
Selected Problems in Data

Driven and Tra�c Related

Networks

Author: Ashley James Farrugia

A thesis submitted in ful�lment of the requirements for the

degree of

Doctor of Philosophy in Computer Science

Department of Computer Science

University of Liverpool

United Kingdom

November 17, 2016

Abstract

In our research we concentrate on networks. The study of networks have

been extensively studied over the last few decades and it is still gaining pop-

ularity. In this thesis we study the challenge of gaining an understanding of

networks when information about the network is unknown or limited in some

way. Initially we consider the challenge of understanding from a vast amount

of information what can be used to provide insight into the behaviour of the

network, and for this we consider methods and techniques adopted from the

social network analysis (SNA) community. Following this, we consider net-

works that have access to data that is limited in some way and demonstrate

that statistical analysis methods can be used to overcome these challenges.

Finally, we consider the challenge of having exposure to increasingly less

information about the network, and we demonstrate this di�culty by con-

sidering a rendezvous problem, a known and establish problem but in this

work we consider the search space to be a restricted network, in a distributed

environment.

2

Acknowledgements

I would like to express my deepest gratitude to my supervisors Prof. Leszek

G¡sieniec and Dr Russell Martin, whose knowledge, guidance, patience and

encouragement has helped me greatly in both my PhD studies and in life.

I would also like to acknowledge my examiners Prof. Prudence Wong and

Dr Paul Sant for their invaluable input on helping with �nal preparations of

this thesis.

I must acknowledge all of my co-authors for their contributions to the papers

that we worked on together. I found these experiences both informative and

enjoyable.

I would like to give very special thanks to my friends and family for all

of your help and support, both throughout my studies and my entire life.

Without their love, encouragement and support I would not have completed

this thesis. Finally, in conclusion. I would like to thank the Centre for

Global Eco-innovation (CGE) and AIMES Grid Services for providing such

an opportunity.

�He who loves practice without theory is like the sailor who

boards ship without a rudder and compass and never knows where

he may be cast.�

� Leonardo da Vinci

4

Contents

1 Introduction 17

1.1 Motivation and Problem Scope 17

1.2 Contributions . 21

1.2.1 Chapter 3 . 21

1.2.2 Chapter 4 . 22

1.2.3 Chapter 5 . 22

1.3 Thesis Structure . 23

2 Background 25

2.1 Statistics . 25

2.1.1 Introduction to statistics 25

2.1.2 Variables . 29

2.1.3 Organising and describing data 30

2.1.4 Frequency Distributions 33

2.1.5 Measures of center . 36

2.1.6 Measures of variation [17, 94, 169] 38

2.2 Networks . 41

2.2.1 Introduction to Graph Theory [130, 153] 42

2.2.2 Introduction to Networks 49

2.3 Big Data . 56

5

Contents 6

3 Towards Social Network Analytics for Understanding and

Managing Enterprise Data Lakes 59

3.1 Introduction . 59

3.2 Motivation and Background 61

3.2.1 Use Cases . 62

3.3 Complex Systems and Networks 66

3.4 Data . 67

3.5 Data Lake Introspection Tool 69

3.6 Experiments . 72

3.6.1 Data re�nement . 72

3.6.2 Network Communities 73

3.7 Conclusion . 82

4 Vehicular Tra�c Network Analysis 85

4.1 Introduction . 85

4.2 Introducing i-MOVE . 91

4.3 i-MOVE Tra�c Data . 92

4.3.1 Data Preparation . 93

4.3.2 Data Cleaning . 97

4.3.3 Data characteristics 105

4.4 Analysis . 111

4.4.1 Self-similarity . 112

4.4.2 Travel time intensity 115

4.4.3 Tra�c �ow modelling 122

4.5 Conclusions and future work 130

5 Deterministic Rendezvous in Restricted Graphs 133

5.0.1 Model of Computation 135

7 Contents

5.0.2 Our results . 137

5.1 Synchronous rendezvous Algorithms 138

5.1.1 Rendezvous in Edge Monotonic Model 138

5.1.2 Rendezvous in Node Inclusion Model 140

5.1.3 Blind Rendezvous Model 143

5.2 Asynchronous Rendezvous Algorithms 151

5.2.1 Rendezvous in Edge Monotonic Model 151

5.2.2 Rendezvous in Node Inclusion Model 153

5.3 Conclusion . 154

6 Conclusion and Future Work 157

6.1 Understanding and Managing Data Lakes 157

6.2 Vehicular Tra�c Network Analysis 159

6.3 Deterministic Rendezvous in Restricted Graphs 160

6.4 Final Remarks . 162

A Similarity 165

A.1 Squared Euclidean Distance 165

A.2 Cosine Similarity . 166

B Clustering 169

B.1 k-means . 169

C Random Walk 173

D Markov Chain 175

E Software 177

E.1 i-MOVE Platform . 177

E.1.1 Description . 177

Contents 8

E.1.2 Architecture . 178

List of Figures

2.1 Eulerian Graph G = (V,E), where V denotes a set of vertices

that represent the land masses for Königsberg and E denotes

the set of edges that represent the bridges connecting the land

masses. 47

3.1 Communities Detected - representation of the detected com-

munities in the Hive Metadata Graph using graph visualisa-

tion tool Gephi [23] . 77

4.1 Chapter Roadmap . 90

4.2 Relationship between RDS-TMC codes and GIS Road Links . 94

4.3 Travel Time Distribution . 107

4.4 Plots of travel time intensity averages for three road segments,

where the x axis denotes the time of day and the y axis denotes

the average travel time observed 110

4.5 Plots of travel time intensity averages for three road segments,

where the x axis denotes the time of day and the y axis denotes

the variance of the observed travel times 110

4.6 Euclidean similarity matrices for three road segments 114

4.7 Cosine similarity matrices for three road segments 114

9

List of Figures 10

4.8 Travel time intensity Heat maps (unscaled), where light colours

denote low frequency and dark colours denote high frequency. 119

4.9 Travel time intensity Heat maps (scaled), where light colours

denote low frequency and dark colours denote high frequency. 120

4.10 Travel time intensity Heat maps (scaled) for weekdays, where

light colours denote low frequency and dark colours denote

high frequency. 121

4.11 Travel time intensity Heat maps (scaled) for weekends, where

light colours denote low frequency and dark colours denote

high frequency. 121

4.12 Original frequency distributions for Monday to Thursday . . . 128

4.13 Synthetic frequency distributions for Monday to Thursday . . 128

4.14 Original frequency distributions for Friday to Sunday 129

4.15 Synthetic frequency distributions for Friday to Sunday 129

A.1 Cosine Similarity between P and Q, cos(θ) = 0 167

List of Tables

2.1 Glossary of terms in Graph Theory [130, 153] 45

2.2 Glossary of terms in Network Analysis [130, 153] 46

2.3 Types of networks [83] . 50

3.1 Description of the properties for a single edge in the graph . . 68

3.2 Global properties of the Hive graph 68

3.3 Re�ned Graph Properties . 72

3.4 Community detection - resulting properties of community de-

tection on the network. 74

3.5 Community Stability - mapping score between communities

detected for di�erent detection algorithms computed using Al-

gorithm 1. 76

3.6 Community Breakdown Results - Percentage of edges/vertices

removed to yield sub-communities based on database name

membership . 80

3.7 Community Resolution Results 81

3.8 Modularity Maximisation . 82

4.1 Floating-car XML link object elements 93

4.2 Floating-car records in raw form 96

11

List of Tables 12

5.1 Summary of results . 137

List of Algorithms

1 Community Stability . 76

2 graphReduction . 79

3 validateComponents . 80

4 Parse Legal . 101

5 zeroPad: function to zero pad the missing values for a speci�c

date . 102

6 imputeMissing: function to impute the missing values for a

speci�c date . 104

7 frequencyDistribution: function to compute the frequency dis-

tribution matrix for a speci�c road segment in the network . . 116

8 transitionMatrices: function to compute a series of transition

matrices for a road segment on a speci�c day of the week . . . 125

9 markovChain: function to perform a Markov Chain process

using the transition matrices for a speci�c road segment Lnki. 127

10 pre�xSumSelection: function to identify the next bi based on

the probability vector . 130

11 RVI . 139

12 RVII . 141

13 RVIIb . 143

14 RVIII . 146

13

List of Algorithms 14

15 RVIV . 149

16 RVV . 153

Dedicated to my parents, Pauline and Richard, my brothers

Riccardo and Kieran, my sister Dionne, and my Uncle

Michael and Auntie Julie.

1

Introduction

�We are drowning in information and starving for knowledge.�

� Rutherford D. Rogers

1.1 Motivation and Problem Scope

The focus of this thesis is Networks, a topic that has been mainly in the do-

main of a branch of discrete mathematics known as graph theory [32]. The

birth of graph theory was in 1735 when Swiss mathematician Leonhard Euler

published a solution to the Königsberg bridge problem, which is described in

the literature to be the challenge of �nding a round trip that traverses each

of the bridges of Königsberg exactly once. Following this discovery, graph

theory has developed into a substantial body of knowledge that has provided

answers to many practical questions, these include: what is the maximum

�ow per unit of time from source to sink in a network of pipes, how to colour

the regions in a map using a minimum number of colours such that neigh-

bouring regions have di�erent colours, or how to �ll n jobs by n people with

maximum total utility [32]. The study of networks has generated interest be-

17

1. Introduction 18

yond graph theory, and has been extensively studied in the last few decades

with applications in Computer Science such as communication [119, 121, 126]

where [119] and [126] study routing in packet-switched networks, and [121]

study distributed networks, document and resource sharing such as World

Wide Web (WWW) [28] and scienti�c citation, knowledge representation

such as sematic networks [152], leading to advanced web technologies such

as semantic web [29], data science, visualisation as well as application to

other �elds and disciplines including Computational Biology such as cata-

loguing molecules and their interactions of a living cell [22], Life Sciences such

as Food Webs or Ecosystems, Physics, Chemistry, Economy, Environmental

Studies and many others.

In the literature a network is described to be a ubiquitous object that

comprises a set of items (or entities) known as nodes (or vertices) that inter-

act with each other based on some common property known as an edge. The

main attributes of a network include structure and organisation; structure

and organisation of a network can be described by identifying inherent com-

munities, statistical properties etc., communication means; how do nodes in

the network communicate information with each other, capacity on nodes

and edges; understanding the limitations of network entities such as identi-

fying the maximum amount of information being transmitted through edges

in the network at any one time, and many others that are described in [130].

These attributes can be dynamic and may vary with respect to time, cre-

ating what is known as temporal networks, [86], provides a good survey on

these types of networks, or they may vary with respect to the user, creating

a dynamic network that changes with respect to the intrinsic properties of

the user such as height, weight, etc.

In the last decade a substantial movement in network analysis has been

19 1.1. Motivation and Problem Scope

witnessed, with the focus shifting from the analysis of small and simple net-

works that comprise tens or in extreme cases hundreds of vertices towards

the study of networks that comprise thousands or even millions of vertices

with complex and irregular structures that evolve over time, this type of net-

work is known as a Complex Network. This change of scale and complexity

has forced a corresponding change in the approach of understanding net-

works. Previously, for small and simple networks it was a relatively trivial

task of drawing the network on paper and answering questions about the

network structure e.g., which vertex is the most in�uential., by examining

the picture. However, as the scale of networks increased, it quickly becomes a

non-trivial task; drawing a picture of large networks becomes an increasingly

di�cult and impractical task. This prompted research into investigating new

methods, statistical methods - Chapter 4 is concerned with understanding

network behaviour based on its statistical properties - of developing a simi-

lar understanding such as what does the network structure look like, of the

larger scale networks [130]. We investigate this type of network in Chapter

3, where we consider a data repository to be a complex network comprising

many data assets denoted as nodes in the network.

Most of the work in the �eld refers to the interplay between the attributes

of systems modelled by networks in search for e�cient solutions to combina-

torial problems. The models for computing solutions can consider distributed

or centralised settings, where centralised means solutions are processed based

on a global data describing the network state, whilst in distributed models

solutions are processed based on local data. In a distributed model each

individual node only collects information about its neighbourhood, where its

neighbourhood is de�ned to be the network entities that exist within some

radius r of itself, and this information is considered when processing the

1. Introduction 20

solution. A common problem in computing distributed solutions is network

symmetry, [95] gives intuition on the problem, it is a well known problem

that suggests most functions cannot be computed in a distributed fashion

using anonymous agents. This impossibility is a consequence of symmetries

in the graph (or network). In order to overcome this restriction, symmetry

is usually broken through means of randomisation or the use of labels [109].

Research into distributed algorithms in networks has produced many ap-

plicable solutions to real-world situations including routing [80, 92, 119, 121,

126], fraud detection [18, 46, 135], detecting terrorism groups and criminals

[12, 70], disease detection [35, 146], and many more. For many of these appli-

cations domain knowledge is required in order to identify the best approach

to the problem, for example, in [12], Alzahrani et al. consider a speci�c type

of network to model the interactions between individuals and their respective

a�liations captured in the Noordin terrorist group data. This information

was then used to detect communities of terrorists. Alternatively, [92] inves-

tigate how the knowledge of network topology can impact the performance

of algorithms, and prove that the least amount of knowledge leads to poorly

performing algorithms. Similarly, in Chapter 5 we demonstrate the challenge

of designing distributed algorithms for anonymous agents in a network where

the amount of knowledge of the network becomes increasingly less.

As it is plainly evident from the research mentioned above this area of

computing, although studied for many decades, can only continue to grow in

the number of applications and its importance in solving the many challenges

in modern systems and networks. This is why it is imperative that we

grow our understanding of the data that we have available; describing the

domain or topology of networks, so that we are able to identify and develop

more intelligent and dynamic methods of solving problems in the networks of

21 1.2. Contributions

today. The main goal of this thesis is to develop methods of understanding

network data, and demonstrating the need of this understanding in order to

improve the speed and accuracy of solutions to problems in networks.

1.2 Contributions

The chapters of this thesis contain work related to the topic of the doctorate,

and the material covered in this thesis has provided many contributions to

the �elds of Big Data and Distributed Computing, and these are:

1.2.1 Chapter 3

Chapter 3 is based on a workshop paper that was done by the author and

co-authors Simon Thompson and Rob Claxton at BT Research, and was

presented at Social Network Analysis in Applications (SNAA). This work

is in press. The work in this chapter presents a novel application of Social

Network Analysis (SNA) techniques in the Big Data domain, and therefore

the main contributions are concerned with the Big Data community but it

has potential to generate interest in the SNA community. In particular, the

study is concerned with data lakes, that is, a single storage capacity for en-

terprise information that is aggregated from a plurality of applications into

a single infrastructure. More speci�cally, it focusses on generating insights

into the organisation of data assets in a data lake, and proposes a solution

to the related challenge of providing automation and intelligence for man-

aging and understanding a corpus of data accumulated in a data lake. In

order to generate this understanding we use insights and understandings (in-

cluding algorithms) developed in the SNA community, and propose several

algorithms for validating our approach.

1. Introduction 22

1.2.2 Chapter 4

Chapter 4 is based on work done by the author and Leszek G¡sieniec, which

was part of an initiative Center for Global Eco-Innovation (CGE) that was

designed to develop understanding on vehicular tra�c. In this work we have

identi�ed a methodology, based on statistical analysis, to deliver insights into

the patterns of tra�c �ow observed in an urban network. The methodology

has produced many novel algorithms, most of which can be applied to time

series data sets in order to clean, transform and generate understanding of

its inherent patterns. Furthermore, this work also proposes a novel approach

that can be used to model network tra�c, and thus it has applications in a

variety of �elds and disciplines including Science and Engineering.

1.2.3 Chapter 5

Chapter 5 is based on the work in [10] joint work completed by the author

and co-authors, Leszek G¡sieniec, �ukasz Kuszner and Eduardo Pacheco.

The work focusses on rendezvous, a problem that is de�ned to be the ren-

dezvous of two mobile entities A and B in the same time and point in space.

In this work we consider the space to be a graph, where the manoeuvrability

of the mobile agents (or robots) is restricted by the topological properties of

the graph and the intrinsic characteristics of the robots preventing them from

visiting certain edges in the graph. Furthermore, we consider three models

of computation and study the feasibility of rendezvous, and if rendezvous is

achievable we design relevant algorithms that discuss their e�ciency.

Everything else is the authors work that was written for this PhD and su-

pervised by Leszek G¡sieniec and Russell Martin.

23 1.3. Thesis Structure

1.3 Thesis Structure

The �rst part of the thesis (Chapter 2) will be concerned with providing

the tools to obtain a practical understanding of network data. This part

should be easily accessible for experts in the �eld as well as non-experts.

The second part of the thesis (chapter 3) investigates the challenge of gen-

erating understanding from a vast amount of information what can be used

to provide insight into the behaviour of a network. The third part of the

thesis (Chapter 4) discusses the challenge of developing understanding of a

networks' behaviour when the data available is limited in some way. The

fourth part of the thesis (Chapter 5) considers a more theoretical study of

network problems, in particular we discuss the challenge of having exposure

to increasingly less information; than is considered in Chapters 3 and 4,

about the network, and we demonstrate the di�culty of this challenge by

considering the rendezvous problem - meeting of two mobile entities in the

same point and time in space - in a distributed setting. Finally, (Chapter 6)

provides conclusions of the work in each of the chapters, and provides insight

into relevant future work.

2

Background

2.1 Statistics

2.1.1 Introduction to statistics

Statistics consists of a body of methods for collecting and analysing data

[1], that is, statistics is considered to be a methodology for aggregating,

analysing, interpreting and drawing conclusions from information about a

speci�c object or process. It is quite common for any process that involves

collecting, processing, interpreting and representing data belongs in the do-

main of statistics. It is a common misconception that statistics is just about

tabulating numbers and providing graphical representations of these. Statis-

tics is considered to be a science of obtaining information about uncertain

phenomena or events from numerical and categorical data; considered to be

qualitative data resulting from descriptions of objects or process e.g., blood

type of a person, marital status, religious a�rmation, size of vehicle engine

etc. Furthermore, statistics is a very broad subject that has application in a

multitude of �elds. For example, to study the e�ectiveness of medical treat-

ments, the reaction to new advertisements, or the attitudes of people within

25

2. Background 26

a constituency leading up to voting day. Statistics has been used in prac-

tice for many centuries covering agriculture, medicine, politics, economics,

technology etc., answering questions about the usefulness, productivity, and

quality of services provided.

Two key basic concepts of statistics are Population and Sample. Popula-

tion can be characterised a collection of individuals or items in which forms

a key component of investigation that an analyst or researcher is interested

in for a given problem. In rare circumstances all measurements (or units)

are obtained for all individuals (or items) in the population, but more often

only a subset of individuals (or items) of the population are observed; such

set constitutes a sample.

De�nition 2.1.1. The population is the collection of all individuals or items

under consideration in a statistical study [169]. More formally Johnson et al

recognise it in [94] to be a set of measurements corresponding to the entire

collection of units for which inferences are to be made.

De�nition 2.1.2. The sample is part of the population from which infor-

mation is obtained [169]. In more descriptive terms Johnson et al consider it

to be in [94] a sample from statistical population is the set of measurements

that are actually collected in the course of an investigation.

Samples can be used to infer information about the population. A pop-

ulation in statistics can be considered in one of two categories 1) Finite

population, and 2) Hypothetical population. Finite population is one that

can be listed e.g., quantity of students that are going to University after

college, the quantity of products available in stock. In contrast Hypothet-

ical population is an abstract concept that may consider something based

on current results e.g., a vehicle manufacturer producing quality vehicles.

If the manufacturer considered using the same equipment, materials, and

27 2.1. Statistics

processes on producing future vehicles, then the future vehicles would be

considered to be in the hypothetical population. This means that a sample

set of vehicles taken from the current production line can be used to make

inference about the quality of vehicles that a produced by the manufacturer

in the future. There are two main branches of statistics. The branch that in-

volves the study to organise, summarise, display and describe data is known

as descriptive statistics, and the branch concerned with drawing conclusions

(or make inference) about a population based on information provided by a

sample taken from that population is called inferential statistics. Descrip-

tive statistics includes the construction of graphs, charts and tables, and

the calculation of various descriptive measures such as averages, measures

of variation, and percentiles [169]. Inferential statistics is concerned with

probability theory and methods like point estimation; using sample data to

compute a single value which is to serve as a best estimate of an unknown

population characteristic, interval estimation; use sample data to calculate

an interval of possible values of an unknown population characteristic, and

hypothesis testing; hypothesis (basis for reasoning without assumption) that

is testable on the basis of observing a process that is modelled using a set

of random variables. The two branches of statistics are interrelated, given

that it is sometimes necessary to use techniques from descriptive statistics to

organise and summarise information from a given sample before inferential

statistics can be applied to provide a more thorough analysis of the sample

data.

De�nition 2.1.3. Descriptive statistics consist of methods for organising

and summarising information [169].

De�nition 2.1.4. Inferential statistics consist of methods for drawing and

measuring the reliability of conclusions about population based on informa-

2. Background 28

tion obtained from a sample of the population. [169].

In statistics it is common for features of the population under inves-

tigation e.g., blood type, material properties such as mass, permeability,

�exibility, etc., to be summarised by numerical parameters, where these pa-

rameters are unknown and analysts use sample statistics to make inference

about them. In [1] Agresti et al provide a distinction between both pa-

rameters and statistics, where a parameter is considered to be an unknown

numerical summary of the population, and a statistic is a known numerical

summary of the sample which can be used to make inference about param-

eters. This suggests inference about some unknown parameter is based on

a statistic, and that known sample statistics are used in making inferences

about an unknown population parameter. In research the main focus is on

identifying parameters of the population, and not on the statistics calculated

for a given sample set of items. An example, that will give the reader insight

into di�erentiation between statistics and parameters is as follows:

• Parameter : The population p of young drivers that are involved in an

accident within the �rst 6 months of obtaining a license.

• Statistic: The population p̂ of young drivers that are involved in an

accident within the �rst 6 months of obtaining a licence calculated

from a sample of young drivers.

Data analysis (statistical processes) should have an objective of making in-

ferences about a population from an analysis of information contained in

sample data.

Descriptive and Inferential statistics play a key role in statistical analysis

in that they provide a set of tools that allow analysts to organise, summarise

and deduce reasoning from results presented in a given experiment in a way

29 2.1. Statistics

that they can be easily interpreted by non-technical users. In our work we

use a combination of the methods to generate understanding of vehicular

tra�c networks based on data presented in the study, and to provide clear,

concise, and interpretable conclusions on the phenomena that is vehicular

tra�c.

2.1.2 Variables

A characteristic, number or quantity that can be measured or counted that

varies between objects is called a variable. Variables can be one of two types

Quantitative or Qualitative. Quantitative variables are considered to be

variables that yield numerical information (measurements) and examples of

these about a human would be height, weight, number of siblings etc. Qual-

itative variables are considered to be variables that do not yield numerical

information, and so provide categorical descriptions of objects, in the case

of humans these could be sex, marital status, eye colour etc.

De�nition 2.1.5. Quantitative variables can be classi�ed as discrete or

continuous. Discrete variables are the results of counting, e.g., quantity of

students passing their driving test �rst time, number of accidents on a speci�c

road in a city centre etc. Continuous variables are variables that can take

any value between a set of real numbers, and not a value that is contained

within a set of discrete values e.g., the response time to a question, it could

be 1.5 seconds, or it could be 1.5111111 seconds.

De�nition 2.1.6. Qualitative (Categorical) variables may be further de-

scribed according to the scale on which they are de�ned. The scale of the

variable gives a certain structure to variable and also implies some meaning

of the variable. The category in which a qualitative variable falls may or may

not have a logical order or rank. If a variable is considered to have a logical

2. Background 30

ordering then it is considered to be an ordinal variable. Therefore the cate-

gories associated with ordinal variables can be ranked higher or lower than

one another, but do not necessarily establish a numerical di�erence between

the categories. For example, an ordinal categorical variable would be aca-

demic grades (i.e., A, B, C, D, etc.,), clothing size (i.e., small, medium, large,

extra-large etc.,) or strength of opinion (i.e., strongly agree, agree, disagree

etc). Otherwise, the variable category is considered to be nominal, that is,

the categories are merely names, and bare no relevance on the structure of

the variable. For example, a nominal categorical variable would be sex, eye

colour, religion etc.

Variables are a fundamental concept in statistics that are used to provide

a description of a person of object using its attributes e.g., height, weight etc.

This attribute can be considered to be a characteristic of the object that may

change between objects, and therefore is considered to be a variable. In the

context of our work, we consider the object to be a speci�c thoroughfare (or

road) in an urban tra�c network, and consider the corresponding attribute

(characteristic) to be the traversal time along that road, where the observed

values for the variables are considered to be numerical, and therefore this

variable type is quantitative.

2.1.3 Organising and describing data

In statistics an analyst will observe the values of variables to which they are

interested in e.g., height, weight, eye colour, of a given subject (or object) this

is called data, each individual component of the data is called an observation,

and the collection of observed values for one or more subjects (or objects) is

considered to be a data set. It is common for a categorical data to be code

by assigning numerical values to di�erent categories e.g., Sex would be coded

31 2.1. Statistics

by 1 and 2 to denote a person being male or female., but the categorical data

remains to be nominal as the values 1 and 2 do not share any properties of

numbers that can be used in arithmetic operations. This is an important

observation, and a key component of statistical analysis that highlights that

one should always check whether the mathematical treatment of statistical

data is really legitimate.

Data is typically presented as a matrix, where all the values of a particular

variable are organised into a single column; forming a complete column in the

matrix, and observations (measurements) collected for a number of variables

form the rows in the matrix. For example, consider an experiment in which

the analyst is interested in k variables and the experiment is conducted on

n subjects, then the matrix M would be denoted

Mkn =



x11 x12 x13 . . . x1k

x21 x22 x23 . . . x2k

...
. . .

xn1 xn2 xn3 . . . xnk


(2.1)

where for all i ∈ [1, n] and j ∈ [1, k], xij is the value of the jth variable

collected from the ith observation.

The quantity of values that fall into a particular category of a qualita-

tive variable is known as the frequency of that category, and a table that

comprises all possible classes and their respective frequencies is considered

to be the frequency distribution for that particular experiment. Frequencies

provide insight into the likelihood that a speci�c variable is likely to take on

a given or fall within a speci�c category. An interesting characteristic of a

given variable is the relative frequency for a given category, that is, the per-

centage of values that are observed to be contained within a speci�c category,

2. Background 32

this can be identi�ed using a simple division F
M , where F is the frequency and

M is the total number of values observed to be contained within the category.

A table that comprises a list of all possible categories and their respective

relative frequencies is considered to be the relative frequency distribution. In

the process of understanding data, relative frequencies provide fundamen-

tal insight into the pattern of the data. It is common for categorical (or

qualitative) data to be represented using pie or bar charts, where a pie

chart is a circle divided into the categories and each portion of the circle is

shaped in proportion to the relative frequency of that speci�c category, and

bar charts represents the categories on a horizontal axis, and the frequencies

are represented by vertical bars with height proportional to the frequency.

Similarly quantitative variables can also be represented by a frequency

distribution. In the case that the discrete variable is limited to a small quan-

tity of distinct values, then the data can be summarised using qualitative

method in a frequency table. However, the rows would be the distinct nu-

merical measurement, and the columns would be their respective frequency

and cumulative frequencies, where the cumulative frequency is the total fre-

quency of values leading up to and including that particular numerical mea-

surement. In the contrasting case; the variable can take on a multitude of

values or is continuous, then the data would have to be grouped using do-

main knowledge such that categories can be formed, and the frequencies of

each category can be computed. This can be achieved by choosing intervals

of equal length that cover the range between the minimal and maximal ob-

served values without overlapping, this is known as class intervals, and the

endpoints of each are called class limits. These intervals are used to compute

the class relative frequency by counting the quantity of observed values that

fall within the class (class frequency), and dividing it by the total number

33 2.1. Statistics

of observations in the data. As a rule of thumb it is recommended that one

should group values into 5 to 15 intervals. It is common for quantitative data

to be represented graphically either as a histogram, where a histogram is

like a horizontal bar chart. However, the bars touch each other, and it is

formed from grouped data, displaying frequencies or relative frequencies of

each class interval.

Organising and describing data are two crucial components in statistical

analysis as they allow analysts to determine a structure of the data; the

structure of the data can help in the process of identifying an appropriate

method of handling the data. Thus provide the foundations for analysts to

identify key characteristics e.g., patterns, motifs etc., of the objects being

analysed.

2.1.4 Frequency Distributions

The distribution of a data set is a table, graph, or formula that provides

the values of the observations and how often they occur [169]. That is, a

distribution provides insight into the frequency of unique values that a given

variable takes on throughout a random experiment. In the previous section

distributions were considered to be represented by frequency and relative fre-

quency distributions through bar-charts, pie-charts and histograms. In this

section we discuss frequency distributions and how they apply to both pop-

ulation and samples from that population, these are known as population

distribution and sample distribution respectively. A common analogy for

sample distribution is to compare it to a blurry photograph, that is, as the

sample size increases, the clarity of the photograph is gradually improved,

and the category intervals move closer to the true population relative fre-

quency, until the population distribution is reached and a clear photograph

2. Background 34

can be recognised. A key characteristic of a distribution for a quantitative

variable is its shape, and a common method of identifying the shape of a dis-

tribution is to use a smooth curve that approximates the overall shape. An

advantage of using smooth curves to identify distribution shapes is that we

do not need to worry about minor di�erences in shape [169]. This approach

allows analysts and statisticians to concentrate on the overall patterns of a

given distribution, and due to the relatively small number of shapes identi-

�ed through this method 1, this allows the classi�cation of such distributions.

Further techniques that are commonly used to distinguish the shape of distri-

bution are modality (see De�nition 2.1.7), symmetry (see De�nition 2.1.8),

and skewness (see De�nition 2.1.9).

De�nition 2.1.7. Modality is a simple concept that considered the number

of peaks that are observed within a given distribution. A distribution is

unimodal if it has one peak; bimodal if it has two peaks; and multimodal if

it has three or more peaks [169].

De�nition 2.1.8. Symmetry in statistics is a concept that derived from

the geometrical meaning of symmetry, where an object is considered to be

symmetric if it is invariant to geometrical transformation such as re�ection.

A symmetrical distribution is considered to be the natural variation of

many variables, and is a distribution of values in which the values occur

at regular frequencies, where the majority of values are clustered symmet-

rically near the mean (discussed in 2.1.5). A symmetrical distribution can

be uni-modal, bi-modal, or multi-modal, and when depicted on a graph can

represent a single bell-shaped curve, two bell-shaped curves side-by-side, or

multiple bell-shaped curves side-by-side respectively. In any case, if a line

1the shape does not have to be exact to be assigned to a speci�c class, the key is that
it is an approximation.

35 2.1. Statistics

was drawn down the middle of the graph, the two sides will mirror each

other. However, it is not always the case that bimodal distribution is sym-

metrical, and that some are asymmetrical. An asymmetrical distribution is

a distribution of values in which values occur at sporadic frequencies, sug-

gesting the distribution of values has some discrepancy. The discrepancy

observed is due to the data being skewed, as opposed to being normal. An

asymmetrical distribution is a distribution of values in which values occur at

sporadic frequencies, suggesting the distribution of values has some discrep-

ancy. The discrepancy observed is due to the data being skewed, as opposed

to being normal. Therefore we need to include another measure that can

further classify distributions that a non-symmetrical given that this class

of distributions can cover a variety of distribution shapes. This measure is

known as Skewness, for details see De�nition 2.1.9.

De�nition 2.1.9. Skewness is a measure that can further classify distribu-

tions that a non-symmetrical given that this class of distributions can cover

a variety of distribution shapes. The skewness of the distribution can be

right-skewed or left-skewed. A key characteristic of skewed data sets is that

one tail of the distribution is longer than the other, and generally if a curve

representing the distribution has one tail longer than the other, the mean is

always towards the longer tail.

2. Background 36

68%

95%

µ

σ

2σ

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

x

y

µ = 0
σ = 1

(a) Standard Normal Distribution

θ

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

0.5

1

1.5

x

y

µ = 0.0
σ = 0.25

(b) Log-normal distribution

2.1.5 Measures of center

Measures of center are descriptive measures that indicate the location of a

given distributions central point or the most typically observed value for a

variable in a set of measurements. It is common for these to be recognised as

averages. There are three measures of central tendencymean (see De�nition

2.1.10),median (see De�nition 2.1.11), andmode (see De�nition 2.1.12). A

key observation is that only the mean and median apply to the quantitative

data, however, the mode applies to both quantitative and qualitative data.

De�nition 2.1.10. Mean is the most commonly used measure of central

tendency in quantitative data, and is frequently referred to as the average.

The mean of a data set is the sum of the observations divided by the number

37 2.1. Statistics

of observations [169]. The sample mean is mathematically denoted

x̄ =
x1 + x2 + · · ·+ xn

N
=

∑n
i=1 xi
N

=
1

N

n∑
i=1

xi (2.2)

where xi is the i
th observation of a variable v in the data set for a sample

size n.

De�nition 2.1.11. Median is another commonly used measure of central

tendency for quantitative data. The median of a data set is the number that

divides the bottom 50% of the data from the top 50% [169]. Thus, the values

in the �rst half are less than or equal to the median, and the values in the

second half are greater than or equal to the median value. In order to identify

the median value, one must arrange the values into a list of increasing order,

and then determine the middle value in the ordered list. If the quantity of

values is odd, then the median is exactly the middle value, otherwise the

median is the number halfway between the two middle values. In both cases

if we denote n to be the number of observations, then the median is de�ned

to be at position n+1
2 in the ordered list [169].

De�nition 2.1.12. Mode is a measure that can be applied to both quan-

titative and qualitative data because it has no arithmetical properties other

than being the most frequently observed value for a data set. That is, the

sample mode is the value of the variable which occurs with the highest fre-

quency in the data set. In the case that no value occurs more than once,

then there is no mode identi�ed for the data set.

The mode should always be used as the measure of central tendency

when the underlying data set is qualitative. In the case the distribution is

symmetrical then the mean is the best measure of center. However, in the

case of a asymmetrical distribution, which is skewed to the left or right,

2. Background 38

the median is generally the best choice of measuring the center. The mean

is sensitive to extreme (very large or very small) observations, whereas the

median is not [169]. This is related to the fact that the mean can be highly

in�uenced by an observation that falls far from the rest of the data, this is

known as an outlier. A resistant measure of central tendency is one that is

not sensitive to outlying values. The median is considered to be a resistant

measure, due to the 50% breakdown value property; that is 50% of the

values have to be changed to in�nity before the value of the median changes.

However, the mean is not a resistant measure, as the breakdown value for this

is 1, that is, only one value can change the result. Finally it can be assumed

that the sample mode, mean and median of a variable have corresponding

population measures of central tendency. Given this assumption, we can use

the sample mean, median or mode to provide an estimate of the values for

the corresponding unknown population values.

2.1.6 Measures of variation [17, 94, 169]

An important aspect of descriptive analysis for a given data set is measuring

the variability. Identifying the measure of center is not a granular enough

method for detecting properties that can easily separate distinguish a distri-

bution from another. A pair of data sets can have exactly the same measure

of center e.g., Mean, for their respective distributions but can be completely

di�erent in shape. Therefore a measure of variability is introduced to as-

sociate to each data set a set of numbers that quantitatively measures how

the data is scattered away from its center, or clustered towards it. There

are three main measures of variation 1) Range (see De�nition 2.1.13), 2)

Interquartile Range (IQR) (see De�nition 2.1.14) and 3) Variance and Stan-

dard Deviation (see De�nition 2.1.15).

39 2.1. Statistics

De�nition 2.1.13. The range is the simplest measure of variation, and it is

obtained by computing the di�erence between the largest observed value of

a given variable and the smallest one for a random experiment. The range

of a data set is the number R de�ned by the formula

R = xmax − xmin (2.3)

where xmax and xmin are the maximum and minimum values respectively.

The range is a measure of variability because it denotes the size of the interval

over which the data is distributed. However, in using the range a great deal

of information about the data is ignored, this is because only the largest and

smallest values of the data are considered, and the rest is disregarded.

De�nition 2.1.14. The Interquartile range (IQR) is a measure of variation

using quartiles for a given data set. A quartile of the data set is obtained

by numerically ordering the data set s.t., x1 ≤ x2 ≤ · · · ≤ xn, and dividing

the observed values into quarters (or 4 equal parts. A given data set has 3

quartiles Q1, Q2 and Q3, where the �rst quartile, Q1 divides the bottom 25%

of the values from the top 75%, the second quartile Q2 is the median, which

is the quantity that divides the bottom 50% of values by the top 50%, and

the third quartile Q3, is the quantity that divides the bottom 75% of values

by the top 25%. The quartiles are mathematically de�ned:

1. Q1 is de�ned to be a position n+1
4

2. Q2 is de�ned to be a position n+1
2

3. Q3 is de�ned to be a position 3(n+1)
4

The IQR is generally the preferred measure of variation when the median

is used as the measure of central tendency (typically in cases when the dis-

2. Background 40

tribution is asymmetric or skewed). The IQR is the di�erence between the

�rst and third quartiles for a given data set and is denoted,

IQR =

(
3(n+ 1)

4
− n+ 1

4

)
= (Q3 −Q1) (2.4)

The IQR of a data set can be observed to be the range of the middle 50% of

the observed values, that is, it represents the length of the interval covered

by the center half of the observations values for a data set. This measure

is commonly used in outlier detection due to the fact that the measure of

variability is not disturbed if a small quantity of values are outliers (extremely

low or high).

De�nition 2.1.15. The variance and standard deviation are two of the

most common methods of measuring variability, and are considered to be

more elaborate that the range by being highly dependent on the properties

of the data i.e., sample or population data. In the case that the data set

comprises only a sample of values we compute the sample variance. The sam-

ple variance is a positive number that represents the average of the squared

deviations from the mean for the variable in question. For a variable x, the

sample variance is denoted by s2
x is,

s2
x =

∑
(x− x̄)2

n− 1
(2.5)

and the respective sample standard deviation is the square root of the sam-

ple variance denoted
√
s2
x, or sx. The standard deviation is a measure to

quantify the measure of dispersion of a set of observed values. In particular,

it determines how spread out the data points are by quantifying the amount

a value deviates from the mean value. A key observation for the standard

deviation is that the more variations that is observed in the distribution of

41 2.2. Networks

values, the larger this quantity. For example a standard deviation of 0 sug-

gests that the data points tend to be close to the mean (expected value) of

the data, whilst a high standard deviation indicates that the data points are

widely spread out. This suggests the standard deviation satis�es the crite-

ria of measures of variability. However, the standard deviation can heavily

be in�uenced by outliers, given that it uses the mean, and the mean has a

breakdown value of 1. That is, only one value in a data set has to be set

to in�nity for the mean to change its value to in�nity. In the complemen-

tary case that the data set comprises the whole population of data, then the

variance and respective standard deviation are denoted,

σ2 =

∑
(x− x̄)2

n
, and σ =

√∑
(x− x̄)2

n
(2.6)

where the denominator is the full size of the data, and not the reduced one

as is the case for the sample variance and standard deviation. The reason for

this reduced number of values is based on the Bessel's correction to produce

an unbiased estimator of the population variance and respective standard

deviation.

2.2 Networks

Networks are universal objects that arise in a variety of �elds and disciplines

as disparate as Sociology, Physics, and Biology. A network is an interacting

system that comprises entities (referred to as nodes) that interact with each

other based on some common property to form edges. Systems generally take

the form of networks in a variety of �elds, examples of this are World Wide

Web (WWW), sta� rostering, transportation etc. The study of networks or

Network Theory dates back to 1735 when Euler produced a solution of the

2. Background 42

Königsberg bridge problem, work that is often cited as the �rst proof of the

theory in networks, and during this period Graph Theory (see Section 2.2.1

for details) was developed.

2.2.1 Introduction to Graph Theory [130, 153]

The study of networks dates back to the 17th century when famous math-

ematician Leonard Euler became interested in a problem Königsberg Bridge

Problem. The city of Königsberg was built on the banks of the river Pregel

and on two islands that lie in midstream, and seven bridges connected the

land masses. According to the literature a common brain teaser at this time

was to construct a single path that crosses all seven bridges exactly once. In

1736 Euler proved the impossibility of such a path existing using graphs - a

mathematical object comprising points, also known as vertices or nodes, and

lines, referred to as edges or links. A graph is de�ned in De�nition 2.2.1. It

is a mechanism that enables the abstraction of all unnecessary details from

the original problem such as land mass sizes but retains the connectivity

between points. Euler modelled the Königsberg problem using a graph that

comprised four vertices - each representing the four land masses - and seven

edges - each joining the land masses - following in the pattern of the Königs-

berg bridges represented in Figure 2.1. This allowed Euler to consider the

Königsberg problem as a mathematical problem that involved �nding the

Eulerian path or tour (see Table 2.1) on the graph - precisely the closed

path that traverses each edge exactly once. Euler proved that there does

not exist such a path, observing that, since any path must enter and leave

every vertex it passes through, except the �rst and last, there can be at most

two vertices in the graph with an odd number of incident edges. In graph

theory the property that describes a vertex by the number of edges that are

43 2.2. Networks

attached is known as degree. Therefore there are at most two vertices in

the network that have odd degree. Since all four vertices in the Königsberg

graph have odd degree, the bridge problem has no solution. Eulers' proof is

considered to be the �rst theorem in a now highly developed �eld of discrete

mathematics known as graph theory, which has developed to become the

principle language for describing the properties of networks [82, 168]. A key

bene�t of using graph theory is that one can abstract away details of prob-

lems to describe the topological features with clarity that would otherwise

be impossible if the details were retained. As consequence graph theory has

spread well beyond pure mathematics to applications in engineering [4], op-

erations research [127] computer science [114] and sociology - ethnographic

studies [57, 148, 168].

De�nition 2.2.1. A graph G consists of a collection of vertices (see Table

2.1) denoted by G(V) and a collection of edges (see Table 2.1) denoted by

G(E), for which we write G = (V,E). Each edge e ∈ E is said to join two

vertices, which are called its end points. If e joins u, v ∈ V , we denote this

relationship by e = 〈u, v〉, and we say that u and v are adjacent to each other

or we say e is incident to vertices u and v. A common method of representing

graphs is via an adjacency matrix. A single cell in the adjacency matrix A

is A[i, j] which denotes the the number of edges joining vertices vi and vj ,

and the sum of values for a speci�c row i is equal to the degree of vertex vi.

A graph that does not have any loops or multiple edges - a graph that

does not contain any vertices that have edges linking back to itself or that

does not contain any pairs of vertices that are joined by multiple edges - is

known as simple. Furthermore, a simple graph can be formed of vertices that

are adjacent to each other, this type of graph is known as a complete graph,

a complete graph comprising n vertices is denoted by Kn. Moreover, a graph

2. Background 44

can be considered directed or undirected. A directed graph (or digraph) is

a graph in which the edges have orientations, and an undirected graph is a

graph in which edges have no orientation. However, an undirected graph can

be transformed into a directed graph by associating a direction with each

edge, and this is commonly known as an orientation [153]. An important

concept of graphs is the connectivity between each vertex v and any other

vertex w. If any v can be reached from any other vertex w we can denote this

relationship through a chain of adjacent vertices. This relationship can also

be considered to be an alternating sequence [v0, e0, v1, e1 · · · , vk − 1, ek, vk]

of vertices and edges that connect v0 and vk. This sequence is known as a

(v0, vk)-walk. A walk is considered closed when v0 = vk. A walk is considered

to be a trail when all of the edges are distinct, and a path is a trail with

distinct edges. In a directed graph a directed-walk would follow a speci�c

orientation such as 〈−−−−→vi, vi+1〉. Following this, the notion of a path is used to

de�ne a graph as being connected, when there exists a path between each

pair of distinct vertices. Furthermore, based on this property a graph could

consist of a collection of components, where each component is a subgraph.

Table 2.1 gives a glossary of terms in graph theory and Table 2.2 gives a

glossary of terms in network analysis both of which are used throughout this

Thesis.

Weighted Graphs

A common extension of basic graphs is to assign weights to edges (or arcs),

this type of graph is known as a weighted graph. Formally in [153] the

authors de�ned a weighted graph to be a graph for which each edge e has an

associated real-valued number w(e) called its weight. Commonly weighted

graphs are used in the literature to identify subgraphs denoted H ⊆ G, with

45 2.2. Networks

Vertex : A vertex in a graph represents a fundamental unit of a network, in
computer science this is referred to as a node.

Edge: An edge in a graph represents a connection between two vertices, the
connection can denote physical links, physical interactions, intangible connec-
tions or logical connections.

Tour : A tour of a graph G is a closed walk that traverses each edges e in G.
An Euler tour is a tour in which all edges are traversed exactly once.

Path: A path is a sequence of distinct edges which connects a sequence of
distinct vertices. In a directed graph a path has a constraint, that the edges
are all directed in the same direction.

Subgraph: A subgraph of G is a graph H that consists of a subset of vertices
and edges in G, such that the end points of the edges in H are also contained
in H.

Component : A component or connected component of G is a subgraph of G
that is connected and not contained in a connected subgraph of G with more
vertices of edges.

Table 2.1: Glossary of terms in Graph Theory [130, 153]

2. Background 46

Vertex Degree: The degree is a property of a speci�c vertex and it represents
the number of edges that are connected to it and is denoted by δ(v) - loops
are counted twice. A directed graph has both an in-degree, denoted δin(v)
- quantity of edges that direct towards the vertex, and out-degree, denoted
δout(v) - quantity of edges that direct away from the vertex, for each vertex
v ∈ V .

Eccentricity : The eccentricity of a vertex (or node) u gives the maximum
distance between u and any other vertex v ∈ V in the graph (or network).

Diameter : The diameter of a graph G is the maximal distance between any
two vertices u and v in the network. Therefore the diameter of the graph
is the largest eccentricity value in the graph (or network). Formally this is
de�ned to be the maximal shortest path between any two vertices: diam(G) =
max{d(u, v)|u, v ∈ V (G)}.

Radius: The radius of a graph G is the minimal distance between any two
vertices in the network, or the minimum eccentricity observed. Formally this
is de�ned to be the minimal shortest path between any two vertices: rad(G) =
min{d(u, v)|u, v ∈ V (G)}.

Betweenness Centrality : De�nes the centrality of a vertex u by considering
the fraction of shortest paths that cross u. The more such paths, the more
important u is to be considered. Formally, the betweenness centrality of a
vertex u is denoted by:

g(u) =
∑

s 6=u6=t

σst(u)

σst
(2.7)

where σst is the total number of shortest paths linking nodes s and t, and
σst(u) is the number of those paths that contain node u.

Table 2.2: Glossary of terms in Network Analysis [130, 153]

47 2.2. Networks

a

b

c

d

Figure 2.1: Eulerian Graph G = (V,E), where V denotes a set of vertices
that represent the land masses for Königsberg and E denotes the set of edges
that represent the bridges connecting the land masses.

a maximal (or minimal) weight in order to determine the distance between

two vertices. This type of graph allowed mathematicians such as Edsger

Dijkstra in [62] to investigate problems such as the shortest path problem -

�nding the shortest path(s) from a source vertex v to a destination vertex u,

where the shortest path is determined by �nding path that yields minimal

cost of the combined distance denoted d(vi, vi+1), for each segment of the

(u, v)-path. Dijkstra's algorithm is considered to form the core of many

routing algorithms [153].

Trees

Another important concept in graph theory is that of trees. A tree denoted

by T is a special type of graph that does not have a cycle, known as an

acyclic graph, that is, between any two vertices u and v in G, messages can

only travel through a unique path. A tree can also be seen to be a simple

graph. Just as in nature, a set of trees is called a forest, therefore a forest is

a graph in which every connected component is a tree [33]. Trees have many

applications in computer science, mathematics etc. For example, Dijkstra's

algorithm - a method of solving the shorest path problem, the solution is

essentially a tree T (u) that is rooted at vertex u, and each di�erent vertex

2. Background 48

considered along the (u, v)-path is a di�erent rooted tree T (vi). In general

shortest-path problems have been consideed to many networks - that are

typically modelled in the literature as trees, such examples are communica-

tion networks [119, 121, 126] and vehicular tra�c networks [80], where the

requirement of both examples is to locate the path the yields minimal trans-

portation cost between two given endpoints A and B. A speci�c type of tree

is known as a spanning tree, a spanning tree is a subgraph of a connected

graph G containing all of G′s vertices [153]. It is not di�cult to observe

that any connected graph G has a least one spanning tree (see [153] for more

details). Spanning trees occur in many real-world scenarios, such an example

is:

A railway company wants to expand into a 20-city area where presently

they have no lines. They thoroughly examine the relevant data, and observe

that for each of the
(

20
2

)
= 190 pairs of cities the exact amount they would

have to spend to build a direct link between those two cities. The goal of the

rail road is to build a connected network - every city is reachable from every

other city - but they do not want any redundant lines. [33].

In order to solve this problem, the author considers a graph theoretical

approach whereby they consider a weighted graph G, where the weights of

the edges are determined by the cost of building that segment of the railway

between two cities. Then the solution to the problem can be reduced to

locating the spanning tree T that yields the least cost.

Similar to a graph, trees have tours. An Euler tour of a graph is a path

that traverses each edge exactly once. In the context of a tree, we say that

each edge is bi-directional, that is, the tree is viewed as a directed graph that

contains two arcs (denoting a single edge) to denote each direction of �ow

between two subtrees - a connected subgraph of a tree [144]. Therefore the

49 2.2. Networks

Euler tour is a path along the tree that begins and ends at the root node

u, and therefore traverses every edge twice - once to enter each subtree and

once to leave it. So for a tree of size n - containing n vertices - the cost of

an euler tour would be T (n) = 2n [58].

2.2.2 Introduction to Networks

Networks have been extensively studied, and are generally classi�ed into 4

groups social networks, information networks, biological networks and techni-

cal networks. Table 2.3 provides descriptions of the groups and their respec-

tive examples. Research into networks has changed in recent years, shifting

focus away from the analysis of single small graphs (comprising tens of ver-

tices) and the properties of individual vertices or edges within such graphs

towards consideration of large-scale statistical properties of graphs that typ-

ically comprise millions or even billions of vertices [130]. This shift of focus

created a movement in network research, a movement that was motivated

by the change of scale and complexity of networks, forcing a corresponding

change in the approach of understanding networks. This type of network

is commonly referred to as a Complex network. A network is typically con-

sidered to be complex when they are so large that it becomes impossible to

understand or predict the overall behaviour by looking into the behaviour of

the individual entities or links. A further characteristic of a complex network

is that the underlying system cannot be described by a single rule, and the

behaviours of system entities are interdependent, that is, they depend on

the behaviour of other components. Complex networks are apparent almost

everywhere and if we model any real-world situation as a network we can

discover novel insights that can help characterise behaviour such as detect-

ing similarity amongst disparate systems, for example, observing that the

2. Background 50

Group Description Examples

Social Network A set of people (or ani-
mals) or groups of peo-
ple (nodes) with asso-
ciations between them
(edges).

Friendship networks,
Academic collabora-
tions, Business rela-
tionships, and Animal
behaviour

Information Net-
work

Networks of information
�ow. Pieces of informa-
tion are stored at the
nodes. The edges be-
tween nodes signify con-
nections between infor-
mation sources.

Academic citation net-
works and World Wide
Web

Biological Net-
work

Networks of biological
systems, where the
nodes are biological
entities, and the edges
are connections between
them.

Metabolic Networks,
Neural Networks, and
Food Webs

Technological
Network

Man-made, physical
networks, designed to
transport people, re-
sources or commodities.

Transportation net-
works (Roads, rail,
airlines), The Internet,
and Electricity Grid

Table 2.3: Types of networks [83]

51 2.2. Networks

organisation of the human brain resembles that of social communities.It is

common for technological and information systems to be described in terms

of complex networks. The internet is an example of a complex network,

which is formally de�ned to be a topology of a large quantity of diverse and

interacting entities, where in the context of the internet an entity is a com-

puter, each linked through dense interconnections combing both organisation

and randomness [6, 129].

In preliminary network theory, networks were depicted by drawing graphs

on paper, and questions were answered, for example, which vertex is the most

in�uential in terms of connectivity in the network, about the structure of the

network by visually inspecting these graphs. For networks of size tens or even

in worse cases hundreds of vertices this would be considered a trivial task.

However, for networks of size millions or even billions (not uncommon) of

vertices answering such questions would provide little meaning on the struc-

ture. This is because no single vertex, when removed from the network, will

have substantial impact on the connectivity [130]. Furthermore, it would be

an increasingly di�cult task to provide a meaningful representation of such

networks even with sophisticated graph rendering tools such as Gephi [23].

This challenge forced researchers to change their approach of understanding

simple networks towards developing novel methods that can quantify larger

networks in a similar way [130]. The primary focus of this work aims to do

three things. First, identify statistical properties or characteristics such as

length of paths, degree distribution etc., that can be used to characterise

the structure and behaviour of the system, and suggest appropriate ways

to measure these. Second, create models of networks to help generate un-

derstanding and meaning of the properties identi�ed. Third, predict the

network behaviour on the basis of the structural properties identi�ed and

2. Background 52

the local rules that govern the individual vertices. The scienti�c community

have begun investigation into the �rst two by drawing on ideas from physics

and mathematics. However, studies on the e�ects of structure on system

behaviour are still in the infancy stages. It will be interesting to see what

developments appear in this area. Researchers have extensively reviewed

the �rst two by drawing on ideas from a broad variety of disciplines such

as physics, sociology and mathematics. However, studies on the e�ects of

structure on system behaviour are still in the infancy stages. It will be in-

teresting to see what developments appear in this area. A common method

of identifying structure in networks is through community detection.

De�nition 2.2.2. Community detection is a method that is designed to

identify community structure in a network, that is, the division of network

nodes into groups within which the nodes connect more to each other than

any other nodes in the network, for example, in a social network a community

can be de�ned as people that are related to each other, or they share similar

interests. The ability to �nd and analyse such groups can provide valuable

help in understanding and visualising the structure of large networks [131].

Community detection is important method of identifying structure and

organisation in a network, it provides insight into groups of vertices that

share common properties or play similar roles in the network, and allows for

their classi�cation. Several algorithms have been proposed in the literature

to �nd communities in a network such algorithms can be classi�ed into types:

divisive algorithms are "top down" methods that detect inter-community

connections and remove them from the network in order to isolate commu-

nities, agglomerative methods are based on hierarchical clustering methods

derived from computing science and sociology [130], that is, they are "bot-

tom up" methods that recursively merge nodes or communities of nodes

53 2.2. Networks

based on some similarity property, and optimisations methods are based on

optimising an objected function, typically this function is modularity; see

de�nition 2.2.3 for details. In this thesis we focus on three di�erent com-

munity detection algorithms, each of which are concerned with optimising

an objective function (modularity). First, [31] propose a heuristic method

called Multi-level that is a combination of the second and third class of algo-

rithms. The algorithm is based on an agglomerative (bottom up) approach,

where initially each node is assigned to its own community, so there are as

many communities as there exists nodes in the network. Then, for each node

i we consider each of its neighbours j and evaluate the gain in modularity

that would take place by moving i from ci into the community of j denoted

cj . Node i is only moved if the modularity score is increased (in case of a

tie we use a breaking rule). This approach repeatedly moves nodes between

communities until no improvement can be achieved with respect to the over-

all modularity score of the network. Second, [40] propose a greedy algorithm

called Fast-Greedy that is concerned with �nding the local optimummodular-

ity score at each step with a hope of �nding the global optimum modularity

score on conclusion. The algorithm is based on an agglomerative approach

similar to [40], however, instead of moving nodes, communities are merged

based on the condition that an increase of the overall modularity score is

observed. This approach repeated until no improvement can be observed.,

and Third, [136] propose a method called Walk trap that is considered to

reside in both the second and third classes of algorithms for community de-

tection. The algorithm uses random walks, see appendix C for details, to

measure the similarity between nodes and communities in the network. This

approach is based on the idea that with high probability random walks in

the network tend to get trapped into densely connected parts corresponding

2. Background 54

to communities [136]. This provides a measurement of structural similarity

between vertices and communities in the network. This measurement is then

applied to an agglomerative algorithm, where vertices or communities (the

two are the same in the �rst step of the algorithm) are merged based on the

structural similarity between them. Finally, the quality of partitions of the

network are evaluated using modularity.

De�nition 2.2.3. The modularity of a partition is a scalar value between

-1 and 1 that measures the density of links inside communities as compared

to the links between communities. In the case of weighted networks the

modularity for a partition C is de�ned to be

Q(C) =
1

2m

∑
i,j

[
Aij −

kikj
2m

]
δ(ci, cj) (2.8)

where ci is the community to which node i is assigned, Aij is the weight of

the edge between nodes i and j, ki is the degree of node i, m is the total

number of edges in the network, and the function δ(u, v) is 1 if u = v and 0

otherwise.

However, modularity optimisation algorithms are subject a constraint or

limitation, known as resolution limit. The resolution limit was �rst identi�ed

by Fortunato and Barthelemy in [73] where they showed that communities

with edge numbers ≤ O(
√
m) may not be detected through community de-

tection algorithms.

In a less algorithmic and more statistical approach one can characterise

the structure of a large scale network based on the its degree distribution.

Recall that the degree of a node is the number of edges that are that are

connected to it. The degree distribution denotes the fraction of nodes in the

network that have each degree value k, equivalently the degree distribution

55 2.2. Networks

denotes the probability distribution that a vertex chosen at uniformly at ran-

dom has degree of value k. The degree distribution is then used to discover

a further property of a network, and this property is based on the likelihood

that the degree distribution is drawn from a power-law distribution. For

networks with high likelihood of satisfying this property, referred to as scale-

free networks, it is suggested that most of the nodes have small degree (or

few connections) and fewer nodes have degree that greatly exceeds the aver-

age for the entire network. Scale-free networks were originally considered in

Price's network of citations between scienti�c publications [53], where Price

explained the occurrence of power laws in citation networks which was based

on an interesting observation that the number of links to research papers (i.e.

citations) had a heavily tailed distribution. More recently, it was observed

that through the extraction of a subset of the World Wide Web (WWW)

that some nodes, referred to as hubs, had a larger degree than others in the

network, and therefore the degree distribution of this network can be drawn

from the power-law distribution, suggesting that the subset of the WWW is

scale-free. Other work includes studies into social and biological networks

showing that they follow the same pattern of heavily tailed distributions,

and therefore can be considered to be scale-free. A property (or character-

istic) of scale-free networks is the node hierarchy, that is, small hubs are

followed by other nodes of degree that is even smaller. This property means

that these networks have a certain level of robustness or fault tolerance, this

is due to the vast majority of nodes having small degree, and therefore if

faults occur at random the likelihood that a hub would be a�ected would

be negligible. This property isn't without its drawbacks, for example, if a

signi�cant event occurred on a hub node, the network could either be split

into isolated graphs, or be left paralysed.

2. Background 56

2.3 Big Data

We are in the "Big Data" era, where many enterprises are continuously ag-

gregating large volumes of data that records customers interactions, product

sales, performance metrics e.g., Key Performance Indicators (KPI's), diag-

nostic intelligence e.g., telemetry data on a network topology, and many

more. The ability to perform scalable and e�cient processing on these data

sets has become a major ingredient for the success of large enterprises [21].

Fortunately Apache Hadoop [19] provides a cost e�ective method of storing

and processing these large data sets. Data �les are uploaded into Hadoop

through one of many interfaces such as Hue, Hadoop Distributed File Sys-

tem (HDFS) CLI etc., and the �le is stored in a distributed �le system

known as HDFS. In order to process the stored data in order to gain insight

into a particular problem or subject area such as diagnostics on a network

topology, one has to use parallel processing frameworks such as MapReduce

[54]. MapReduce is a programming model and associated implementation

for processing and generating large data sets on commodity hardware. How-

ever, the framework requires users to create custom MapReduce tasks that

implement their own processing logic by specifying customised map() and

reduce() function. In order to create such tasks one must be familiar with

programming languages such as Java, Python, R or Ruby, and the MapRe-

duce framework. Hadoop handles MapReduce jobs by evenly splitting the

targeted data set into blocks of size 128MB (default value), before schedul-

ing each block to one of the processing nodes that are available. Once this

processing has completed, Hadoop launches a set of reduce tasks in order to

produce the �nal results of the function [21].

In order to enable a user to gain access and perform some operation

on the data, Hadoop relies on tools such as Apache Hive and Impala [41].

57 2.3. Big Data

Apache Hive and Impala are tools that provide access to data stored within

Hadoop through an SQL-like syntax. Apache Hive is a tool for Hadoop that

enables users to perform processing tasks over large data sets without being

restricted by having to gain an understanding of the underlying complexities

such as MapReduce of Hadoop. Apache Hive [20, 156] was the �rst SQL-

like language that was built on top of Hadoop to exploit the advantages of

Hadoop such as scalability, resilience and high availability over other similar

systems. A Hive query is achieved through the Hive SQL syntax known as

HiveQL. A HiveQL statement that is submitted to Hive is parsed, compiled

and optimised in order to yield a query execution plan - directed acyclic graph

(DAG) of MapReduce tasks which are executed through the MapReduce

framework [21]. In Hadoop it is common for all �les contained in a single

folder in HDFS to be represented by a Hive table. The data enclosed in the

table is then interpreted from these �les at query time based on the de�nition

of the �elds, which are stored in Hives' metadata.

Cloudera Impala [41] is another SQL-like language that provides scalable

processing capabilities over data stored in Hadoop. In comparison to Hive,

Impala is framework independent, it provides its own long running daemons

that are attached to each node of the Hadoop cluster. The main daemon

process comprises the query planner, coordinator, and execution engine [21]

that is used to coordinate and manage a queries lifecycle. Impala is con-

sidered to be a highly e�cient method of processing data in Hadoop, and

this is due to its e�cient Input/Output (I/O) layer that reads data stored in

HDFS. However, it isn't without its limitations such as requiring the work

set of a query to �t within the aggregate physical memory of the cluster.

This imposes restrictions on the type of datasets that it is able to process

[21].

3

Towards Social Network

Analytics for Understanding

and Managing Enterprise Data

Lakes

3.1 Introduction

The work in this chapter is concerned with Data Lakes. A Data lake is a

single data storage capacity (or data store) for enterprise information that is

aggregated from a plurality of applications into a single infrastructure. The

data lake concept was motivated (or driven) by the economical utilisation

of commodity storage, the incredible throughput of cost e�ective data pro-

cessing systems and the recognition that signi�cant value can be obtained by

co-locating data from a multitude of applications. Data lakes are anticipated

to be used by multiple teams of data scientists in order to create insights

into business operations and propose novel applications on inferences that

59

3. Managing Enterprise Data lakes 60

would have been otherwise impossible or impractical to develop. The work

in this chapter presents a response to the challenge of providing automation

and intelligence for managing and understanding a corpus of data assets ac-

cumulated in a Data lake. In particular, this work involves using insights

and understandings (including algorithms) developed in the Social Network

Analysis (SNA) community to provide understanding into the structure and

organisation of data assets contained in an enterprise data lake. Further-

more, this work has highlighted a number of key questions that can be used

to direct future research in this space.

The study is structured as follows. First an outline of the motivation

3.2 for investigating this area detailing speci�c use cases 3.2.1 some of which

are addressed in this work. In section 3.3 we provide a basic introduction

to complex systems and networks, similar to that in chapter 2, and how

they are related to our problem. Section 3.4 discusses the data used in

our analysis. Section 3.5 is concerned with a review of the functionality

and technical approaches taken in the development of a tool for creating

insights into the emergent relationships between data assets in a data lake,

which is a de�ned use case in 3.2.1. In particular the tool is develops the

capability to: discover connections between data assets, manage discovered

links, and perform evaluation and management of the resilience of the data or

network. Section 3.6 is concerned with performing experiments that provide

insights into the structural and organisation properties of the data store.

Finally, section 3.7 provides conclusions of our work and our perspective on

the unmet technical challenges, whilst outlining future research opportunities

that is motivated by the need to manage data lakes of the type considered.

61 3.2. Motivation and Background

3.2 Motivation and Background

In our investigation we consider a data lake for an organisation that oper-

ates a large and diverse range of infrastructure for hosting, querying and

analysing data. The infrastructure comprises in excess of 2,700 registered

relational database instances utilising over 3.7 Petabytes of storage; a variety

of mainframe databases, and two production Hadoop [171] clusters, each de-

ployed with 1.2 Petabytes of raw storage. The Hadoop facilities are provide

to the organisation on a self-service basis through a multi-tenancy platform

that is known as Hadoop-as-a-Service (HaaS).

In many organisations a traditional database estate is managed as a fed-

erated data architecture [84], that is, a collection of well understood and

highly controlled data domains linked via an overarching enterprise data

model. The adoption of a single 'Big Data' infrastructure challenges this

approach. The autonomy of the domains means that creating and maintain-

ing a single overview of the asset is a new and labour intensive requirement.

Conversely the adoption of the federated pattern has been driven by business

dynamics and funding challenges of the enterprise and a return to a central-

ized single domain is impractical. We have found this clash of requirements

(autonomous management of data origination and information integration)

especially problematic when we need to rapidly bring data assets together

in Hadoop to answer novel questions - a key attraction of a big data asset.

In common with Facebook [157] we have found that simply discovering

data is a non-trivial issue. Likewise, understanding data lineage and the

emergent relationships amongst assets that are landed in a data lake are

problems that only get worse with scale. We note that these di�culties

are not speci�c to Hadoop. We can see the evidence of this in the discrep-

ancies between published schema for relational database assets versus the

3. Managing Enterprise Data lakes 62

live data, and the widespread reliance on '�nding an expert' to help dis-

cover relevant data for a given task and understanding its (undocumented)

idiosyncrasies. These observations and experiences have led us to explore al-

ternative approaches to understanding and managing large scale data assets,

in particular approaches that don't depend on top-down centralised curation.

3.2.1 Use Cases

A key goal of our work is to address a series of use cases for understanding

and managing Data lakes, these include:

• Data Ownership - understanding data asset ownership and usage

• Data Science - discover relationships to identify relevant or related data

assets, and help locate core data.

• Information Security - identify and understand the emergent risks

present in assembled data and the consequences of adding new data or

access rights.

• Organisational design - understand, identify and connect the social

network of people around data assets.

• Application Ownership - exploit data gravity to build business cases

by understanding what is already in the Data Lake.

There are two general areas of application that our work is focussed on. First,

data discovery and utilisation, this is concerned with extracting value from

data assets. In particular, Section 3.5 discuses a tool that we have developed

for the purpose of data discovery, and Section 3.6 provides a series of ex-

periments that provide insight into the organisation of data assets in a data

lake. Second, protecting corporate assets, this takes the perspective that

63 3.2. Motivation and Background

data is a corporate asset that must be protected and it must be understood

that any threat is a potential accident waiting to happen. In particular,

Section 3.5 discuses the capability of using the proposed tool for managing

the emergent risks present in a data lake. The following is a descriptive list

that provides insight into relevant problems that can be addressed in this

research area. However, in this work we only focus on a few of these, namely,

�nding relevant data, organisational design, and risk management.

1. Data discovery and Utilisation

Data Lakes provide organisations with an asset that could be leveraged

to create value. To get at the value assumed to be available, Data

Scientists must be able to identify and use the data within them (see

class 2 of these use-cases for issues with this perspective). Drilling

down we identify two speci�c open issues.

(a) Finding relevant data - the data lake we examine in this work

has 3000 data tables. In our experience data owners generally

fail in their obligation to properly document the data in the asset

(again see class 2). Discovery of assets that can be used in an in-

vestigation is a starting point for a Data Scientist; �nding a data

table is just the beginning of a series of conversations that even-

tually reveal the usefulness of the information that it contains.

The tools we present are reviewed, below, from the perspective of

how useful they are in pursuing this detective work.

(b) Promoting and generating value - residual and unknown value in

data sets is of deep concern to data owners. Data which has share-

holder value may be destroyed inadvertently, or conversely data

which has low value may be kept expensively, riskily and unnec-

essarily. Our tool enables the discovery of relationships amongst

3. Managing Enterprise Data lakes 64

data assets that can be used to expose this residual value.

(c) Organisational Design and Expert Detection - the pattern of use

of Data Lakes may reveal issues or features in the structure of

the organisations that host them. Additionally discovering key

users who link spheres of knowledge and ensuring that they are

not inadvertently lost from the organisation is of interest [34].

(d) Data Documentation - The use of data has changed radically in

the last few years, as has its impact on the enterprise. Docu-

mentation of data assets was required to support the applications

that those assets hydrated, but now it is required to support ad-

hoc investigations into unseen and unimagined business investiga-

tions. We are not aware of a body of work that provides scienti�c

information to inform the construction of appropriate data doc-

umentation in the modern context. The techniques and tools

presented in this work provide one initial approach to tackling

this issue; what metrics can be extracted from Data Lakes using

known techniques? We attempt to provide information on how

useful these are at the moment.

(e) Application Ownership - Co-location of data enables rapid ex-

ploratory analysis (LAN bandwidth, security processes, and data

export and staging limitations impose substantial barriers in terms

of time and e�ort). Some applications generate key data resources

frequently reused by analysts, identifying these allows architects

to identify what should be ported to where to deliver agility and �-

delity (because in some applications older data introduces greater

uncertainty), this is particularly important for legacy systems.

2. Risk Management and Security

65 3.2. Motivation and Background

Whereas data may be of great value to an organisation it is increas-

ingly also a potential liability. There have been a number of high pro�le

data breaches in recent years where personal and corporate data have

been stolen and published, some of which include [26, 42, 47]. These

demonstrate that professional and well-funded organizations can be

compromised and substantially damaged at any time. Risk manage-

ment in a Data Lake has two aspects; removing dangerous data and

detecting potential future attacks.

(a) Removing dangerous data - One of the reasons for developing

Data Lakes is that they contain diverse and extensive data assets,

some of which contain data that enable unanticipated inferences.

This feature allows the Data Scientist to create business value,

but it exposes Data Owners to the risk that unexpected forbidden

insights into corporate �nances or customer privacy may be made

and used maliciously. Can Social Network Analysis techniques

reveal risky tables that link domains in a potentially dangerous

way?

(b) Potential future risks - extending 2a, can we use Social Network

Analysis to determine areas of the Data Lake that are relatively

risk free in the face of future expansion and innovation or con-

versely are high risk and therefore requiring careful review and

policing to prevent the possibility of risky novel links being intro-

duced?

3. Managing Enterprise Data lakes 66

3.3 Complex Systems and Networks

It is common for technological and information systems to be described in

terms of complex networks. A complex network typically has a topology

of a large quantity of diverse and interacting entities (vertices), each linked

through dense interconnections combing both organisation and randomness

[6, 129]. Complex networks can be characterised by the fact that the un-

derlying system cannot be described by a single rule, and the behaviours of

system components are interdependent - they depend on the behaviour of

other components. In our work we consider a Data Lake to be a complex

system that is formed of many data assets; each described by database ta-

bles that may or may not have some interdependency relationship. In our

representation the entities, e.g., the data assets, are denoted by vertices in

the network, and the relationship between entities is denoted with an edge.

A network approach to understanding a system is a natural method that is

commonly used across the literature [148]. In networks the only relevant in-

formation with respect to detecting relationships between system entities is

connectivity - the number of entities that are connected to a single entity of

the system; referred to as neighbours in networks. The relationships between

system entities can represent physical links, physical interactions, intangible

connections, logical connections etc. In this work we consider the relation-

ship between system entities to be logical - data assets are interconnected

by their intrinsic properties e.g., column names. In the remaining sections of

this work we denote the network by an abstract graph G = (V,E), where V

is the set of data assets, E represents the set of logical connections between

pairs of data assets, and a logical connection between two assets suggests

that they have one or more columns in common.

67 3.4. Data

3.4 Data

The data we are examining comes from one of our early Research Hadoop

clusters and comprises information about over 3000 Hive [156] tables. These

were used to store data on infrastructure, telemetry and telecommunications

network faults. The Metadata for the Hive tables was roughly 20 Megabytes

of records that were extracted from the Hive Metastore. The following pro-

cedure was used to extract and prepare the data.

1. Execute an SQL query on the Hive Metastore to extract - for each Hive

table - a list of columns and associated data types. The query involves

a join across several tables in the Hive Metastore schema including:

TBLS, SDS, COLUMNS_V2, and DBS.

2. The output is a multi-dimensional list of records saved to a text �le,

where a single record represents a speci�c column for a Hive table. A

single record is represented by a tuple: {NAME, TBL_NAME, COL-

UMN_NAME, TYPE_NAME, TBL_TYPE}, where TBL_NAME is

a the same for a given table.

3. The resulting �le was analysed using Pig [132], a scripting language

for Hadoop that allows developers to perform complex data transfor-

mations without having to know the MapReduce framework, and thus

an alternative to Hive QL or Impala, in order to identify the logical

relationships between Hive tables. In the context of this work the

relationship between a pair of tables is determined by the quantity

of columns that they have in common. The output of this step is a

text �le comprising a list of records; each representing an edge, where

a single record (or edge) is a tuple {source, target, commonColumns,

relativeCommonColumns}, the items contained in the tuple (or record)

3. Managing Enterprise Data lakes 68

Property Description

source the source Hive table

target the target Hive table

commonColumns quantity of columns in com-
mon between the source and
target tables

relativeCommonColumns proportion of columns in com-
mon between the source and
target tables to the total num-
ber of columns between the
two tables

Table 3.1: Description of the properties for a single edge in the graph

Property Value

Nodes (Tables) 3,052

Edges (Column Matchings 551, 466

Connect Components 26

Diameter 7

Clustering Coe�cient 0.814

Table 3.2: Global properties of the Hive graph

are described in Table 3.1.

The output of step (3) in the procedure was used to create a graphG = (V,E)

of relationships, where each v ∈ V denotes a Hive table and each edge e ∈ E

between any two Hive tables suggests that they have at least one column

in common. These relationships could be considered to be directional such

as one-to-many or many-to-one but for purposes of this work we consider

the graph is undirected. We give a brief summary of the global properties

of the relationship graph in Table 3.2. The properties chosen are commonly

considered in the literature as discussed in [129, 130] for generating under-

standing of the structure of a complex network. An immediate observation

of the graph is that the degree distribution can be drawn from the �tted

power law distribution with p-value 0.02, where p-value de�ned to be the

probability of a null hypothesis, that is, it has 0.02% chance of not being a

69 3.5. Data Lake Introspection Tool

power-law distribution, suggesting that with high likelihood the degree dis-

tribution of the network is drawn from the power-law distribution. Recall

in Section 2.2, a power-law degree is a commonly used to method of cat-

egorising a network as being scale-free. This property indicates that very

few vertices in the high degree, large amount of vertices have low degree in

the network. This observation combined with previous knowledge that edges

represent column matchings suggests that lineage relationships might exist

between these hub vertices (Hive tables) and the rest of the network. This

prompted investigation into the structure behind the network, and in partic-

ular the communities that exist (see below, section 3.6). Although our Data

Lake is implemented using Hive on Hadoop and our tool (see below, section

3.5) uses the Hive Metadata as the basis of its inference and functionality,

these structures are derived from the tabular pseudo relational nature of the

data design, something that is common to many modern and legacy data

stores, and hence the approach can be generalised.

3.5 Data Lake Introspection Tool

The Data Lake Introspection (DLI) tool provides an environment for discov-

ering relationships that appear amongst Hive tables stored in Hadoop. DLI

uses a combination of graph analytics and visualisation mechanisms to facil-

itate this analysis. DLI is a web-based application that was created using R

[74], Shiny [143], igraph [49], and visNetwork [155] to present users with a

graphical representation of the Hive graph and facilitates exploration of the

relationships amongst the assets contained within a Hadoop cluster. The

tools were chosen based on the familiarity of them with the authors.

DLI provides an overview of the Hive graph through simple graph statis-

tics, these statistics include: (1) quantity of tables and edges, (2) diameter

3. Managing Enterprise Data lakes 70

of the graph is the longest shortest path between any pair of vertices (or

Tables), or in this context the longest chain of similarity observed between a

pair of Hive tables, and (3) number of connected components gives indication

of the number vertices that are connected to each other by paths but are not

connected to any other vertex in the graph, that is, this quantity signi�es the

number of partitions (or communities) that are inherent in the graph based

on the quantity of columns in common. The statistics are supplemented by a

chart depicting the distribution of the connect component sizes, which might

provide insight into the size of the communities that are formed. This infor-

mation can enable a user to gain an appreciation of the graphs' scale and its

structure e.g. is there a giant component of tables or are there many discon-

nected islands. Furthermore, DLI provides a tabulated list of Hive tables,

where each table is described using a three properties. First, betweenness

centrality will provide insights into the in�uence that a speci�c Hive table

has within the network. Second, degree will provide knowledge of how many

other Hive tables are similar to itself. Third, component the Hive table re-

sides within can provide insight into its locality in the network. This list is

searchable and can be ordered by any of the table properties, thus enabling

quick searches for tables of interest. At the point a user selects a particu-

lar table in the list DLI produces an interactive graph of its ego-network,

that is, a subgraph G′ ⊂ G that only contains the selected Hive table and

Hive tables that are directly connected to. This �ltering ability provides

emphasis on connected tables whose connectivity pattern di�ers from that

of the selected Hive table. The goal here is to highlight tables that provide

the user with novel information and are not simply duplicates of the table

they have started from. Highlighting a table in the ego-network furnishes

the user with information on its schema and other relevant Metadata. This

71 3.5. Data Lake Introspection Tool

information provides invaluable insights, that would have required a series

of conversations with applications and data owners, for a data scientist of

the data sets available in the data lake.

In the case that a pair of tables are selected, the graph will be drawn

depicting, if it exists, the shortest path between the tables, i.e. the join

relationships that allow the Data Scientist to connect information in the

�rst table with that in the second, and thus to assemble a target schema. In

our data, the longest such path comprises six joins. Finding this would be a

formidable task for a human, but is trivial using the tool.

Whilst the Data Scientist will appreciate the facility to easily discover

linkages amongst tables, those tasked with managing the emergent risks

present in assembled data might be troubled at the ready exposure of such

information. However, DLI provides a facility to identify the minimal list of

edges (the minimum-cut [79]) whose removal will disconnect a pair of tables

(i.e. prevent them from being joined). Using this functionality the user can

simulate the removal of edges and inspect the impact on the data graph. By

attributing business value to speci�c joins in the graphs (as an edge weight)

the minimum-cut would e�ectively �nd the minimum cost set of joins that

need to be 'removed' to prevent joining of a pair of tables. For example,

by applying a risk score of the data assets to the graph as edge weights,

one can protect sensitive data assets by using this intelligence to monitor

the connecting Hive tables, and enforce restrictions on user abilities such as

permissions for these tables.

Collectively, these mechanisms support data discovery tasks and can give

a measure of the emergent risks present in assembled data and the means to

manage the addition of new data or access rights to end users with a view

to preventing unintentional outcomes, such as the exposure of sensitive data

3. Managing Enterprise Data lakes 72

assets.

3.6 Experiments

In Section 3.5 we described DLI and the information that it provides to

support the interpretation and management of the Hive Graph. In this

section we present and discuss a number of key observations that have been

revealed throughout our study of the Hive Metadata Network.

3.6.1 Data re�nement

The goal of this work was to combine business meaning and network analysis

techniques in order to gain insight into the structural and organisational

properties of data assets for relationship discovery. The business meaning

aspect of our work involved discussions with Data architects to identify a set

of columns they recognised as being fundamental to joining assets contained

within the Data Lake. The set of columns identi�ed were used to re�ne the

original graph, and the new graph characteristics are detailed in Table 3.3.

The graph was re�ned by removing Hive tables from the graph that do

not contain any column in the set of identi�ed columns, and this graph is

considered for all experiments in this work. Although the quantity of vertices

and edges has been reduced by using business columns, we observe that the

entire re�ned graph is contained within a single connected component.

Property Value

Nodes (Tabes) 921

Edges (Column Matchings 24, 405

Connect Components 1

Diameter 6

Clustering Coe�cient 0.3390

Table 3.3: Re�ned Graph Properties

73 3.6. Experiments

3.6.2 Network Communities

Community detection [72] is a method of identifying structure or organi-

sation in a network. It is an important concept in complex networks as

it provides insight into groups of vertices that share common properties or

play similar roles in the network, and allows for their classi�cation. In this

work we use the community detection algorithms mentioned in Section 2.2.2

to discover the organisation of Hive tables in the graph. In particular, we

consider a set of experiments to discover and investigate the communities in

the graph. This section of work is structured as follows. In section 3.6.2 we

conduct an experimental study to detect communities using the community

detection algorithms, and evaluate the results based on the modularity score

(see De�nition 2.2.3). In section 3.6.2 we investigate the detected communi-

ties through a chosen detection mechanism, which is based on the modularity

score, to identify properties for characterisation of the detected communities.

Detecting communities

This work involved conducting an experimental study on the re�ned network

using R and igraph to provide a clear understanding of the natural commu-

nities that can be formed. In particular we performed four experiments,

each using a di�erent method of identifying communities, these include: a)

partition by database name - a naive but logical approach that assumes the

pre-determined structure of the tables will provide a good partition of the

network, b) partition using the Fast-Greedy algorithm [40], c) partition us-

ing the Multi-level algorithm [31], d) partition using the Walktrap algorithm

[136], and present the number of communities identi�ed with their associ-

ated modularity scores in Table 3.4. These methods were chosen based on

their common use in the literature, and implementations of them existing in

3. Managing Enterprise Data lakes 74

Method Number of communities Modularity Score

Database Name
Partition (1)

31 0.0099612

Fast-Greedy (2) 8 0.590688

Multi-Level (3) 9 0.589229

Walktrap (4) 11 0.5887023

Table 3.4: Community detection - resulting properties of community detec-
tion on the network.

R. For the experiments b, c, and d we consider functions in the R igraph

library which are implementations of the respective algorithms, where the

input parameters of the functions were (1) input graph is the re�ned graph

that was represented using an R data frame, and (2) edge-weights provide

the quantity of columns that are matched between a pair of Hive table, and

the output of the functions is a communities object that comprises many

properties (see [49] for details on the properties of the communities object),

but in this work we are only interested in two, namely, modularity, which

is a numeric value that denotes the modularity score of the partition in the

input graph, and membership, which is a numeric vector that gives the new

membership of the vertices in the input graph, both of which are dependent

on the chosen algorithm. An immediate observation based on the results in

Table 3.4 is that applying a community detection algorithm improves the

modularity score by a factor of around 60, suggesting that partitioning our

network based on the database name is not an e�ective method of detect-

ing meaningful communities. A further interesting observation is that more

detected communities does not necessarily suggest a better modularity score.

Investigating Communities

Here we perform analysis on the communities detected in order to investigate

the structural properties of the network. This work involves three progres-

75 3.6. Experiments

sive experiments 1) examining the stability of the detected communities, 2)

perform community decomposition into communities that are described by

the database name, and 3) investigation into the modularity of the network,

that provides insight into the structure of the network and its associated

characteristics.

Community Stability - in this experiment we test whether the structure

we observe is consistent across a range of community �nding algorithms and

not simply an artefact of a particular algorithm. We expect to see low varia-

tion in community membership if the communities themselves have practical

signi�cance and real-world utility in a business application. The results of

this analysis are given in Table 3.5, wherein direct mapping denotes the

average pairwise equality score between similar communities for two com-

munity detection algorithms, that is, the average similarity between the set

of vertices that are identi�ed to be a community for each of the commu-

nity detection algorithms. The similarity between a set (or community) is

computed using the Jacard Index [164] denoted by

J(Ca, Cb) =
Ca ∩ Cb

Ca ∪ Cb
(3.1)

,where Ca and Cb are the set of vertices identi�ed to be communities using

two community detection algorithm a and b respectively. In order to compute

the average similarity (or stability score) between two community detection

algorithms we propose Algorithm 1, which is motivated by the Jacard Index

and its ability to compute a similarity between two sets. As expected, the

membership of communities shows a high degree of consistency giving us

con�dence that they are not simply artefacts of any given algorithm.

3. Managing Enterprise Data lakes 76

Comparison % Direct mapping

Fast-Greedy vs Multi-level 80

Fast-Greedy vs Walktrap 66

Multi-level vs Walktrap 63

Table 3.5: Community Stability - mapping score between communities de-
tected for di�erent detection algorithms computed using Algorithm 1.

Algorithm 1 Community Stability

Input: C1: partition of the network based on a community detection
result; C2: another partition of the network based on a community de-
tection result.
Output: result: community stability score

1: counter← 0
2: scores← []
3: for each ci in C1 do

4: for each cj in C2 do

5: if ci ∩ cj 6= ∅ then
6: scores[counter]← |ci∩cj |

|ci∪cj | . compute stability between ci and
cj

7: counter← counter + 1
8: end if

9: end for

10: end for

11: result← 0
12: for each score in scores do . compute the overall stability score
13: result← result + score
14: end for

15: result← result
counter

16: return result . stability score between C1 and C2

77 3.6. Experiments

Figure 3.1: Communities Detected - representation of the detected commu-
nities in the Hive Metadata Graph using graph visualisation tool Gephi [23]

Community Breakdown - this work is a natural extension of commu-

nity detection, which provides insight the similarity between the business

expectation of data asset communities such as schemas and databases, and

the actual communities that were detected in the previous section. This

insight would suggest that schemas and database names do not re�ect the

data they describe, and thus suggesting that federated architectures are not

ideal for database systems of the future. Community breakdown is achieved

by a graph reduction algorithm to each of the detected communities that

were identi�ed through Fast-Greedy, where Fast-Greedy was chosen because

its yields the best modularity score. Figure 3.1 provides a representation of

the detected communities through Fast-Greedy using Gephi, a graph visu-

alisation tool. The procedure considered for graph reduction is described by

two successive algorithms. Algorithm 2 called graphReduction, is used to re-

duce the graph into communities that are described by their database name

membership, and the convergence of this algorithm is based on the output of

3. Managing Enterprise Data lakes 78

Algorithm 3 called validateComponents. The procedure is described as fol-

lows. Line (1) computes the connected components of the input graph, Line

(2) identi�es the vertex or edge in the graph that has the largest value of

a de�ned property denoted as prop, where the property can be betweenness

centrality, vertex degree or edge weights. Line (3) removes the identi�ed

vertex or edge, and line (4) recomputes the connected components of the

graph with the modi�cation applied in line (3). Line (5) uses Algorithm 3

to check for convergence, where convergence is achieved when communities

(or connected components) are decomposed into sub-communities that are

described by their database name membership. The algorithm is detailed

as follows. Line (1) initialises a vector denoted as ~C that will contain the

number of unique database names in each connected component of C0. Line

(2) assigns the membership to each v ∈ G based on the membership of

v ∈ C0. Line (3) initialises an integer value that will represent the number of

connected components in G. Lines (4) to (9) is a For loop that determines

the quantity of unique database names that are contained in each connected

component denoted by ci. More speci�cally, line (5) identi�es the vertices in

G that are contained in ci, line (6) identi�es the number of unique database

names that are contained in component ci, and line (7) adds this quantity

to the vector ~C. Line (8) increments the number of connected components

counter. Line (9) computes the mean number of unique database names per

connected component in G denoted as C̄. Finally, lines (11) to (14) checks

if each connected component is described by a single database name, and

returns a boolean value signifying this. Thus, Algorithm 3 checks that the

communities in G are decomposed into sub-communities ci that described

by their database name membership. The goal of this work was to identify

some quantity that can provide a measure of similarity between the expected

79 3.6. Experiments

partition, according to database name membership, and the real partition.

The graph reduction procedure was applied to each of the measures and

the results are presented in Table 3.6. Based on the results presented in

Table 3.6 an obvious observation is that community 7 comprises Hive ta-

bles that are already associated with the database name membership. A

further observation is that vertex metrics, namely degree and betweenness

centrality, are not the most e�ective property to use in our graph reduction

procedure, given that is takes on average 14% and 19% vertex removal using

betweenness centrality and degree respectively, and edge weights are highly

e�ective yielding an average of 9% edge removal. This suggests that remov-

ing edges between pairs of Hive tables that have a high column matching can

yield database partitioning of the community more e�ciently - as the edge-

weight represents the column matching between Hive tables. Furthermore,

this helps identify the bridges (cut-edges) that exist within the individual

communities - edges that when removed increase the number of connected

components.

Algorithm 2 graphReduction

Input: G: Hive graph, prop: property that is used to reduce the graph
Output: G′: A reduced Hive graph

1: Compute connected components of G
2: Identify the vertex v or edge e that has largest value of prop
3: Remove the vertex or edge
4: Recompute connected components of G
5: Repeat until convergence . convergence is determined by Algorithm 3

Modularity - this work is designed to identify the properties of the net-

work with respect the modularity observed. In particular we investigate if

the network is limited by the modularity resolution problem, detailed in Sec-

tion 2.2.2, which is a limitation of modularity optimisation where in some

3. Managing Enterprise Data lakes 80

Algorithm 3 validateComponents

Input: G: Hive graph, C0: components in G identi�ed in line (4) of
Algorithm 2
Input: Converged: Boolean to represent satisfaction of the convergence
criteria

1: ~C ← [] . initialise the vector
2: Assign membership to vertices v ∈ G . membership is based on the

membership of vertices in C0

3: counter ← 0
4: for each ci ∈ C0 do

5: G′ ⊂ G, where G′(V) ∈ ci . Identify vertices in the graph that are
contained in component ci

6: unique = |{v1, ..., vk}|, where v ∈ G′(V), and k = |G′(V)| . Identify
the quantity of unique database names in ci

7: ~C[counter]← unique
8: counter ← counter + 1
9: end for

10: Compute the mean of ~C, denoted as C̄
11: if C̄ > 1 then . check for convergence
12: return false
13: else

14: return true
15: end if

Method C1 C2 C3 C4 C5 C6 C7 C8

Betweenness
Centrality

25 47 8 6 14 18 0 19

Vertex Degree 23 20 7 6 14 11 0 21

Edge Weight 5 5 3 12 33 3 0 4

Table 3.6: Community Breakdown Results - Percentage of edges/vertices
removed to yield sub-communities based on database name membership

81 3.6. Experiments

Community Id Communities

detected

Community

Modularity

Score

Network

Modularity

Score

1 4 0.17 0.5491945

2 3 0.11 0.5785004

3 4 0.18 0.57850044

4 2 0.29 0.5906086

5 1 6.4E-17 0.5906875

6 2 0.27 0.5795237

7 1 0 0.5906875

8 4 0.27 0.5408847

Table 3.7: Community Resolution Results

cases it fails to identify modules that are of smaller sizes. This involves ap-

plying a community detection algorithm to each of the communities detected

using the �rst pass of the algorithm in search of observing a better overall

modularity score, when applying the new membership, and we present the

results in Table 3.7. It is immediately obvious through the results that we

do not observe an improvement in the original modularity score 0.590688,

and therefore for this network Fast Greedy is not a�ected by the modularity

resolution problem. Furthermore we try to maximise the modularity score

using a technique proposed in [129], where Newman et al. propose a method

of increasing the modularity score that is based on a basic graph partition-

ing method. The method we use is motivated by [99], and the procedure

is described as follows. First we search for the vertex (Hive table) that,

when moved into another community will yield the largest increase of the

modularity score when the new membership is applied. The order of vertex

movement does not matter in this procedure. The process is repeatedly, with

the constraint that each vertex is moved at most once. Therefore the this

stage of the process is linear to the size of the graph O(n). Once all vertices

have been moved we identify the state (if any exist) that has the greatest

3. Managing Enterprise Data lakes 82

Community Detection Community

Modularity

(before)

Community

Modularity

(after)

Fast-Greedy 0.590688 0.590688

Multi-level 0.589229 0.590688

Walktrap 0.588702 0.59055

Table 3.8: Modularity Maximisation

increase in modularity, and rerun the process with this new membership un-

til no further improvements can be experienced (convergence). The goal of

this work is to verify that the network is not a�ected by modularity resolu-

tion, that is, the resulting communities are not just a consequence of being

in the local maxima of the optimisation technique involve. The results of

this experiment are presented in Table . The results suggest that although

we observe an increase in modularity for the Walktrap algorithm, we cannot

achieve a better decomposition of the network than through Fast-Greedy

using this method.

3.7 Conclusion

In this work we report on a tool that we have developed to create under-

standing of real-world complex networks. In particular we have identi�ed a

methodology, based on social network analysis, to deliver insights into the

relationships between data assets assembled in a data lake. By inferring po-

tential joins between database tables and creating a graph of those tables, we

are able to address a variety of practical use cases towards data governance

and data science. The analysis presented here is based on a single data lake,

one of our early Hadoop research clusters. Nevertheless we have established a

number of interesting results about the structure of its Hive Metadata graph.

Of particular note is the observation that in our graph the natural commu-

83 3.7. Conclusion

nity structure does not follow that initially imposed by end users through

the creation of logical databases. Instead, there is a richer, emergent struc-

ture which perhaps was not appreciated when the data was �rst assembled

or which evolved opportunistically over time. Investigation into the stability

of detected communities through community detection algorithms showed

a high degree of consistency based on Algorithm 1. Further work on the

stability in community detection can include a systematic analysis of clus-

ter similarity algorithms in the literature such as RAND index [164] - this

work is beyond the scope this paper. Work on the modularity of detected

communities showed that the communities in the network identi�ed through

community detection algorithms provide the most meaningful partition of

the network with respect to modularity. The graph reduction experiments

showed that through careful removal of edges (9% on average) based on the

weights (or columns in common), we could decompose the detected commu-

nities into sub-communities that are described by their database name. This

suggests that the set of communities derived by naive partitioning accord-

ing to database name are not too dissimilar to those detected by algorithms

such as Fast-Greedy after all. This di�erence could be seen as one measure

of the gap between the 'designed' and 'emergent' structure in a data lake.

A further observation is that our Hive metadata graph followed a power-law

degree distribution, therefore suggesting it to be scale-free. This implies that

the content of a small number of Hive tables is in�uential in the structure

of the network. In turn, this means that lineage relationships might be ap-

parent between a small set of Hive tables and the rest of the population in

the cluster. In future work we hope to make the following enhancements

to our tool: 1) improve the accuracy with which we can automatically infer

joins between tables; 2) construct a bi-partite network based on the inter-

3. Managing Enterprise Data lakes 84

actions of end-users with data assets. Improved join inference might come

from applying e�cient indexing techniques to the content of database tables

or by harvesting real-world interactions through monitoring of query logs

to extract the joins that are actively being made by end users, similar to

work in [157]. The same real-world interactions will also help to address the

construction of a network that captures the relationships between users and

the data they make use of. Through this we hope to develop a rich picture

of how people and tasks are organised around data, or conversely how the

organisation of data in�uences the structure of organisation.

In the next chapter we consider a statistical analysis approach to under-

standing networks. More speci�cally, we consider a data-driven approach,

and through statistical analysis we demonstrate the challenge of understand-

ing real-world networks when access to data that describes the network is

limited in some way.

4

Vehicular Tra�c Network

Analysis

4.1 Introduction

Tra�c management has become a major burden on local authorities; spend-

ing large quantities of money on monitoring and understanding tra�c jams,

and consequently with the rapid development of cities' infrastructure, traf-

�c demand increases, generating signi�cant economic loss - increasing travel

times, fuel consumption and aggravating pollution. Tra�c monitoring and

detection techniques are generally classi�ed into two groups. First, road-side

sensors are a widely adopted method for managing urban tra�c networks.

This method includes a group of road-side sensors that together form an

induction loop [115] at speci�c locations in the network, where the locations

are generally points that have in�uence on tra�c �ow in the network. In-

duction loops are a fundamental component in Intelligent Transportation

Systems (ITS), they provide ITS with high-quality real-time tra�c informa-

tion about the network they describe. This information is used to detection

85

4. Vehicular Tra�c Network Analysis 86

and mitigate the impact of tra�c congestion in an urban environment. Sec-

ond, Global Positioning systems (GPS) based tra�c monitoring is a method

that collects and aggregates information about a speci�c vehicle as it routes

across the network. In this method every vehicle is equipped with a GPS

that acts as a sensor for the network, detecting vehicle speed, location and

the direction of travel. This information is posted to a central processing

centre, where useful information can be identi�ed about the network, such

information includes tra�c status, alternative routes etc [115]. Tra�c �ow

descriptions on a highway were originally described by Greenshields 82 years

ago in [78], where the author discussed the �rst documented techniques of

measuring tra�c �ow, density and speed using photographs. In the same

study, Greenshield postulated what may seem to be an obvious linear rela-

tionship between speed and tra�c density denoted by Flow = density·speed,

suggesting that a vehicles speed reduces linearly as the density of vehicles

increases.

More recently, research into tra�c has evolved towards considering novel

methods of understanding tra�c. [162], for example, propose a data-driven

arti�cal neural network (ANN), the book by Yegnanarayana et al. [173] is

a good survey of Arti�cial Neural Networks), to predict tra�c �ow on a

speci�c road link using tra�c information aggregated from inductive loops

(similar to SCOOT). [104, 165] consider an algorithmic approach to analysing

tra�c in the network. In [165], Wang et al. consider a methodology that

includes detecting sensitive regions in the network to discover structural

issues. Sensitive regions are considered to be key junctions or Hub nodes

in the network at which when they become attacked by tra�c incidents or

events such as signal failure, tra�c accident, road works etc., cause paralysis

of the network. This approach is based on analysing aggregated Global

87 4.1. Introduction

Positioning System (GPS) sensing information; describing the travel time on

a speci�c road link, to detect tra�c jams on a speci�c road link over a speci�c

period of time. Thus discovering spatial temporal tra�c jams in the network.

This information was used to build tra�c propagation graphs. The graphs

was then analysed for common patterns (or motifs) in view to identify the

archetype (typical behaviour) of tra�c in the network. Finally, they reviewed

the archetype to discover key junctions or Hub nodes in the network that

are sensitive to attack, and validated this approach with historical events on

the network. In this approach tra�c jams were detected by comparing the

current travel time against road-speci�c free �ow values; based on work in

[104], and for observation periods on speci�c roads at which travel times were

beyond some threshold above these free �ow values they were considered to

be experiencing tra�c jams. The observed tra�c jams were then used in a

re�ned version of the STOTree Algorithm presented in [110] to generate a

series of propagation graphs, where each graph denoted the spatio-temporal

causal interactions (or tra�c propagation) between roads in the network for

a speci�c date in the observation period.

Looking more towards probabilistic modelling and how it can be ap-

plied to predict future behaviour in the network [39, 87]. The work done

in [87] considers a Bayesian network (BN), [145] gives a basic introduction

into Bayesian Networks, to predict tra�c jams on main arterial routes in

a metropolitan area. The Bayesian Network was trained on various pieces

of information that described the network over a 15 month period, the in-

formation includes: (1) past and present tra�c jam information, (2) acci-

dent reports, (3) weather reports, (4) holiday information e.g., Thanksgiving,

Christmas etc., and (5) event information, for a speci�c time of day and day

of the week. The trained BN was then used to compute the probabilities

4. Vehicular Tra�c Network Analysis 88

for tra�c jam occurrences at speci�c locations in the metropolitan network

on a speci�c day of week and time of day. In [39], Cheng et al. develop an

accurate method of modelling tra�c �ows, a method that incorporates the

full extent of what they call behavioural heterogeneity. Behavioural hetero-

geneity is the di�erence in behaviours observed for drivers on the road when

selecting a route across the network, where route selection is based on sub-

jective representations of space and estimations of prospective travel times.

The approach taken in this work is to use a Markov Chain, see chapter D for

details, to model and predict behaviour. Cheng et al. consider this approach

to capture all relevant behaviour for an improved statistical description of

the full heterogeneity of choice amongst a population of individual drivers

on the network. Other work on tra�c analysis [167] includes methods of

interacting with experts in the �eld in order to gain domain knowledge to

develop hierarachical classi�ers (see [7] for details) in order to model tra�c

jams for tra�c management control.

The focus of this work is to investigate vehicular tra�c in an urban

network, a topic that has been heavily studied in the literature [87, 104,

115, 145, 162, 165�167]. However, in this study we consider a GPS-based

approach to answer a series of questions that are designed to develop insights

into the behaviour of tra�c in an urban network. The questions considered

are:

1. How can self-similarity be applied to a tra�c network in order to de-

velop insights into the inherent communities?

2. What in�uential factors can be observed to have an impact on the

behaviour of tra�c in the network?

3. How can probabilistic modelling be used to model behaviour in a tra�c

network?

89 4.1. Introduction

The structure of this chapter is described in Figure 4.1, where the roadmap

outlines the individual �ows of exploration on the GPS-based tra�c data,

and experiments are conducted using Python [142] and its associated pack-

ages including NumPy [161], Matplotlib [89], SciPy [96], Scikit-learn [133]

and Pandas [120]. The programme of work is structured as follows. First in

Section 4.2 we provide an introduction to the i-MOVE project and its mo-

tivation, in Section 4.3 we introduce the i-Move tra�c data - describing the

processes used in order to extract, wrangle and clean the GPS-based data.

This section also describes the characteristics of the tra�c data through sta-

tistical analysis methods such as those discussed in Chapter 2. Section 4.4

is dedicated to the analysis of the i-MOVE data and this section is split

into three sub-sections 4.4.1, 4.4.2, and 4.4.3, each denoting a �ow in the

roadmap, describing the processes of detecting self-similarity, investigating

local changes in the network, and modelling the tra�c for a speci�c road

segment. Finally section 4.5 contains a conclusion of this work and discusses

potential future work in this area.

4. Vehicular Tra�c Network Analysis 90

Figure 4.1: Chapter Roadmap

91 4.2. Introducing i-MOVE

4.2 Introducing i-MOVE

The i-MOVE project was part of a group of projects that were funded by

Innovate UK [160] to create a digital ecosystem for the Internet of Things

(IoT) [100]. The projects focused on speci�c areas related to IoT describ-

ing real-world objects. For example, observing the movement of goods or

people throughout the UK using di�erent modes of transportation. i-MOVE

focussed on identifying a range of data assets that describe vehicular and

railway networks in Liverpool. The motivation behind the project was to

identify the impact that the fast development of Liverpool is having on the

end users. The city is increasing in scale which is caused by surging pop-

ulations, expansions to the port etc. Consequently this is having negative

impact on congestion in the transportation network. In order to mitigate

these issues, city councils must rethink their strategies to design a more sus-

tainable solution of reducing congestion such as bottlenecks in transportation

corridors, whilst increasing energy e�ciency in urban environments [98]. The

goal of the project was to design an interoperable platform (or hub) that can

expose a multitude of data assets that describe tra�c, incidents [91, 150],

weather [122] etc., to a developer community. Exposing the data assets to

a developer community means that experiments or applications can be cre-

ated that will provide insight into the impact that tra�c congestion has on

the transportation corridors. The interoperability requirement of the plat-

form was a requirement for each of the projects funded by Innovate UK,

and as part of this requirement an IoT platform interoperability standard

was developed, HyperCat [125]. HyperCat provided a universal protocol for

interoperability amongst platforms, that is, it allowed platforms to expose

the data assets they contained with all other platforms.

In this study we concentrate our interests on one particular data feed (or

4. Vehicular Tra�c Network Analysis 92

source) - a feed provided by INRIX [91] - that in our opinion was the most

complete and reliable data set that provides intelligence on the network. In

the next section of this work we discuss the data set in detail.

4.3 i-MOVE Tra�c Data

Tra�c can be observed using two distinct methods 1) Trajectory data (TD),

and 2) Floating-car data (FCD). Trajectory data is where tra�c is observed

directly by cameras on top of tall buildings, or mounted on airplanes. The

information is tracked, and trajectories are extracted i.e. positions of each

vehicle α over time δ. In [158], the authors suggest that if all of the vehicles

on a given road segment (and time span) are captured using this method, the

result data is called trajectory data. Floating-car data uses probe vehicles

which �oat in the tra�c �ow, such vehicles collect geo-referenced data via

Global Positioning System (GPS) receivers which are then map-matched to

the physical road-map, and the speed is a derived quantity determined from

the spacing between two GPS points for a road segment. In this work we

consider �oating-car data that is extracted from a small quantity of vehi-

cles on a speci�c road segment. In particular, we consider data aggregated

by INRIX; a data provider for vehicular tra�c systems, where the data

describes the tra�c �ow for a multitude of road segments in and around

Liverpool City Centre. The data is aggregated using GPS based systems,

and Automatic Number Plate Recognition (ANPR) vehicle recognition sys-

tems, and is map-matched to the network blueprint in order to identify the

average travel time for a vehicle on a speci�c road segment at a speci�c time

δ. The raw data supplied by INRIX was aggregated for the i-MOVE project

(mentioned above).

93 4.3. i-MOVE Tra�c Data

timestamp code speed travel time minutes

2013-10-14 11:22:36 C10P12345 13 0.037

2013-10-14 11:22:36 C10-12345 13 0.017

2013-10-14 11:22:36 C10+48845 13 1.003

2013-10-14 11:22:36 C10-48845 13 2.201

2013-10-14 11:22:36 C10P48945 13 5.000

2013-10-14 11:22:36 C10N48945 13 3.001

Table 4.1: Floating-car XML link object elements

4.3.1 Data Preparation

In its raw form the �oating-car data was provided as a sequence of records,

where each record describes a pair of reference points. Speci�cally, a sin-

gle record is represented by an XML object that comprises four attributes

1) timestamp; date and time of the observation, 2) speed ; estimated space

mean speed for the roadway segment in miles per hour (MPH), 3) travel

time minutes; current estimate time it takes to traverse between the two

reference points in the network, and 4) code; the unique identi�cation for

a speci�c pair of reference points, Table 4.1 provides examples and Section

4.3.1 provides explanations. In an online setting it can be observed that a

procedure to identify records for a speci�c pair of reference points that de-

scribes a link (Lnki) would not be simple. In particular, it would have to

include some clustering mechanism that will identify a group of records, and

classify them as belonging to the same group if their code attribute is the

same. Furthermore, the procedure would have to include some component

for code-location translations, speci�cally it would have to perform location

translations using a Tra�c Message Channel (TMC) translation table, in

order to provide feedback on the spatial relevance of the data.

4. Vehicular Tra�c Network Analysis 94

Figure 4.2: Relationship between RDS-TMC codes and GIS Road Links

Data Wrangling

In our work we create a data wrangling process for transforming the raw

(crude) �oating-car data into a clean and usable format. This is part of a

known process in data warehousing called Extract Transform Load (ETL)

[163]. The transformation phase in the process is performed on a speci�c

record using the code attribute - a speci�c code is used to determine loca-

tion information (e.g., longitude, latitude, road name etc.) from the TMC

table. In its raw form, the code attribute was provided as two di�erent

types: 1)C10P12345 ; representing large junctions in the network e.g.,

roundabouts, and 2) C10+12345 ; representing road segments. Figure 4.2

provides an illustration of the two types of code forms. The code is seg-

mented into sections, the �rst 3 characters can be discarded as they are

always the same, the next character denotes the direction in which the sen-

sor is measuring travel times, and the last 5 characters represent the identity

of the road segment (used to identify a road link in our new dataset). The

measuring direction can be referenced using either letters or symbols to de-

note the direction e.g., P and + represent positive, and N and - represent

negative. Intuitively if a sensor si is measuring in a positive direction the

next reference point would be si+1 and similarly if the sensor is measuring in

a negative direction the next reference point would be si−1. Therefore, for

95 4.3. i-MOVE Tra�c Data

a sensor detecting travel times in a position direction from reference point

12345 that code would be denoted as either C10P12345 or C10+12345. This

understanding can be applied to the road segment identi�cation procedure

(detailed below), in order to determine the unique reference points that a

single record describes.

Transformation Procedure

In this section we discuss the transformation procedure to extract meaning-

ful information from the input data to present a simple and usable data set.

The transformation procedure of a single record is detailed below:

1. Extract the code attribute of the record and split the code at position

3, in order to derive an array of sub-strings

2. Discard the �rst item of the array as per detailed in the data wran-

gling process, this information is consistent and does not provide any

additional information.

3. Using the second item of the array, extract the �rst character, this is

the direction of measurement denoted di, and the remaining part of

the substring is the initial reference point id that the record describes

and this is denoted by ps.

4. Using the reference point id ps and the direction of measurement di,

the end reference point can be derived and this is denoted by pe. If

di = P or di = + then pe = (ps + 1), or if di = N or di = − then

pe = (ps − 1).

The outputs of the procedure ps and pe are used to perform location trans-

lations with the TMC table in order to identify location information e.g., ge-

ographical coordinates, road name, and crossing name, for a speci�c record.

In an object-oriented environment the new information is used to create

4. Vehicular Tra�c Network Analysis 96

Element Description

from Object that describes the geographical location of the �rst
reference point in a record using World Geodetic System
1984 (WGS84).

to Object that describes the geographical location of the sec-
ond reference point in a record point using World Geodetic
System 1984 (WGS84).

crossing Textual description of the road name that both reference
points intersect.

time Date and time the observation was recorded represented in
ISO 8601 format.

value Decimal value that represents the travel time in minutes

unit Unit of measurement that was used to record the travel time.

Table 4.2: Floating-car records in raw form

a Lnk object, where the object contains information about geographical

locations of the start and end points, time of measurement, and the mea-

surement value. At the point the transformation procedure has completed

the list of records is now a list of Link objects. Subsequently, the Link ob-

jects are grouped together such that reference points following each other

consecutively (in a positive or negative direction) are assigned to the same

group, where the group can be considered to describe the same road or

section of the network. Furthermore, the grouped objects (denoting the

records) are sorted temporally, that is, they satisfy the following condition

Lnktii < Lnk
ti+1

i < · · · < Lnk
tm−1

i < Lnktmi , where ti is time that the

measurement value was observed, and m is the last observed time in the

observation period. In order to allow the data to be accessible for a range

of applications, the data is converted into a series of Extensible Markup

Language (XML) �les, where a single XML �le describes the observations

extracted across the network of links for single time of day. Table 4.2 gives

a tabular representation of the output data.

97 4.3. i-MOVE Tra�c Data

4.3.2 Data Cleaning

A common practice in any data mining task is to clean the data. Cleaning

the data is a method of pre-processing the input data to detect, remove and

correct inconsistencies in order to improve the data quality. Data quality

issues commonly arise in data collections, and are generally caused by data

entry mistakes, missing values or invalid data. Data correctness is required

in data mining tasks in order to avoid wrong conclusions being made on the

object or system being examined. Data cleansing is an important component

of ETL. Data is typically extracted from the information source such as

sensors, actuators etc., cleaned using a method such as that mentioned below

before being loaded into a data warehouse such as Hadoop Distributed File

System (HDFS) , Oracle data store etc, for further analysis. According

to [138] data cleansing techniques should satisfy several requirements, these

include but are not limited to: 1) ability to detect and remove all major errors

and inconsistencies in a data source, 2) be supported by existing tools to limit

manual inspection and programming e�ort, and 3) scalable and reusable for

a multitude of data assets that may be di�erent in size or content.

Prior to the data cleaning process we must ingest the transformed data,

and this is achieved through parsing each of the previously created XML

�les using Python [137] built-in XML handling libraries. The data records

now stored as XML objects in a list are then grouped by the link (or pair of

reference points) that they describe. This creates a matrix of observations

M , where each cell in the matrix M = [i, j] is an observation made on a

speci�c road segment indexed by i, and the observation denotes travel time

measurements extracted on a speci�c date at a speci�c time of day. Following

this, a single rowM [i, :] is sub-divided intom lists of objects - each describing

the observations made for a speci�c date in the observation period, where

4. Vehicular Tra�c Network Analysis 98

the number of lists equates to the number of dates in the observation period

which in this instance is 85; an explanation of this quantity can be found in

Section 4.3.3, and each list L is sorted temporally.

Missing Entries

Description: Missing entries are common in data extraction procedures

where data collection methods are imperfect. For example, user surveys are

often unable to collect responses to all questions. In such cases three com-

mon techniques are used to handle missing entries (1) eliminate records that

contain missing values (2) missing values maybe be imputed, or (3) design

analytical methods to work with missing values - often the most commonly

used in data mining tasks as most methods in the literature work robustly

with missing values [3]. It is obvious that all three methods have issues: (1)

is not practical in the case that most of the records contain missing values,

(2) could add bias inherent in the imputation process or imputing based on

the wrong feature of the data, and (3) would add extra complexity to the

design of analytical processes. In this work we consider an intuitive process

that is based on option (2) - a simple but e�ective method of cleaning the

original data. In particular the method identi�es missing entries and imputes

them using an established statistical technique. In this method for a single

list L describing a speci�c date di and link Lnki, we identify what we call

legal observations.

De�nition 4.3.1. A legal observation is an observation that is measured

within some threshold ε from the minute marker. In the case that an ob-

servation is beyond ε seconds of the closest minute in a positive or negative

direction, we consider it to be a missing value; in order maintain consistency

across the links in the network and dates in the observation period, and we

99 4.3. i-MOVE Tra�c Data

denote this by 0.

This approach was motivated by [3], where the Aggarwal speci�es that

it is often convenient to have time series values that are equally spaced

and synchronised across di�erent behavioural attributes for data processing.

It was method that is designed to create a synchronised time series (see

De�nition 4.3.2 for details), that is equally spaced; observed every 5 minutes,

and contains no missing entries. Therefore a single list L is described by a

vector of 288 elements.

De�nition 4.3.2. A time series denoted as S = X(t), t ∈ T is a set of

statistics that represent an observation of a stochastic process, where T is

the set of chronological time points (or indexes) at which measurements

are made, and X(t) is the observation made at time t. The observations

S = X(1), X(2), . . . , X(n) are typically represented as a sequence of real

numbers R, where X(1) denotes the value taken by the series at the �rst time

point, X(2) denotes the value for the second time point, X(3) denotes the

value for the third time point, and so on. It is common for the observations

to be extracted at consistent and regular time intervals across the speci�ed

period of observation e.g., hour, day, week, year etc. A subsequence S(i,k) =

X(ti), X(ti+1), . . . , X(tk) of time series S is a shorter time series of length k

starting from position i.

Method: The method used to parse legal observations and handle missing

entries is described by two successive algorithms. Algorithm 4, called parse-

Legal, is used to parse out legal entries and create a synchronised set of time

series'. The procedure starts between lines (2) and (4) where the variables

are initialised, and the �rst time point is identi�ed. Lines (5) to (19) is a

For loop that is the main part of the algorithm. Lines (6) and (7) compute

4. Vehicular Tra�c Network Analysis 100

the time delta (or di�erence) in minutes and seconds respectively between

the previous and current times of day. Lines (10) and (14) are then used to

identify legal observations in the data. In the case that a legal observation

is identi�ed, a tuple is added to the output vector denoted by (time, value).

At the point the procedure terminates at line (20), the output vector legal

is returned. Algorithm 5, called zeroPad, is a successive step in the method

that inserts place-holders in the vector returned from Algorithm 4 at points

in the time series where observations are missing. The goal of this algorithm

is to ensure that the time series' are synchronised regardless of the quantity

of missing values. The procedure starts between lines (2) and (3) where the

variables are initialised. Line (4) checks if a potential missing value exists at

the start of the day. In the case that the missing entry criteria is satis�ed

a single 0 is added to the output vector. Lines (7) to (18) is a For loop

that is the main part of the algorithm. At line (8) the current time point is

identi�ed, which is then used in line (9) to calculate time elapsed since the

last time point. In line (10) the number of intervals; an interval is 5 minutes

in length, elapsed since the last time point is computed, line (11) checks if

this quantity is more than 0, and if this is the case the For loop between

lines (12) and (14) add that quantity of 0 to the vector. Following this, line

(17) adds the current time points' observation to the output vector. In line

(22) a check is performed to see if missing values occur at the end of the day,

and in the case that the missing entry criteria is satis�ed a single 0 is added

to the end of the vector. Finally, in line (24) the output vector is returned

complete. The output of second algorithm creates a consistent and equally

spaced time series for a single date and link in the observation period.

101 4.3. i-MOVE Tra�c Data

Algorithm 4 Parse Legal

Input: L: a list of objects describing observations for a speci�c date di;
ε: threshold to identify legal observations
Output: legal: a vector comprising legal observations for link Lnki and
date di

1: procedure parseLegal(L, ε)
2: legal← []
3: prev ← L[0].time . Set prev to the �rst extraction time in seconds
4: legal[1]← prev
5: for ti in {1, . . . , Length(L)} do
6: current← L[ti].time . Set current to the current extraction time

in seconds
7: ∆Tm ← (current−prev)

60 . Time delta in minutes
8: ∆Ts ← (current− prev) mod 60 . Time delta in seconds
9: if (∆Tm mod 5) = 4 then . Approaching the time from the left
10: if (60−∆Ts) ≤ ε then
11: legal[ti]← (current, L[ti])
12: end if

13: else if (∆Tm mod 5) = 0 then . Approaching the time from the
left

14: if ∆Ts ≤ ε then
15: legal[ti]← (current, L[ti])
16: end if

17: end if

18: prev ← current

19: end for

20: return legal

21: end procedure

4. Vehicular Tra�c Network Analysis 102

Algorithm 5 zeroPad: function to zero pad the missing values for a speci�c
date

Input: legal: a vector comprising legal observations for link Lnki and
date di
Output: complete: a vector comprising observations and place holders
for missing values for Lnki and date di

1: procedure zeroPad(legal, ε)
2: complete← [1, 2, . . . , 288]
3: prev ← legal[0] . Set prev to the �rst legal extraction time in

seconds
4: if (prev/60)

5 > 0 then . Check for missing observations at start of
the day

5: complete[0]← 0
6: end if

7: for ti in {1, . . . , Length(legal)} do
8: current← legal[ti][0]
9: ∆Tm ← ((current− prev)/60)
10: window← (∆Tm

5)− 1
11: if #window > 0 then . Add missing place-holders for the time

window
12: for wi in {ti, . . . , ti + window} do
13: complete[wi]← 0
14: end for

15: end if

16: complete[wi]← legal[ti][1] . Add legal observation
17: prev ← current

18: end for

19: last← legal[Length(legal)][0]
60

20: if (60− last) > 5 then . Check for missing value at the end of the
day

21: complete[Length(legal)]← 0
22: end if

23: return complete

24: end procedure

103 4.3. i-MOVE Tra�c Data

Imputation

Description: It is common for a time series to contain missing values [3],

where the missing values may be caused by factors of randomness, limitations

of measuring equipment etc. Recall in the previous step the data was pre-

processed to create consistent and equal size vectors for each of the dates and

links in the network. In this section we consider a method of the handling

missing data, that is, missing observations that were identi�ed in Section

4.3.2. In [3], it is stated that there exists three classes of techniques for

handling missing entries (1) eliminate missing entries, (2) impute or estimate

missing entries, and (3) design the analytical method to work with missing

values. The �rst method is unrealistic as this would mean inconsistent time

series' are created, the second method seems the most plausible because it

would create consistent time series', and would not require major changes

in future processing functions, whereas the third option would. Based on

this, we consider the second option to be the most appropriate, and design

a method to impute the missing values with the arithmetical mean of the

vector that contains similar observations in the data, that is, observations

on the same link and time of day. The procedure for imputing the missing

values is described next.

Procedure: The procedure that concludes the data cleaning process and

imputes the missing values is presented in Algorithm 6. The For loop

located between lines (1) and (12) is the main part of the algorithm. Line

(2) is used to check for missing values, if no missing value exists move onto

the next iteration of the for loop. In the case that a missing value place-

holder exists lines (5) to (8) are used to build a vector of observations that

are similar to the current observation at index ti. Once the vector has been

4. Vehicular Tra�c Network Analysis 104

populated line (9) computes the arithmetical mean of the vector in order to

estimate the missing observation using

f(ti, D) =
1

N

|D|∑
dj∈D

di[ti] (4.1)

,where ti is the current time point in the day, D is the vector of similar

observations created between lines (5) and (8), and dj is the vector of obser-

vations for a speci�c date j. Line (10) uses this computed value ej to replace

the place-holder in the vector. Finally the procedure concludes at line (13)

where the modi�ed vector is returned.

Algorithm 6 imputeMissing: function to impute the missing values for a
speci�c date

Input: complete: a vector comprising observations and place holders for
missing values for Lnki and date di; X: a list of vectors comprising the
time series for each date in the observation period
Output: complete: a modi�ed vector comprising observations and im-
puted missing values for Lnki and date di

1: for ti in {1, . . . , Length(complete)} do
2: if complete[ti] > 0 then
3: Continue;
4: else if complete[ti] = 0 then . build the vector of similar

observations
5: D ← []
6: for di in {1, . . . , Length(X)} do
7: D[di]← X[di][ti]
8: end for

9: ei ← f(ti, D) . compute the arithmetical mean using Equation
4.1

10: complete[ti]← ei
11: end if

12: end for

13: return complete

105 4.3. i-MOVE Tra�c Data

Conclusion

In conclusion of this section of work we have identi�ed a method for cleaning

the �oating-car data. In particular, the cleaning procedure includes four

successive operations: 1) parsing the �oating-car data to extract observations

that satisfy the criteria of being legal, 2) identifying missing observations

for a speci�c date, 3) zero-padded the output vector to include place-holders

that signify missing observations, and 4) performed imputation on the output

vector to replace missing observation place-holders with substituted values.

The data cleaning procedure was performed on each date in the observation

period for all road segments in the network denoted Lnki, and this produced

a list of vectors denoted LLnki = [~v1, ~v2, · · · , ~v85], where each vector ~vi is a

time series of observations for a particular date in the period of investigation.

4.3.3 Data characteristics

In this section of work the cleaned �oating-car data is described to pro-

vide the reader with insight into the characteristics and limitations of the

tra�c data. Furthermore, this section describes the statistical properties of

the data that can be used in further analysis in order to characterise road

segments in Liverpool based on their tra�c �ow pro�les.

Description of input data

The data represents observations that are captured across the network by

many randomly distributed �oating cars, and a single datum denotes the

travel time for a single �oating car to traverse between two reference points

(or road segment) in the network. Recall in Section 4.3.2 that the data was

transformed and cleaned into a more usable and consistent data set. This

create a set of time series' for a single road segment Lnki that is of length

4. Vehicular Tra�c Network Analysis 106

equal to the quantity of dates in the observation period, or in this work 85,

which is the number of dates between 29th November 2013 and 21st February

2016. In this set a single time series describes a date di which is represented

by a vector of size 288, where each element x is a real number denoting a

measurement of travel time between two reference points (or along a road

segment) at a time point, or 5 minute interval, in a 24 hour period.

Data Statistics

Statistics are used to provide useful and accessible information about a spe-

ci�c object [169]. In this work we use statistics to develop insights into

the behaviour (or patterns of behaviour) of tra�c in the network using the

�oating-car data. A common method of understanding the behaviour of a

random variable is to compute its frequency distribution. A frequency distri-

bution provides insight into the likelihood that a random variable will take

on a given value, and thus provides insight into the pattern of the data over

an speci�ed observation period. Recall from Section 2.1 that the type of

method of statistical analysis is dependent on the type of variable being ex-

amined. Based on this, and the fact that the �oating car data is numerically

valued, we must consider a method that is e�ective for analysing quantita-

tive data. However, the �oating car data can include a multitude of values

that measure the observed travel times on a speci�c road segment Lnki. In

order to compute the frequency distribution of such data, the observations

must be grouped. A method of grouping observations is to consider class

intervals, that is, intervals of equal size that cover the range between the

minimal and maximal observed values without overlapping. The intervals

are then used to compute the frequency of observed values, thus creating a

frequency distribution, and this is represented by a histogram.

107 4.3. i-MOVE Tra�c Data

20 40 60 80 100
travel time

0.0

0.1

0.2

0.3

0.4

0.5

Fr
e
q
u
e
n
cy

Frequency Distribution for Lnk1

Mean=36.09601831922163

Median=35.58

0 50 100 150 200 250 300 350 400 450
travel time

0.0

0.2

0.4

0.6

0.8

1.0

Fr
e
q
u
e
n
cy

Frequency Distribution for Lnk2

Mean=65.60727065508023

Median=63.96

20 40 60 80 100 120 140 160 180 200
travel time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Fr
e
q
u
e
n
cy

Frequency Distribution for Lnk3

Mean=68.63748628936422

Median=66.36

Figure 4.3: Travel Time Distribution

In this work we compute the frequency distributions of observations for

three sample road segments Lnk1, Lnk2 and Lnk3, and represent these as

histograms in Figure 4.3. The resulting histograms can be categorised as

normally distributed, that is, the distribution is centered about its mean,

meaning that the majority of observations reside in the middle of the distri-

bution and a very few observations lie in the tails of the distribution [76, 94].

This result aligns with the result presented in [30], where Berry et al. demon-

strate that travel times of vehicles are normally distributed. The distribution

4. Vehicular Tra�c Network Analysis 108

only provides a summary statistic of the tra�c data, it gives a global insight

into the typical behaviour of a speci�c road segment in the tra�c network. In

order to gain further understanding of the tra�c behaviour one must inves-

tigate other statistics or measures such as averages. The average (or mean)

is a measure of central tendency, that is, it is a descriptive measure that in-

dicates the central point in a given distribution of values, where the central

point is the typically observed value for a random variable. In this work we

compute the arithmetical mean for each of the sample road segments and

each time point (or interval in the day), and represent this in Figure 4.4. The

mean is computed for speci�c time point ti and road segment Lnki using,

X̄ti =
1

|D|

|D|∑
dj∈D

di[ti] (4.2)

where D is the set of dates in the observation period, and dj is a vector

of observations for a speci�c date. Reviewing the plots in Figure 4.4, and

in particular analysing the shapes of the curves suggests (as expected) that

each road has a di�erent tra�c �ow behaviour. This expectation is based

on the fact that the sample road segments are located at di�erent points in

the network that are not directly connected. However, similarities does arise

between the behaviours, and in particular these similarities are troughs, dips

in the curve, that appear at 8:30am and 5pm. This similarity aligns with

the expectations that these points in the day are rush hour periods.

In the literature on descriptive analysis for a data set it is suggested

that identifying the measure of central tendency is not enough to distinguish

between two distributions (see Chapter 1 for more details). In statistics a

measure of variability, determining how scattered a distribution is away from

its center (mean or average) or clustered towards it, is used to provide insight

109 4.3. i-MOVE Tra�c Data

into the structure of data, and thus be used to di�erentiate two distributions.

In this work we compute the variance for each of the sample road segments

and each time point (or interval in the day), and represent this in Figure 4.5.

The variance will be used to determine the variability amongst travel times

in order to discover how regular (or irregular) tra�c �ow is on speci�c road

segments in the network. For periods in the day at which the least variance

is observed, it would be suggested that the tra�c �ow is consistent. In

the complementary case, periods at which the highest variance is observed,

it would be suggested that tra�c �ow is irregular, sporadic, or volatile,

meaning that tra�c volumes frequently �uctuate. The variance is computed

for speci�c time point ti and road segment Lnki using

σti =

|D|∑
dj∈D

(di[ti]− X̄ti)
2 (4.3)

,where D is the set of dates in the observation period, dj is a vector of

observations for a speci�c date, and X̄ti is computed using Equation 4.2.

Reviewing the plots in Figure 4.5, and in particular the curves, it is apparent

that troughs appear at rush hour periods in the day, similar to those for the

averages plots. A further observation in the plots is a large trough that

appears at 5pm (or position 200 in the plots), this would suggest that this

period in the day is the most di�cult to estimate for each of same road

segments. It would be di�cult to identify this characteristic of the travel

time data based on the averages alone. For example, the curve that denotes

the averages for the road segment identi�ed by Lnk2 a trough is apparent

at roughly position 200, but the signi�cance of the trough is not obvious.

However, using the variances we can identify how signi�cant the trough is.

4. Vehicular Tra�c Network Analysis 110

(a)

(b)

(c)

Figure 4.4: Plots of travel time in-
tensity averages for three road seg-
ments, where the x axis denotes the
time of day and the y axis denotes
the average travel time observed

(a)

(b)

(c)

Figure 4.5: Plots of travel time in-
tensity averages for three road seg-
ments, where the x axis denotes the
time of day and the y axis denotes
the variance of the observed travel
times

111 4.4. Analysis

4.4 Analysis

The primary focus of this chapter is to develop understanding of urban tra�c

networks. Recall in Section 2.2, and the work in Chapter 3 that a method of

developing understanding of networks is through community detection, that

is, discovering a division of the network within which the nodes connect more

to each other than any other nodes in the network. In this study we consider

a di�erent approach, an approach that is based on the original method of

understanding networks; examining the properties and characteristics of the

individual network entities using the data that describes them. In particular,

we consider a data-driven approach, and propose a series of experiments

that are designed to answer the questions presented in Section 4.1. We

consider four experiments in this study, each of which are conducted using

each of the sample road segments mentioned in 4.3.3. First, in Section 4.4.1,

we examine the self-similarity of each road segment and based on this we

perform clustering to classify road segments. Second in Section 4.4.2 we

examine the intensity of observed travel times for a speci�c road segment

in order to gain appreciation of the typical (or regular) tra�c �ow at a

speci�c time of day, and the in�uence that time of day has on the experienced

travel time. Third in Section 4.4.3, we model and simulate the tra�c �ow

by applying the �oating-car data to a Markov Chain. The structure of

this work is centered around the experiments, and the structure of each

experiment is as follows. First, description provides details of the experiment

and relevant background. Second, procedure provides a description of the

procedure used to conduct the experiment. Third, results details the results

of the experiment. Four, key �ndings, provides a summary of the experiment

and the results obtained.

In order to yield meaningful comparisons between pairs of time series'

4. Vehicular Tra�c Network Analysis 112

both must be normalised [139]. This transforms the data into a consistent

scale, that is, each of the time series' denoting the travel time observations

for a speci�c date di and road segment Lnki appear in the same scale. The

scale we transform the data into is determined by the inherent statistical

properties of the data, which is based on the Z-score (see De�nition 4.4.1),

determining how far away from the expected (mean denoted µ) value the

datum x is.

De�nition 4.4.1. Z-score or commonly regarded as Z-number, denoted z.

For any value x, z is equal to (x− µ)/σ, where µ and σ are the population

mean, and the population standard deviation respectively. The Z-score gives

an indication of how far x is away from µ in units of standard deviation, so

z is negative when x < µ and z is positive when x > µ.

4.4.1 Self-similarity

Description: The focus of this experiment is to investigate Question 1,

that is, we investigate self-similarity in the tra�c network with a view to

discover inherent communities of road segments. The work in this section is

motivated by similar studies [27, 48, 106] that are concerned with discovering

self-similarity in networks, considering World Wide Web (WWW) and Eth-

ernet Local Area Network (LAN). In [106], Leland et al. demonstrate that

Ethernet LAN tra�c is statistically self-similar, and that none of the com-

monly used methods of tra�c modelling such as Poisson are able to capture

this behaviour, and [27] considers that using such methods presents unre-

alistic results. In order to investigate self-similarity in the tra�c network,

we compute pair-wise comparisons between all pairs of vectors denoted by

~vi and ~vj , where a single vector ~vi comprises a series of observations for a

speci�c date di in the observation period, meaning the size of the vector is

113 4.4. Analysis

288, or equal to the number of 5 minute intervals in a 24 hour period, and

the pair-wise comparison is computed using two distance (or similarity) mea-

sures, Euclidean Distance and Cosine Similarity, see Appendix A for details,

where the chosen measures are common methods of discovering similarity in

data [37, 93, 139]. The results of the comparisons are represented in a ma-

trix of similarity denoted S := (si,j)n×n, where n denotes the quantity of

dates in the observation data, and a single cell si,j is a real number that

represents the similarity between a pair of dates i and j. The self-similarity

is performed for a sample set of road segments in network, and the resulting

matrices are represented by heat maps in Figures 4.6 and 4.7.

Results: Firstly, it is immediate to observe that the patterns in the heat

maps are consistent across the two measures for each of the road segments

used in our analysis. This consistency means that the value denoting the

pair-wise similarity between pairs of dates resides at a similar position in

each of a scales for the two di�erent distance measures. This observation

suggests that it does not matter which measure we choose in our analysis,

it will always yield the same pattern in the resulting heat map. A further

observation on the heat maps is that self-similarity does not follow any de-

�ned pattern, that is, self-similar regions denoted by patches of light (or

dark) colours, dependent on the measure, are randomly distributed. How-

ever, what does appear to be consistent across the Heat maps is that the

dates at which high similarity is observed are identi�ed to be weekends.

4. Vehicular Tra�c Network Analysis 114

(a)

(b)

(c)

Figure 4.6: Euclidean similarity ma-
trices for three road segments

(a)

(b)

(c)

Figure 4.7: Cosine similarity matri-
ces for three road segments

115 4.4. Analysis

4.4.2 Travel time intensity

Description: The focus of this experiment is to investigate Question 2,

that is, we investigate if a temporal relationship exists between the travel

time and the time of day at which is was observed. The work in this section

is motivated by [87], where Horvitz et al. consider a Bayesian Network

that was trained on information describing the network in order to predict

tra�c jam occurrences on speci�c points in the network, where predictions

are based on the day of the week and time of day. In order to gain an

appreciation of this relationship, we compute the frequency distribution of

travel times observed for each day of the week and time of day across the 12

week observation period; a period that is more than 3 times of that convered

in [165], and produce a matrix of frequency distributions for a single road

segment Lnki denoted as M := (mi,j)n×m, where n is the number of unique

travel times, m is the number of 5 minutes intervals in a 24 hour period;

288. A single cell in the matrix denoted as mi,j represents the number of

times travel time i is experienced at time of day j across the observation

period. The following procedure is used to produce this matrix for each of

the sample road segments, and the resulting matrices are represented as heat

maps in Figure 4.8.

Procedure: Algorithm 7 was used to compute the matrix of frequency

distributions for a speci�c road segment Lnki. The algorithm is described

as follows. Lines (1) to (9) initialise the set of travel times denoted as A

and populates this set with observations on Lnki. Line(10) initialises the

frequency distribution matrix denoted as M . Lines (12) to (18) is a For

loop that forms the main part of the algorithm. Line (12) identi�es the next

time point in the day denoted as ti, line (13) identi�es the next date in the

4. Vehicular Tra�c Network Analysis 116

observation period denoted as di, line (14) identi�es the index of the current

observation denoted as x, line (15) identi�es the index of xi in A, and line

(16) increments the corresponding cell value inM , that is, mti,xi . Finally the

procedure terminates at line (17) where the frequency distribution matrix is

returned.

Algorithm 7 frequencyDistribution: function to compute the frequency
distribution matrix for a speci�c road segment in the network

Input: D: a list of vectors of observations, where each vector is a the
observations for a date di
Output: M : a matrix of frequencies distributions

1: A← ∅ . initialise the set of travel times
2: for ti in {1, . . . , 288} do
3: for di in D do

4: x← di[ti]
5: if x /∈ A then . check if the travel time is not already in the set
6: x ∪A
7: end if

8: end for

9: end for

10: M ← m1,1 = 0,m1,2 = 0, . . .mm,n = 0 . initialise the m by n matrix

11: ~disti ← []
12: for ti in {1, . . . , 288} do
13: for di in D do

14: obs← di[ti]
15: xi ← A.index(obs) . get the index of the observation in A
16: mti,xi ← mti,xi + 1 . update the matrix cell value
17: end for

18: end for

19: return M

Results: In review of the Heat maps in Figure 4.8, it is immediate to

notice that for each of the sample road segments the frequency that a speci�c

travel time x is observed �uctuates as the time of day progresses. This can be

noticed by observing that the colour gets closer to red as we approach periods

of the day at which travel times were observed frequently, suggesting that

117 4.4. Analysis

these are periods of the day at which tra�c is stable. In the complementary

case, we notice that colour of the cells in the Heat map change between

yellow and white for periods of the day at which travel times were observed

infrequently, suggesting that these are periods of the day at which tra�c is

sporadic (or irregular). However, it is di�cult to identify patterns in the heat

maps due to the domination of stable tra�c. In order to manage this issues,

we rescale the heat maps such that the colour spectrum only represents travel

times with frequencies that are below a speci�ed threshold θ, and cell with

a value that is beyond θ is coloured black. In our work, we consider θ = 5,

this is the corresponding value of the colour that dominates the heat maps,

and therefore if we consider this as a threshold value for rescaling the heat

maps we can gain exposure to the patterns that occur between infrequently

observed travel times. The rescaled heat maps are presented in Figure 4.9.

Reviewing the rescaled Heat maps shows that patterns do exist, patterns

that were obscured by the stable tra�c, and these patterns suggest that

at position ti = 216, the tra�c appears to be the most irregular. This

observation aligns with the troughs observed in both the intensity averages

plots in Figure 4.4 and the intensity variances plots 4.4, where the troughs

are more apparent in the variances plots.

In order to further our understanding of the behaviour on road segments

in the network, we investigate the in�uence that the day of the week has on

the regularity (or irregularity) of tra�c �ow. In this analysis we produce

�ltered frequency matrices using Algorithm 7 but we �lter the dates on

line (13) such that they are only weekdays or weekends not both, and we

produce a new set of Heat maps with respect to the weekdays or weekends

observations. These Heat maps are presented in Figure 4.10 and 4.10. On

review of the Heat maps for day of the week we observe that the weekdays

4. Vehicular Tra�c Network Analysis 118

appear to be the most similar to the un�ltered Heat maps for each of the

road segments. This suggests that the weekdays had more in�uence on the

regularity of tra�c �ow. However this could be related to the fact that there

are more dates encompassing the weekday category.

Key �ndings

In this work we have identi�ed a method of discovering and visualising the

tra�c �ow behaviour for a sample set of roads in the network. In particular,

we have developed a method that uses frequency distributions of observed

travel times to visualise through heat maps the behaviour of tra�c �ow for a

speci�c road segment. Upon investigating these the heat maps we observed

that temporal in�uence does exist meaning the time of day at which an

observation was made does have in�uence on what was observed. Further-

more, it was noticed that for each of the sample road segments tra�c �ow

was mostly stable, and through further investigation patterns of irregularity

occur on road segments that align with the troughs observed in the plots

of averages and variances. Moreover, to further our understanding of traf-

�c �ow in�uences, we decided to separate observations into weekdays and

weekends and produce heat maps for each. The outcome of this suggested

that weekdays have more in�uence on the regularity of tra�c �ow, and this

observation is based on the fact that the darker cell intensity is signi�cantly

more on weekday heat maps for each of the sample road segments. An obvi-

ous reason for this would be that more dates are considered in the weekday

heat maps than the weekend heat maps.

119 4.4. Analysis

(a)

(b)

(c)

Figure 4.8: Travel time intensity Heat maps (unscaled), where light colours
denote low frequency and dark colours denote high frequency.

4. Vehicular Tra�c Network Analysis 120

(a)

(b)

(c)

Figure 4.9: Travel time intensity Heat maps (scaled), where light colours
denote low frequency and dark colours denote high frequency.

121 4.4. Analysis

(a)

(b)

(c)

Figure 4.10: Travel time intensity
Heat maps (scaled) for weekdays,
where light colours denote low fre-
quency and dark colours denote high
frequency.

(a)

(b)

(c)

Figure 4.11: Travel time intensity
Heat maps (scaled) for weekends,
where light colours denote low fre-
quency and dark colours denote high
frequency.

4. Vehicular Tra�c Network Analysis 122

4.4.3 Tra�c �ow modelling

The focus of this experiment is to investigate question 3, that is, we consider

probabilistic modelling techniques to simulate tra�c �ow in the network.

More speci�cally, this work is motivated by similar work [118] that considers

stochastic processes for predicting tra�c �ow in a vehicular tra�c network.

In [118], Manley et al. consider a stochastic process known as a Markov

Chain, see appendix D for details, to model tra�c �ow for route selection

across London based on taxi-cab trajectory data. Recall that [87] motivated

the work in section 4.4.2, the work in this section uses this understanding to

develop a method of providing a time-dependent predictive model of tra�c

�ow on a speci�c road segment Lnki.

In order to build an accurate predictive-model we must �rst consider

a method of reducing the dimensionality of the data in order to make our

analysis tractable. Dimensionality reduction in this case means reducing the

number of possible observed travel times to a set of discrete values, meaning

it is a technique that is used to reduce the data domain to a small discrete

space, where each datum is described by some local property. A method

of achieving this reduction is known as limit grouping, which is a technique

that is derived from statistics, and in particular the analysis of quantitative

data, the unfamiliar reader should consult [169] for details. Limit grouping

is a method that is typically applied to whole numbers to classify data based

on the limits of a class, where each class consists of a range of values, the

smallest is the lower limit in the class, and the largest is the upper limit

in the class. It is common for this technique to be considered as a method

of binning data, that is, a method of allocating data into k bins, where

k determines the range of values that reside within a single bin denoted

bi. Recall in Section 2.1 it was suggested that quantitative data should be

123 4.4. Analysis

grouped into intervals between 5 and 10, so in this work we consider the

middle of this range, 10.

In our analysis we consider this technique to reduce the number of uniquely

observed travel times to a de�ned quantity and use this re�ned data set in

our investigation of discovering how to simulate network tra�c behaviour

using probabilistic modelling. The structure of this work is de�ned as fol-

lows. Section 4.4.3 is motivated by the work in [87] and is concerned with

transforming the re�ned data into a series of matrices that denote the transi-

tional probabilities between the identi�ed bins for a speci�c time of day and

day of week. Section 4.4.3 is motivated by the work in [118] but focusses on

using the generated transition matrices to model the behaviour of tra�c on

a speci�c road segment in the network.

Transition Matrices

Description: This experiment is motivated by work in [118], where Cheng

et al. propose a method that is based on Markov Chains for selecting routes

in a road network based on the current location of the taxi-cab and a pre-

processed set of route choice behaviours for 700,000 taxi-cab journeys in

London. The preprocessing step involves generating a transition matrix to

denote the transitional probability between all previously visited locations

and the locations they moved to in the network. However, instead of gen-

erating transition matrices to denote transitions between locations in the

network, we consider transition matrices to denote transitions between the

bins in the re�ned data set (denoting travel times). Therefore, we build a

probabilistic model that represents the behaviour of the tra�c �ow for a

speci�c road segment in the network. Furthermore, based on the results pre-

sented in 4.4.2, we consider the transition matrices to be temporal, that is,

4. Vehicular Tra�c Network Analysis 124

they are dependent on the time of day and day of week at which the orig-

inal observations were made. This means that a single road segment Lnki

and day of week di is described by a series of transition matrices denoted

Tdi = M1
t ,M

2
t , . . . ,M

288
t , where each matrix denotes the transitions between

observed travel times x at speci�c times of day ti, and a single cell in a ma-

trix denoted M1
t [i, j] represents the probability that travel time i transitions

to travel time j between times of day ti and ti+1. The following procedure

is used to produce a series of matrices for a speci�c Lnki and di.

Procedure: Algorithm 8 is used to produce the transition matrices for a

speci�c road segment, it is described as follows. At the start of the algorithm

on line (1) the output list is initialised. Between lines (2) and (9) is a For

loop that forms the main part of the algorithm. Line (2) loops throughout

each time of day ti, line (3) initialises the transition matrix for a speci�c time

of day s.t. each cell denotedmi,j of the matrix is 0. Line (4) to (6) is a nested

For loop that identi�es the transition frequencies between consecutive times

of day ti and ti+1. In line (7) the created transition matrix for a speci�c time

of day ti is added to the list of matrices for a speci�c road segment Lnki.

Finally, in line (9) the list of transition matrices denoted T is returned.

Tra�c Flow Simulation

Description: This experiment is a natural progression of section 4.4.3,

that focuses on using the generated transition matrices to model the be-

haviour of the tra�c �ow for a speci�c road segment and day of the week.

In order to model the behaviour on the road segment we propose an approach

that is based on a Markov chain, similar to that mentioned in [118], and a

novel state selection algorithm that is based on pre�x-sums, an unfamiliar

reader should consult [45] for details. The following procedure is used to

125 4.4. Analysis

Algorithm 8 transitionMatrices: function to compute a series of transition
matrices for a road segment on a speci�c day of the week

Input: L: a list comprising vectors of observations for a speci�c road
segment Lnki and a speci�c day of the week dayi
Output: Ltrans: a list of transition matrices for a speci�c road segment
Lnki and a speci�c day of the week dayi

1: Tdi = M1
t ,M

2
t , . . . ,M

288
t . initialise the list of transition matrices

2: for ti in {1, . . . , 288} do
3: M ti

t := (mi,j)n×n . initialise matrix of size n by n, where each cell
mi,j := 0

4: for each ~vi in L do . identify the transition frequencies
5: M ti

t [~vi[ti], ~vi[ti+1]]←M ti
t [~vi[ti], ~vi[ti+1]] + 1

6: end for

7: T ti ←M ti
t . set index ti of the output array to transition matrix

8: end for

9: return T

run the Markov process for each day of the week on a speci�c road segment

Lnki, and the current state at each stage in the process is recorded. This

produces a list that has length that is equal to the number of iterations that

the process is run for. In order to compare the accuracy of the method for

modelling tra�c �ow on each day of the week, we compute the frequency

distribution of this list and produce a histogram, and compare the resulting

histogram with a histogram that denotes the frequency distribution of the

re�ned data. The histograms for both the synthetic and re�ned data are pre-

sented in Figures 4.12, 4.13, 4.12 and 4.13, where the synthetic data is that

produced using the methods described below. The results of this experiment

are following the procedure description.

Procedure: The tra�c �ow experiment is conducted using a combination

of two algorithms. Algorithm 9 performs the Markov Chain experiment that

is dependent on Algorithm 10, where Algorithm 10 is a function that is based

on pre�x-sums [45] that identi�es the next state of the experiment (or travel

4. Vehicular Tra�c Network Analysis 126

time) based on the input transition vector for the current state bi and time of

day ti. The procedure of conducting a Markov Chain experiment is described

as follows. The procedure is initialised by passing in the input parameters

into Algorithm 9, the input parameters are: T the list of transition matrices

for a speci�c road segment, and m the number of expected steps of the

experiment. Once initialised the algorithm begins. At steps (1) and (2)

the algorithm initialises the the Markov Chain vector and current bin index

respectively. Between steps (3) and (10) the algorithm loops throughout each

time step of the experiment. Whilst looping throughout each time step, step

(4) extracts the relevant transition vector associated with the current time

index and current travel time. Step (5) uses Algorithm 10 to select the next

travel time using the transition vector identi�ed in step (4). The procedure

of identifying the next travel time using Algorithm 10 is described as. Steps

(1) to (3) check if the vector passed in contains any probability values that

are greater than 0, if not then the algorithm terminates returning −1. In the

case the vector passes the check step (4) extracts a random integer between 1

and max(v) from the normal distribution. Step (5) initialises the next state

denoted as bj to 0. Steps (6) to (9) are a while loop that iteratively subtracts

the consecutive value of bj in the transition vector from the random integer.

At the point the place-holder for the random integer goes below 0 the loop

stops, and the previous bj is returned. The idea behind the procedure is

that frequently observed travel times are more likely to be select as the

next travel time as opposed to those that are infrequently observed. On

conclusion of algorithm 10 the result is returned to Algorithm 9. Step (6)

to (8) of this algorithm checks the result is valid, in the case that it is the

current travel time is changed to this result. Step (9) assigns the travel time

to the result vector ~r. This procedure is repeated for all time steps in m,

127 4.4. Analysis

before terminating and returning the result vector in step (11).

Algorithm 9 markovChain: function to perform a Markov Chain process
using the transition matrices for a speci�c road segment Lnki.

Input: T : a list of transition matrices for a speci�c road segment Lnki
and a speci�c day of the week di; m: an integer value denoting the
number of time steps in the Markov Chain
Output: result: a vector of trajectory for the Markov Chain experiment

1: result← [] . initialise the Markov Chain trajectory vector
2: current← 0 . initialise the current bin index
3: for ti in {1, . . . ,m} do . loop throughout each time step of the

experiment
4: ~ti ← Lti

trans . extract the appropriate matrix
5: tmp← pre�xSumSelection(~ti) . get next bin based on the transition

matrix using Algorithm 10
6: if tmp 6= −1 then
7: current← tmp

8: end if

9: resultti ← current

10: end for

11: return result

Results: Through the examination of the histograms presented in Figures

4.12, 4.13, 4.12 and 4.13 it is evident to see that the shape of the distributions

is almost exact with negligible di�erences observed between the synthetic and

original histograms. This suggests that our approach performs well in terms

accuracy for modelling the behaviour of tra�c �ow on each of the days of

week.

Key �ndings

In this work we have identi�ed a method of modelling tra�c �ow for road

segments in the network. The method proposed examines the �oating-car

data to discover the probability that a �oating-car will experience a partic-

ular travel time for a speci�c time of day on a speci�c day of the week. This

4. Vehicular Tra�c Network Analysis 128

(a)

(b)

(c)

(d)

Figure 4.12: Original frequency dis-
tributions for Monday to Thursday

(a)

(b)

(c)

(d)

Figure 4.13: Synthetic frequency dis-
tributions for Monday to Thursday

129 4.4. Analysis

(a)

(b)

(c)

Figure 4.14: Original frequency dis-
tributions for Friday to Sunday

(a)

(b)

(c)

Figure 4.15: Synthetic frequency dis-
tributions for Friday to Sunday

4. Vehicular Tra�c Network Analysis 130

Algorithm 10 pre�xSumSelection: function to identify the next bi based
on the probability vector

Input: ~v: a vector of probabilities for transitioning between travel time
i and any other travel time
Output: bi: the next travel time dependent on the probability vector ~v

1: if sum(~v) = 0 then
2: return −1
3: end if

4: r ← rand(1,max(~v)) . extract a sample integer from a normal
distribution

5: bj ← 0
6: while r > 0 do
7: r ← r − ~vbj
8: bj = bj + 1
9: end while

10: return (bj)− 1

model was then used in a Markov Chain to produce a vector of synthetic

travel times, and for this vector we computed the frequency distribution. The

frequency distribution of synthetic travel times was compared to a frequency

distribution for the original data under the same conditions, that is, for the

same road segment and day of week. This comparison was used to con�rm

how well the model produced synthetic data re�ects the actual observations.

The results of this comparison suggested that the shape of the distributions

were almost exact and the observed di�erences between the synthetic and

original histograms are negligible, suggesting the model is an accurate way

of representing the tra�c �ow.

4.5 Conclusions and future work

The study of road networks is still in its preliminary stages consider meth-

ods such as causality detection, tra�c �ow modelling, outlier detection etc.

131 4.5. Conclusions and future work

In this work we have considered a data-driven approach to generate under-

standing of the tra�c �ow behaviour in a network. In particular we have

identi�ed a methodology, based on statistical analysis, to deliver insights

into the patterns of tra�c �ow observed in a vehicular tra�c network. The

main motivation of this chapter was to generate understanding of the be-

haviour in an urban tra�c network. This was achieved through a sequence

of experiments. The �rst experiment helped identify a method of discovering

self-similarity in a time-series describing tra�c �ow in a network. The second

experiment identi�ed a method of discovering and visualising the patterns in

time-series describing tra�c �ow in a network, and helped identify in�uential

factors such as time of day and day of week. The third experiment identi�ed

an accurate data-driven method for modelling and simulating tra�c �ow

in a network. The methodology produced many novel algorithms, most of

which can be applied to time series data sets in order to clean, transform

and generate exposure to its inherent patterns. Furthermore, we propose

a novel algorithm that can be used to model network tra�c, and thus has

applications in many �elds and disciplines including Physics, Engineering,

Psychology, Biology etc. In our future work we plan to consider 1) study-

ing other parameters that in�uence tra�c �ow such as weather, local events

such as Football matches etc., 2) aggregate tra�c �ow data for more road

segments to provide a more complete analysis of the road network, 3) com-

pare our model to known probability models such as Poisson for predicting

tra�c �ow. These enhancements can provide a more comprehensive review

of the tra�c network, and generate clarity on the behavioural characteristics

of tra�c in the network.

5

Deterministic Rendezvous in

Restricted Graphs

In the previous two Chapters of this thesis we have discussed the problems of

discovering from a corpus of data what can be used to provide insight into the

behaviour of a network, and when we have this knowledge, but the data set is

limited in some way, what insight can we gain from it. In this chapter we con-

sider the challenge of having exposure to increasingly less information; than

is considered in the two previous chapters of the thesis, about the network,

that is, the data describing the network is limited even further than that

considered in Chapter 4, and we demonstrate this challenge by considering

the rendezvous problem in a distributed setting. The rendezvous problem is

a challenge in which two or more mobile entities, called later robots have the

goal to meet at the same point and time in provided space. This space can

be either a network of discrete nodes between which robots can move along

existing connections, or a geometric environment in which the movement of

robots is restricted by the topological properties of the space. As indicated in

[102] symmetry plays a key role in determining the feasibility and e�ciency

133

5. Deterministic Rendezvous in Restricted Graphs 134

of solutions in the rendezvous problem. It is quite commonly observed that

anonymous (indistinguishable) players �nd themselves in a situation where

the tools and advice given to each robot are identical and rendezvous may not

be feasible [11]. In this context, determining even small pieces of information

that would help to distinguish between participating robots often prove to

be vital in achieving rendezvous. Rendezvous problems have been studied

in a number of di�erent settings. A vast literature includes several exhaus-

tive surveys on the topic and other searching games, see, e.g., [10, 11, 134].

The work on rendezvous includes both deterministic algorithms surveyed

recently in [134] as well as randomised approaches including classical work

in [8, 9, 16, 24]. Another group of algorithms focus on geometric setting

including earlier work on the line [24, 25] and the plane [14, 15] as well as

more recent work on fat (with non-zero radius) robots [2, 50]. Another in-

teresting group of rendezvous algorithms is designed for in�nite (Euclidean)

spaces for both synchronised and asynchronous solutions [43, 44, 52]. An

important group of rendezvous algorithms have been considered for graph

based environments, see, e.g., [51, 101, 124]. However, all previous work is

devoted to the case when both robots have access to the same part of the

network. An interesting version of rendezvous in which robots face di�erent

costs associated with traversed edges was considered recently in [60] where

the authors consider scenarios with and without communication between

participating robots.

Our work refers to the extreme communication-less case of [60] in which

the costs imposed on edges are either unit or in�nite. We also make refer-

ence to blind rendezvous considered recently in the context of cognitive radio

networks [38, 108].

135

5.0.1 Model of Computation

We consider rendezvous of anonymous (indistinguishable also with respect to

the control mechanism) robots in networks modelled by graphs. The network

G = (V,E) where the two robots are expected to rendezvous is a simple

connected graph in which two nodes sA, sB ∈ V are selected as the starting

points for robots A and B respectively. Moreover, for each X ∈ {A,B} we

de�ne its reachability graph also referred to as the map GX = (VX , EX), a

subgraph of G in which VX and EX are respectively the sets of nodes and

edges accessible from sX . Moreover, agent X is only able to see its own map.

Let kX = |VX | be the size of map GX and assume w.l.o.g. that kA ≤ kB.

While the robots are anonymous, we use extra assumptions with respect to

the network nodes (and in some cases edges too). In particular, we assume

that all nodes of the input network graph G = (V = {v1, v2, . . . , vn}, E) are

ordered, s.t., vi < vi+1 for all i = 1, 2, . . . n − 1 and this order is consistent

with the order of nodes in GX , for X ∈ {A,B}. In particular, if VX =

{v(X)
1 , v

(X)
2 , . . . , v

(X)
kX
}, v(X)

a = vi, and v
(X)
b = vj , where vi, vj ∈ V and i ≤ j,

we also get v
(X)
a ≤ v

(X)
b . Finally, let T (VX) be a rooted tree that spans all

nodes in VX in which the starting point sX is placed in the root of T (VX)

and the order on children is consistent with the order of nodes in VX .

In the synchronous setting two robots A and B have access to the global

clock ticking in discrete time steps 0, 1, 2, Our algorithms start with the

global clock set to time 0. During a single time step each robot assesses the

node in which it resides (including check for co-location/rendezvous with the

other robot). Then the robot decides whether to stay at the same node or to

move to one of its neighbours via an available (edge) connection, where the

neighbour is chosen at random. During the traversal between two connected

nodes the "eyes" of the robot are closed. Consequently, since the robots

5. Deterministic Rendezvous in Restricted Graphs 136

cannot meet on edges rendezvous has to take place at some node. The

running time of all algorithms is bounded, i.e., the robots stop within the

time given to the respective rendezvous algorithms.

In the asynchronous setting each of the robots chooses its trajectory, i.e.,

the sequence of visited nodes, without access to the global clock. Instead, it

is decided by the adversary which of the robots will make a move in every

time step. To be consistent with the synchronous model we assume that

rendezvous is possible only on nodes. Instead of the running time, as the

e�ciency measure, we take the maximum length of two robots trajectories.

In what follows we consider three models of computation with di�er-

ent levels of restriction imposed on maps provided to robots A and B.

1. Edge Monotonic (EM) Model This model is motivated by the case

in which each robot X ∈ {A,B} has weight wX and each edge in

E has weight restriction. This setting imposes an order on edges in

E = {e1, e2, . . . em}, in which for any 1 ≤ i < j ≤ m edge ej tolerates

weights non-smaller than ei. Let iX be the smallest integer, s.t., eiX

tolerates weight wX . One can conclude that robot X is only allowed

to traverse edges with index ≥ iX . Consequently in this model if ren-

dezvous is possible EA ⊆ EB and VA ⊆ VB, i.e., GA is a subgraph of

GB, for further details see section 5.1.1.

2. Node Inclusive (NI) Model In this model we only assume VA ⊆ VB,

i.e., the relationship between edges spanning nodes in EA and EB

remains unspeci�ed.

3. Blind Rendezvous (BR) Model In this model we only assume VA ∩

VB 6= ∅ and the relationship between EA and EB is unspeci�ed.

137

Table 5.1: Summary of results

model time complexity for
synchronised setting

length complexity for
asynchronous setting

EMM Θ(kA + kB) (Thm 1) O((kA + kB)2) (Thm 7)

NIM +
EA ⊂ EB

O((kA + kB) log(kA + kB)) (Thm 2)
feasible (Thm 8)

NIM
not feasible (Thm 9)BRM not feasible (Thm 4)

BRM +
explicit
labels

min{O((kA + kB)3 log log n,
O((kA + kB)2 log n)} (Thm 5)

5.0.2 Our results

In this work we study rendezvous in three di�erent restriction models. In Sec-

tion 5.1 we study synchronised rendezvous. In particular, in subsection 5.1.1

devoted to EM model we present an optimal O(kA + kB)−time rendezvous

algorithm 11; in Section 5.1.2 we present rendezvous algorithm 11 that meets

two robots in almost linear time O((kA +kB) log(kA +kB)) in NI model; and

�nally in Section 5.1.3 we show that in BR model rendezvous is not feasible.

In order to overcome this de�ciency we introduce explicit labels and present

two rendezvous algorithms 14 and 15 whose superposition allows robots to

meet in time min{O((kA + kB)3 log logn,O((kA + kB)2 log n)}.

In Section 5.2 we study asynchronous rendezvous. In subsection 5.2.1

we present a solution of length O((kA + kB)2) generated by algorithm 16.

Section 5.2.2 provides the feasibility of the case where one of the edge sets

is included in the other one. Without this assumption we show that the

rendezvous is not feasible, which implies the infeasibility of asynchronous

Blind Rendezvous. The summary of the results is given in Table 5.1. We

conclude with the �nal comments in Section 5.3.

5. Deterministic Rendezvous in Restricted Graphs 138

5.1 Synchronous rendezvous Algorithms

In this section we design and analyse several rendezvous algorithms in a

synchronous setting for three restriction models.

5.1.1 Rendezvous in Edge Monotonic Model

Recall that in this model, we adopt the order of edges in E = {e1, e2, ..., em}

where ei < ei+1. For any l ∈ {1, . . . ,m}, we de�ne a sequence of subgraphs

G(l) = (V (l), E(l)), where E(l) = {el, el+1, ..., em} and V (l) is the set of

nodes in V induced by the edges of E(l), and E(l + 1) ⊂ E(l). In this

model each robot X is associated with the threshold index iX ∈ {1, . . . ,m}

determining the set of edges E(iX) traversable byX. In other words, robotX

can only walk along edges from E(iX).We also de�ne a sequence of connected

components GX(l) = {VX(l), EX(l)}, for l ∈ {iX , . . . ,m}, where VX(l) is the

set of nodes reachable from sX via edges in E(iX), and EX(l) ⊆ E(l) is the

maximal set of edges spanning nodes in VX(l). So in this case VX = VX(iX),

EX = EX(iX), and kX = |VX(iX)|. The following Lemma holds.

Lemma 1. In Edge Monotonic Model either (VA ⊆ VB) or (VB ⊆ VA), or

VA ∩ VB = ∅.

Proof. The lemma (statement) would be false if all of the terms (VA ⊆

VB), (VB ⊆ VA), and VA ∩ VB = ∅ were false too. Assume w.l.o.g. that

VA ∩ VB 6= ∅, where VA = VA(iA) and VB = VB(iB), and iA ≥ iB. Since

iB ≤ iA (edges traversable by A are also traversable by B) and VA ∩ VB 6= ∅

(the reachability graphs GA and GB coincide) all edges and points in GA(iA)

are also available to robot B, meaning VA ⊆ VB.

We de�ne the concept of a sleeve of graphs with respect to X denoted by

SL(X).

139 5.1. Synchronous rendezvous Algorithms

De�nition 5.1.1. The sleeve of graphs SL(X) with respect to robotX is the

maximal sequence of connected componentsGX(iX), GX(iX+1), . . . , GX(l∗),

in which |VX(l + 1)| > |VX(l)|/2, for all iX ≤ l∗ < m. A subsequence

GX(iX+j), GX(iX+j+1), . . . , GX(l∗), for any j ∈ {0, 1, . . . , l∗−iX}, is called

a tail of SL(X) and the smallest (in the adopted order) node v∗X ∈ VX(l∗)

is called the target in SL(X).

In what follows we present a pseudo-code of the proposed rendezvous

algorithm in the monotonic model. If at any time step the two robots A and

B meet, the rendezvous is achieved and the two robots halt.

Algorithm 11 RVI

Input: X ∈ {A,B}: a robot
1: Step 1 Walk from sX to the target node v∗X in SL(X)
2: Step 2 Wait in v∗X until conclusion of time step 2kX
3: Step 3 Walk along the Euler tour of T (VX) and Halt

Theorem 1. If rendezvous is feasible, Algorithm 11 admits meeting in op-

timal time O(kA + kB).

Proof. Recall that kA ≤ kB. According to Lemma 1 if rendezvous is feasible,

i.e., VA∩VB 6= ∅ we conclude that VA ⊆ VB.We consider two complementary

cases:

Case 1 [2kA > kB] Since 2kA > kB according to De�nition 5.1.1 sleeve

SL(A) is a tail of SL(B) and the two sleeves share the same target v∗.

The robots A and B are initially placed in their own sleeves at distance

at most kB < 2kA from the joint target v∗. This admits rendezvous in

Step 1 in time at most kB.

Case 2 [2kA ≤ kB] In this case, robot A halts at the latest at time step

4kA on the conclusion of Step 3, i.e., after 2kA time steps devoted to

5. Deterministic Rendezvous in Restricted Graphs 140

Step 1 and Step 2, followed by additional 2kA−2 time steps devoted

to the Euler tour traversal in T (VA)) in Step 3. Note, however, that

robot B enters Step 3 in time step 2kB + 1 > 4kA, when robot A is

already immobilised. Since during Step 3 robot B visits all nodes in

VB (that include also all nodes in VA) rendezvous must occur.

5.1.2 Rendezvous in Node Inclusion Model

Recall that in this model we assume that all nodes are ordered and kA ≤ kB,

where VA ⊆ VB. In this model we have no order on edges and in turn the

concept of sleeve of graphs cannot be applied here. Instead, one can focus on

a di�erent mechanism that will allow to distinguish between two robots and

with this in mind we focus on the values of kA and kB. Note that if kA = kB

due to the inclusion assumption we also have VA = VB. In this case, since

orders of nodes in VA and VB are consistent the robots can meet at the

smallest (in order) node v∗ in VA and VB that must coincide. Otherwise, the

values of kA and kB di�er and each robot X, for X ∈ {A,B} can adopt kX as

its unique identi�er. Furthermore, apart from unique identities there needs

to be a synchronisation mechanism (sizes of kA and kB can be dramatically

di�erent) that will allow robots to coordinate their individual moves. The

rendezvous mechanism for any robot X is based on synchronised waiting of

the �rst stage that is long enough to accommodate actions re�ecting the size

kX . In particular, we identify the power of two jX , s.t., 2jX−1 ≤ kX < 2jX

that provides a constant estimation and the upper bound on the size of kX .

The algorithm applied to robot X operates in stages j = 1, 2, 3, ..., jX , where

during stages 1 through jX−1 the robot remains immobilised and in the last

stage jX it actively participates (visiting all nodes in VX) in the rendezvous

141 5.1. Synchronous rendezvous Algorithms

process. Note that if jA < jB (and VA ⊂ VB) in stage jB, when robot A

is already immobilised, B by visiting all nodes in VB (that is a superset of

VA) must conclude rendezvous. In the complementary case, i.e., when the

estimates jA and jB are the same we use binary expansions bA[0, . . . , jA] and

bB[0, . . . , jB] (where positions jA, jB are the most signi�cant) of kA and kB

respectively to di�erentiate between the robots.

Lemma 2. If jA = jB and kA < kB there exists i ∈ {0, 1, . . . , jA = jB}, s.t.,

bA[i] = 0 and bB[i] = 1.

Proof. If for all i ∈ {0, 1, . . . , jA = jB}, (bA[i] = 0) => (bB[i] = 0) would

imply kA ≥ kB.

A pseudo-code of the rendezvous algorithm 12 in the inclusion model

follows. If at any time step the two robots A and B meet, the rendezvous is

achieved and the two robots halt.

Algorithm 12 RVII

Input: X ∈ {A,B}: a robot
1: Compute jX and bX [0, . . . , jX].
2: for j in {1, . . . , jX} do
3: if (j = jX) then . active Stage
4: use 2j time steps to walk to and wait in v∗X . . v∗X smallest

node
5: for i in {0, . . . , j} do

6: if (bX [i] = 1) then
7: (a) use 2 · 2j time steps to visit Euler tour in T (VX)
8: return to v∗X
9: else

10: (b) wait 2 · 2j time steps in v∗X
11: end if

12: end for

13: else

14: wait 2j · (2j + 3) time steps where you are
15: end if

16: end for

5. Deterministic Rendezvous in Restricted Graphs 142

We prove the following theorem.

Theorem 2. If rendezvous is feasible Algorithm 12 admits meeting in time

O((kA + kB) log(kA + kB)).

Proof. The rendezvous algorithm runs in jX stages controlled by the loop

For in line 3. There are two cases. In the �rst case, where jA < jB, when

robot B is in the active stage robot A is already immobilised, and B meets A

during traversal of the Euler tour in T (VB), see line 8 of the code. Otherwise,

when jA = jB we have two subcases. In the �rst subcase when kA = kB

the robots meet in the shared smallest node v∗, see line 5. In the second

subcase, where kA < kB, according to Lemma 2 there exists i, s.t., bA[i] = 0

and bB[i] = 1 when robot B visits the Euler tour in T (VB) and robot A is

immobilised. Thus this subcase admits rendezvous too.

With respect to the time complexity we �rst observe that the execution

time of algorithm 12 is bounded and it depends on the parameter jX . The

time complexity of each stage j = 1, ..., jX is bounded by (2j · (2j + 3)),

as indicated in line 11 in the pseudocode, resulting in the total complexity∑jX
j=1(2j · (2j + 3)) ≤

∑jX
j=0(2j · (2jX + 3)). This is equivalent to (2jX +

3)
∑jX

j=1(2j) = (2jX +3) · (2jX+1−2) = O(kX · log kX), since 2jX −1 ≤ kX <

2jX . This admits the time complexity O((kA + kB) log(kA + kB)).

Bounded diameter networks

Here we comment on the case when both agents know the common bound

for the diameter of GA and GB, and lets assume this bound is de�ned by

Equation 5.1. In this case there exists a simple and asymptotically optimal

linear time solution in the sychronous model, see Algorithm 13.

max{diam(GA),diam(GB)} ≤ d. (5.1)

143 5.1. Synchronous rendezvous Algorithms

Algorithm 13 RVIIb

Input: X ∈ {A,B}: a robot
1: for j in {1, . . . , kX} do
2: Walk to j-th node
3: Wait until time d · j
4: end for

5: Halt

Theorem 3. If both agents know the common bound d which limits the

diameter of GA and GB then Algorithm 13 admits rendezvous in the asymp-

totically optimal time O((kA + kB)).

Proof. Recall that VA ⊆ VB and the orders of the nodes in both sets are

consistent. Lets u be the last node (in order) visited by agent A. Note that

u belongs also to VB.We observe that when agent B visits u the other agent

A is already immobilised in u as agent B must visit leats the same number

of nodes as A before arriving in u. Thus, rendezvous of A and B will take

place at the latest in u in time bounded by kB · d = O((kA + kB)).

5.1.3 Blind Rendezvous Model

In this section we consider rendezvous where the relationship between the

maps of robots is more arbitrary. We �rst show that without any additional

information, even if VA ∩ VB 6= ∅, rendezvous cannot be reached.

Theorem 4. Blind rendezvous is not feasible.

Proof. Assume that for any X ∈ {A,B} we have VX = {v(X)
1 , v

(X)
2 } and

EX = {(v(X)
1 , v

(X)
2)}, where node v(A)

2 coincides with v
(B)
1 and where for each

robot X the starting node sX coincides with vX1 on its own map. It is enough

to observe that without any additional information the symmetry tie cannot

be broken. And indeed, since the robots are anonymous (indistinguishable)

5. Deterministic Rendezvous in Restricted Graphs 144

whenever robot A visits v
(A)
2 robot B visits v

(B)
2 , i.e., the two robots never

visit the shared node simultaneously.

One can adopt a natural assumption that the nodes in VX apart from

being ordered they also have explicit labels. In consequence, if a node v
(A)
a ∈

VA coincides with v
(B)
b ∈ VB they both possess the same explicit label. We

assume that the labels are drawn from the set of integers {1, 2, . . . , n}, and

we use notation b
(X)
i (or b

(X)
i [0.. log n]) to denote the binary expansion of the

explicit label of v
(X)
i ∈ VX .

We also assume that n is known to both robots. Otherwise no rendezvous

algorithm would stop and report infeasibility of rendezvous when VA∩VB =

∅, as robots are not aware of sizes of each others maps.

Before we present two rendezvous algorithms we show that the symme-

try tie problem, see Theorem 4, can be overcome if the explicit labels are

available. W.l.o.g. we also assume that the order of labels is consistent with

the order imposed on nodes on each map. If this is not the case a new

(consistent) order for nodes in VA and VB can be computed on the basis of

explicit labels (we only care about nodes in VA ∩ VB). The following result

has been shown in [38]. Our proof, however, is much simpler and based on

binary representation of explicit labels.

Lemma 3. Assume that the map of any robot X ∈ {A,B} is an ordered

pair of nodes (v
(X)
1 , v

(X)
2) connected by a symmetric edge, where nodes v

(A)
2

and v
(B)
1 physically coincide and nodes v

(A)
1 and v

(B)
2 don't. In such network

one can break the symmetry tie to reach rendezvous in time O(log log n).

Proof. We �rst observe that according to the imposed order b
(A)
1 < b

(A)
2 =

b
(B)
1 < b

(B)
2 . The case where sA = v

(A)
2 and sB = v

(B)
1 is trivial and another

case where sA = v
(A)
1 and sB = v

(B)
2 can be easily resolved by an algorithm

145 5.1. Synchronous rendezvous Algorithms

that alternates between the two nodes (e.g., in every other time step). Let

1 ≤ rA ≤ log n be the largest integer position, s.t., b
(A)
1 [rA] 6= b

(A)
2 [rA]. Since

b
(A)
1 < b

(A)
2 one can conclude that b

(A)
1 [rA] = 0 and b

(A)
2 [rA] = 1. Similarly

let 1 ≤ rB ≤ log n be the largest integer position, s.t., b
(B)
1 [rB] 6= b

(B)
2 [rB].

Since b
(B)
1 < b

(B)
2 one can also conclude that b

(B)
1 [rB] = 0 and b

(B)
2 [rB] = 1.

We observe that since b
(A)
2 = b

(B)
1 one can conclude that rA 6= rB as the

respective positions cannot contain 0 and 1 at the same time. Moreover

binary expansions brA and brB of rA and rB respectively are limited to

log log n+ 1 bits.

We consider a symmetry breaking algorithm in which in time step i each

robot X ∈ {A,B} moves to the other node only if i = 2 · l (i is even) or if

i = 2·l−1 (i is odd) and brX [l] = 1, for l = 1, . . . , log log n+1. Note that since

rA 6= rB for some 1 ≤ l ≤ log log n + 1 we must have brA[l] 6= brB[l] and if

until now the rendezvous is not reached (all previous moves were symmetric

and in the last odd time step, when the symmetry was broken robots occupy

di�erent nodes) in the next even step the rendezvous is accomplished.

Corollary 4.1. Note that the lemma above applies to pairs of nodes at

distance 1. In a more general case, where the distance between nodes in the

pair is d ≥ 1, the symmetry breaking rendezvous takes time O(d log log n).

In the remaining part of this section we present two rendezvous algo-

rithms followed by their superposition. The �rst algorithm 14 has the time

complexity O((kA + kB)3 log log n) and its idea is based on the blind ren-

dezvous algorithm from [38] where the problem was studied in complete

graphs. The second algorithm 15 has the time complexity O((kA+kB)2 log n)

making it superior to 14 when kA + kB > logn
log logn = τ, where τ is the thresh-

old value. This rendezvous algorithm resembles algorithm 12 however here

the symmetry tie is broken with the help of explicit labels.

5. Deterministic Rendezvous in Restricted Graphs 146

Blind rendezvous in time O((kA + kB)3 log log n)

Similarly to its predecessor 12 the �rst blind rendezvous algorithm 14 op-

erates in stages accommodating geometrically increasing estimates on sizes

of the input maps. This is needed as the size of the map of one robot is

not known to the other. The robot starts using active stages only when the

current estimate is large enough to accommodate its map. The rendezvous

process terminates in time O((kA +kB)3 log log n) if the maps of both agents

are smaller than the threshold value τ. Otherwise, algorithm 12 is followed

by execution of algorithm 15. If at any time step the two robots A and B

meet, the rendezvous is achieved and the two robots halt.

Algorithm 14 RVIII

Input: X ∈ {A,B}: a robot
1: Compute jX and the threshold τ = logn

log logn .
2: for j in {1, . . . , . . . , dlog τe} do
3: if (j ≥ jX) then . active stage
4: for all pairs (a, b) ∈ {1, . . . , 2j}×{1, . . . , 2j} ordered lexicograph-

ically do

5: if both of v
(X)
a , v

(X)
b exist then

6: run blind rendezvous in pair (v
(X)
a , v

(X)
b) in O(2j log logn)

time steps
7: else

8: wait relevant O(2j log logn) time steps in the current lo-
cation

9: end if

10: end for

11: else

12: wait relevant O(23j · log log n) time steps where you are
13: end if

14: end for

Theorem 5. If kA + kB < τ = logn
log logn and rendezvous is feasible, algorithm

14 admits rendezvous in time O((kA + kB)3 log log n).

Proof. The rendezvous algorithm runs in dlog τe stages controlled by the

147 5.1. Synchronous rendezvous Algorithms

loop for in line 3. Robot X starts executing active stages as soon as the

stages can accommodate the size of X's map. If the size of the map is too

big, robot X awaits execution of the second rendezvous algorithms 15, see

line 9. During an active round all pairs (a, b) from the Cartesian product

{1, . . . , 2j}×{1, . . . , 2j} are drawn in lexicographic order. Only certain pairs

are valid, i.e., when either of v
(X)
a and v

(X)
b exists. In each valid pair if

only one node exists robot X remains in this node for the duration of the

symmetry breaking procedure. Otherwise, if both nodes exist the breaking

symmetry procedure is executed with the distance between the two nodes

bounded by 2j .

If rendezvous is feasible we must have nodes v
(A)
a ∈ VA and v

(B)
b ∈ VB

that coincide by sharing the same label. If the pair (v
(X)
a , v

(X)
b) exists in

both maps thanks to the symmetry breaking procedure eventually robot A

will visit v
(A)
a at the same time when entity B visits v

(B)
b and the rendezvous

is reached. If only one element of the pair (v
(X)
a , v

(X)
b) exists, i.e., either

v
(A)
a for A or v

(B)
b for B the respective robot is asked to wait in the existing

node of the pair resulting in rendezvous too. Otherwise the robots await

the next pair from the Cartesian Product without movement for the period

corresponding to execution of the symmetry breaking procedure. Thus the

actions performed by robots A and B remain fully synchronised.

The time complexity of stage j = 1, ..., dlog τe is bounded by O(23j ·

log log n). Note that if rendezvous takes place for some j′ ≤ dlog τe, where

j′ ≤ jB, the total time complexity is bounded by
∑j′

j=1O(23j · log logn) =

O(23·j′ · log log n). And in turn since 23·j′ ≤ 23·jB = k3
B = O((kA +kB)3), the

total time complexity is O((kA + kB)3 · log log n).

5. Deterministic Rendezvous in Restricted Graphs 148

Blind rendezvous in time O((kA + kB)2 log n)

We start with the proof of the following fact.

Lemma 4. One can impose a periodic order π(X) on nodes of a spanning

tree T (VX), s.t., the walking distance (the number of edges to be visited)

between two consecutive nodes in order π(X) is at most 3.

Proof. We say that the nodes located at an even distance from the root sX

are on an even level and all the remaining nodes are on an odd level. The

ordering of nodes π is created according to the following principle. Starting

from the root sX we visit all nodes in T (VX) using depth-�rst search algo-

rithm. The root gets label 0. When we arrive (from the parent) to an even

level the currently visited node gets the next available label. In other words

at even levels we use pre-order numbering principle. And when we arrive

(from the last child) to an odd level the currently visited node gets the next

available label. I.e., at odd levels we follow post-order numbering principle

We need to show that the labeling (ordering) procedure proposed above

generates at least one new label in three consecutive steps. And indeed, if we

follow the route determined by the depth-�rst search algorithm and we visit

for the �rst time a node v at an even level (when the new label is generated):

(case 1) if the �rst child of v has a child w then w (which is at distance 2

from v) gets the new label; (case 2) if the �rst child of v is a leaf this child

(which is at distance 1 from v) gets the new label; (case 3) if the node v is

a leaf but not the last child of its parent the next label goes to the (next)

sibling of v (which is at distance 2); and (case 4) if v is the last child the

next label goes to its parent (which is at distance 1).

Similarly, if v is visited for the last time on an odd level it gets a new

label. Now (case 5) if v is the last child and its parent w is not the last child

the next sibling of the parent (which is at distance 3 from v) gets the new

149 5.1. Synchronous rendezvous Algorithms

label; (case 6) if v is the last child and its parent w is also the list child then

the parent of w (at distance 2 from v) gets the new label; (case 7) and if v

is the last child and its parent is the root, the periodic order is established

(and the next label is at distance 1). In the remaining cases when v is not

the last child (case 8) if its next sibling (at distance 2) is a leaf it gets the

new label; and (case 9) if the next sibling of v has children the next label go

to the �rst child (at distance 3 from v) of this sibling. 2

Algorithm 15 RVIV

Input: X ∈ {A,B}: a robot

1: Determine jX , the threshold τ = logn
log logn , and the label b

(X)
i of sX ;

2: for j in {dlog τe, 2, . . . , log n} do
3: if (j ≥ jX) then . active stage
4: walk to and wait in sX) in 2j time steps
5: for 22j × 3 time steps do . test all bits

6: if b
(X)
i [l] = 1 then . walk all the time

7: for 22j × 3 time steps do
8: walk to the next node in order π(X)
9: end for

10: else

11: repeat 2j times . walk and wait for another
12: walk to the next node in order π(X) and wait there) in

2j × 3 time steps
13: end if

14: end for

15: else

16: wait appropriate O(22j · log n) time steps where you are
17: end if

18: end for

The last rendezvous algorithm 15 operates on the following principle. At

the start of each active stage robotX returns (if moved before) to the starting

point sX . If the two starting points in VA and in VB coincide rendezvous is

accomplished. Otherwise the algorithm controls further movement of robots,

s.t., during long enough (≥ 2j × 3 time steps) interval of an active stage j

5. Deterministic Rendezvous in Restricted Graphs 150

one of the robots, say w.l.o.g. A, visits all nodes in VA in the periodic order

π(A) with frequency of one visit per three time steps. While the other robot

B visits consecutive nodes with frequency of 2j × 3 time steps. So when

(eventually) robot B resides in the node that belongs to VA ∩ VB there is

enough time for robot A to arrive in this node before B moves away. If at

any time step the two robots A and B meet, the rendezvous is achieved and

the two robots halt.

Theorem 6. If kA + kB ≥ τ = logn
log logn and rendezvous is feasible, algorithm

15 admits rendezvous in time O((kA + kB)2 log n).

Proof. Lets consider the �rst stage that is active for both robots A and B,

i.e., when j = jB. Note that line 13 of the pseudo-code accommodates for

the waiting time needed for two robots to stay synchronised prior to this

stage. In this active stage loop for in line 6 compares consecutive bits of

labels b
(A)
i adopted by A and b

(B)
i′ adopted by B. There must be at least one

position l on which the two labels di�er. In consequence, there is a spell of

22j × 3 time steps during which one of the robots, say w.l.o.g. A with the

bit b
(A)
i [l] = 1, visits periodically all nodes in VA with frequency of 3 time

steps per node. During the same time spell the other robot B with the bit

b
(B)
i′ [l] = 0 waits long (≥ 2j × 3 time steps) periods of time in every node of

VB. So when (eventually) robot B visits the node that belongs to VA ∩ VB

the other robot A has enough time to arrive at this node before B moves on.

The time complexity of this �rst active stage isO(22jB ·log n) = O(k2
B log n).

Since the duration of stages grows exponentially we conclude that the total

time complexity is also O(k2
B log n) = O((kA + kB)2 log n).

Corollary 6.1. In the Blind Rendezvous Model two robots can rendezvous

in time min{O((kA + kB)3 log log n,O((kA + kB)2 log n)}.

151 5.2. Asynchronous Rendezvous Algorithms

Proof. The result follows directly from the superposition of 14 and 15.

5.2 Asynchronous Rendezvous Algorithms

In this section we design and analyze several rendezvous algorithms in a

asynchronous setting for three restriction models.

5.2.1 Rendezvous in Edge Monotonic Model

For l ∈ {1, 2, . . .m} let T̄ (l) be a spanning forest in G(l) computed by

Kruskal's algorithm with weight for edge ei set to −i.

Lemma 5. For any i < j the forest T̄ (j) is a subforest of T̄ (i) in G(i).

Proof. Having in mind that E(j) ⊂ E(i) the lemma is straightforward from

the de�nition of Kruskal's algorithm.

The idea behind our solution is to construct a walk along all accessible

nodes, for every l and each component of T̄ (l) in such a way that if j-th

component of T̄l+1 is a subtree of some i-th component of T̄l then the walk

for the former one is a fragment of the latter.

To be more precise let Wl = (τl(1), τl(2), . . . , τl(sl−1), τl(sl)), where τl is

a function from {1, 2, . . . sl} to {el, el+1, . . . em} and let P̄ (l)(ex, ey) be the

path connecting ex and ey in T̄ (l).

We will say that el is incident to some Wl′ if el is incident to τl′(i) for

some i ∈ {1, 2, . . . sl′}. Moreover, Wl is a fragment of Wl′ , if there exist an

index µ such that for each edge, say i-th, in Wl we have τl(i) = τl′(i+ µ);

Wl is maximal walk incident to el′ if Wl is incident to el′ and for all l′′ such

that l > l′′ > l′ the walk Wl′′ is not incident to el′ . Let also NIMW (l) be

the number of maximal walks incident to el.

5. Deterministic Rendezvous in Restricted Graphs 152

Now, we de�ne Wl. If el /∈ T̄ (1) then Wl is empty other way we de�ne it

recursively (Wl′ and Wl′′ are maximal walks incident to el):

Wl =



(el) if NIMW (l) = 0

Wl′ + P̄ (l)(τl(sl′), el) if NIMW (l) = 1

Wl′ + P̄ (l)(τl(sl′), el)− el

+P̄ (l)(el, τl(s1)) +Wl′′ if NIMW (l) = 2

The following lemmas are straightforward

Lemma 6. If l < l′ and Wl, Wl′ are nonempty then either:

• Wl′ is a fragment of Wl or

• they have no edge in common and every pair e ∈Wl, e
′ ∈Wl′ of edges

are not incident.

Lemma 7. The de�nition of Wl is unambiguous and complete.

Lemma 8. Each edge from T̄ (l) belongs to some Wl′ where l
′ ≥ l.

Lemma 9. For any two edges e, e′ in T̄ (l) the length of P̄ (l)(e, e′) is no

larger than |V (T̄ (l))|.

Lemma 10. The length of Wl is O(|V (T̄ (l))|2).

We have constructed WiX , X ∈ {A,B} in such a way that if the ren-

dezvous is possible then the walk constructed for one agent is a fragment of

the walk constructed for the second one. Now, it is enough to force agent X

to move along the whole corresponding walk WiX :

Having in mind Lemma 6, Lemma 10 we obtain the following

Theorem 7. If rendezvous is feasible Algorithm 16 admits meeting in length

O((kA + kB)2).

153 5.2. Asynchronous Rendezvous Algorithms

Algorithm 16 RVV

Input: X ∈ {A,B}: a robot
1: Step 1 Compute WiX

2: Step 2 Find such an edge {sX , u} that {sX , u} ∈ T̄ (iX)
3: Step 3 Walk along WiX backward from {sX , u} to τiX (1)
4: Step 4 Walk along the whole WiX

5: Step 5 Halt

5.2.2 Rendezvous in Node Inclusion Model

First assume that either EA ⊆ EB or EB ⊆ EA. In this case we are able to

construct walks in the similar way as in the Edge Monotonic Model. The

subtle but important di�erence is that we are not able to point out one edge

which is not present in the preceding set of edges � we need to consider all

possible subsets of edges.

We need also a pre-speci�ed order of edge sets. Such an order might be

a lexicographic order induced from the order of nodes. Let WE′ be the walk

constructed for the set E′.

If |E′| = 1, say E′ = {e′} then WE′ = (e). If |E′| = m′ > 1 then WE′ is

constructed as a sum of walks constructed for all sets F ′ such that F ′ ⊂ E′

and |F ′| = m′ − 1 connected by pre speci�ed (again the order might be a

lexicographic order induced from the order of nodes) paths from E′.

Of course, in general such a construction gives the superpolynomial

length of a walk as the number of edge subsets is superpolynomial with

respect to the number of edges in EX .

Theorem 8. Asynchronous rendezvous in the node inclusion model is fea-

sible with an additional assumption EA ⊆ EB or EB ⊆ EA.

Suppose now that we have VA ⊂ VB or VB ⊂ VA but not necessarily

EA ⊂ EB or EB ⊂ EA. We will show that in this case the rendezvous is not

feasible.

5. Deterministic Rendezvous in Restricted Graphs 154

Theorem 9. Asynchronous rendezvous in node inclusion model is not pos-

sible even if nodes are equipped with explicit common identi�ers.

Proof. Suppose that there exists an algorithm A that guarantees rendezvous

in the node inclusion model. Let us consider the family graphs: Gi = (Vi, Ei),

i ∈ {1, 2, . . .}, where Vi = {v0, v1, . . . , vi} andEi = {{v0, vi}, {v1, vi} . . . {vi−1, vi}}.

So, Gi is a star with i edges and i+ 1 nodes, for each i < j we have Vi ⊂ Vj

and for each i, j such that i 6= j we have Ei ∩ Ej = ∅ .

For each of the graphs Gi and the agent placed in vi the walk computed

by algorithm A might be �nite or in�nite. There are two possible cases: for

at least two graphs among G2, G3, G4 the walk is in�nite (case 1) or for at

lease two graphs the walk is �nite (case 2).

Case 1: As both agent do not halt, sA 6= sB and the set of edges for

both agents is disjoint an adversary might easily prevent the rendezvous.

Case 2: Suppose w.l.o.g. that GB is such a graph with at least 4 nodes

(GB = G3 or GB = G4) and B eventually stops in node x. As the number

of nodes in GB is at least 4 there are two di�erent nodes u 6= v such that

u, v /∈ {x, sB}. Let us now consider the graph GA = ({u, v}, {{u, v}}).

Whatever the algorithm is A for GA, the agent cannot stay in sA it needs

to move and while it starts moving, the adversary might slow its down until

agent B will halt in x making the rendezvous impossible.

5.3 Conclusion

In this work we studied deterministic rendezvous of two robots in the network

environment with restrictions imposed on network edges. The restrictions

prevent robots from visiting certain parts of the network. We considered

three restriction models as described in section 5.0.1.

155 5.3. Conclusion

For the synchronised setting we provided four e�cient solutions in Sec-

tion 5.1. One of the open problems is to establish the exact complexity

of rendezvous in the considered models and to answer whether the use of

randomisation helps in this case. The case when robots are asked to meet

asynchronously has been studied in Section 5.2. In the Node Inclusive Model

with the additional assumption about inclusion of edge sets the lengths of

respective trajectories become exponential, but the problem is feasible. It

would be good to understand if the complexity in this case might be reduced.

One can also consider models in which maps are not known to the robots.

Another interesting question refers to better understanding (including time

complexity) of gathering more than two robots. In this setting while robots

could meet in pairs, one mutually accessible location for gathering may not

be available.

6

Conclusion and Future Work

The topic of networks has been extensively studied in the last few decades

and it is still gaining popularity. The topic of networks has been extensively

studied in the last few decades and it is still gaining popularity. In this

thesis we study the challenge of understanding networks when information

about the network is unknown or limited in some way, and demonstrate the

di�culty of this challenge by considering a rendezvous problem. Further-

more, we try to overcome this di�culty by using algorithmic and statistical

approaches. The results presented in Chapter3 and Chapter 5 are the result

of published work carried out by the author, their supervisors and several

collaborators from di�erent institutions. Following, is a detailed observation

of the conclusions that can be obtained from the main results presented in

this thesis.

6.1 Understanding and Managing Data Lakes

Chapter 3 introduces a novel method of inspecting and managing data lakes

in view of delivering insights into the relationships between assembled data

assets. The technique (or methodology) is based on methods and algorithms

157

6. Conclusion and Future Work 158

derived from network theory and social network analysis (SNA). The method

involves building an abstract graph of the data assets denoted G = (V,E),

where the vertices represent the data assets, and the edges represents the log-

ical relationships between a pair of data assets. The join relationship is based

on some inherent property of the data assets, in the context of this work this

is the quantity of columns in common. The graph is then investigated using

community detection algorithms in order to discover the emergent communi-

ties and structure in this network. This analysis presented some interesting

results about the structure. Of particular note is the observation that in

our graph the natural community structure does not follow the initially im-

posed structure by the end users through the creation of logical databases.

Instead, there is a richer, emergent structure which perhaps was not appre-

ciated when the data was �rst assembled or which evolved opportunistically

over time. A further observation is that our Hive metadata graph followed a

power-law degree distribution, therefore suggesting it to be scale-free. This

implies that the content of a small number of Hive tables is in�uential in

the structure of the network. In turn, this means that lineage relationships

might be apparent between a small set of Hive tables and the rest of the

population in the cluster.

Future work on data discovery can consider improving the accuracy of

the inferred joins between data assets through e�cient indexing methods

such as locality sensitive hashing (LSH) [151], where LSH is a mechanism

that could allow join relationships to be considered based on the content

of the data assets themselves. A further enhancement could be to harvest

real-world user interactions with data assets to identify data assets that can

be joined together, and this information can be aggregated by searching or

monitoring Hive query logs to extract the joins that are actively being made

159 6.2. Vehicular Tra�c Network Analysis

by end users. Similar work has been discussed in [157]. The same real-

world interactions will also help to address the construction of a network

that captures the relationships between users and the data they make use of.

Through this we hope to develop a rich picture of how people and tasks are

organised around data, or conversely how the organisation of data in�uences

the structure of organisation.

6.2 Vehicular Tra�c Network Analysis

Following the work of applying SNA to generate insights into the structure

of a data lake, with a view to discover from a corpus of data what can be

used to provide insight into the behaviour of a real-world network. It was

a natural progression to consider the case when we have access to the data

set that can provide this insight, however the data is limited in some way.

The results of this investigation are presented in Chapter 4, where initially

we design a methodology, based on common methods in the literature, of

cleaning time series data. In the context of this work, we consider the time

series data to be Global Positioning System (GPS) based data that describes

the travel times on road segments an urban network. The process involves

a series of novel algorithms that used to identify and impute missing values.

and thus transform the data into a clean and usable data set. The clean

input data is used in an exploratory study with a goal to develop insights

into the behaviour of tra�c �ow in an urban network. More speci�cally,

the work involves a series of experiments that are focussed on generating

an understanding into the self-similarity, and regularity of tra�c �ow for

individual road segments in the network. This intelligence is then used to

model and simulate tra�c �ow on speci�c road segments.

Future work on this problem would be associated with addressing the

6. Conclusion and Future Work 160

limitations of the data. Although this work covers a larger period of time

than other studies on vehicular tra�c such as such as [165, 166]. The lim-

itations in our data arise in the coverage across the network. By gaining

access to data for more road segments in the network, one could produce

a more comprehensive study into the behaviour of tra�c �ow in an urban

network. A further enhancement could be to consider the work in [165, 166]

to investigate the propagation of tra�c across the network. This could pro-

vide valuable intelligence that can be applied to tra�c management systems

in order to mitigate the impact of tra�c in the network. Alternatively, it

can be applied to routing algorithms such as Dijkstras to provide a more

sophisticated routing mechanism.

6.3 Deterministic Rendezvous in Restricted Graphs

In Chapter 4 we investigated a real-world network using a data-driven ap-

proach, where the data used was limited in terms of observations and cov-

erage of the network. In Chapter 5, we consider the challenge of having

exposure to increasingly less information about a network, and in particular

we demonstrate the di�culty of the challenge by considering the rendezvous

problem in a distributed setting. More speci�cally, we consider an extention

of the work in [61], that is the challenge for two anonymous mobile entities

(robots) to meet at the same time and point in space. However, in our work

we consider the movement of mobile entities (or robots) to be restricted by

a combination of the topological properties of the graph and the intrinsic

characteristics of robots, thus preventing robots from visiting certain edges

in the graph. The robots have an additional constraint, and that is dur-

ing the traversal between two connected nodes, the eyes of the robot are

closed. In this work three models of computation were considered: In the

161 6.3. Deterministic Rendezvous in Restricted Graphs

Edge Monotonic model each mobile entity X ∈ {A,B} has weight wx and

each edge has a weight restriction. This restriction dictates where a robot

X can traverse with respect to their intrinsic weight wx. In the remaining

two models of computation the graph is un-weighted and restrictions refer

to more arbitrary subsets of traversable nodes and edges. In particular, for

the Node Inclusive model the set of nodes denoted Vx available to a robot

X satisfy the condition VA ⊂ VB or vice versa, and in the Blind Rendezvous

model the relationship between VAandVB is arbitrary.

In this work we consider the following question for each of the compu-

tational models, what is the worst case rendezvous time for two anonymous

mobile entities in a restricted graph environment? The question is answered

for two distinct settings, namely synchronous and asynchronous. In the syn-

chronous setting the mobile entities have access to a global clock that is

ticking in discrete time steps 0, 1, 2, · · · , and during a single time step each

robot assesses the node in which it resides within (checking for co-location

and rendezvous). In the asynchronous setting, the robots do not have access

to a global clock, instead it is decided by the adversary which of the robots

will make a move at every time step. In order to help answer this question

for each of the models a number of Algorithms are presented. For the syn-

chronous setting the results are: In the Edge Monotonic model it is shown

that the rendezvous between two mobile entities can be achieved in optimal

O(kA+kB)−time. In the Node Inclusive model we present an algorithm that

meets two mobile entities in almost linear timeO((kA+kB) log(kA+kB)), and

�nally we show that rendezvous is not feasible without additional assump-

tions. In the case that explicit labels are used rendezvous can be achieved in

min{O((kA+kB)3 log log n,O((kA+kB)2 log n)}. through the super-position

of two algorithms. For the asynchronous setting the results are presented in

6. Conclusion and Future Work 162

terms of trajectory instead of time, as in the asynchronous case there is

no global clock: In the Edge Monotonic model it is shown that rendezvous

can be achieve through a trajectory of length O((kA + kB)2). For the Node

Inclusive model it is proven that rendezvous can not be achieved without

additional assumptions, and without this assumption it is also proven that

rendezvous in the Blind Rendezvous model is infeasible.

When thinking of the next step for the research presented in Chapter

5, where we consider the case in which robots have restrictions imposed on

where they can go in the network, and these restrictions are based on the

intrinsic properties of the robots. The natural progression of this work in

order to provide further limitations on knowledge in the network would be

to consider models in which maps are unknown to robots, and robots can

only discover small regions of the environment that are within some bound

r of their current position. Furthermore, the work presented considers the

rendezvous of two robots, so it would be interesting to extend this to more

than two robots, where the robots can meet in pairs. This problem can be

studied in a variety of environments including geometrical, similar to [44],

that could vary signi�cantly in the complexity.

6.4 Final Remarks

Over the course of this project we have felt that we have contributed to a

new class of problems that are concerned with Data Mining and Distributed

Computing. Through this contribution we have gained an appreciation of

the surrounding problems in the Search and Mobility and Data discovery. It

is our hope that the work in this thesis and the literature that it draws from

can also spark an interest in the community for Network Analysis as there is

such a close link to Data Mining and Data Discovery. Network analysis has

163 6.4. Final Remarks

been extensively researched over the last few decades, and as demonstrated

in this thesis by applying the established techniques from the community, it

is likely that many interesting questions can be proposed, especially when

looking into the behaviour of network entities, which can lead to signi�cant

insights being discovered about phenomena such as vehicular tra�c.

Appendix A

Similarity

Similarity measures are essential to discovering patterns or motifs in pattern

recognition problems such as classi�cation, clustering etc [37]. This appendix

is designed to give the reader insight into two similarity measures that we

use within this thesis, these are: Euclidean Distance and Cosine Similarity.

The following sections of this appendix describe both measures.

A.1 Squared Euclidean Distance

The Euclidean distance is the distance between two points in Euclidean

space. Euclidean distance was referred to as Pythagorean metric, where it

was derived from the Pythagorean formula. In particular, given two points

P = (p1, p2, . . . , pn), and Q = (q1, q2, . . . , qn) in n-dimensional Euclidean

space, the Euclidean distance between points p and q is the length of the

165

Appendix A. Similarity 166

line segment connecting them, and is denoted

d(P,Q) =
√

(p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2

=

√√√√ n∑
i=1

(pi − qi)2.

(A.1)

The squared Euclidean distance can be used to place increasingly greater

weight on objects that are farther apart, and is denoted

d(P,Q) = (p1 − q1)2 + (p2 − q2)2 + · · ·+ (pn − qn)2

=
n∑

i=1

(pi − qi)2.

(A.2)

A.2 Cosine Similarity

Cosine similarity is a measure of similarity between two vectors P and Q,

that measures the cosine of the angle between them. This similarity metric

was derived from the dot (inner) product denoted, P · Q = ||P || ||Q|| cos

θ, where θ is the measure of the angle between the vectors P and Q. In

particular, the cosine similarity cos(θ) is de�ned as,

cos(θ) =
P ·Q
||P || ||Q||

=

∑n
i=1 pi · qi√∑n

i=1 p
2
i

√∑n
i=1 q

2
i

.

(A.3)

The cos(θ) of 0◦ is 1, and is less than 1 for any other angle. Therefore, this

measures orientation that ranges from −1 to 1, suggesting that two vectors

167 A.2. Cosine Similarity

x

y

~P

~Q

cos(θ)

Figure A.1: Cosine Similarity between P and Q, cos(θ) = 0

with the same orientation have a cosine similarity of 1, two vectors at 90◦

(orthogonal) have similarity of 0, and two vectors diametrically opposed have

a similarity of -1.

Appendix B

Clustering

Clustering is a technique that is used to partition the data into speci�c

classes (clusters), such that for each cluster, the data contained within it is

most accurately represented by that cluster, and this is determined by the

attributes or characteristics of the datum in question. In this thesis we focus

on one clustering method in particular and this is known as k-means, the

following section of this appendix discusses k-means in detail.

B.1 k-means

The k-means clustering algorithm is a popular method used in the data

mining community to partition N data points in a m-dimensional space into

k clusters, and each cluster is parameterised by a vector m(k) called its

mean. This results in partitioning the data space into Voronoi cells, where

each cell represents a region of the plane (data space) based on distance to

points (seeds) in a speci�c subset of that plane. In particular, the points

are speci�ed before the algorithm is initialised, and for each Voronoi cell

Rk the region in space comprises every point whose distance to pk is less

than or equal to its distance to any other pk. In the context of clustering,

169

Appendix B. Clustering 170

k-means aims to partition N observations x1, x2, . . ., xn into k(≤ n) sets

S = {S1, S2, . . . , Sk}, s.t. each datum is closest to its clusters Ck mean,

denoted µk than the mean of any other cluster Ck. The function that is

used to determine the cluster that a given datum x should be assigned to

is known as within-cluster sum of squares (WCSS), where the cluster that

yields the least WCSS is considered to be the cluster that x belongs to, and

is denoted:

arg min
s

k∑
i=1

∑
x∈Si

‖x− µi‖2 (B.1)

where µi is the mean of point Si. The most common algorithm to solve

the k-means problem was presented in [111], where the authors propose an

algorithm for least squares quantisation in pulse-code modulation (PCM).

In particular, Lloyd's algorithm uses vector quantisation (where the space

is divided into Voronoi cells), to identify the cluster centers (c1, . . . , ck),

such that the WCSS minimised. The algorithm presented in the paper is

used in a multitude of domains including signal processing. However, more

commonly it is used as a heuristic that can be applied to large data sets

for cluster analysis, where data is partitioned into k regions. In [141] the

authors suggest that the K-means algorithm is a local optimisation strat-

egy, and consequently the solution is sensitive to the choice of initial cluster

centers. Common methods of initialising cluster centers are Forgy [81] and

Random Partition [81], where the Forgy method is considered to be the de

facto technique for initialising cluster centers. It is common practice to ap-

ply the initialisation technique within Lloyds algorithm; discussed below, in

order to yield clustering of the data.

The Lloyds algorithm is de�ned as: Given an initial set of cluster centers

c
(1)
1 , c

(1)
2 , . . . , c

(1)
k ; that are identi�ed using the chosen method, the algorithm

171 B.1. k-means

proceeds by alternating between two steps 1) Assignment Step, and 2) Up-

date Step, until the WCCS has converged.

Assignment Step: Assign each datum to the cluster whose popu-

lation mean µ yields the least WCSS, given that the sum of squares;

method used to determine partition sums of squared deviations, is

the distance from a datum x to the mean µ is the deviation denoted,∑n
i=1(x − µ)2, is the squared Euclidean Distance, this is intuitively

the nearest mean to x.

S
(t)
i = {x : ‖x− µ(t)

i ‖
2 ≤ ‖x− µ(t)

j ‖
2∀j, 1 ≤ j ≤ k} (B.2)

where each x is assigned to exactly one S(t), even if it could be as-

signed to more than one.

Update Step: For each set Si calculate the new means, and consider

this to be the centroid of the observations, this is denoted by

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (B.3)

given it was proven by Gauss, if the conditions of the Gauss-Markov

theorem apply then the arithmetic mean is considered optimal, and

is therefore the best least-square estimator. Therefore this step also

minimises the WCSS, and thus satis�es the objective of the k -means

problem.

Furthermore, considering both steps optimise the WCSS objective, and there

only exists a �nite number of partitioning the data space, the algorithm must

Appendix B. Clustering 172

converge to a local optimum.1

1There is no guarantee that the global optimum is found using this algorithm.

Appendix C

Random Walk

A random walk experiment is a process by which randomly-moving objects

wander away from their starting position. A simple random walk experiment

is conducted in 1-dimensional space. Wlog assume the space is a number

line and pointer A (random object) is assigned to position 0. At the point

the experiment starts A will take a step forward (or backward) with equal

probability p. As the time progresses for the experiment the object will be

taking steps forward or backwards, and this continues until the experiment

�nishes. Random walks are generally used to determine where an object will

be in N time steps, and this identi�ed by computing the distance that A is

away from the position A is at the previous step in the experiment. This is

typically computed using root-mean squared distance denoted.

RMS(X) =

√√√√ 1

N

N∑
i=0

(xi)2 (C.1)

173

Appendix D

Markov Chain

A Markov chain is a stochastic process, or discrete time process, that com-

prises a set of states S = {s1, s2, . . . sr}. At the point the process starts, it

begins in one of these states, and for each successive move called a step the

state moves to another. That is, if the current state is si, then it will move

to state sj at the next step with a probability denoted by pi,j , where this

probability does not depend on which state the chain was in before the cur-

rent state. The probabilities pi,j are known as transition probabilities, and

these represent the likelihood that state si will move to sj . The transition

probabilities are typically stored in a matrix called a transition matrix. The

process can also remain in the current state and this is determined based on

probability pi,i. More formally, for a discrete process to be considered to be

Markov, it has to satisfy the Markov property denoted,

P (Xn = xn|Xn−1 = xn−1, . . . , X0 = x0) = P (Xn = xn|Xn−1 = xn−1)

(D.1)

where Xn is the current state of the process, and Xn+1 is the previous state

of the process, suggesting that current states in the process are dependent

175

Appendix D. Markov Chain 176

on the past state only.

Appendix E

Software

E.1 i-MOVE Platform

E.1.1 Description

The platform for i-MOVE was considered to be the most fundamental com-

ponent required in the 18-24 months that the project was live. The platform

was designed to be an interoperable information hub that provided function-

ality to provide access to a multitude of data feeds describing the transporta-

tion network in and around Liverpool.

Adapting to changing requirements is one of the predominant challenges in

distributed environments, by applying the eco-system concepts into a digital

environment, we were able to create a versatile domain that adopted Ser-

vice Oriented Architecture (SOA) [67]. SOA is an architectural pattern that

comprises four main characteristics, however in this project we focus on only

2 of these, and these include: 1) vendor neutral - helps evolve the solution in

response to changing requirements, and 2) composition centric - enables the

system to adapt to new and changing requirements within a reduced amount

177

Appendix E. Software 178

of time, by reusing system features e.g., web services. This architectural pat-

tern is based on the Feature-Driven Development (FDD) methodology. FDD

considers system features to be separate entities that are speci�ed, created

and tested in an isolated environment using established testing methods e.g.,

unit, regression etc, before including them into the spine of the system. i-

MOVE adopted this architectural pattern to ensure that web services are

considered to be individual system elements so that risk management and

testing can be performed in isolation, preventing the risk of system outages.

SOA allows web-services to be created easily and e�ciently by reusing pre-

implemented components. In the development phases of the project, i-

MOVE core was developed so that developers can reuse existing components

to easily create new system features e.g., web services.

E.1.2 Architecture

Typical SOA suggests that system components are connected over a network,

forming a distributed system. i-MOVE follows this recommendation where

the core system functionality was implemented and located on a master

server, the web services were created on a slave server, and when a request is

made to the core it communicates to the slave in order to answer the request.

The platform inherits server roles from SOA-web services, these roles are:

Service Provider and Service Registry. The service provider role creates a

web-service, publishes its interface and accesses information from the service

registry, where the service registry will handle accessibility to the service for

a speci�c user through an authentication service. At the point a service is

implemented the service registry will allocate a category to the service e.g.,

179 E.1. i-MOVE Platform

road, rail, weather etc., decide what agreements are needed to use this ser-

vice e.g., terms and conditions, and the privacy policy e.g., public or private.

Furthermore, the service registry will expose the catalogue of web services

that are available in the platform; providing basic descriptions, accessibility

instructions, source, data format etc.

The service registry is an implementation of the the HyperCat [125] stan-

dard. It is based upon basic HTTP principles to allow the secure distribution

of data assets, and handles individual transactions using user-centric access

control between multiple information hubs using RESTful services, thus cre-

ating an interoperable platform. Completely dependent on user permission a

connected user can make GET, PUT and UPDATE requests to add, update

or remove data assets from a speci�c hub respectively. The idea behind the

interoperability feature is to allow information hubs to search within their

local service registry for a speci�c type of service, before searching all other

service registries within the distributed network of information hubs, or any

other hub that adopts the HyperCat standard 1. This feature allows Ma-

chine to Machine (M2M) interaction between hubs, allowing them to freely

search other hubs for a speci�c asset, and return it to the user as though

that particular hub contains such asset. Furthermore, the HyperCat stan-

dard speci�es a security layer for information platforms by restricting access

to data assets to authorised users only.

In order for users to understand the catalogue of assets contained within

1The catalogue can be used by other information hubs that adopt the HyperCat stan-
dard to automatically identify the list of services available on that particular hub. A
speci�c hub can store multiple hub addresses, and can use these addresses to perform
query-based searches across multiple information hubs simultaneously in order to identify
the desired data feed quickly.

Appendix E. Software 180

a speci�c hubs service registry, a user would need to direct to the catalogue

service that will appear on http://{hub-domain}/cat. This will present

the user with a JSON formatted document that will describe a list of the

data assets available, and provide information about each individual asset,

including a link to the developer API; providing instructions on how to ac-

cess that particular asset, and what the response means. Once a user has

identi�ed a data asset that they wish to consume, they can access it through

http://imove-project.org/api/{feedid}, where the feedid is provided in

the catalogue.

http://{hub-domain}/cat
http://imove-project.org/api/{feedid}

Bibliography

[1] A.Agresti and B.Finlay (1997). Statistical Methods for the Social Sciences. Prentice
Hall.

[2] Agathangelou, C., Georgiou, C., and Mavronicolas, M. (2012). A distributed algorithm
for gathering many fat mobile robots in the plane. CoRR, abs/1209.3904.

[3] Aggarwal, C. C. (2015). Data mining: The Textbook. Springer International Publishing
Switzerland 2015, IBM T.J. Watson Research Center, Yorktown Heights, New York,
USA.

[4] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. (1993). Network Flows: Theory,
Algorithms, and Applications. Prentice-Hall, Inc., Upper Saddle River, NJ, USA.

[5] Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., and Cayirci, E. (2002). A survey
on sensor networks. IEEE Communications Magazine, 40(8):102�114.

[6] Albert, R. and Barabási, A.-L. (2002). Statistical mechanics of complex networks.
Rev. Mod. Phys.

[7] Alpaydin, E. (2010). Introduction to Machine Learning. The MIT Press, 2nd edition.

[8] Alpern, S. (1995). The rendezvous search problem. SIAM Journal on Control and
Optimization, 33(3):673�683.

[9] Alpern, S. (2002). Rendezvous search on labeled networks. Naval Research Logistics
(NRL), 49(3):256�274.

[10] Alpern, S., Fokkink, R., Gasieniec, L., Lindelauf, R., and Subrahmanian, V. S. (2013).
Search theory. Springer-Verlag New York.

[11] Alpern, S. and Gal, S. (2003). The theory of search games and rendezvous. Kluwer
Academic Publishers.

[12] Alzahrani, T. and Horadam, K. J. (2016). Community Detection in Bipartite Net-
works: Algorithms and Case studies, pages 25�50. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[13] Anderberg, M. R. (1973). Cluster analysis for applications. In Anderberg, M. R.,
editor, Cluster Analysis for Applications, Probability and Mathematical Statistics: A
Series of Monographs and Textbooks. Academic Press.

[14] Anderson, E. J. and Fekete, S. P. (1998). Asymmetric rendezvous on the plane. In
Proceedings of the Fourteenth Annual Symposium on Computational Geometry, SCG
'98, pages 365�373, New York, NY, USA. ACM.

181

Bibliography 182

[15] Anderson, E. J. and Fekete, S. P. (2001). Two dimensional rendezvous search. Oper-
ations Research, 49(1):107�118.

[16] Anderson, E. J. and Weber, R. R. (1990). The rendezvous problem on discrete
locations. Journal of Applied Probability, 27:839�851.

[17] Anderson, T. W. and Sclove, S. (1974). Introductory Statistical Analysis. Houghton
Mi�in Company.

[18] André, C. and Pinheiro, R. (2012). Community detection to identify fraud events in
telecommunications networks.

[19] Apache. Apache hadoop. http://hadoop.apache.org. Accessed: 22-05-2016.

[20] Apache. Hive. http://hive.apache.org/. Accessed: 08-10-2015.

[21] Babu, S. (2010). Towards automatic optimization of mapreduce programs. In Pro-
ceedings of the 1st ACM Symposium on Cloud Computing, SoCC '10, pages 137�142,
New York, NY, USA. ACM.

[22] Barabási, A. L. and Oltvai, Z. N. (2004). Network Biology: Understanding the Cell's
Functional Organization. Nature Genetics, 5:101�114.

[23] Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software
for exploring and manipulating networks. In Proceedings of the International AAAI
Conference on Web and Social Media.

[24] Baston, V. and Gal, S. (1998). Rendezvous on the line when the players' initial
distance is given by an unknown probability distribution. SIAM Journal on Control
and Optimization, 36(6):1880�1889.

[25] Baston, V. and Gal, S. (2001). Rendezvous search when marks are left at the starting
points. Naval Research Logistics (NRL), 48(8):722�731.

[26] BBC. Talk talk data breach. http://www.bbc.co.uk/news/business-37565367.
Accessed: 08-10-2016.

[27] Becchi, M. From poisson processes to self-similarity: a survey of network tra�c
models.

[28] Berners-Lee, T. Information management: A proposal. https://www.w3.org/

History/1989/proposal.html. Accessed: 06-10-2016.

[29] Berners-Lee, T., Hendler, J., and Lassila, O. (2001). The semantic web. Scienti�c
American, 284(5):34�43.

[30] Berry, D. S. and Belmont, D. M. (1951). Distribution of vehicle speeds and travel
times. In Proceedings of the Second Berkeley Symposium on Mathematical Statistics
and Probability, pages 589�602, Berkeley, Calif. University of California Press.

[31] Blondel, V. D., loup Guillaume, J., Lambiotte, R., and Lefebvre, E. (2008). Fast
unfolding of communities in large networks.

[32] Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., and Hwang, D.-U. (2006). Com-
plex networks: Structure and dynamics. Physics Reports, 424(4?5):175 � 308.

[33] Bóna, M. (2006). A Walk Through Combinatorics: An Introduction to Enumeration
and Graph Theory. World Scienti�c Pub.

http://hadoop.apache.org
http://hive.apache.org/
http://www.bbc.co.uk/news/business-37565367
https://www.w3.org/History/1989/proposal.html
https://www.w3.org/History/1989/proposal.html

183 Bibliography

[34] Bulkley, N. and Alstyne, M. V. (2006). An empirical analysis of strategies and
e�ciencies in social networks.

[35] Cantini, L., Medico, E., Fortunato, S., and Caselle, M. (2015). Detection of gene
communities in multi-networks reveals cancer drivers. Scienti�c Reports, 5:17386+.

[36] Catapult, T. S. Transport systems catapult. https://ts.catapult.org.uk. Ac-
cessed: 28-08-2016.

[37] Cha, S.-H. (2007). Comprehensive survey on distance/similarity measures between
probability density functions.

[38] Chen, S., Russell, A., Samanta, A., and Sundaram, R. (2014). Deterministic blind
rendezvous in cognitive radio networks. CoRR, abs/1401.7313.

[39] Cheng, T., Haworth, J., and Manley, E. Markov chain topological route selection.
http://www.geocomputation.org/2013/papers/80.pdf. Accessed: 06-10-2015.

[40] Clauset, A., Newman, M. E. J., and Moore, C. (2004). Finding community structure
in very large networks. Phys. Rev. E, 70:066111.

[41] Cloudera. Impala. http://www.cloudera.com/content/cloudera/en/

products-and-services/cdh/impala.html. Accessed: 08-10-2015.

[42] cnet. Virgin mobile voicemail madness: privacy breach as customers'
gain access to strangers' messages. https://www.cnet.com/au/news/

virgin-mobile-australia-voicemail-error-privacy/. Accessed: 08-10-2016.

[43] Collins, A., Czyzowicz, J., Gasieniec, L., Kosowski, A., and Martin, R. (2011). Syn-
chronous rendezvous for location-aware agents. In Proceedings of the 25th International
Conference on Distributed Computing, DISC'11, pages 447�459, Berlin, Heidelberg.
Springer-Verlag.

[44] Collins, A., Czyzowicz, J., Gasieniec, L., and Labourel, A. (2010). Tell Me Where
I Am So I Can Meet You Sooner, pages 502�514. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[45] Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. (2009). Introduction to
Algorithms, Third Edition. The MIT Press, 3rd edition.

[46] Cortes, C., Pregibon, D., and Volinsky, C. (2001). Communities of Interest, pages
105�114. Springer Berlin Heidelberg, Berlin, Heidelberg.

[47] Cox, J. Apple, intel, google employee accounts exposed in data
breach of developer forum. http://motherboard.vice.com/read/

apple-intel-google-employee-accounts-exposed-in-data-breach. Accessed:
08-10-2016.

[48] Crovella, M. E. and Bestavros, A. (1996). Self-similarity in world wide web tra�c:
Evidence and possible causes.

[49] Csardi, G. and Nepusz, T. (2006). The igraph software package for complex network
research. InterJournal, Complex Systems:1695.

[50] Czyzowicz, J., Gasieniec, L., and Pelc, A. (2009). Gathering few fat mobile robots
in the plane. Theor. Comput. Sci., 410(6-7):481�499.

https://ts.catapult.org.uk
http://www.geocomputation.org/2013/papers/80.pdf
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
http://www.cloudera.com/content/cloudera/en/products-and-services/cdh/impala.html
https://www.cnet.com/au/news/virgin-mobile-australia-voicemail-error-privacy/
https://www.cnet.com/au/news/virgin-mobile-australia-voicemail-error-privacy/
http://motherboard.vice.com/read/apple-intel-google-employee-accounts-exposed-in-data-breach
http://motherboard.vice.com/read/apple-intel-google-employee-accounts-exposed-in-data-breach

Bibliography 184

[51] Czyzowicz, J., Kosowski, A., and Pelc, A. (2012). How to meet when you forget:
log-space rendezvous in arbitrary graphs. Distributed Computing, 25(2):165�178.

[52] Czyzowicz, J., Labourel, A., and Pelc, A. (2010). How to meet asynchronously
(almost) everywhere. CoRR, abs/1001.0890.

[53] de Solla Price, D. J. (1965). Networks of scienti�c papers. Science, 149(3683):510�
515.

[54] Dean, J. and Ghemawat, S. (2008). Mapreduce: Simpli�ed data processing on large
clusters. Commun. ACM, 51(1):107�113.

[55] deeplearning.net. Convolutional neural networks (lenet). http://deeplearning.

net/tutorial/lenet.html. Accessed: 22-05-2016.

[56] Degener, B., Kempkes, B., and auf der Heide, F. M. (2010). A local o(n2) gathering
algorithm. In Proceedings of the Twenty-second Annual ACM Symposium on Parallelism
in Algorithms and Architectures, SPAA '10, pages 217�223, New York, NY, USA. ACM.

[57] Degenne, A. and Forsé, M. (1999). Introducing Social Networks. ISM (London,
England). SAGE Publications.

[58] Demaine, E. (2007). Advanced data structures - lecture 5. http://courses.csail.
mit.edu/6.851/spring07/scribe/lec05.pdf. Accessed: 10-07-2016.

[59] Deng, J., Dong, W., Socher, R., jia Li, L., Li, K., and Fei-fei, L. (2009). Imagenet:
A large-scale hierarchical image database. In In CVPR.

[60] Dereniowski, D., Klasing, R., Kosowski, A., and Kuszner, L. (2014). Rendezvous of
heterogeneous mobile agents in edge-weighted networks. CoRR, abs/1406.2008.

[61] Dessmark, A., Fraigniaud, P., Kowalski, R. D., and Pelc, A. (2006). Deterministic
rendezvous in graphs. Algorithmica, 46(1):69�96.

[62] Dijkstra, E. W. (1959). A note on two problems in connexion with graphs. Numerische
Mathematik, 1(1):269�271.

[63] D.Napoleon and S.Pavalakodi (2011). A new method for dimensionality reduction
using k-means clustering algorithm for high dimensional data set. International Journal
of Computer Applications, 13(8):41�46.

[64] Driver and (DVLA), V. L. A. How many people hold licences in the
uk. https://www.gov.uk/government/uploads/system/uploads/attachment_data/

file/397430/FOIR4341_How_many_people_hold_licences_in_the_UK.pdf. Accessed:
10-10-2016.

[65] Duch, J. and Arenas, A. (2005). Community detection in complex networks using
extremal optimization. Phys. Rev. E, 72:027104.

[66] Egmont-Petersen, M., de Ridder, D., and Handels, H. (2002). Image processing with
neural networks?a review. Pattern Recognition, 35(10):2279 � 2301.

[67] Erl, T. (2004). Service-Oriented Architecture: A Field Guide to Integrating XML and
Web Services. Prentice Hall PTR, Upper Saddle River, NJ, USA.

[68] Farrugia, A. (2013). i-Move Eco-system demonstrator project. http://

imove-project.org.

http://deeplearning.net/tutorial/lenet.html
http://deeplearning.net/tutorial/lenet.html
http://courses.csail.mit.edu/6.851/spring07/scribe/lec05.pdf
http://courses.csail.mit.edu/6.851/spring07/scribe/lec05.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397430/FOIR4341_How_many_people_hold_licences_in_the_UK.pdf
https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/397430/FOIR4341_How_many_people_hold_licences_in_the_UK.pdf
http://imove-project.org
http://imove-project.org

185 Bibliography

[69] Farrugia, A., Gasieniec, L., Kuszner, �., and Pacheco, E. (2015). Deterministic
Rendezvous in Restricted Graphs, pages 189�200. Springer Berlin Heidelberg, Berlin,
Heidelberg.

[70] Ferrara, E., Meo, P. D., Catanese, S., and Fiumara, G. (2014). Detecting criminal
organizations in mobile phone networks. CoRR, abs/1404.1295.

[71] for National Statistics, O. Annual survey of hours and earnings:
2015. http://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/

earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/

2015provisionalresults. Accessed: 10-10-2016.

[72] Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486:75 � 174.

[73] Fortunato, S. and Barthelemy, M. (2007). Resolution limit in community detection.
Proceedings of the National Academy of Sciences.

[74] Foundation, R. The r project for statistical computing. https://www.r-project.

org/. Accessed: 21-05-2015.

[75] Freeman, L. C. (1977). A set of measures of centrality based on betweenness. So-
ciometry, 40(1):35�41.

[76] Freund, J. E. (2001). Modern elementary statistics. Prentice-Hall.

[77] Google. Tensor�ow. https://www.tensorflow.org. Accessed: 22-05-2016.

[78] Greenshields, B. D., Thompson, J. T., Dickinson, H. C., and Swinton, R. S. (1933).
The Photographic Method of Studying Tra�c Behavior. In The Photographic Method
of Studying Tra�c Behavior, volume 13, pages 382�399.

[79] Gross, J. L. and Yellen, J. (2005). Graph Theory and Its Applications, Second Edition
(Discrete Mathematics and Its Applications). Chapman & Hall/CRC.

[80] Gutman, R. (2004). Reach-Based Routing: A New Approach to Shortest Path Al-
gorithms Optimized for Road Networks. In Proceedings 6th Workshop on Algorithm
Engineering and Experiments (ALENEX), pages 100�111. SIAM.

[81] Hamerly, G. and Elkan, C. (2002). Alternatives to the k-means algorithm that �nd
better clusterings. In Proceedings of the Eleventh International Conference on Infor-
mation and Knowledge Management, CIKM '02, pages 600�607, New York, NY, USA.
ACM.

[82] Harary, F. (1995). Graph Theory. Addison-Wesley, Cambridge, MA.

[83] Haworth, J. (2013). Spatio-temporal forecasting of network data. PhD thesis, Univer-
sity College London (UCL).

[84] Heimbigner, D. and McLeod, D. (1985). A federated architecture for information
management. ACM Trans. Inf. Syst., 3(3):253�278.

[85] Heistracher, T., Kurz, T., Marcon, G., and Masuch, C. (2006). Collaborative software
engineering with a digital ecosystem. In IEEE International Conference on Global
Software Engineering.

[86] Holme, P. and Saramäki, J. (2012). Temporal networks. Physics Reports, 519(3):97
� 125. Temporal Networks.

http://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2015provisionalresults
http://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2015provisionalresults
http://www.ons.gov.uk/employmentandlabourmarket/peopleinwork/earningsandworkinghours/bulletins/annualsurveyofhoursandearnings/2015provisionalresults
https://www.r-project.org/
https://www.r-project.org/
https://www.tensorflow.org

Bibliography 186

[87] Horvitz, E., Apacible, J., Sarin, R., and Liao, L. (2012). Prediction, expectation, and
surprise: Methods, designs, and study of a deployed tra�c forecasting service. CoRR,
abs/1207.1352.

[88] Hunt, P., Robertson, D., and Bretherton, R. (1985). Scoot - a tra�c responsive
method of coordinating signals.

[89] Hunter, J. D. (2007). Matplotlib: A 2d graphics environment. Computing in Science
Engineering, 9(3):90�95.

[90] INRIX. Economic & environmental impact of tra�c congesting in europe and the us.
http://inrix.com/economic-environment-cost-congestion/. Accessed: 28-08-2016.

[91] Inrix. Inrix - driving intelligence. http://inrix.com/. Accessed: 01-09-2014.

[92] Jain, S., Fall, K., and Patra, R. (2004). Routing in a delay tolerant network. In
Proceedings of the 2004 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, SIGCOMM '04, pages 145�158, New York,
NY, USA. ACM.

[93] Jaskowiak, P. A., Campello, R. J., and Costa, I. G. (2014). On the selection of ap-
propriate distances for gene expression data clustering. BMC Bioinformatics, 15(2):S2.

[94] Johnson, R. and Bhattacharyya, G. (1992). Statistics: Principles and Methods. Wiley.

[95] Johnson, R. E. and Schneider, F. B. (1985). Symmetry and similarity in distributed
systems. In Proceedings of the Fourth Annual ACM Symposium on Principles of Dis-
tributed Computing, PODC '85, pages 13�22, New York, NY, USA. ACM.

[96] Jones, E., Oliphant, T., Peterson, P., et al. (2001). SciPy: Open source scienti�c
tools for Python. [Online; accessed 2016-09-03].

[97] Jousselme, A.-L. and Maupin, P. (2012). Distances in evidence theory: Compre-
hensive survey and generalizations. International Journal of Approximate Reasoning,
53(2):118 � 145. Theory of Belief Functions (BELIEF 2010).

[98] Kallas, S. (2012). Smart Cities and Communities European Innovation Partnership
(SCC). http://www.connectedliverpool.co.uk/blog/tag/congestion/. [Online; ac-
cessed 28-june-2013].

[99] Kernighan, B. W. and Lin, S. (1970). An e�cient heuristic procedure for partitioning
graphs. Bell System Technical Journal, 49(2):291�307.

[100] Kopetz, H. (2011). Internet of Things, pages 307�323. Springer US, Boston, MA.

[101] Kowalski, D. R. and Malinowski, A. (2008). How to meet in anonymous network.
Theor. Comput. Sci., 399(1-2):141�156.

[102] Kranakis, E., Krizanc, D., and Rajsbaum, S. (2006). Mobile Agent Rendezvous: A
Survey, pages 1�9. Springer Berlin Heidelberg, Berlin, Heidelberg.

[103] Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet classi�cation
with deep convolutional neural networks. In Pereira, F., Burges, C. J. C., Bottou, L.,
and Weinberger, K. Q., editors, Advances in Neural Information Processing Systems
25, pages 1097�1105. Curran Associates, Inc.

http://inrix.com/economic-environment-cost-congestion/
http://inrix.com/
http://www.connectedliverpool.co.uk/blog/tag/congestion/

187 Bibliography

[104] Krogh, B., Andersen, O., and Torp, K. (2012). Trajectories for novel and detailed
tra�c information. In Proceedings of the Third ACM SIGSPATIAL International Work-
shop on GeoStreaming, IWGS '12, pages 32�39, New York, NY, USA. ACM.

[105] Leduc, G. (2008). Jrc technical notes: Programming according to the fences and
gates model for developing assured, secure software systems. Technical Report JRC
47967, Institute for Prospective Technological Studies, Edi�cio Expo. c/ Inca Garcilaso,
s/n. E-41092 Seville, Spain.

[106] Leland, W. E., Taqqu, M. S., Willinger, W., and Wilson, D. V. (1994). On the
self-similar nature of ethernet tra�c (extended version). IEEE/ACM Trans. Netw.,
2(1):1�15.

[107] Li, W., Shiyin, P., Yongzhong, Z., and Zhengxi, L. (2010). Urban tra�c complex
network hub node analysis and signal control optimization strategy research. In Control
and Decision Conference (CCDC), 2010 Chinese, pages 4172�4175.

[108] Lin, Z., Liu, H., Chu, X., and Leung, Y. W. (2011). Jump-stay based channel-
hopping algorithm with guaranteed rendezvous for cognitive radio networks. In INFO-
COM, 2011 Proceedings IEEE, pages 2444�2452.

[109] Linial, N. (1992). Locality in distributed graph algorithms. SIAM J. Comput.,
21(1):193�201.

[110] Liu, W., Zheng, Y., Chawla, S., Yuan, J., and Xing, X. (2011). Discovering spatio-
temporal causal interactions in tra�c data streams. In Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD
'11, pages 1010�1018, New York, NY, USA. ACM.

[111] Lloyd, S. (1982). Least squares quantization in pcm. Information Theory, IEEE
Transactions on, 28(2):129�137.

[112] Lovász, L. (1993). Random walks on graphs: A survey.

[113] Lowe, D. G. (1999). Object recognition from local scale-invariant features. In
Computer Vision, 1999. The Proceedings of the Seventh IEEE International Conference
on, volume 2, pages 1150�1157 vol.2.

[114] Lynch, N. A. (1996). Distributed Algorithms. Morgan Kaufmann Publishers Inc.,
San Francisco, CA, USA.

[115] Machay, J. (2013). How does google detect tra�c congestion? http:

//smallbusiness.chron.com/google-detect-traffic-congestion-49523.html. Ac-
cessed: 2016-05-01.

[116] Macqueen, J. B. (1967). Some Methods for classi�cation and analysis of multivariate
observations. In Procedings of the Fifth Berkeley Symposium on Math, Statistics, and
Probability, volume 1, pages 281�297. University of California Press.

[117] Mandelbrot, B, B. (2008). How fractals can explain what's
wrong with wall street. http://www.scientificamerican.com/article/

multifractals-explain-wall-street/.

[118] Manley, E., Cheng, T., and Haworth, J. (2013). Markov chain topological route
selection. http://www.geocomputation.org/2013/papers/80.pdf. Accessed: 18-05-
2016.

http://smallbusiness.chron.com/google-detect-traffic-congestion- 49523.html
http://smallbusiness.chron.com/google-detect-traffic-congestion- 49523.html
http://www.scientificamerican.com/article/multifractals-explain-wall-street/
http://www.scientificamerican.com/article/multifractals-explain-wall-street/
http://www.geocomputation.org/2013/papers/80.pdf

Bibliography 188

[119] McDonald, A. B. (1997). Survey of adaptive shortest-path routing in dynamic
packet-switched networks.

[120] McKinney, W. (2010). Data structures for statistical computing in python. In
van der Walt, S. and Millman, J., editors, Proceedings of the 9th Python in Science
Conference, pages 51 � 56.

[121] McQuillan, J. M. (1974). Adaptive Routing Algorithms for Distributed Computer
Networks. PhD thesis, Harvard University.

[122] Meto�ce. Met o�ce - datapoint. http://www.metoffice.gov.uk/datapoint. Ac-
cessed: 01-09-2014.

[123] M.Frechet (1906). Sur quelques points du calcul fonctionne. Rendiconti del Circolo
Mathematico di Palermo.

[124] Miller, A. and Pelc, A. (2014). Time versus cost tradeo�s for deterministic ren-
dezvous in networks. In Proceedings of the 2014 ACM Symposium on Principles of
Distributed Computing, PODC '14, pages 282�290, New York, NY, USA. ACM.

[125] Monnickendam, N. Hypercat. http://www.hypercat.io/. Accessed: 02-08-2016.

[126] Murthy, S. (1996). Routing in packet-switched networks using path-�nding algo-
rithms. PhD thesis, University of California, Santa Cruz.

[127] Nagurney, A. (1999). Network Economics. Springer US.

[128] Nevatia, R. and Babu, K. R. (1980). Linear feature extraction and description.
Computer Graphics and Image Processing, 13(3):257 � 269.

[129] Newman, M., Barabasi, A.-L., and Watts, D. J. (2006). The Structure and Dynamics
of Networks: (Princeton Studies in Complexity). Princeton University Press, Princeton,
NJ, USA.

[130] Newman, M. E. J. (2003). The structure and function of complex networks. SIAM
Review, 45(2):167�256.

[131] Newman, M. E. J. and Girvan, M. (2004). Finding and evaluating community
structure in networks. Phys. Rev. E, 69:026113.

[132] Olston, C., Reed, B., Srivastava, U., Kumar, R., and Tomkins, A. (2008). Pig
latin: A not-so-foreign language for data processing. In Proceedings of the 2008 ACM
SIGMOD International Conference on Management of Data, SIGMOD '08, pages 1099�
1110, New York, NY, USA. ACM.

[133] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-learn:
Machine learning in Python. Journal of Machine Learning Research, 12:2825�2830.

[134] Pelc, A. (2012). Deterministic rendezvous in networks: A comprehensive survey.
Netw., 59(3):331�347.

[135] Pinheiro, C. A. R. Community detection to identify fraud events in telecom-
munications networks. http://support.sas.com/resources/papers/proceedings12/
106-2012.pdf. Accessed: 20-10-2016.

http://www.metoffice.gov.uk/datapoint
http://www.hypercat.io/
http://support.sas.com/resources/papers/proceedings12/106-2012.pdf
http://support.sas.com/resources/papers/proceedings12/106-2012.pdf

189 Bibliography

[136] Pons, P. and Latapy, M. (2004). Computing communities in large networks using
random walks. J. of Graph Alg. and App. bf, 10:284�293.

[137] Python. Python. https://www.python.org/. Accessed: 02-08-2016.

[138] Rahm, E. and Do, H. H. (2000). Data cleaning: Problems and current approaches.
IEEE Data Engineering Bulletin, 23:2000.

[139] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu, Q.,
Zakaria, J., and Keogh, E. (2012). Searching and mining trillions of time series sub-
sequences under dynamic time warping. In Proceedings of the 18th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, KDD '12, pages
262�270, New York, NY, USA. ACM.

[140] Ranzato, M., Hinton, G., and LeCun, Y. (2015). Guest editorial: Deep learning.
International Journal of Computer Vision, 113(1):1�2.

[141] Redmond, S. J. and Heneghan, C. (2007). A method for initialising the k-means
clustering algorithm using kd-trees. Pattern Recognition Letters, 28(8):965 � 973.

[142] Rossum, G. (1995). Python reference manual. Technical report, Amsterdam, The
Netherlands, The Netherlands.

[143] RStudio, Inc (2014). shiny: Easy web applications in r. URL: http://shiny.
rstudio.com.

[144] Ruohonen, K. (2013). Graph Theory. 1 edition.

[145] Russell, S. and Norvig, P. (2009). Arti�cial Intelligence: A Modern Approach (3rd
Edition). Prentice Hall, 3 edition.

[146] Salathé, M. and Jones, J. H. (2010). Dynamics and Control of Diseases in Networks
with Community Structure. PLoS Comput Biol, 6(4):e1000736+.

[147] Schelling, T. C. (1960). The strategy of con�ict.

[148] Scott, J. (2000). Social Network Analysis: A Handbook. Sage Publications, second.
edition.

[149] Shlens, J. (2014). A tutorial on principal component analysis. CoRR, abs/1404.1100.

[150] Siemens. Siemens - urban tra�c control system. http://www.siemens.co.uk/

traffic/en/index/productssolutionsservices/systems/pcscoot.htm. Accessed:
01-09-2014.

[151] Slaney, M. and Casey, M. (2008). Locality-sensitive hashing for �nding nearest
neighbors [lecture notes]. IEEE Signal Processing Magazine, 25(2):128�131.

[152] Sowa, J. F., editor (1991). Principles of Semantic Networks: Explorations in the
Representation of Knowledge. The Morgan Kaufmann Series in Representation and
Reasoning. Morgan Kaufmann.

[153] Steen, M. v. (2010). "Graph theory and complex networks : an introduction".
Maarten van Steen, "Lexington".

[154] Tenenbaum, J. B., Silva, V. d., and Langford, J. C. (2000). A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319�2323.

https://www.python.org/
http://shiny.rstudio.com
http://shiny.rstudio.com
http://www.siemens.co.uk/traffic/en/index/productssolutionsservices/systems/pcscoot.htm
http://www.siemens.co.uk/traffic/en/index/productssolutionsservices/systems/pcscoot.htm

Bibliography 190

[155] Thieurmel, B. Introduction to visnetwork. https://cran.r-project.org/web/

packages/visNetwork/vignettes/Introduction-to-visNetwork.html. Accessed: 01-
05-2016.

[156] Thusoo, A., Sarma, J. S., Jain, N., Shao, Z., Chakka, P., Anthony, S., Liu, H.,
Wycko�, P., and Murthy, R. (2009). Hive: A warehousing solution over a map-reduce
framework. Proc. VLDB Endow., 2(2):1626�1629.

[157] Thusoo, A., Shao, Z., Anthony, S., Borthakur, D., Jain, N., Sen Sarma, J., Murthy,
R., and Liu, H. (2010). Data warehousing and analytics infrastructure at facebook. In
Proceedings of the 2010 ACM SIGMOD International Conference on Management of
Data, SIGMOD '10, pages 1013�1020, New York, NY, USA. ACM.

[158] Treiber, M. and Kesting, A. (2013). Tra�c Flow Dynamics. Springer-Verlag Berlin
Heidelberg 2013.

[159] Trosset, M. W. (2008). Representing clusters: K-means clustering, self-organizing
maps, and multidimensional scaling. Technical report, Indiana University, Bloomington,
IN.

[160] UK, I. Internet of things ecosystem demonstrator. https://connect.innovateuk.
org/web/internet-of-things-ecosystem-demonstrator/article-view/-/

blogs/the-list-of-8-internet-of-things-clusters?ns_33_redirect=/web/

internet-of-things-ecosystem-demonstrator/articles. Accessed: 01-08-2016.

[161] van der Walt, S., Colbert, S. C., and Varoquaux, G. (2011). The numpy array:
A structure for e�cient numerical computation. Computing in Science Engineering,
13(2):22�30.

[162] van Lint, J., Hoogendoorn, S., and van Zuylen, H. (2005). Accurate freeway travel
time prediction with state-space neural networks under missing data. Transportation
Research Part C: Emerging Technologies, 13(5?6):347 � 369.

[163] Vassiliadis, P. and Simitsis, A. (2009). Extraction, Transformation, and Loading,
pages 1095�1101. Springer US, Boston, MA.

[164] Wagner, S. and Wagner, D. (2007). Comparing clusterings- an overview.

[165] Wang, Z., Lu, M., Yuan, X., Zhang, J., and Wetering, H. V. D. (2013). Visual
tra�c jam analysis based on trajectory data. IEEE Trans. Vis. Comput. Graphics,
pages 2159�2168.

[166] Wang, Z., Ye, T., Lu, M., Yuan, X., Qu, H., Yuan, J., and Wu, Q. (2014). Visual
exploration of sparse tra�c trajectory data. IEEE Transactions on Visualization and
Computer Graphics, 20(12):1813�1822.

[167] Wasilewski, P. and Góra, P. (2014). Tra�c-related knowledge acquired by interac-
tion with experts. In CSP.

[168] Wasserman, S. and Faust, K. (1994). Social network analysis: Methods and appli-
cations, volume 8. Cambridge university press.

[169] Weiss, A. N. (1999). Introductory Statistics. Addison Wesley.

[170] West, D. B. (2001). Introduction to Graph Theory (2nd Edition). Prentice Hall.

[171] White, T. (2009). Hadoop: The De�nitive Guide. O'Reilly Media, Inc., 1st edition.

https://cran.r-project.org/web/packages/visNetwork/vignettes/Introduction-to-visNetwork.html
https://cran.r-project.org/web/packages/visNetwork/vignettes/Introduction-to-visNetwork.html
https://connect.innovateuk.org/web/internet-of-things-ecosystem-demonstrator/article-view/-/blogs/the-list-of-8-internet-of-things-clusters?ns_33_redirect=/web/internet-of-things-ecosystem-demonstrator/articles
https://connect.innovateuk.org/web/internet-of-things-ecosystem-demonstrator/article-view/-/blogs/the-list-of-8-internet-of-things-clusters?ns_33_redirect=/web/internet-of-things-ecosystem-demonstrator/articles
https://connect.innovateuk.org/web/internet-of-things-ecosystem-demonstrator/article-view/-/blogs/the-list-of-8-internet-of-things-clusters?ns_33_redirect=/web/internet-of-things-ecosystem-demonstrator/articles
https://connect.innovateuk.org/web/internet-of-things-ecosystem-demonstrator/article-view/-/blogs/the-list-of-8-internet-of-things-clusters?ns_33_redirect=/web/internet-of-things-ecosystem-demonstrator/articles

191 Bibliography

[172] Witten, I. H., Frank, E., and Hall, M. A. (2011). Data Mining: Practical Machine
Learning Tools and Techniques. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA, 3rd edition.

[173] Yegnanarayana, B. (2004). Arti�cial Neural Networks. Prentice-Hall of India
Pvt.Ltd.

	Dedication
	Introduction
	Motivation and Problem Scope
	Contributions
	Chapter 3
	Chapter 4
	Chapter 5

	Thesis Structure

	Background
	Statistics
	Introduction to statistics
	Variables
	Organising and describing data
	Frequency Distributions
	Measures of center
	Measures of variation Weiss:1999, Johnson:1992, Anderson:1974

	Networks
	Introduction to Graph Theory vanSteen:2010, Newman:2003
	Introduction to Networks

	Big Data

	Towards Social Network Analytics for Understanding and Managing Enterprise Data Lakes
	Introduction
	Motivation and Background
	Use Cases

	Complex Systems and Networks
	Data
	Data Lake Introspection Tool
	Experiments
	Data refinement
	Network Communities

	Conclusion

	Vehicular Traffic Network Analysis
	Introduction
	Introducing i-MOVE
	i-MOVE Traffic Data
	Data Preparation
	Data Cleaning
	Data characteristics

	Analysis
	Self-similarity
	Travel time intensity
	Traffic flow modelling

	Conclusions and future work

	Deterministic Rendezvous in Restricted Graphs
	Model of Computation
	Our results

	Synchronous rendezvous Algorithms
	Rendezvous in Edge Monotonic Model
	Rendezvous in Node Inclusion Model
	Blind Rendezvous Model

	Asynchronous Rendezvous Algorithms
	Rendezvous in Edge Monotonic Model
	Rendezvous in Node Inclusion Model

	Conclusion

	Conclusion and Future Work
	Understanding and Managing Data Lakes
	Vehicular Traffic Network Analysis
	Deterministic Rendezvous in Restricted Graphs
	Final Remarks

	Similarity
	Squared Euclidean Distance
	Cosine Similarity

	Clustering
	k-means

	Random Walk
	Markov Chain
	Software
	i-MOVE Platform
	Description
	Architecture

