 

connectome-based prediction framework achieves roughly the same accuracy for predicting 

surgical treatment outcome as the expert clinical opinion.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Example symmetric 82 × 82 connectivity map constructed using method outlined in the 

Presurgical connectome reconstruction section for normal control, seizure-free, and not 

seizure-free patients, respectively. The brain structures are numbered from 1 to 82 in 

accordance with the atlas provided in Supplementary Table 1. Regions 1 to 42 represent the 

hemisphere contralateral to seizure onset, and 43 to 82 represent the hemisphere ipsilateral 

to seizure onset. Within each hemisphere, the regions are grouped as follows: frontal lobe, 

temporal lobe, basal nuclei, parietal lobe, and occipital lobe.
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Fig. 2. 
Block diagram that illustrates the basic design and operation of the proposed two-stage 

connectome-based prediction framework. The framework defines two different prediction 

pipelines, specifically a Stage-1 prediction pipeline, and a Stage-2 prediction pipeline. Each 

prediction pipeline has three trained components: 1) connectome feature selection, 2) linear 

kernel operation, and 3) linear SVM classifier. Note that the superscript value identifies the 

stage.
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Fig. 3. 
Training of deep learning (DL) network includes an unsupervised and a supervised training 

procedure. In particular, (a) in the unsupervised training step each auto-encoder (i.e., AE1 

and AE2) is trained separately, and each AE only defines two layers (visible and hidden). 

Once training is completed, the hidden layer of the current auto-encoder (AE1) becomes the 

visible layer of the next auto-encoder (AE2), and the unsupervised training step repeats itself 

with AE2. (b)When each AE has been trained, they are stacked to form a deep network. At 

this point a training label layer (that defines the known diagnosis labels) is added and the 

supervised training step is initialed to create a fine-tuned deep network.
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Fig. 4. 
Single-stage connectome-based prediction framework that only has one pipeline trained to 

predict the surgical treatment outcome of a patient with TLE. In general, the pipeline 

includes three trained components: 1) connectome feature selection, 2) linear kernel 

operation, and 3) linear SVM classifier.
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Fig. 5. 
The top 15 connected regions with the smallest p-value (i.e., the network connections with 

the greatest difference between patients with TLE and normal controls). The p-values are 

calculated using a two-sample t-test. Note that the brain regions (defined using the Lausanne 

anatomical atlas) are represented by the red nodes, and the edge connecting two brain 

regions represents a network connection in the connectome.
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Fig. 6. 
The top 15 connected regions with the smallest p-value (i.e., the network connections with 

the greatest difference between the patients that are seizure-free after surgery and the 

patients that are not seizure-free after surgery). The p-values are calculated using a two-

sample t-test. Note that the brain regions (defined using the Lausanne anatomical atlas) are 

represented by the red nodes, and the edge connecting two brain regions represents a 

network connection in the connectome.
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Table 3

The top 15 connected regions in the brain with the smallest p-value (i.e., presurgical network connections with 

the greatest difference between patients with TLE and normal controls).

Region – Region

Ipsilateral insula – Ipsilateral putamen

Contralateral insula – Contralateral putamen

Ipsilateral precentral – Ipsilateral postcentral

Contralateral parsorbitalis – Contralateral parstriangularis

Ipsilateral superiorfrontal – Ipsilateral rostralanteriorcingulate

Ipsilateral caudate – Ipsilateral accumbensarea

Contralateral precentral – Contralateral postcentral

Ipsilateral medialorbitofrontal – Ipsilateral superiorfrontal

Contralateral lateralorbitofrontal – Contralateral parsorbitalis

Contralateral rostralanteriorcingulate – Ipsilateral rostralanteriorcingulate

Ipsilateral precentral – Ipsilateral insula

Ipsilateral temporal pole – Ipsilateral amygdala

Ipsilateral medialorbitofrontal – Ipsilateral rostralanteriorcingulate

Contralateral parahippocampal – Contralateral hippocampus

Contralateral superiorparietal – Contralateral precuneus
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Table 5

The top 15 connected regions in the brain with the smallest p-value (i.e., presurgical network connections with 

the greatest difference between the seizure-free and not-seizure-free post-surgery groups).

Region – Region

Contralateral posterior cingulate – Ipsilateral frontal pole

Contralateral paracentral – Ipsilateral postcentral

Contralateral insula – Contralateral amygdala

Contralateral inferior temporal – Contralateral accumbens area

Ipsilateral medial orbitofrontal – Ipsilateral rostral anterior cingulate

Contralateral pericalcarine – Ipsilateral inferior temporal

Contralateral rostral anterior cingulate – Ipsilateral paracentral

Contralateral isthmus cingulate – Ipsilateral middle temporal

Contralateral parsorbitalis – Contralateral caudate

Contralateral pars triangularis – Contralateral inferior temporal

Contralateral rostral anterior cingulate – Contralateral entorhinal

Contralateral precentral – Contralateral postcentral

Contralateral caudate – Contralateral putamen

Ipsilateral rostral middle frontal – Ipsilateral caudal anterior cingulate

Contralateral isthmus cingulate – Ipsilateral insula

Neuroimage. Author manuscript; available in PMC 2016 January 05.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Munsell et al. Page 33

Table 6

Performances of connectome-based prediction framework by using MUSC subjects for training while Bonn 

subjects for testing. Note that only the proposed elastic-net based feature selection algorithm was used in these 

experiments.

SEN SPE PPV NPV ACC

Stage-1 TLE vs. normal control.

% 77% 79% 74% 77%

Stage-2 seizure-free vs. not-seizure-free.

% 58% 74% 54% 66%
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