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Abstract. Generally, a mechanical system always has symmetric system matrices.
Nevertheless, when some non-conservative forces are included, such as friction and aerodynamic
force, the symmetry of the stiffness matrix or damping matrix or both violated. Moreover, such
an asymmetric system is prone to dynamic instability. Distinct from the eigenvalue assignment
for symmetric systems to reassign their natural frequencies, the main purpose of eigenvalue
assignment for asymmetric systems is to shift the unstable eigenvalues to the stable region. In
this research, only the unstable eigenvalues and eigenvalues which are close to the imaginary
axis of the complex eigenvalue plane are assigned due to their predominant influence on the
response of the system. The remaining eigenvalues remain unchanged. The state-feedback
control gains are obtained by solving the constrained linear least-squares problems in which
the linear system matrices are deduced based on the receptance method and the constraint is
derived from the unobservability condition. The numerical simulation results demonstrate that
the proposed method is capable of partially assigning those targeted eigenvalues of the system
for stabilisation.

1. Introduction
Numberless research has been studied extensively to actively control vibrational systems [1–3].
The dynamic response of a vibrating system can be modified through changing the natural
frequencies and mode shapes which are also referred as the eigenvalues and eigenvectors of
the system. Dating from the 1960s when Wonhan [4] demonstrated that if a system is
controllable its eigenvalues can be placed to arbitrary position of the complex plane using state-
feedback,eigenvalue assignment has been widely applied to vibration control problems.

The receptance-based method put forward by Ram and Mottershead [5] is to actively place
required eigenvalues of a system, which has significant advantages over conventional matrix
methods requiring no knowledge of the mass, damping and stiffness matrices of the system. The
information of system matrices is typically obtained from the finite element method including
modeling reductions and errors. In addition, only a small number of receptances need to be
measured, thus no observer and or model reduction is required.

For symmetric systems whose damping and stiffness matrices are symmetric, the eigenvalue
assignment is implemented for assigning appropriate imaginary part of the eigenvalues or
shifting its natural frequencies to desirable values to avoid resonance [6]. Besides the eigenvalue



placement, zeros of systems can be assigned to an antiresonance at a different coordinate to
mitigate vibration [7].

Friction can induce undesirable dynamic characteristics in many mechanical systems. It is
influenced by various factors, such as material properties, geometry of the sliding surfaces, sliding
speed, temperature and normal load [8]. This, in turn, makes the friction-induced vibration
complex and fugitive. For a system in which vibration is generated by friction, the symmetry of
the stiffness matrix or damping matrix or both are violated. The friction-induced asymmetric
system is prone to dynamic instability as a result of some of its eigenvalues are on the right-
half-side of the complex plane. Ouyang [9, 10] developed a state-feedback control method and
a hybrid control strategy in which passive structural modifications and an active state-feedback
control are executed for an asymmetric system to relocate the unstable complex eigenvalues
using the receptance method.

In practice, only a few of eigenvalues are undesirable. It is computational expensive,
unnecessary and time consuming to assign all the eigenvalues of a system. Saad [11] proposed
two projection methods for partial pole placement in first-order linear control systems. Datta
et al. [12] considered partial pole assignment problems in the second-order form of the dynamic
equations based on the orthogonality relations of the system matrices. Tehrani et al. [13]
introduced a multi-input partial pole placement method and demonstrated experimentally using
two test rigs. Tehrani and Ouyang [14] developed a partial pole assignment for asymmetric
systems using the uncontrollability condition.

In this research, an active partial eigenvalue assignment method is developed for the friction-
induced vibration whose damping and stiffness matrices are asymmetric. Only the first two
pairs of the eigenvalues are assigned to the positions which are far from the imaginary axis of
the complex plane. The control gains for assigning the only the first two pair of the eigenvalues
and remain the rest unchanged are derived by solving the constrained linear least-squares
problems in which the linear system matrices are deduced based on the receptance method and
the constraint is derived from the unobservability condition. The numerical simulation results
indicate that the partial assignment of the desired eigenvalues is achieved without spillover using
the unobservability condition, thus stabilize the system.

2. Single-input state-feedback method for eigenvalue assignment
Asymmetric systems with asymmetric system matrices are prone to be unstable, thus, eigenvalue
assignment is performed mainly for these systems to place unstable eigenvalues to stable regions
using appropriate control gains.

The dynamic equation of a closed-loop asymmetric system including state-feedback control
gains with asymmetric damping and stiffness matrices is given in Laplace space as:

(Ms2 + Ctols+ Ktol)x(s) = bu(s) + p(s) (1)

u(s) = −(g + sf)Tx(s) (2)

where M,Ctol and Ktol ∈ RN×N are the mass, damping and stiffness matrices, respectively.
Furthermore, Ctol = Cs + Cas and Ktol = Ks + Kas. Moreover, Cs and Ks are the original
symmetric matrices, Cas and Kas are the asymmetric terms generated by the non-conservative
forces, such as friction and aerodynamic force. b ∈ RN is the vector indicating the position
of the single control input u(s). g and f ∈ RN are the displacement and velocity proportional
feedback control gains, respectively. x(s) and p(s) ∈ RN are respectively the displacement
vector and external force vector.

Using equation (1) and equation (2), eigenvalues of the asymmetric can be placed to any
required positions on the complex plane if the system is controllable and all the details of
M,Ctol,Ktol matrices are known. However, the detailed information of M,Ctol,Ktol always



contains modeling errors. On the other hand, the receptance method which is based on the
measured vibration data has no requirement of knowledge of system matrices. Thus, the
recepatance method is adopted in this research.

The receptance is defined in the following formulation as:

Hs(s) = (Ms2 + Css+ Ks)
−1 (3)

This equation provides the general definition of the receptance of symmetric systems. Similarly,
the receptance for an asymmetric system is written in equation (4).

Has(s) = [Ms2 + (Cs + Cas)s+ (Ks + Kas)]
−1 (4)

For assigning eigenvalues of asymmetric systems using receptance method, firstly, the closed-
loop symmetric system is considered. Substitute equation (2) and equation (3) into equation (1)
and omit the asymmetric terms Cas and Kas, then equation (5) is arrived with further derivation.

[I + Hs(s)b(g + sf)T]x(s) = Hs(s)p(s) (5)

Thus,

x(s) =
adj(As)

det(As)
Hs(s)p(s) = Ĥs(s)p(s) (6)

where As = I + Hs(s)b(g + sf)T. Moreover, Ĥs(s) is denoted as the closed-loop receptance of
the symmetric system. Based on equation (6), it is obvious that eigenvalues of the closed-loop
asymmetric system are roots of the denominator characteristic equation given in the following
equation:

det(As) = 0 (7)

Taking the advantage of the matrix determinant lemma, the determine of matrix As is derived
as:

det(As) = 1 + (g + sf)THs(s)b (8)

Besides, the inverse of As is derived using the Sherman-Morrison formula in equation (10).

inv(As) = I− Hs(s)b(g + sf)T

1 + (g + sf)THs(s)b
(9)

Subsequently, the receptance of the closed-loop symmetric system Ĥs is derived as:

Ĥs = inv(As)Hs(s) = Hs(s)−
Hs(s)b(g + sf)THs(s)

1 + (g + sf)THs(s)b
(10)

Similarly, the characteristic polynomial of the asymmetric closed-loop system is formulated
as:

det(Aas) = 0 (11)

where Aas = I + Ĥs(Cass+ Kas).
As a consequence, substitute equation (10) into equation (11), thus the closed-loop eigenvalues

can be assigned to the predetermined values using the measured open-loop receptance Hs of the
corresponding symmetric system.



3. Partial eigenvalue assignment using the unobservability condition
All of the eigenvalues of the asymmetric system can be assigned using the open-loop receptance of
the corresponding symmetric system using equation (11). However, only some of the eigenvalues
of the asymmetric system are on the right-half-side of the complex eigenvalue plane or close to
the imaginary axis of the complex plane, there is no need to assign the other stable eigenvalues
which are not the dominant eigenvalues. Hence, the effective method is to only relocate the
eigenvalues which are unstable or have small negative real parts.

For the asymmetric system given in equation (1), the eigenvalue sj associated with this
equation is the root of the characteristic polynomial provided in the equation as:

det[Ms2 + Ctols+ Ktol] = 0 (12)

The order of this polynomial is 2N and the roots of the above equation appear in complex
conjugate pairs as s1, s

∗
1, . . . , sN , s

∗
N . (∗) means the complex conjugate pair.

The right eigenvalue problem associated with equation (12) is denoted as:

s2jMuj + sjCtoluj + Ktoluj = 0, ∀j = 1, . . . , N (13)

where sj ∈ C is the jth eigenvalue and uj ∈ C is the jth right eigenvector. The corresponding
left eigenvalue problem can be represented in the similar formula as:

s2jv
T
j M + sjv

T
j Ctol + vT

j Ktol = 0, ∀j = 1, . . . , N (14)

where vj ∈ C is the jth left eigenvector. Besides, (•)T denotes the transpose of a vector. Since
the system focused in this research is asymmetric, right and left eigenvectors of the system are
different and they can be calculated using the first-order state-space method [15].

Equation (1) can be transformed in the state space and after the Laplace transform it is
provided in the first-order formula as:

sAX(s) + BX(s) = 0 (15)

where A,B ∈ RN×N are the system matrices of the first-order system and X(s) is the state
vector given by:

A =

(
O M
M C

)
, B =

(
−M O
O K

)
, and X(s) =

(
sx(s)
x(s)

)
In addition, O ∈ RN×N is the null matrix.

Consequently, the right eigenvalue problem of the first-order system is defined as:

sjAzj + Bzj = 0, ∀j = 1, . . . , N (16)

where sj and zj are respectively the jth eigenvalue and jth right eigenvector of the first-order
system defined in equation (15). zj is related to the jth eigenvector of second-order system
given in equation (1) as follows [16]:

zj =

(
sjuj
uj

)
(17)

The left eigenvalue problem of the first-order system is given as:

sjy
T
j A + yT

j B = 0, ∀j = 1, . . . , N (18)



where sj and yj are respectively the jth eigenvalue and jth left eigenvector of the first-order
system defined in equation (15).

Similarly, the yj is related to the second-order system by [16]:

yj =

(
sjvj
vj

)
(19)

The right and left eigenvectors of the first-order system satisfy an orthogonality relationship
denoted in equation (20) for distinct eigenvalues. This imply that the system given in equation
(15) has set of biorthogonal eigenvectors with respect to the system matrices.

yT
j Azk = 0 and yT

j Bzk = 0, ∀j 6= k (20)

Premultiplying equation (16) by yT
j , the following equation can be obtained.

sjy
T
j Azj + yT

j Bzj = 0 (21)

Hence, the eigenvectors can be normalized so that:

yT
j Azj = 1 (22)

Substitute equation (17) and equation (19) into equation (22), the normalized equation is formed
as:

vT
j [2sjM + C]uj = 1 (23)

Furthermore, the first-order dynamical equation of the asymmetric closed-loop system is given
as:

sAX(s) + BX(s) =

(
0
b

)
u(s) =

(
0

−(g + sf)Tx(s)

)
(24)

Therefore, the right eigenvalue problem of the closed-loop system is given as

λjAz̄j + Bz̄j =

(
0

−(g + λjf)
T

)
z̄j (25)

where λj is the jth required closed-loop eigenvalue and z̄j is the closed-loop right eigenvalue of the
closed-loop system in first-order. Premultiply equation (25) by the closed-loop left eigenvalue ȳT

j
of the closed-loop system in first-order with further derivation, the following equation is arrived.

(
λjv̄

T
j v̄T

j

)
(λjA + B)

(
λjūj
ūj

)
= −v̄T

j b(g + λjf)
Tūj (26)

According to equation (26), it is obvious that if certain required eigenvalues λj and
the corresponding closed-loop right and left eigenvectors ūj , v̄j of the closed-loop system in
second-order formulation make the right-hand side of equation (26) vanish, then equation (26)
degenerated to equation (21), thus this particular required closed-loop eigenvalue λj remains the
same as the open-loop eigenvalue sj . Simultaneously, the closed-loop right and left eigenvectors
ūj , v̄j keep the same as the right and left eigenvectors uj ,vj of the open-loop system. This
indicates the eigenvalues can be partially assigned using particular control gains.

Furthermore, the right-hand side of equation (26) can be vanished either when

v̄T
j b = 0 (v̄j = vj) (27)



or
ūT
j (g + λjf) = 0 (λj = sj and ūj = uj) (28)

equation (27) is the uncontrollable condition for jth mode. Likewise, the jth mode is said to
be unobservable when equation (28) satisfied. This means

[uT
j sju

T
j ]

(
g
f

)
= 0 (29)

Hence, the control gains should be in the null space of Uo = [uT
j sju

T
j ]. In the subsequent

study, the unobservability condition is applied to select appropriate control gains.
Thus, for partial eigenvalue assignment, the closed-loop eigenvalues are composed of the

assigned eigenvalues λ1, λ
∗
1, . . . , λk, λ

∗
k and the unchanged eigenvalues s1, s

∗
1, . . . , sN−k, s

∗
N−k.

For the unchanged eigenvalues, equation (28) has to be satisfied. On the other hand, for the
newly assigned eigenvalues, the control gains can be obtained using equation (11). Since the
number of the assigned eigenvalues is less than the number of the unknown terms of control
gains, the equation for solving the control gains is an under-determined equation that allows an
infinite number of solutions of control gains. Therefore, the control gains for assigning required
eigenvalues and remaining unchanged eigenvalues can be obtained solving the constrained linear
least-square problems in which the constraint condition is that the control gains has to be in
the null space of Uo = [uT

j sju
T
j ].

4. Numerical simulation
In this section, a simplistic model is provided in figure (1). This model is modified from the model
proposed by Ouyang [9] by adding a contact damping c0. Ouyang originally used the model in
which the damping and stiffness matrices are asymmetric for investigating the friction-induced
vibration.

Figure 1: Four-degrees-of-freedom model for FIV

In this model, the single-point masses m1, m3 can move only in one direction and the single-
point mass m2 can move in both the horizontal x direction and the vertical y direction. These
masses are supported by linear springs and linear dampers. Moreover, the oblique linear spring
k3 is verified to cause the coupling of x and y directions in Hoffmann’s work [17]. The friction
f1 acting on m2 abides by the Column law. Thus, f1 = µn1, where n1 is the normal force acting



on m2. In addition, the friction coefficient is set as a constant value deliberately to avoid the
stick-slip motion.

The equation of motion of this model with state-feedback control gains is the same as
equation (1). The details of the system matrices are given as:

M =


m1 0 0 0
0 m3 0 0
0 0 m2 0
0 0 0 m2

 , Cs =


c1 0 −c1 0
0 0 0 0
−c1 0 c1 0

0 0 0 c0 + cc



Ks =


k1 + k2 0 −k2 0

0 k4 + k5 0 −k4
−k2 0 k2 + 0.5k3 −0.5k3

0 −k4 −0.5k3 k4 + 0.5k3 + kc

 , E =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


where mi = 1 kg (i = 1, 2, 3), ci = 0.5 Ns/m (i = 0, 1) ki = 100 N/m (i = 1, 2, 3, 4, 5), and kc =
2k1. Moreover, the asymmetric damping and stiffness matrices are obtained as Cas = µccE and
Kas = µkcE, where E is the matrix indicating the location of the friction-affected degrees-of-
freedom. Besides, the friction coefficient µ is set to be 0.5. The vector b indicating the position
of the control input is set as b = (0, 0, 1, 1)T.

The eigenvalues of this open-loop system without control input are provided in the table 1.
For the open-loop system, the first pair of its eigenvalues has positive real parts. This leads
the system to be unstable with large vibration amplitudes. Moreover, the second pair of the
eigenvalues is quite closed to the imaginary axis of the complex plane. Therefore, this pair
of eigenvalues is also considered to be vital to the stability of the system. The third and the
fourth pair of the open-loop eigenvalues have large negative real parts. Thus, they have little
influence on the response of the system. As a consequence, there is no necessity to reassign all
of the open-loop eigenvalues and only the first and the second pair of the open-loop system need
to be relocated to the left-hand-side half of the complex plane with large negative real parts.
Consequently, the required closed-loop are set as the ones presented in table 1. Only the first
two pairs of the eigenvalues are assigned to new positions with large negative real parts, the rest
two pairs of the eigenvalues remain unchanged with the ones of the open-loop system.

Table 1: Eigenvalues of the open-loop and the closed-loop system

Eigenvalues 1st pair 2nd pair 3rd pair 4th pair

Open-loop
eigenvalues s

0.005± 8.946i −0.066± 12.134i −0.527± 16.823i −0.212± 19.732i

Closed-loop
eigenvalues λ

−0.200± 9.000i −0.400± 12.000i −0.527± 16.823i −0.212± 19.732i

Based on equation (11), for the model displayed in figure (1), the displacement and velocity
proportional control gains g, f to assign the required eigenvalues satisfies:

1 + (sµcc + µkc)h43(s) + t(s)T(g + sf) = 0 (30)

in which t(s) = Hs(s)b+ (sµcc +µkc)[h43(s)Hs(s)b− eT4 Hs(s)bHs(s)e3]. e3 = {0, 0, 1, 0}T and
e4 = {0, 0, 0, 1}T are the vectors indicating the friction-affected degree-of-freedom.



Consequently, the control gains can be arrived using the following equation:

G1

(
g
f

)
= −d1 (31)

where the jth (j = 1, . . . , 4) row of G1 and d1 are:

G1j = [tTj sjt
T
j ]|sj=λj (32)

d1j = 1 + (sjcc + µkc)Hs(4, 3)|sj=λj (33)

Additionally, λj is the jth required eigenvalue. Besides, (λ1, λ2) and (λ3, λ4) are the first two
pairs of eigenvalues to be assigned.

Furthermore, according to equation (29), the constraint is denoted as:

G2

(
g
f

)
= 0 (34)

where the ith (i = 1, . . . , 4) row of G2 is given in:

G2i = [uT
j sju

T
j ]|sj=λj j = i+ 4 (35)

where uj is the jth right eigenvector of the open-loop system. (λ5, λ6) and (λ7, λ8) are the two
pairs of the eigenvalues which are unchanged from the ones of the open-loop system.

As a consequence, the constrained linear least-squares problem is defined as:

min
g, f

1

2
||G1{g, f}T − d1||22

s.t. G2{g, f}T = 0

(36)

The resultant control gains are g = {2.0731, − 7.2787, 1.9299, − 3.1739}T and f =
{−0.0163, 1.6155, 0.2994, 0.7796}T. Thus, for the closed-loop system, the eigenvalue problem
is designated as:

det(λAc + Bc) = 0 (37)

where Ac and Bc are the system matrices of the first-order closed-loop system with state feedback
control gains. The details of Ac and Bc are given:

Ac =

[
O M
M C + bfT

]
, Bc =

[
−M O
O K + bgT

]
Using this control gains g and f the closed-loop eigenvalues can be calculated based on

equation (37). The resultant closed-loop eigenvalues are exactly the ones listed in table 1.

5. Conclusion
In this study, the partial pole assignment method is developed for the asymmetric system using
unobservability condition. The eigenvalue placement of the asymmetric system is concentrated
on placing the unstable eigenvalues or the ones closed to the imaginary axis of the complex plane.
The receptance of the corresponding symmetric system is adopted to obtain the state feedback
control gains. The receptance method requires no knowledge of the mass, damping and stiffness
matrices. The constraint conditions are derived from the unobservability condition. Therefore,
the control gains can be achieved by solving the constrained linear least-squares problem. Using
the obtained control gains only the first two pairs of the open-loop eigenvalues are reassigned to
the stable region with the rest eigenvalues remain unchanged. This numerical simulation result
demonstrates the effectiveness of the proposed method.
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