
Prototype for Multidisciplinary Research
in the context of the Internet of Things

Miguel López-Beníteza,∗, Timothy D. Drysdaleb,
Simon Hadfieldc, Mohamed Ismaeel Maricard

aDepartment of Electrical Engineering and Electronics, University of Liverpool, United Kingdom
bDepartment of Engineering and Innovation, The Open University, United Kingdom

cCentre for Vision, Speech and Signal Processing, University of Surrey, United Kingdom
dGeorge Green Institute for Electromagnetics Research, University of Nottingham, United Kingdom

Abstract

The Internet of Things (IoT) poses important challenges requiring multidisciplinary solutions that take into account the potential
mutual effects and interactions among the different dimensions of future IoT systems. A suitable platform is required for an accurate
and realistic evaluation of such solutions. This paper presents a prototype developed in the context of the EPSRC/eFutures-funded
project “Internet of Surprise: Self-Organising Data”. The prototype has been designed to effectively enable the joint evaluation and
optimisation of multidisciplinary aspects of IoT systems, including aspects related with hardware design, communications and data
processing. This paper provides a comprehensive description, discussing design and implementation details that may be helpful
to other researchers and engineers in the development of similar tools. Examples illustrating the potentials and capabilities are
presented as well. The developed prototype is a versatile tool that can be used for proof-of-concept, validation and cross-layer
optimisation of multidisciplinary solutions for future IoT deployments.

Keywords: Internet of Things, hardware design, communications, data processing, prototyping, experimentation.

1. Introduction

Communication networks no longer connect just people, but
are evolving into billions of interconnected smart devices (sen-
sors, controllers, machines, autonomous vehicles, drones, etc.)
(Atzori et al., 2014), with embedded electronics and a num-
ber of common basic functionalities (communications and net-
working protocols, operating systems and software) that enable
automatic collection and exchange of data (possibly with little
or no human intervention). This concept, known as the Inter-
net of Things (IoT) (Atzori et al., 2010; Al-Fuqaha et al., 2015;
Mattern and Floerkemeier, 2010), virtually allows any object to
be sensed and controlled remotely across existing network in-
frastructure, creating unlimited opportunities for the integration
of the physical world into automated computer-based systems.

IoT is seen as the next stage of the information revolution
and, with an estimated 50 billion devices connected by 2020
(Evans, 2011), it is becoming a reality with the potential to rev-
olutionise our lives through many new generation smart appli-
cations, such as smart cities, smart homes, smart e-healthcare,
smart transportation, smart energy management, and smart se-
curity (Zanella et al., 2014), which will lead to improved ef-

∗Corresponding author.
Email addresses: M.Lopez-Benitez@liverpool.ac.uk

(Miguel López-Benítez), tim.drysdale@open.ac.uk
(Timothy D. Drysdale), s.hadfield@surrey.ac.uk (
Simon Hadfield), mohamedismaeel.maricar@nottingham.ac.uk
(Mohamed Ismaeel Maricar)

ficiency and socio-economic benefits (Vermesan and Friess,
2013; Fleisch, 2010; Perera et al., 2014).

Future IoT systems will be multidisciplinary in nature and
this will pose important challenges. Some relevant disciplines
that will play a key role in future IoT systems are discussed
below along with problems that still need satisfactory solutions:

1. Hardware design. Future IoT systems will require the
ability to add IoT capability to almost any object, not
only smart but also dumb objects. These interconnected
devices need to be small and inexpensive. Novel hardware
designs are required to enable ultra-compact wireless
sensors (approximately the size of a human thumb or
smaller). The size of the hardware associated to signal and
data processing can be reduced with state-of-the-art nano
scale technology. However, reducing the size of other
components can be more challenging (this is particularly
true for certain elements such as antennas, whose size
can be constrained by the frequency of operation). New
antenna designs that can be attached to almost any small
object are required. Soft antennas and stretchable anten-
nas are some particularly promising solutions, however
they require a detailed research study in the context of
IoT. Moreover, IoT devices need to be energy efficient.
In industrial applications, IoT devices will often need to
be able to run for at least ten years on a single battery.
The battery size (and consequently its capacity) may be
constrained by the size of the IoT object. Moreover, if
there are to be billions or trillions of IoT devices then it

Preprint submitted to Journal of Networking and Computer Applications November 11, 2016

mlopben
Typewritten Text
© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/

will be impossible to use batteries for every single IoT
device (it would be impractical, costly, and unsustainable).
Energy harvesting techniques are particularly relevant in
the context of IoT (Kamalinejad et al., 2015; Gorlatova
et al., 2015), which require novel tailored antenna and
circuit designs (Bi et al., 2015; Piñuela et al., 2013).

2. Communications. A significant portion of IoT devices
will be based on low-cost hardware with low computation
capabilities and inaccurate clocks. Novel communica-
tion protocols with low complexity that can maintain
reliable links in such scenario are required. Current
communication networks are designed and optimised for
the traffic generated by a moderated number of users of
high data-rate services (e.g., video streaming, interactive
gaming, enhanced web browsing). IoT is expected to
introduce a much higher number of users (devices)
generating low data-rate traffic, which will represent a
radical change in current network traffic patterns. Existing
network infrastructures and communication protocols
may be inefficient for these new traffic patterns and new
protocols and solutions will be required. Moreover, many
devices will be connected to the IoT via wireless links
based on a wide variety of radio access technologies.
Forecasts of billions of IoT devices in the foreseeable
future along with crowded frequency allocation charts
claim for extremely efficient ways to access the spectrum.
The introduction of spectrum sharing approaches based on
dynamic spectrum access and cognitive radio constitutes
a promising solution in the context of IoT, however this
requires the identification of appropriate frequency bands
of operation and the development of reliable mechanisms
to enable interference-free coexistence among radio
communication systems.

3. Data processing. With billions of devices generating data,
efficient data processing methods are of paramount impor-
tance. Given the expected size and complexity of future
date sets, traditional data processing approaches are un-
likely to be suitable. Novel data processing solutions to ex-
tract relevant and useful information, possibly by looking
at potential relations between apparently unrelated data,
may lead to the discovery of surprising connections with
the potential to provide new applications. In this context,
it is necessary not only to review existing techniques from
diverse domains (e.g., data mining, artificial intelligence,
machine learning, database systems, statistics), analysing
their suitability in the context of large-scale IoT, but also
develop new tailored solutions.

When facing the above mentioned challenges, it is impor-
tant to develop solutions that can address these problems not
only individually but also from a multidisciplinary perspective,
taking into account the possible mutual effects and interactions
among the considered dimensions (i.e., hardware design, com-
munications, and data processing) and providing a joint system
optimisation. An accurate and realistic evaluation of such solu-

tions requires a suitable platform. While mathematical analyses
and software simulations may be suitable for the evaluation of
certain individual aspects of the system, the development of an
adequate prototype would enable a comprehensive and more
realistic performance evaluation, including possible relations
among multidisciplinary aspects of the system that would be
difficult or impossible to capture with mathematical analyses or
software simulations, and enabling a joint optimisation.

In this context, this paper presents a prototype developed in
the framework of the EPSRC/eFutures-funded project “Internet
of Surprise: Self-Organising Data”. This prototype has been
designed to effectively enable the joint evaluation of multidis-
ciplinary aspects of future IoT systems. In particular, this paper
provides an in-depth description of the hardware and software
components, discussing design and implementation details that
may be helpful to other researchers and engineers in the de-
velopment of similar tools. Examples illustrating the poten-
tials and capabilities of the developed platform are presented as
well. The developed prototype provides researchers and engi-
neers with a fully functional tool for proof-of-concept, valida-
tion and cross-layer optimisation of multidisciplinary solutions
before bringing them to real IoT deployments.

The rest of this paper is organised as follows. First, Sec-
tion 2 provides a general overview of the developed prototype.
The three main parts or subsystems integrating the prototype
are then described in detail in Sections 3, 4 and 5. Some ex-
amples illustrating the capabilities and studies enabled by the
developed prototype are presented in Section 6. A discussion of
the development process of the prototype along with problems
faced and lessons learned that may be helpful in the develop-
ment of similar tools is provided in Section 7. Finally, Section
8 summarises and concludes the paper. The abbreviations used
in this paper are listed in Table 1.

2. Overview

The developed prototype is composed of three main parts or
subsystems as shown in Fig. 1, namely an IoT subsystem, a
coexisting radio subsystem, and a spectrum monitoring subsys-
tem. The IoT subsystem emulates an IoT network composed
of a number of IoT sensor nodes generating data that are gath-
ered and processed by a central processing unit. The coexisting
radio subsystem represents an additional radio communication
system composed of a transmitter and two receivers, all of them
operating in the same frequency band as the IoT subsystem (this
subsystem may coexist in an interference-free manner with the
IoT subsystem or generate certain interference patterns). Fi-
nally, the spectrum monitoring subsystem is used to monitor
the spectral activity in the frequency band shared by the other
two subsystems. Sections 3, 4 and 5 provide a more detailed
description of each subsystem, including the motivation, design
and hardware/software implementations.

3. IoT Subsystem

The IoT subsystem emulates an IoT network, including a
number of nodes equipped with different types of sensors that

2

Table 1: List of abbreviations used in this paper.

ACLR Adjacent Channel Leakage Ratio
ACPR Adjacent Channel Power Ratio
AMQP Advanced Message Queuing Protocol

API Application Programming Interface
CoAP Constrained Application Protocol
CSI Camera Serial Interface

DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
DSI Display Serial Interface
FFT Fast Fourier Transform

GPIO General-Purpose Input/Output
I2C Inter-Integrated Circuit
IoT Internet of Things
IP Internet Protocol
I/Q In-phase/Quadrature
ISM Industrial, Scientific and Medical
ISO International Organization for Standardisation

MIMO Multiple-Input Multiple-Output
MQTT Message Queuing Telemetry Transport
PCB Printed Circuit Board
PIR Passive Infra-Red
PLL Phase-Locked Loop

QPSK Quadrature Phase Shift Keying
RGB Red/Green/Blue
RSS Received Signal Strength
SCL Serial Clock Line
SDA Serial Data line
SDR Software-Defined Radio
SISO Single-Input Single-Output
SPI Serial Peripheral Interface

SRRC Square Root Raised Cosine
SSID Service Set IDentifier
TCP Transmission Control Protocol

UART Universal Asynchronous Receiver/Transmitter
UHD USRP Hardware Driver
USB Universal Serial Bus

USRP Universal Software Radio Peripheral
WiFi Wireless Fidelity

WLAN Wireless Local Area Network
XMPP eXtensible Messaging and Presence Protocol

generate a diverse variety of data and a central processing unit
that gathers and processes the data generated by the sensor
nodes in order to extract relevant information. This is the main
subsystem of the prototype since all IoT-related functions are
implemented and evaluated in this subsystem.

3.1. Hardware Implementation
The central processing unit is a conventional computer that

performs advanced data-processing operations on the raw data
generated by the sensor nodes. This computer is the core of
the IoT subsystem and where the intelligence is implemented
(more details will be provided in Section 3.2).

The IoT sensor nodes are equipped with a wide variety of
sensors that generate different types of data. The current im-
plementation comprises four IoT sensor nodes (from Node A
to Node D), however the number of nodes can be extended in a
straightforward manner as the overall IoT subsystem is in fact

Central
processing

unit

Node A

IoT subsystem

Computer Transmitter

Receiver

Receiver

Coexisting radio
subsystem

Computer Spectrum

Spectrum monitoring
subsystem

Computer

Computer

analyser

Node B Node C Node D

Figure 1: Overview of the developed prototype.

designed to be easily scalable (see Section 7 for a detailed dis-
cussion). Two options were considered in the design of the sen-
sor nodes, namely a scenario-specific design with a particular
application scenario in mind where the nodes would include a
specific set of sensors as required by the considered scenario,
and a scenario-agnostic design where the sensor nodes would
include a generic set of sensors without any particular scenario
in mind. The latter option was finally selected since it was con-
sidered to be adequate as a proof-of-concept of the envisaged
IoT system and it would not constrain the applicability of the
prototype in other possible studies as it might be the case of the
former option. Consequently, the sensor nodes were equipped
with an arbitrary set of sensors embracing a wide variety of
physical parameters.

Fig. 2 shows one of the four implemented sensor nodes. Each
sensor node is composed of six physical sensors (elements 1
to 6) connected to a Raspberry Pi minicomputer (element 7),
which connects to the central processing unit by means of a
USB wireless/WiFi adapter (element 8). The sensors included
in each IoT node in the current implementation are as follows:

1. Momentary capacitive touch sensor based on the
AT42QT1010 sensor (Adafruit 1374). This sensor pro-
vides a logical high output when touched by the user, and
a logical low output otherwise. This sensor can be used to
generate on/off patterns manually.

2. Toggle capacitive touch sensor based on the AT42QT1012
sensor (Adafruit 1375). This sensor alternates between
high and low output states when touched by the user and
can also be used to generate on/off patterns manually.

3. Passive infra-red (PIR) motion sensor HC-SR501. This
sensor provides a logical high output when motion is
detected within a range of 7 metres and a 120-degree
angle. Once triggered the output remains high for an
interval of 5 seconds (adjustable).

4. Light sensor based on the TSL2591 sensor (Adafruit
1980). This high-range luminosity sensor contains infra-
red and full-spectrum diodes that can provide luminance

3

1

2

3

4

5

6

7

8

Figure 2: IoT sensor node.

measurements (in lux) of the infra-red and full-spectrum
light. Both values can be used to compute the luminance
in the human-visible spectrum (as the difference between
both) and the corresponding luminosity perceived by the
human eye (using an empirical formula). In practice, this
physical sensor integrates four logical sensors.

5. Barometric pressure, altitude and temperature sensor
based on the MPL3115A2 sensor (Adafruit 1893). This
sensor contains a barometric pressure sensor that provides
pressure measurements (in Pascals) and the equivalent
altitude (in metres) along with temperature measurements
(in Celsius).

6. Raspberry Pi camera module version 2, based on the
Sony IMX219 8-megapixel image sensor. This module
can provide 3280×2464 pixel static images and supports
1080p30, 720p60 and 640×480p90 video.

The six physical sensors are connected to a Raspberry Pi
2 Model B (element 7 in Fig. 2) as shown in Fig. 3. Ex-
cept the camera module, which uses its own camera/display se-
rial interface (CSI/DSI), the rest of sensors are connected via
the general-purpose input/output (GPIO) pins. While sensors
1-3 provide simple logical binary (high/low) outputs and can
be connected to standard logical input pins, sensors 4-5 are

VDD

GND

OUT

VDD

GND

OUT

PIN #11

PIN #13

Vin

GND

SCL

SDA

Vin

GND

SCL

SDA

PIN #3

PIN #5

VDD

GND

OUT
CSI/DSI

C
SI

/D
SI

P
IN

 #
4

P
IN

 #
6

P
IN

 #
1

2

Passive
Infrared (PIR)

Motion Sensor
(HC-SR501)

Momentary
Capacitive

Touch Sensor
(AT42QT1010)

Toggle
Capacitive

Touch Sensor
(AT42QT1012)

Barometric
Press/Alt/Temp

Sensor
(MPL3115A2)

I2C address:
0x60

Digital Light
Sensor

(TSL2591)

I2C address:
0x29

PIN #1

PIN #9

PIN #14

PIN #20

PIN #25

PIN #17

Raspberry Pi
camera

module v2

Raspberry
Pi 2

Model B

Figure 3: Connection of physical sensors to the Raspberry Pi 2 Model B.

based on the I2C bus protocol and are therefore connected to
the SDA/SCL pins. All sensors are powered from 3.3-volt pins
so that the logical outputs provide a voltage compatible with
that of the GPIO pins (i.e., 0 volts for logical low and 3.3 volts
for logical high), except the motion sensor which requires at
least 5 volts (but provides a 0/3.3-volt output). Table 2 shows
the maximum current consumption of each sensor. Due to the
limitations of the internal 3.3-volt voltage regulator of the Rasp-
berry Pi, the GPIO pins can safely draw a maximum of 50 mA
distributed across all 3.3-volt pins (including input, output, and
3.3-volt power pins). The maximum current consumption of
the sensors connected to these pins (1, 2, 4 and 5) is around 6
mA, and the current through any individual pin does not exceed
the 16 mA limit. The motion sensor is powered via a 5-volt pin
and the camera module is powered via the CSI/DSI interface;
for these two sensors there is no current limit other than that of
the main power supply. The maximum current consumption of
the Raspberry Pi 2 Model B board under stress conditions (in-
cluding USB devices) is 820 mA1, which along with the camera
module (250 mA), motion sensor (65 mA) and rest of sensors (6
mA), leads to a maximum consumption of 1141 mA per sensor
node (2000 mA power supply is used).

IoT sensor nodes are identical and implemented as detailed
above. The connectivity between the IoT nodes and the central
processing unit is accomplished by means of IEEE 802.11 wire-
less links. To this end, the IoT nodes and the central processing
unit are equipped with 2.4 GHz USB wireless adapters Edimax
EW-7811UN (element 8 in Fig. 2), which offer a wide range
of configuration options for a fine tuning of the radio opera-

1http://www.raspberrypi.org/help/faqs/#powerReqs
∗Obtained by interpolating the consumption values provided in the datasheet

(378.5µA@3V and 542.5µA@4V, i.e. 427.7µA@3.3V) and including the cur-
rent consumption of the LED (1.6mA).
†Obtained by interpolating the consumption values provided in the datasheet

(59µA@3V and 88µA@4V, i.e. 67.7µA@3.3V) and including the current con-
sumption of the LED (1.6mA).
‡Maximum current consumption when actively sensing.
§Current consumption during acquisition and conversion.

4

Table 2: Maximum current consumption of each sensor.

Sensor Maximum (mA)

Momentary touch sensor (1) 2.03 †

Toggle touch sensor (2) 1.67 ‡

Light sensor (4) 0.4 §

Press. / alt. / temp. sensor (5) 2 ¶

Motion sensor (3) 65

Camera (6) 250

tion conditions. The prototype offers the possibility to employ
other antennas by means of an external adapter (Alfa Network
AWUS036H), which provides an SMA connector for external
antennas (the current implementation uses whip, microstrip and
flexible PCB antennas but any antenna design can actually be
employed). This feature is particularly appealing when evaluat-
ing a particular antenna design and its potential impact on other
components of the system, both at the link and system level.
For example, flexible antennas may be suitable for certain IoT
devices (e.g., wearables) but their radiation pattern, directivity
and other properties may be affected by the different positions
to which they may be subjected, which may also have an impact
on the quality of the wireless link (and interference patterns)
and affect ultimately the data processed at the application layer.

3.2. Software Implementation

The IoT network can be configured in different ways in order
to meet particular needs. Communication between the central
processing unit and the IoT sensor nodes relies on Matlab fea-
tures for remote access of Raspberry Pi computers, which is
based on TCP/IP. This means that the IoT sensor nodes em-
ployed in the prototype could be virtually anywhere on the
world and would be able to communicate with the central pro-
cessing unit as long as they have a valid IP address. For conve-
nience, the IoT network in the prototype is configured as a local
ad-hoc network with private IP addresses where the central pro-
cessing unit acts as an access point to which the IoT nodes are
connected as terminals. This is a simple and convenient setup
for experiments in a laboratory environment and moreover rep-
resents a realistic configuration since many future IoT devices
are likely to be connected to the Internet via wireless access
points or similar network infrastructures.

The central processing unit runs Microsoft Windows 7 oper-
ating system and employs the Microsoft Virtual WiFi Miniport
Adapter technology to provide connectivity as an access point
to the IoT sensor nodes. This technology enables a physical
wireless adapter to be virtualised into several logical adapters,
which can be useful for example to access several WiFi net-
works with the same physical adapter or to share an Internet
connection with other wireless devices. This technology is used
here to configure the central processing unit as an access point

to which the IoT sensor nodes can connect, thus enabling the
direct communication among nodes in the IoT network.

The central processing unit is configured as an access point
by running the following two commands (as administrator):

1) netsh wlan set hostednetwork mode=allow
ssid=IoT-testbed key=eFutures
2) netsh wlan start hostednetwork

The first command configures the central processing unit as
an access point hosting a network with name/service set iden-
tifier (SSID) IoT-testbed and access password eFutures.
The second command starts the network. Once the hosted net-
work has been started, any WiFi-equipped device will be able
to connect to the network IoT-testbed (using the password
eFutures) and communicate with other devices connected to
the same network. This network is used to enable commu-
nication between the central processing unit and the IoT sen-
sor nodes. For this to be possible, the IoT sensor nodes are
configured to automatically search and connect to this net-
work at startup. This is easily accomplished by adding to the
file /etc/wpa_supplicant/wpa_supplicant.conf of the
Raspbian operating system running on the IoT sensor nodes the
following lines:

network={
ssid="IoT-testbed"
psk="eFutures"
}

This information will be employed by the IoT sensor nodes to
connect automatically to the IoT network hosted by the cen-
tral processing unit at startup. By default, this network will use
private IP addresses in the range 192.168.137.0/24, where
the default gateway IP address 192.168.137.1 is assigned to
the central processing unit (since Window’s hosted network
functionality is intended to share a computer’s Internet con-
nection with other wireless devices) and the rest of network
nodes (i.e., the IoT sensor nodes) are assigned random IP ad-
dresses by the central processing unit via Dynamic Host Con-
figuration Protocol (DHCP). To facilitate the identification of
the IoT nodes in the network, they are configured with pre-
defined host names following the format RBPi2-Node-X where
X can be A, B, C or D. Since a Windows hosted network will have
by default a domain name mshome.net, the IoT sensor nodes
can be accessed remotely by their complete host/domain name
RBPi2-Node-X.mshome.net regardless of the IP address as-
signed by the central processing unit - the Domain Name Sys-
tem (DNS) protocol will translate each host/domain name to
the corresponding IP address. This approach removes the need
to configure and manage fixed IP addresses, which may lead to
some issues for example when adding or removing nodes.

Communication between the central processing unit and the
IoT sensor nodes currently relies on Matlab functions for re-
mote access of Raspberry Pi computers. This feature of Matlab
simplifies the remote access to the IoT sensor nodes, however
it has some limitations, in particular regarding the ability of the
IoT nodes to initiate or trigger certain events and communi-
cations. While the current implementation based on Matlab’s

5

communications features is sufficient for experimentation and
proof-of-concept, future plans to extend the prototype include
the implementation of communication protocols that remove
the above mentioned limitations such as the Message Queuing
Telemetry Transport (MQTT) protocol. MQTT is an ISO stan-
dard (ISO/IEC PRF 20922) (ISO/IEC, 2016) messaging trans-
port protocol based on a client-server publish-subscribe model
that runs on top of TCP/IP and is light weight, open, simple,
and designed to be easy to implement, which is particularly im-
portant in low-cost low-complexity IoT nodes where a small
code footprint is required and/or network bandwidth may be
limited. A variation for embedded devices on non-TCP/IP net-
works, such as ZigBee, is available as well (Stanford-Clark and
Truong, 2013). Other protocols include Advanced Message
Queuing Protocol (AMQP) (ISO/IEC, 2014; Vinoski, 2006),
Constrained Application Protocol (CoAP) (Shelby et al., 2014),
and eXtensible Messaging and Presence Protocol (XMPP)
(Saint-Andre, 2011a,b, 2015, 2014b,a).

Once network connectivity is established, communication in
the current implementation takes place on a point-to-point basis
between the central processing unit and each of the IoT sensor
nodes as depicted in Fig. 1. While it would be possible to emu-
late other network topologies (e.g., forwarding a message from
one IoT sensor node to another via the central processing unit),
this is currently not needed and, as mentioned above, the current
implementation is sufficient for experimentation and proof-of-
concept. Nevertheless, the implementation of communication
protocols as the ones mentioned above may extend the proto-
type capabilities by enabling direct node-to-node links without
involving the central processing unit.

Communication between the IoT sensor nodes and the cen-
tral processing unit takes place via direct wireless links. In a
real IoT network, certain fixed network infrastructure is likely
to be present between both, which may result in packet delays
and packet losses depending on the network congestion situa-
tion. A computer could be introduced in the prototype between
the IoT sensor nodes and the central processing unit to capture
TCP/IP packets sent by the IoT sensor nodes and selectively
delay or discard some of them in order to reproduce network
congestion situations. However, a simpler approach to achieve
a similar effect is to selectively delay (in the central process-
ing unit) the data reports from the IoT nodes before process-
ing them, or discard them, according to a suitable packet de-
lay/loss model (Lakshman and Madhow, 1997; Altman et al.,
2005), which removes the need for an additional computer.

The central processing unit first establishes a TCP/IP con-
nection with each IoT sensor node. Once an individual net-
work connection is established with each node, the central pro-
cessing unit configures (for each node) the GPIO pins taking
into account the connections shown in Fig. 3, creates an I2C
connection with the light and pressure/altitude/temperature sen-
sors based on their I2C addresses (see Fig. 3), configures the
I2C sensors (in particular: the gain for the light sensor can
be configured as low/1x, medium/25x, high/428x and maxi-
mum/9876x; the integration time of the light sensor can be con-
figured from 100 ms for bright light to 600 ms for dim light
in increments of 100 ms; and the oversampling ratio for the

pressure/altitude/temperature sensor can be configured from 1
to 128, which leads to minimum time intervals between sam-
ples from 6 to 512 ms), and finally creates a connection with
the cameras and configures their parameters (resolution, image
quality, rotation, horizontal/vertical flip, frame rate, brightness,
contrast, saturation, sharpness, exposure/exposure compensa-
tion modes, and image effects).

Once IoT sensor nodes are configured, the central process-
ing unit can start gathering data from the sensors. Each sen-
sor node can provide camera snapshots and videos in addition
to the reading from a total of ten sensors, namely momentary
touch sensor state, capacitive touch sensor state, motion detec-
tion state, luminance (in lux) in the infra-red/human-visible/full
spectrums and human eye perception (based on an empirical
formula), pressure (in Pascals), altitude (in metres), and temper-
ature (in Celsius). Note that this represents a network with an
effective total of 40 sensors (distributed among 4 sensor nodes)
in addition to the picture/video sensors of each node. In order to
emulate different scenarios that can be found in IoT networks,
the prototype offers the possibility to gather data in the follow-
ing ways:

• Synchronous full data reporting. In this mode of opera-
tion, the central processing unit collects data periodically
from all sensors in all nodes. A configurable data polling
period determines the time interval between two consec-
utive data polling events. In every data polling event, the
central processing unit requests a reading from each of the
10 sensors installed in each of the 4 IoT sensor nodes. This
mode of operation emulates an IoT network where all sen-
sors provide periodic data reports in a synchronous way.

• Synchronous partial data reporting. This mode of opera-
tion is similar to the synchronous full data reporting mode,
with the exception that only a certain percentage (lower
than 100%) of the sensors available in the network pro-
vide a data report in every periodic data polling event (if
the percentage is configured as 100%, then this mode of
operation is equivalent to the synchronous full data re-
porting mode). In this mode, the central processing unit
computes first the number of sensors to be polled (i.e., the
number of data polling events) based on the selected per-
centage of sensors and the total number of sensors avail-
able in the network. In each data polling event, one of the
four IoT sensor nodes is selected randomly (by generating
a random integer number from 1 to 4) and then one of the
ten sensors available in that node is selected randomly (by
generating a random integer number from 1 to 10). The
process is repeated until the required number of sensors
per data polling event is reached. This mode of operation
emulates an IoT network where sensors provide periodic
data reports in a synchronous way but not all sensors have
new data to report in every data reporting event.

• Asynchronous data reporting. In this mode of operation
the time instants of the data reporting events are individu-
ally decided for each sensor available in the network based
on a Poisson point process with an individually config-

6

urable interarrival time for each sensor, or another suit-
able model. The central processing unit checks constantly
the polling time scheduled for each sensor in the network.
When the polling time for a particular sensor is reached,
the sensor is polled (i.e., a data report is provided by the
sensor) and the next polling time is generated based on
the corresponding Poisson point process or the employed
model. This mode of operation emulates an IoT network
where sensors provide data reports asynchronously.

These three data reporting modes enable a wide variety of net-
work traffic conditions and, subsequently, many interesting ex-
periments. For example, consider the case of a temperature sen-
sor that is configured to provide a new data report (in this case,
a new temperature reading) every time the temperature differs
from the last data report by ±1◦C. In this case a new data packet
would be transmitted through the IoT network every time a rel-
ative temperature change of ±1◦C occurs. This setup would be
useful in the development of traffic models for IoT networks as-
sociated to physical magnitudes such as temperature, pressure,
light, human motion patterns, etc. Moreover, depending on the
underlying communication protocol (e.g., MQTT over TCP/IP)
this would also lead to a certain radio transmission pattern in the
radio interface (which could be captured by the spectrum mon-
itoring subsystem explained in Section 5) that can also be mod-
elled and characterised for the development of efficient methods
to avoid interference and enable spectral coexistence with other
existing radio communication systems (as explained in more
detail in Section 4). These are just some examples of the type
of experiments in the context of IoT enabled by the developed
prototype. Detailed examples will be provided in Section 6.

The data collected from the sensors available in the network
is processed in the central processing unit, where the intelli-
gence is implemented, using Matlab. Matlab was selected given
its comprehensive set of powerful and versatile functions that
enable sophisticated data operations and simplifies the process-
ing of complex data sets. Some illustrative examples on novel
data processing methods evaluated with the developed proto-
type are provided in Section 6.1.

When an experiment is finished, the prototype is shut down
by following two steps. First, the IoT sensor nodes are shut
down remotely from the central processing unit by running the
following command for each node:

start /B plink.exe -l pi -pw raspberry
RBPi2-Node-X.mshome.net sudo poweroff

where X is replaced with A, B, C and D. This command uses
Plink2 (a free and open-source command-line network connec-
tion tool) to shut down each node individually. Finally, the IoT
network is stopped by running the command:

netsh wlan stop hostednetwork

which stops the hosted network in the central processing unit.

2http://www.chiark.greenend.org.uk/~sgtatham/putty/
download.html

4. Coexisting Radio Subsystem

As mentioned in Section 1, a significant amount of devices
are expected to be connected to the IoT via wireless links us-
ing different types of radio access technologies such as IEEE
802.11 WLAN (WiFi) networks or mobile communication net-
works. Forecasts of billions of IoT devices in the foreseeable
future indicate that there will be a high demand for spectrum,
however the frequency allocation charts of most countries are
currently overcrowded. In this context, spectrum sharing ap-
proaches based on dynamic spectrum access and cognitive radio
techniques are particularly promising in the context of IoT and
the availability of adequate platforms to assess the performance
of new spectrum access approaches is of great importance. The
developed prototype includes a coexisting radio subsystem op-
erating in the same frequency band as the IoT subsystem, i.e.,
the 2.4 GHz Industrial, Scientific and Medical (ISM) band.
While the IoT subsystem is constrained to the IEEE 802.11
communication standard, the coexisting radio subsystem relies
on a flexible design based on Software-Defined Radio (SDR)
devices that can virtually implement any radio communication
technology. This subsystem can be configured to coexist in an
interference-free manner with the IoT subsystem or generate
certain interference patterns. This subsystem extends signifi-
cantly the range of experiments that can be conducted with the
developed prototype by introducing a spectrum-sharing dimen-
sion and enabling the study of interactions of an IoT network
with other communication systems as well as the analysis of
the resulting impact at higher layers.

4.1. Hardware Implementation

The coexisting radio subsystem is composed of one transmit-
ter and two receivers. The transmitter (receiver) is implemented
with USRP B200 (B210) SDR devices, respectively. While
the USRP B200 is equipped with one transceiver, the USRP
B200 includes two transceivers, which enables the implemen-
tation and evaluation of diversity reception techniques at the
receivers. Moreover, one of the USRP B210 units can be used
as a transmitter in order to introduce Multiple-Input Multiple-
Output (MIMO) techniques (the two USRP B210 channels can
be used as two synchronised transmitters and/or receivers, thus
enabling a full 2×2 MIMO system, or higher order if synchro-
nised with other units).

In reception, USRP devices capture and amplify the radio-
frequency signal received by the antennas (dual-band 2.4/5
GHz λ/2 whip antennas, model Mobilemark PSKN3-24/55S),
performs down-conversion to a lower intermediate frequency at
which the signal is sampled at a configurable sample rate up
to 61.44 MS/s with a resolution of 12 bits, and decimates the
samples to baseband before sending them (in complex I/Q for-
mat) to a host computer via a USB connection. A computer
implementing the receiver in software captures and processes
the signal samples. In transmission, the computer implements
in software a transmitter that generates signal samples, which
are interpolated by the USRP to the appropriate intermediate
frequency, converted to the analog domain and up-converted to

7

the radio-frequency for transmission. USB 3.0 connections al-
low up to 56 MHz of instantaneous bandwidth in SISO (1x1)
mode and up to 30.72 MHz in MIMO (2x2) mode (USB 2.0
connections allow a maximum rate of 8 MS/s and an approxi-
mate maximum usable bandwidth of 7-8 MHz).

When experiments are conducted in an indoor environment
(in particular inside the same room), transmission/reception
power limitations should be observed to ensure that all devices
operate under safe conditions. The USRP B200/B210 can trans-
mit at a maximum output power of 20 dBm and tolerates a max-
imum input power of -15 dBm. The receiver might be damaged
if placed too close to the transmitter. A radio propagation model
suitable to the scenario of operation can be used to determine
the minimum separation distance between transmitter and re-
ceivers. According to the indoor pathloss model of the recom-
mendation ITU-R P.1238-8 (ITU-R, 2015), for a frequency of
operation of 2400 MHz (lowest point and worst case of the 2.4
GHz ISM band), a power loss coefficient of 30 (office environ-
ment at 2.4 GHz), and devices operating in the same floor, a
distance of 1 metre (minimum distance for which the model is
valid) provides an attenuation of 40 dB, which is greater than
the minimum 35 dB required to guarantee a safe operation at
maximum transmission power.

4.2. Software Implementation
USRP is a very flexible SDR platform that supports many

popular software applications such as GNU Radio, LabVIEW,
MATLAB and Simulink as well as the development of tailor-
made solutions based on the API of the USRP Hardware Driver
(UHD), which provides native support for C++. There exists a
large number of open-source projects embracing a broad range
of radio technologies, services and applications, which could
be employed as a coexisting radio subsystem in the prototype.

For proof-of-concept studies and demonstrations, the coex-
isting radio subsystem currently implements in Matlab a simple
communication system designed for the transmission of a unidi-
rectional and constant flow of data. Source data are interpreted
as a sequence of bytes that are converted into bits for transmis-
sion using Quadrature Phase Shift Keying (QPSK) modulation.
Data are transmitted in frames of 200 bits. The first 26 bits
are header bits used for frame synchronisation at the receiver.
The header bits are obtained by oversampling by two a 13-bit
Barker code (i.e., repeating the Barker code bits twice), which
ensures the transmission of the Barker code on both in-phase (I)
and quadrature (Q) components of the QPSK-modulated signal.
The remaining 174 bits are used for data transmission and can
be configured in a flexible manner.

Fig. 4 shows an example of frame format for the transmis-
sion of true-colour (24-bit) images (although the same format
can be used or easily adapted for the transmission of any other
type of data). A true-colour image with a height of Nh pixels
and a width of Nw pixels can be represented as a Nh×Nw×3 ma-
trix containing three sub-matrices, each of which represents the
corresponding values for the red (R), green (G), and blue (B)
colour components for each pixel. Each pixel value is coded
with 8 bits (numerical range from 0 to 255). Thus, the trans-
mission of one pixel requires 24 bits. Each frame contains 5

Preamble

Payload

Pixel k+1 Pixel k+2 Pixel k+3

26 bits

165 bits

24 bits 24 bits 24 bits

8 bits

G

8 bits 8 bits

Padding

9 bits

R B

Pixel k Pixel k+4

Hamming(15,11)

Data

174 bits

Scrambling

24 bits 24 bits

Figure 4: Link level frame format for the transmission of images.

consecutive pixels as shown in Fig. 4, which are read from
the source image left-to-right and top-to-bottom. The 5 pixels
(120 bits) are encoded with a Hamming(15,11) code to protect
the information against transmission errors. This code has a
rate of 11/15 ≈ 0.73 and outputs 165 bits, which constitutes
the payload of the frame. The remaining 9 bits are padded
with random bits. The payload and padding bits are scrambled
over the data field of the frame using the generator polynomial
p(x−1) = 1+x−1+x−2+x−4. The purpose of this is twofold. First,
transmission errors typically occur in bursts of consecutive bits
and the effectiveness of error-correcting codes in general de-
creases when the erroneous bits are close to each other. The
descrambling performed by the receiver spreads the erroneous
bits, thus increasing the effectiveness of the employed error-
correcting code. Secondly, scrambling guarantees a balanced
distribution of zeros and ones, which facilitates the timing re-
covery at the receiver.

Frames are modulated using QPSK (with Gray mapping), up-
sampled by a factor of 4, and filtered with a Square Root Raised
Cosine (SRRC) filter (to minimise inter-symbol interference)
with a roll-off factor of 0.5 and a span of 10 symbols (i.e., 40
samples). The filtered samples are sent to the USRP transmitter,
which is configured to operate at a sample rate of 20 MS/s.
Since this sample rate may be excessive for real-time operation
with an average computer, the output of the SRRC filter is set
at 200 kS/s and the samples are interpolated by a factor of 100.
This leads to an effective data rate of 50·103 QPSK-modulated
symbols per second (i.e., 100 kbps), which can be increased for
powerful computers by reducing the interpolation factor. The
USRP transmitter operates at a configurable frequency within
the 2.4 GHz ISM band, which can be selected (along with the
transmission power) to generate specific interference patterns.

In order to recover the original image, the receiver needs
not only to revert the operations performed by the transmitter
but also compensate the impairments of the wireless channel.
To achieve this, the receiver includes Fast Fourier Transform
(FFT)-based coarse frequency compensation, Phase-Locked
Loop (PLL)-based fine frequency compensation, timing recov-
ery with fixed-rate re-sampling and bit stuffing/skipping, frame
synchronisation, and phase ambiguity resolution (implementa-

8

tion details are omitted for brevity, see Rice (2008) for details).
Moreover, the receiver also needs to identify the beginning of
a new image (i.e., the pixel on the top-left corner of the im-
age). In order to facilitate this, the transmitter sends a prede-
fined number of frames with the 120 bits of the message set to
zero to indicate the beginning of a new image. The first non-
zero frame corresponds to the first 5 pixels of the image. Note
that this sequence of zeros is equivalent to 5 consecutive black
pixels (the black colour is encoded as [0,0,0] in the RGB space).
Therefore, an image with many black pixels may be incorrectly
decoded at the receiver. To prevent this problem, all zero val-
ues in the original image are replaced with a value of 1 (the
difference is not noticeable to the human eye).

The implemented coexisting radio subsystem has deliber-
ately been kept as generic and simple as possible in order to
enable the transmission of any type of data (images, text, files,
etc.) in real-time (which can be achieved with an adequate con-
figuration and using Matlab compiler to produce code for accel-
erated execution). While other more sophisticated systems are
freely available, the implemented system is enough to investi-
gate coexistence issues between IoT and legacy radio systems
operating in the same frequency band and analyse its impact
on the performance of both systems (from the physical to the
application layer) as it will be shown in Section 6.

5. Spectrum Monitoring Subsystem

The purpose of the spectrum monitoring subsystem is to
monitor and record (for off-line analysis) the spectral activity
in the frequency band shared by the other two subsystems. This
can be useful to understand how several systems and radio tech-
nologies coexist in the same frequency and identify particular
interference patterns between systems. Spectrum analysers can
provide relevant information such as effective channel occupied
bandwidth, spectral masks, Received Signal Strength (RSS),
channel power measurements for several radio technologies,
Adjacent Channel Power/Leakage Ratio (ACPR/ACLR), etc. It
can also be employed to understand how different systems react
to interference (e.g., moving to a different radio channel) or as-
sociate certain errors observed in one system at a particular time
instant with interference from another system that was active at
the same time instant.

This subsystem does not require a specific implementation
since a standard spectrum analyser can be employed. Some of
the illustrative results provided in Section 6 were obtained using
an Aaronia Spectran HF-60105 V4 X spectrum analyser with
the same antenna used by the transmitter and receivers of the
coexisting radio subsystem (dual-band 2.4/5 GHz λ/2 whip an-
tenna, model Mobilemark PSKN3-24/55S). This is a low-cost
USB spectrum analyser and despite some performance limita-
tions it is sufficient for the purposes of the prototype.

6. Illustrative Examples

This section presents some examples illustrating the poten-
tials and capabilities of the developed prototype in the study of

future IoT systems. The developed prototype is flexible enough
to embrace a wide variety of experiments in the context of IoT
systems and the examples shown in this section is just a small
subset of possible experiments. Other types of studies and ex-
periments enabled by the developed prototype, although not
shown here, are discussed in Section 1.

6.1. Smart IoT Data Processing

IoT systems will soon be overloaded by data from billions
of IoT objects. Data sets in future IoT systems are expected
to be so large and complex that traditional data processing
approaches are deemed inadequate, thus claiming for innova-
tive solutions to extract relevant and useful information. This
first example shows how the prototype can be employed to ex-
plore new smart IoT data processing methods in order to ex-
tract meaningful information from the received data. The im-
plemented system effectively counts with a high number of sen-
sors as discussed in Section 3.2 (40 sensors distributed among
4 sensor nodes in addition to the picture/video sensors of each
node). Fig. 5 shows a screenshot of one of the several visuali-
sation screens implemented in the central processing unit of the
IoT subsystem. Each subfigure shows in real-time the history of
measurements reported by each sensor node for a particular pa-
rameter (the last 20 measurements for each sensor are shown).
This shows how even a relatively low/moderate number of sen-
sors can produce a significant amount of data and highlights the
need and importance of developing adequate and efficient smart
IoT data-processing methods.

In this illustrative example, a simple yet insightful method
for data processing inspired by Information Theory is imple-
mented. An important finding of Information Theory is that the
amount of information conveyed by a message or event is in-
versely proportional to its probability of occurrence. Therefore
the more surprising (i.e., unlikely) a message is, the more infor-
mation it contains (Shannon, 1948a,b). In scenarios with high
volumes of data the value will not come from the volume of
traffic but from finding unexpected or surprising new trends or
events. If the information is exactly as expected, then it likely
needs no special handling. Only in unexpected scenarios is in-
tervention required. If data processing is constrained to find
information that is already known to look for, the potential for
surprise is reduced and the full potential output from the data
is not reached. However, by looking for emergent properties,
surprising connections may be found.

Every sensor in an IoT system can be regarded as a source
of messages that carry some information (for example, a tem-
perature sensor will send reports/messages with the measured
temperature values). Even if the measured magnitude is contin-
uous (e.g., temperature), the sensor can only emit a finite dis-
crete set of possible different messages that depends on the sen-
sor capabilities (e.g., minimum/maximum measurable tempera-
tures, resolution, and quantisation step). According to the well-
known definition from Information Theory, the amount of in-
formation I carried by a message xk from a set/alphabet {xk}

K
k=1

of K mutually-exclusive messages is inversely proportional to

9

Figure 5: Screenshot showing the real-time monitoring of all the available sensor data.

its probability of occurrence P(xk) and is formally defined as:

I(xk) = log2

(
1

P(xk)

)
(1)

where k = 1, . . . ,K, and
∑K

k=1 P(xk) = 1. The base of the loga-
rithm in (1) determines the units of I (bits for base 2). Eq. (1)
provides a quantitative definition of the amount of information
carried by a message as a function of its probability of occur-
rence (e.g., the lower the probability of occurrence of a message
is, the more information it conveys).

Eq. (1) considers the case of a single source of information
(i.e., a single sensor that generates messages from a set/alphabet
of K possible messages). The developed prototype implements
multiple sensors, each of which can be seen as an individual
source of information. To account for the multi-sensor case, (1)
can be rewritten with a slightly different notation as:

I(xm,n) = log2

(
1

P(xm,n)

)
(2)

where the index m = 1, . . . ,M identifies an individual sensor
(M is the number of sensors in the system, i.e., M = 40 in the
current prototype implementation), and the index n = 1, . . . ,Nm

identifies the message sent by the mth sensor (Nm is the number
of elements in the set of possible messages {xm,n}

Nm
n=1 for the mth

sensor; notice that each sensor can have a different set/alphabet
size Nm). The modified version of (1) shown in (2) can be used
to denote the amount of information carried by any message
generated by any of the sensors in the IoT system.

The classical definition of information given in (2) is re-
stricted to discrete sources (i.e., sources that can generate mes-
sages from a discrete set/alphabet). In sensors with discrete out-
puts (e.g., binary on/off sensors such as the touch and motion
sensors) the application of this model is straightforward (e.g.,
Nm = 2 for binary sensors). In the case of sensors with continu-
ous outputs such as temperature and pressure, the model of (2)
cannot be applied directly. However it can be applied by dis-
cretising the continuous alphabet. To this end, the continuous
range of output values of a sensor (e.g., the range of measurable
temperatures or pressures) can be divided into a discrete set of
Nm bins with a bin width wm such that:

Nm =

⌈
maxn{xm,n} −minn{xm,n}

wm

⌉
(3)

Therefore, a continuous output value xm is classified into the
nth bin when xm ∈ [minn{xm,n} + (n − 1)wm,minn{xm,n} + nwm].
The discretisation indicated in (3) enables the application of the
model of (2) to sensors with continuous outputs.

The method here proposed defines a surprisal parameter in
order to characterise the amount of information carried by a

10

particular set of output values from the set of sensors available
in an IoT system. Such characterisation is defined in terms of
the probability of occurrence of such combination of outputs
(the lower the probability of occurrence of a set of outputs, the
higher the amount of information/surprisal will be).

Consider initially the outputs/messages xm1,n1 and xm2,n2 of
two sensors with indices m1 and m2, respectively. The amount
of information carried by the event of these two sensors jointly
generating this pair of outputs/messages can be quantified by
defining a joint surprisal parameter as:

Sjoint(m1,m2) = log2

(
1

P(xm1,n1 , xm2,n2)

)
(4)

where P(xm1,n1 , xm2,n2) is the joint probability of simultaneous
occurrence of output xm1,n1 in sensor m1 and xm2,n2 in sensor m2.
While (2) quantifies the amount of information carried by any
individual message generated by any of the sensors in the IoT
system, (4) quantifies the amount of information carried by a
pair of messages simultaneously generated by two individual
sensors. Therefore (4) can be seen as an extension of (2) to
the case of any two outputs/messages generated in the IoT sys-
tem. This definition can be extended to an arbitrary number of
sensors, leading to the more general definition:

Sjoint(M) = log2

(
1

P(xm1,n1 , . . . , xm|M|,n|M|)

)
(5)

where M is a predefined set of sensor indices and |M| is the
cardinality (number of elements) of the set. This surprisal
parameter can be used to quantify how likely/expected or un-
likely/unexpected the current state of the IoT system is in terms
of the probability of occurrence of a particular set of out-
puts/messages from the set (or a subset) of IoT sensors. When a
set of outputs/messages with a low joint probability is observed,
this can be considered as a surprising event that very likely in-
dicates the occurrence of a relevant event in the environment
where the IoT sensors operate. This can be exploited to detect
and identify situations that may require some type of special
consideration and/or intervention. This novel smart data pro-
cessing approach enables the extraction of relevant information
from large volumes of data in a simple and efficient way.

It is worth noting that the definition given in (5) can lead to
practical implementation problems even for a relatively mod-
erate number of sensors. In a practical implementation, the
joint probability for M sensors can be characterised by an M-
dimensional histogram whose elements can be computed based
on the history of past outputs. If each sensor can output Nm

different values, the histogram would need to store
∏M

m=1 Nm

elements. For Nm = N ∀m the size of the M-dimensional his-
togram would be of NM elements (even for a small number of
sensors and messages per sensor, the number of elements that
would need to be processed, updated and stored would not only
be huge but would also increase exponentially with the num-
ber of sensors, M, which obviously is not scalable and there-
fore difficult to implement in some practical scenarios). This
problem can be overcome by introducing the assumption of in-
dependent sensors. If the sensors of the IoT system generate

outputs/messages that are independent of each other, the joint
probability in (5) can then be simplified to the product of the
individual probabilities of occurrence of each message, which
would lead to an independent surprisal parameter defined as:

Sindep(M) = log2

(
1∏

m∈M P(xm,n)

)
(6)

When setM is selected as the set of all sensors available in the
system (i.e.,M = {1, . . . ,M}), (6) can be expressed as:

Sindep(M) = log2

 1∏M
m=1 P(xm,n)

 (7)

The implementation of this alternative definition only requires
an individual one-dimensional histogram for each sensor, and
the total number of elements to be estimated and stored reduces
to

∑M
m=1 Nm (only MN elements in the example above, which is

scalable and therefore easily implementable in practice).
The selection of one version of the parameter or the other is

mainly determined by the number of sensors available in the
system and how they provide data reports. For example, if the
system operates in synchronous full data reporting mode where
all sensors provide a data report in every data polling event (see
Section 3.2 for details), the setM necessarily includes all sen-
sors available in the system (i.e., M = {1, . . . ,M}). In such
a case, using (5) may be computationally infeasible and (7)
would be a more convenient option. In synchronous partial data
reporting mode and asynchronous data reporting mode, where
not all sensors provide a data report simultaneously and only a
subset of sensor outputs is relevant, (5) may be used if the num-
ber of considered sensors is low, otherwise (6) would be more
convenient. If a small number of sensors is considered, then (5)
may be used regardless of the data reporting mode.

Note that the probabilities in the denominators of (4)–(7)
characterise the joint probability that the sensors inM output a
particular set of values simultaneously. Those combinations of
outputs that are more infrequent will have a lower joint prob-
ability and therefore the surprisal parameter S(M) will take a
higher value. The variations in the value of S(M) can be used
to automatically identify and react to relevant events.

The ability of the proposed data processing method to detect
relevant events was assessed with an experiment conducted in
an office environment where a person was working on a com-
puter. This represents a static scenario with sporadic move-
ments of the worker around the office. The window was
equipped with blinds to control the light intensity in the room.

Fig. 6 shows a screenshot of a visualisation screen imple-
mented in the central processing unit to show the real-time com-
putation of the sensor data histograms and both versions of the
surprisal parameter. The small subfigures on the top half of the
screen show the (individual one-dimensional) histograms of the
data reported by the sensors (4 sensor nodes, 10 parameters per
sensor). Every histogram is updated every time a new data re-
port (value) is received (the last value is shown as a vertical red
line in each histogram). The histograms of sensors with binary
on/off outputs (three first columns of figures on the left-hand
side) are composed of Nm = 2 bins (note that the touch sensors

11

Figure 6: Screenshot showing the real-time computation of sensor data histograms and the surprisal parameter S(M).

were not operated in this example) and the rest of sensors (with
continuous outputs all of them) are discretised to Nm = 10 bins.
All histograms are normalised so that the value of every bin
represents the probability of receiving a message whose value
falls within that bin. These probabilities are used to compute
the independent surprisal parameter Sindep(M) based on (6),
where the set M is defined as the set of all sensors providing
a valid data report in the last data polling event (the IoT sys-
tem operated in synchronous partial data reporting mode with
about 60% of the sensors providing a data report in every data
polling event). The time evolution of Sindep(M) is shown in
Fig. 6 in the figure labelled as Independent. Moreover, the joint
2-dimensional histogram/probability distribution of the motion
sensor of node A and the visible light sensor of node C is com-
puted (shown on the bottom-left corner of Fig. 6) and used to
compute the joint surprisal parameter Sjoint(M) based on (4)-
(5). The time evolution of Sjoint(M) is shown in Fig. 6 in the
figure labelled as Joint. Fig. 7 shows a detailed view of how the
surprisal parameters evolve over time in this experiment (the
top figure also shows in red a moving-averaged version).

The experiment was divided into four phases, which are also
indicated in Fig. 7. In the first phase of the experiment (sample
numbers 0-295) the blinds were closed and the worker was sit-
ting on the chair working on a computer (with sporadic move-
ments to pick up papers and other objects on the desk). It can be
observed that there is a transition at the beginning of the exper-
iment until sample number ≈75 where the value of the surprisal
parameters increases gradually until they reach a rather stable
value. This transition is due to an initial learning phase where
the system starts collecting samples from a completely un-

known environment. In the rest of the first phase, the indepen-
dent surprisal parameter varies within a bounded interval, with
sporadic peaks that occur when some movement is detected.
While the independent surprisal parameter shows some varia-
tion, the measurements received from the sensors fit reasonably
well with the distribution of past values and therefore the in-
dependent surprisal parameter remains approximately constant,
with some peaks when movement occurs (this trend is better
appreciated in the moving-averaged sequence). On the other
hand, the joint surprisal parameter shows more drastic varia-
tions every time some movement is detected. The reason is that
this version of the surprisal parameter depends on only two pa-
rameters/sensors and is therefore more sensitive to the variation
of one of these parameters (moreover, a joint histogram needs
more observations to be estimated accurately and the joint dis-
tribution is not well modelled at this point). The worker remains
static most of the time during the first phase of the experiment,
and when some movement is detected this represents an un-
usual event since it does not fill well with the distribution of
past values. As a result, the surprisal parameter increases sud-
denly as soon as the movement occurs.

In the second phase of the experiment (sample numbers 295-
570) the worker was moving constantly around the room (the
blinds remained closed as in phase one). A similar pattern can
be identified in both surprisal parameters. The value of the sur-
prisal increases suddenly as soon as the worker starts moving
at the beginning of phase two. This sudden increase occurs
because the new measurements reported by the sensors do not
fit well with the distribution of past measurements (when the
worker was static) and as a result they are initially seen as un-

12

0 200 400 600 800 1000 1200 1400 1600 1800
Sample number

0

20

40

60

80

100

120

In
d

e
p

e
n

d
e

n
t

s
u

rp
ri
s
a

l

0 200 400 600 800 1000 1200 1400 1600 1800
Sample number

0

2

4

6

8

J
o

in
t

s
u

rp
ri
s
a

l

Figure 7: Time evolution of surprisal parameters.

likely events (because their corresponding probabilities in the
histogram are low when they happen for the first time). When
more similar measurements are reported by the sensors, the cor-
responding histograms are updated and their relative probabili-
ties of occurrence increase, thus making them less unlikely and
as a result the surprisal starts decreasing gradually. After certain
time, this new situation becomes as frequent as the situation in
phase one and the surprisal parameter decreases until it reaches
a value similar/comparable to that of phase one.

In the third phase of the experiment (sample numbers 570-
1083) the worker returns to the chair (with the blinds still
closed), which is the same scenario as in phase one. One might
expect that this event would not be detected by the system since
it would in principle be a situation the system is already familiar
with. However, Fig. 7 clearly shows this is not the case since
the system immediately detects the event via the increase of the
surprisal parameter. In the case of the independent surprisal
parameter, the increase is not very significant (probably due to
the existence of similar sets of measurements in the histograms)
but in any case it is notable enough to be detectable. In the case
of the joint surprisal parameter it is interesting to note that the
increase is actually very significant, which can be explained by
the fact that the new sets of measurements received while the
worker was moving resulted in a reshaping of the original his-
togram so that when the worker comes back to the original sit-
uation of phase one the reported measurements are not as likely
as they used to be in the first phase of the experiment. In any
case, after some time, the surprisal parameter decreases as the
system becomes more familiar with the new situation.

Finally, in the last phase of the experiment (sample numbers
1083-1900) the worker opens the blinds and returns again to
a static position on the chair. As soon as the blinds open, the
surprisal parameters increase suddenly and reach their highest
peaks. This significant increase can be explained by the fact
that this is the first time the system is exposed to a high light

intensity and, even if the rest of parameters remain unaltered,
the new values of light intensity reported by the sensors are so
far from the distribution of past values that they are seen as very
unexpected values and as a result the overall values of the sur-
prisal parameters are affected. As in previous phases, as the
system receives more measurements from the new scenario, the
situation becomes less unlikely and the surprisal parameter de-
creases gradually (the peaks observed in sample numbers 1300-
1400 were caused by the movement of some clouds, which led
to some alternated periods of light/darkness).

From the obtained results it can be concluded that the pro-
posed data processing method is capable to detect unexpected
events in the physical world and react to them. The system
keeps an updated version of the histogram of the values reported
individually by each sensor and this information is exploited to
determine how likely or unlikely a new set of data reports is.
When an unexpected event occurs, the measurements reported
by the sensors lead to a set of values with a low probability of
occurrence and this helps the system identify such event and
take actions automatically. Notice that the occurrence of a rele-
vant event is essentially detected by means of a sudden increase
in the value of the surprisal parameter. As observed in Fig.
7, the surprisal parameters show noticeable sudden increases
at the beginning of every phase of the experiment, which indi-
cates that the proposed approach can be used to detect the rele-
vant events (i.e., changes of circumstances in the environment).
However, there are some sudden increases (with different lev-
els of importance) at other time instants as well, which might be
due to some punctual events that are unlikely/surprising enough
to generate these increases. This suggests that the proposed
method could be extended with features such as processing of
surprisal values to determine what events are more relevant and
should trigger a reaction from the system (for example, based
on the peak values, the duration of the peaks or the rate at which
the peaks decrease), which is proposed as future work.

13

2430 2437 2440 2446 2450 2457 2460 2465 2468
Frequency (MHz)

-100

-90

-80

-70

-60

P
ow

er
 (

dB
m

)

Scenario A

2430 2437 2440 2446 2450 2457 2460 2465 2468
Frequency (MHz)

50

100

150

200

S
w

ee
p

nu
m

be
r

Figure 8: Coexistence Scenario A (without inter-system interference).

The proposed method, while based on rather simple princi-
ples, paves the way for the development of more sophisticated
methods exploiting the full potentials of advanced fields such as
data mining, artificial intelligence, or machine learning, among
others. While the example shown in this section has not made
use of the camera sensors, they can also be exploited in more
sophisticated methods. For example the images captured by the
sensors can be processed for ego-motion detection (i.e., the mo-
tion and rotation of the camera axes), which can be useful in
applications where the sensors are worn or mounted on some-
thing that moves, the detection of people in front of the camera
(in this case the camera would behave as an on/off sensor for the
detection of human beings or objects), the identification of the
type of environment (indoor, outdoor, urban, rural, etc.), or the
extraction of descriptors that encode properties of the images as
a whole. The range of possibilities is virtually unlimited and the
developed prototype provides a suitable and flexible tool for a
realistic evaluation of such innovative solutions in IoT systems.

The illustrative example discussed in this section not only
demonstrates that it is possible to design smart data processing
methods to extract meaningful information from large volumes
of data and effectively detect relevant events in the context of
IoT systems, but also shows the ability of the developed pro-
totype to implement and evaluate such type of methods under
configurable and controllable realistic scenarios.

6.2. Radio Coexistence

In the example presented in Section 6.1 the IoT subsys-
tem operated without interference from other systems (i.e.,
the coexisting radio subsystem was deactivated). This section
presents an example where the IoT subsystem coexists with
the coexisting radio subsystem (and other radio systems) in the
same frequency band. The spectrum monitoring subsystem is
used to monitor and record the spectral activity of both systems
in the selected band of operation (the 2.4 GHz ISM band).

2430 2435 2440 2446 2450 2457 2460 2465 2468
Frequency (MHz)

-100

-90

-80

-70

-60

-50

P
ow

er
 (

dB
m

)

Scenario B

2430 2435 2440 2446 2450 2457 2460 2465 2468
Frequency (MHz)

20

40

60

80

100

120

S
w

ee
p

nu
m

be
r

Figure 9: Coexistence Scenario B (with inter-system interference).

Two different coexistence scenarios are considered in this
experiment, which are illustrated in Figs. 8 and 9 (these fig-
ures were obtained with the spectrum monitoring subsystem).
In both scenarios the IoT subsystem operates in channel 10 of
the 2.4 GHz ISM band as defined by the IEEE 802.11 stan-
dard (2446-2468 MHz) and its operation can be divided into
three phases. In the first phase (approximately the first third of
sweeps shown in Figs. 8 and 9) the IoT network is established
but the IoT subsystem remains inactive. In this phase there is
no communication between the IoT nodes and the central pro-
cessing unit, and therefore there is no spectral activity, except
for the beacon signals that the central processing unit transmits
periodically (some of which are captured by the spectrum mon-
itoring subsystem). In the second phase (approximately the sec-
ond third of sweeps) the IoT subsystem is active and operates
in synchronous partial data reporting mode, with around 60%
of the sensors sending data reports in every data polling event,
which results in some intermittent usage of channel 10. In the
third and final phase of the experiment (approximately the last
third of sweeps) one of the IoT nodes sends video with a resolu-
tion of 1920×1080 pixels at 30 frames per second in real-time,
which requires a high data rate, thus forcing an intensive (con-
stant) usage of channel 10 as appreciated in Figs. 8 and 9.

The coexisting radio subsystem is configured to operate at
two different radio frequencies. In scenario A the frequency of
operation is 2437 MHz (center frequency of channel 6), which
in this experiment is an idle channel (no other 802.11 networks
were detected in this channel), while in scenario B the coex-
isting radio subsystem operates at 2457 MHz (i.e., the center
frequency of channel 10). Therefore, in scenario A there is no
interference between both radio systems, while in scenario B
the interference is maximum. The coexisting radio subsystem
transmits an image file in a cyclic loop, thus resembling the
transmission of a video, with the exception that the transmitted
image is always the same, which allows a more accurate evalu-
ation of the impact of interference on the system performance.

14

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 10: Image transmitted and received by the coexisting radio subsystem under various operation conditions.

The coexisting radio subsystem implements the physical layer
features required for the successful transmission of data based
on a QPSK modulation (as detailed in Section 4.2) but does
not implement any interference prevention or interference man-
agement techniques thus making it very vulnerable to interfer-
ence, as opposed to the IoT subsystem, which is based on IEEE
802.11 links and therefore counts with sophisticated methods
to avoid and react to packet collisions.

This setup allows a detailed evaluation of the impact that the
interference from an IoT system could have on other systems
operating in the same frequency band, not only at the physical
layer (e.g., bit, symbol or frame rates) but also at the application
layer (e.g., visual quality of the received image).

During the experiment, the IoT subsystem did not appear to
be affected by interference, at least to a significant extent. The
data reported by all sensors were correct at all times. Only dur-
ing some periods of interference the reception of data reports
from the sensors experienced a noticeable delay (probably be-
cause of packet collisions), and only in one occasion the con-
nectivity was lost during a moment of high interference but was
recovered some time later. On the other hand, the impact of
interference on the coexisting radio subsystem, which does not
implement mechanisms as sophisticated as those included in
the 802.11 standard, was much more noticeable.

Fig. 10 illustrates the impact of interference on the coexist-
ing radio subsystem. Fig. 10(a) shows the transmitted image
and the rest of figures show the image received under differ-
ent operation conditions. Fig. 10(b) shows the image received
in Scenario A when the overall activity in the 2.4 GHz ISM
band was extremely low and there was virtually no interference
from any other systems. Although the image does not show
any noticeable artefacts, it is slightly darker than the original
image, which could be explained by the transmission-reception
process (in particular the up/down-sampling along with the use
of SRRC filters). Figs. 10(c) and 10(d) show two images re-
ceived in Scenario A with the IoT subsystem deactivated (first
phase). Both figures show some lines with different numbers of

consecutive incorrect pixels corresponding to frames received
in error as a result of interference. Recall that pixels are trans-
mitted from left-to-right and top-to-bottom, therefore interfer-
ence leads to horizontal lines of consecutive erroneous pixels
and the length of the line is proportional to the duration of the
interference. Since the IoT subsystem was operating at a dif-
ferent frequency and with no ongoing communications, this in-
terference was caused by other systems. While the interference
pattern observed in Fig. 10(c) is rather irregular, the pattern in
Fig. 10(d) appears to indicate that the interference was caused
by a frequency hopping system, since interference intervals are
observed at periodic time instants (when the interfering system
hops to a frequency that overlaps with that of the coexisting ra-
dio subsystem) and with very similar durations (proportional to
the time interval that the frequency hopping system remains in
the same frequency). Since the coexisting radio subsystem and
the IoT subsystem operate in different channels in Scenario A,
one may expect they could never interfere with each other in
such scenario. However this is not necessarily true. As a mat-
ter of fact, the image shown in Fig. 10(e), which corresponds
to the third phase of the experiment (IoT subsystem transmit-
ting video), indicates that the coexisting radio subsystem was
severely affected by out-of-band emissions, or possibly by an
increased noise floor, resulting from the transmission power of
the IoT subsystem (17±1.5 dBm at maximum power).

Figs. 10(f)-10(j) correspond to images received in Scenario
B. Fig. 10(f) was received in the first phase of the experiment
(while the IoT subsystem was still inactive) and the interfer-
ence observed was probably caused by other radio systems (in
fact, Fig. 10(f) shows a relatively similar interference pattern
as Fig. 10(c)). Fig. 10(g) was received in the second phase of
the experiment, where the spectral activity of the IoT subsys-
tem is higher as a result of the data reporting procedure; such
activity leads to an increased level of interference, which can
be clearly appreciated in Fig. 10(g). Fig. 10(h) shows the
image received during an intermittent transmission of video in
the IoT subsystem while Fig. 10(i) shows the image received

15

when a continuous video transmission starts in the middle of
the image reception; in both cases, the periods of interference
can be clearly identified because the corresponding regions of
the images are severely damaged. Moreover, in Fig. 10(h) the
transmission of the image started during a period of interfer-
ence, which affected the detection of the zero frames sent by
the transmitter to help the receiver identify the beginning of an
image. As a result, the beginning of the image (and conse-
quently the whole image) was right-shifted. Finally, Fig. 10(j)
shows the image received during a period of continuous video
transmission. In this case the shape of the statue can be vaguely
inferred, which indicates that the receiver was able to detect the
zero frames (i.e., beginning of the image) but the rest of frames
were severely corrupted by interference.

This illustrative example shows how the coexisting radio sub-
system and the spectrum monitoring subsystems extend signif-
icantly the range of experiments that can be conducted with the
developed prototype, introducing a spectrum-sharing dimen-
sion that enables the study of interactions between IoT networks
and other communication systems and the analysis of the result-
ing impact not only at lower but also at higher layers of the sys-
tem. This feature is particularly appealing in the development
of reliable mechanisms to enable interference-free coexistence
among radio communication systems in IoT systems.

7. Discussion

This section complements the description provided in the
previous sections with a more general discussion of the devel-
opment process of the prototype along with features and capa-
bilities, problems and tradeoffs faced as well as lessons learned
that may be helpful to other researchers in the development
of similar tools. Some possible lines for future research are
pointed out as well. Fig. 11 shows a generic prototype devel-
opment flowchart, which is discussed in more detail below.

7.1. Objectives and Scenarios

The development starts with the definition of the objectives
and potential scenarios of interest. This prototype is intended
to enable a realistic evaluation and joint optimisation of poten-
tial relations and interactions of multidisciplinary aspects of IoT
systems, in particular from the hardware (mainly in the radio
front-end part), communications and data processing domains.
Several potential IoT scenarios of interest have already been
identified such as, for example, smart cities, intelligent build-
ings, transport, healthcare, energy/utilities, automotive, or asset
tracking (see Ofcom (2015) for details). Nevertheless, this im-
plementation is based on an scenario-agnostic design, which is
a suitable approach for general proof-of-concept experimenta-
tion as discussed in Section 3. Moreover, a transition from a
scenario-agnostic implementation to a scenario-specific one is
usually more viable than a transition in the opposite direction.

7.2. Requirements

The developed prototype meets the common requirements
typically set for IoT experimentation platforms (Gluhak et al.,

2011), including realism of the experimentation environment
(field measurements are performed and exchanged using real
communication protocols), heterogeneity of IoT devices (cur-
rently 4 nodes with a total of 40 sensors of 10 different types),
adequate scale (the current implementation is based on a small
scale suitable for proof-of-concept in a laboratory setup, which
can however be extended to include a significantly higher num-
ber of nodes as discussed below), mobility support (the nodes
are connected with wireless links, can be operated with batter-
ies if needed and rely on TCP/IP communications, which allows
not only local mobility but also mobility at a larger scale), re-
peatability and replayability of experiments, and real end-user
involvement in the experimentation cycle (see Section 6).

7.3. Scope and Architecture
The scope of a prototype plays a key role in the architecture

required for its realisation. The overall architecture of the de-
veloped prototype is composed of three subsystems. The sub-
systems are independent and can operate without each other,
which is a desirable feature in studies where the scope is in one
particular domain (i.e., either an IoT network, a potential coex-
isting radio system, or a spectrum monitoring system). How-
ever the prototype has been designed bearing in mind scenar-
ios where all three subsystem operate concurrently. This mode
of operation is desirable in studies with a multidomain scope
where the interest is in the potential interactions among aspects
of different domains but without losing the level of detail pro-
vided by a detailed implementation of each subsystem/domain.

The prototype has been envisaged as the coordinated aggre-
gation of three independent subsystems. This independence
facilitates the development of each subsystem, which can be
based on a tailored internal architecture that can be developed
independently (except maybe for some readjustments required
in the final integration of all subsystems). The IoT subsystem,
which is the core of the prototype, relies on a two-tier architec-
ture where the IoT device tier is directly attached to the server
side (i.e., the central processing unit) by means of a point-to-
multipoint topology. As discussed in Section 3.2, it is possible
to employ packet delay/loss models (implemented in the cen-
tral processing unit) to selectively delay or discard data packets
from IoT nodes, thus emulating in software a three-tier hard-
ware architecture where an intermediate gateway device tier is
present. Small-scale prototypes as the one here presented are
typically based on two-tier architectures while larger scale ones
rely on the three-tier architecture model (Gluhak et al., 2011).
The developed prototype, however, provides a flexible design
that can emulate in software a three-tier architecture over a two-
tier physical implementation.

The IoT device tier is currently based on a node-oriented ho-
mogeneous composition, where all IoT nodes, which are iden-
tical, are the entities that interact directly with the central pro-
cessing unit by providing reports with data from their attached
sensors. This approach simplifies the overall system operation
since each IoT node manages locally its attached sensors, gath-
ers the information and communicates with the central process-
ing unit to provide data reports. Moreover, the extension of the
prototype with more IoT nodes is straightforward as long as all

16

Objectives Scenarios Requirements
Scope and

architecture
Design and

implementation
Testing Extension

Figure 11: Prototype development process.

them are identical. The addition of a more heterogeneous set
of IoT nodes (e.g., with different types of sensors or a different
combination thereof) would pose some issues in this architec-
ture, which highlights the importance of a standard reference
architecture for IoT nodes in order to enable the abstraction of
the particular details of the IoT nodes and their attached sen-
sors and hence allow a flexible and scalable extension. For ex-
ample, IoT nodes could provide an abstraction layer so that the
central processing unit does not see a set of IoT nodes but the
whole pool of available IoT sensors (regardless of which IoT
node they are attached to). This shift from node-oriented to
sensor-oriented architecture would enable a more flexible sup-
port of heterogeneous nodes/sensors but would require more
complex procedures in the central processing unit in order to
manage each individual sensor, which could lead to scalability
issues. The study of this problem is proposed as future work.

7.4. Design and Implementation

A prototype is an initial implementation of a new system
that provides a model on which the final implementation can
be based. While a prototype is not expected to be a full final
version of the system, it should certainly allow a designer to as-
sess and validate the operation and performance of the new sys-
tem under realistic conditions. This raises the important ques-
tions of how much of a real network should be implemented,
how much should be emulated, and how much should be sim-
plified or removed. Sections 3, 4 and 5 have provided a detailed
description of the selected features implemented in the proto-
type. This is the phase of the development process where more
important decisions had to be made and more problems were
faced. A brief discussion of the most relevant lessons learned
in this step are discussed below.

One important challenge is the design and implementation of
IoT sensor nodes. A wide variety of commercial sensor nodes
are available, typically based on a predefined set of sensors con-
nected to a microcontroller that performs basic/no processing
on the sensor data and is equipped with some basic commu-
nication capabilities. These designs are usually optimised for
the particular application scenario they were envisaged for (in
terms of performance, energy consumption, etc.), but offer very
limited or null flexibility to changes or upgrades, which are typ-
ically performed by replacing the whole node. The IoT nodes
implemented in the developed prototype are based on a more
flexible and sustainable approach where each IoT node uses
a generic low-cost minicomputer with a reasonable computa-
tional performance (e.g., Raspberry Pi or similar), running a
mature software environment for which a wide variety of ap-
plications (for data processing, wireless and wired communi-
cations, etc.) are available, and a generic connection interface
(GPIO) that can be reconfigured in software to support a broad

range of sensor connectivity technologies (e.g., SPI, I2C, se-
rial/UART). While this choice is suitable in a prototype for ex-
perimentation that may require frequent changes, it may also
be a suitable approach for commercial application and deploy-
ment scenarios given its enormous flexibility. However, this
improved flexibility is obtained at the expense of a lower per-
formance that may lead to issues when handling simultaneously
heterogeneous sensors with different timing requirements.

Another important aspect is the selection of the band of op-
eration for IoT systems. ISM bands are the most popular due to
the possibility of operating without a spectrum license and the
wide range of connectivity technologies available, in particular
in the 2.4 GHz band (e.g., WiFi, Bluetooth, ZigBee). However
this band is becoming increasingly crowded, which makes dif-
ficult to perform experiments in a controlled environment in the
case of a prototype and may lead to scalability problems in the
case of real deployments. Other ISM bands at lower frequencies
(e.g., 315/433 MHz or 868/900 MHz) may be less crowded but
may differ among countries, offer a substantially lower amount
of free capacity and have certain additional transmission con-
straints; on the other hand, ISM bands at higher frequencies
(e.g., 5 GHz) may be less crowded but radio propagation condi-
tions are less favourable and equipment/components are more
expensive, which is not desirable in large-scale deployments.
The 2G/3G/4G cellular bands have also been considered due to
the wide deployment and coverage of mobile communication
systems but suffer similar overcrowding problems. The selected
band of operation also determines the potential interference pat-
terns from other coexisting radio systems and therefore the de-
sign of the underlying communication protocols, which is an
important aspect to consider and for which the developed pro-
totype constitutes an excellent tool. Spectrum regulators have
started considering alternative licence-exempt bands for IoT ap-
plications (see Ofcom (2015) for details); this will require ded-
icated studies in such bands and the developed prototype is a
suitable tool to conduct this type of studies.

The robustness of the system in the presence of errors and
exceptions is another important feature in future IoT systems,
which are expected to integrate a large number of low-cost (and
therefore with limited reliability) nodes. The approach adopted
in the developed prototype is to detect and handle different
types of errors from the central processing unit. Novel data
processing methods such as the one proposed in Section 6.1
should be able not only to detect relevant genuine events but
also different types of errors (e.g., malfunctioning sensors or
misbehaving nodes). This can be done for example in combi-
nation with reputation or anomaly detection methods, which is
a topic proposed for further future research.

Scalability is essential in any IoT prototype. The presented
prototype has been developed to enable the study of scalabil-

17

ity aspects in the three considered domains of interest, namely
hardware design (e.g., energy-efficient devices and antennas,
and circuits for energy harvesting), communications (e.g., pro-
tocols with low complexity that can maintain reliable links with
inaccurate clocks, deal with frequent collisions and congestion
situations arising from a high number of nodes, manage com-
pletely different network traffic patterns in an efficient way, and
access/share spectrum efficiently), and data processing (e.g., in-
novative smart methods based on scalable solutions as the one
proposed in Section 6.1). The developed prototype is an excel-
lent tool for the study of these issues from both individual and
multidisciplinary points of view.

7.5. Testing
A bottom-up testing methodology was proven to be the most

suitable approach in the development of the presented proto-
type, starting from individual sensors, sensor-node connectiv-
ity, node-server communication, data processing in the central
processing unit, coexisting radio subsystem, and finally spec-
trum monitoring subsystem. The testing methodology should
include not only functional tests but also stress tests in all the
above mentioned test stages in order to ensure an adequate op-
eration under normal and extreme/peak operation conditions.

7.6. Extension
While the developed prototype has been initially deployed

as a standalone platform, future extensions can be envisaged.
The extent to which a prototype can be extended depends on
its flexibility and scalability, two aspects that have been taken
into account in the development process as discussed above.
Possible future extensions to the developed prototype include
for instance the addition of new local and remote nodes (based
on communications over TCP/IP) as well as providing access to
the prototype to the community at both individual and federated
levels. Federation with other research facilities is necessary to
achieve scale and add capabilities for experimentation that are
not locally available, which is a further challenge to be tackled.

8. Conclusions

Current trends indicate that future communication networks
will interconnect billions of smart devices capable of automat-
ically collecting and exchanging data, thus enabling the di-
rect integration of the physical world into automated computer-
based systems equipped with intelligence and smart features.
This concept, referred to as the Internet of Things (IoT), poses
important challenges requiring multidisciplinary solutions that
take into account the potential mutual effects and interactions
among the different dimensions of future IoT systems. In this
context, this paper has presented a prototype developed in the
context of the EPSRC/eFutures-funded project “Internet of Sur-
prise: Self-Organising Data”, which constitutes a suitable plat-
form for an accurate and realistic evaluation of IoT solutions.
The prototype enables the joint evaluation and optimisation of
multidisciplinary aspects of IoT systems, including aspects re-
lated with hardware design, communications and data process-
ing. This paper has provided a comprehensive description of

the developed prototype, including design and implementation
details that may be helpful to other researchers and engineers in
the development of similar tools. Several illustrative examples
showing the potentials and capabilities of the prototype have
been presented as well. The developed prototype is a versatile
tool that can be employed for proof-of-concept, validation and
cross-layer optimisation of multidisciplinary solutions before
bringing them to real IoT deployments.

Acknowledgements

This work was supported by the Engineering and Physical
Sciences Research Council (EPSRC) under eFutures project
ref. RES/0560/7436 (application no. eFuturesSP15/003).

References

Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.,
Fourth Quarter 2015. Internet of things: A survey on enabling technologies,
protocols, and applications. IEEE Communications Surveys and Tutorials
17 (4), 2347–2376.

Altman, E., Avrachenkov, K., Barakat, C., April 2005. A stochastic model of
TCP/IP with stationary random losses. IEEE/ACM Transactions on Net-
working 13 (2), 356–369.

Atzori, L., Iera, A., Morabito, G., October 2010. The Internet of Things: A
survey. Computer Networks 54 (15), 2787–2805.

Atzori, L., Iera, A., Morabito, G., January 2014. From ’smart objects’ to ’so-
cial objects’: The next evolutionary step of the Internet of Things. IEEE
Communications Magazine 52 (1), 97–105.

Bi, S., Ho, C. K., Zhang, R., April 2015. Wireless powered communication:
opportunities and challenges. IEEE Communications Magazine 53 (4), 117–
125.

Evans, D., April 2011. The Internet of Things: How the next evolution of the
internet is changing everything. White paper, CISCO.
URL http://www.cisco.com/c/dam/en_us/about/ac79/docs/
innov/IoT_IBSG_0411FINAL.pdf

Fleisch, E., January 2010. What is the Internet of Things? - An economic
perspective. White paper, Auto-ID Labs.
URL http://cocoa.ethz.ch/media/documents/2014/06/
archive/AUTOIDLABS-WP-BIZAPP-53.pdf

Gluhak, A., Krco, S., Nati, M., Pfisterer, D., Mitton, N., Razafindralambo, T.,
November 2011. A survey on facilities for experimental internet of things
research. IEEE Communications Magazine 49 (11), 58–67.

Gorlatova, M., Sarik, J., Grebla, G., Cong, M., Kymissis, I., Zussman, G., Au-
gust 2015. Movers and shakers: Kinetic energy harvesting for the Internet of
Things. IEEE Journal on Selected Areas in Communications 33 (8), 1624–
1639.

ISO/IEC, May 2014. Advanced Message Queuing Protocol (AMQP) v1.0. PRF
19464, ISO/IEC.

ISO/IEC, June 2016. Message Queuing Telemetry Transport (MQTT) v3.1.1.
PRF 20922, ISO/IEC.

ITU-R, July 2015. Propagation data and prediction methods for the planning
of indoor radiocommunication systems and radio local area networks in the
frequency range 300 MHz to 100 GHz. ITU-R P.1238-8, ITU-R.

Kamalinejad, P., Mahapatra, C., Sheng, Z., Mirabbasi, S., Leung, V. C. M.,
Guan, Y. L., June 2015. Wireless energy harvesting for the Internet of
Things. IEEE Communications Magazine 53 (6), 102–108.

Lakshman, T. V., Madhow, U., June 1997. The performance of TCP/IP for net-
works with high bandwidth-delay products and random loss. IEEE/ACM
Transactions on Networking 5 (3), 336–350.

Mattern, F., Floerkemeier, C., 2010. From the Internet of Computers to the
Internet of Things. In: Sachs, K., Petrov, I., Guerrero, P. (Eds.), From Ac-
tive Data Management to Event-based Systems and More. Springer-Verlag,
Berlin, Heidelberg, pp. 242–259.

Ofcom, January 2015. Promoting investment and innovation in the internet of
things. Statement, Ofcom.

18

Perera, C., Liu, C. H., Jayawardena, S., Chen, M., 2014. A survey on Internet
of Things from industrial market perspective. IEEE Access 2, 1660–1679.

Piñuela, M., Mitcheson, P. D., Lucyszyn, S., July 2013. Ambient RF energy
harvesting in urban and semi-urban environments. IEEE Transactions on
Microwave Theory and Techniques 61 (7), 2715–2726.

Rice, M., 2008. Digital Communications: A Discrete-Time Approach, 1st Edi-
tion. Prentice Hall, New York.

Saint-Andre, P., March 2011a. Extensible Messaging and Presence Protocol
(XMPP): Core. RFC 6120, IETF.

Saint-Andre, P., March 2011b. Extensible Messaging and Presence Protocol
(XMPP): Instant Messaging and Presence. RFC 6121, IETF.

Saint-Andre, P., October 2014a. End-to-End Signing and Object Encryption for
the Extensible Messaging and Presence Protocol (XMPP). RFC 3923, IETF.

Saint-Andre, P., October 2014b. Mapping the Extensible Messaging and Pres-
ence Protocol (XMPP) to Common Presence and Instant Messaging (CPIM).
RFC 3922, IETF.

Saint-Andre, P., September 2015. Extensible Messaging and Presence Protocol
(XMPP): Address Format. RFC 7622, IETF.

Shannon, C. E., July 1948a. A mathematical theory of communication. The
Bell System Technical Journal 27 (3), 379–423.

Shannon, C. E., October 1948b. A mathematical theory of communication. The
Bell System Technical Journal 27 (4), 623–656.

Shelby, Z., Hartke, K., Bormann, C., June 2014. The Constrained Application
Protocol (CoAP). RFC 7252, IETF.

Stanford-Clark, A., Truong, H. L., November 2013. MQTT for sensor networks
(MQTT-SN) Protocol specification. Tech. rep., IBM.

Vermesan, O., Friess, P., 2013. Internet of Things - Converging Technologies
for Smart Environments and Integrated Ecosystems, 2nd Edition. River Pub-
lishers.

Vinoski, S., November 2006. Advanced Message Queuing Protocol. IEEE In-
ternet Computing 10 (6), 87–89.

Zanella, A., Bui, N., Castellani, A., Vangelista, L., Zorzi, M., February 2014.
Internet of things for smart cities. IEEE Internet of Things Journal 1 (1),
22–32.

19

