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Abstract 
The heterogeneity of populations is used to explain the variability of mortality rates across 

the lifespan and their deviations from an exponential growth at young and very old ages. A 

mathematical model that combines the heterogeneity with the assumption that the mortality 

of each constituent subpopulation increases exponentially with age, has been shown to 

successfully reproduce the entire mortality pattern across the lifespan and its evolution over 

time. In this work we aim to show that the heterogeneity is not only a convenient 

consideration for fitting mortality data but is indeed the actual structure of the population as 

reflected by the mortality dynamics over age and time. In particular, we show that the model 

of heterogeneous population fits mortality data better than other commonly used mortality 

models. This was demonstrated using cohort data taken for the entire lifespan as well as for 

only old ages. Also, we show that the model can reproduce seemingly contradicting 

observations in late-life mortality dynamics. Finally, we show that the homogenisation of a 

population, observed by fitting the model to actual data of consecutive periods, can be 

associated with the evolution of allele frequencies if the heterogeneity is assumed to reflect 

the genetic variations within the population.  

Keywords  
Mortality dynamics; Mathematical modelling; Model fitting; Demography; Population 

genetics. 
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1 Introduction 
One of the central problems in ageing-related studies is understanding the processes which 

underlie senescence and revealing the biological functions which deteriorate in organisms 

over the course of their lifespan. Ageing is associated with the acceleration of mortality 

expressed by the exponential increase of mortality rate over age, as described by the 

Gompertz law. The Gompertz law represents a fundamental mortality law and was verified 

by demographic observations across different countries, different time periods, and even 

different species [1]. The analysis of available data on mortality rates for various diseases 

also indicates that for most diseases there is a considerably wide age range where the 

mortality rate also increases exponentially [2, 3]. 

The exponential growth of mortality is not observed at young (before sexual maturity) 

and extremely old ages. Many researchers consider the exponential law of mortality to be 

“natural” while the deviations from it need to be explained. Initial mortality at age zero is 

high due to the noticeable proportion of deaths amongst neonates. The infant and child 

mortality rate is lower than the initial mortality at age zero and reaches its lowest level 

roughly at age 10. During teenage and young-adult ages (10-35 years) the mortality trajectory 

produces a peak which is associated with accidental (i.e. due to external and other non-

biological causes) mortality. After the reproductive period, in which the accidental hump 

arises, the mortality rate advances exponentially up to very old ages when it slows down.   

The observation that the exponential law of mortality does not apply at older ages was 

first made by Gompertz. In his 1825 paper, Gompertz stated that “The near approximation in 

old age, according to some tables of mortality, leads to an observation, that if the law of 

mortality were accurately such that after a certain age the number of living corresponding to 

ages increasing in arithmetical progression, decreased in geometrical progression, it would 

follow that life annuities, for all ages beyond that period, were of equal value; for if the ratio 



4 
 

of the number of persons living from one year to the other be constantly the same, the chance 

of a person at any proposed age living to a given number of years would be the same, 

whatever that age might be;” recognising that the probability of surviving (and consequently, 

the mortality rate) levels-off at extremely old ages.    

The divergence of mortality from its exponential increase at extremely old ages is 

generally accepted as valid by the majority of biologists and bio-demographers [4, 5] 

although some data do not support this observation (see for example [6-8]). Furthermore, 

existing data on mortality dynamics at advanced ages are so controversial [5] that up-to-date 

performed studies have not given a definite answer on what mathematical function (logistic, 

quadratic, etc.) can describe the data at those ages [9-11]. 

The absence of a definite explanation for the trend of mortality at very old ages 

renders the analysis of “oldest-old” mortality as an essential area of research in demography. 

Analysing mortality data for old ages is challenging as such data are usually unreliable and 

often statistically noisy as the number of survivors at those ages is small. The stochastic 

effects at very old ages are often seen as fluctuations in mortality dynamics [12]. 

Observations on the trends of mortality behind these fluctuations indicate that the rate of 

mortality change slows down and diverges from the exponential law at very old ages. Data on 

late-life mortality slow-down are controversial and fall into three groups: (a) an increase in 

late-life mortality at a slower rate than its exponential increase during the adulthood period, 

called deceleration [13-15], (b) a levelling-off, commonly called the mortality plateau, which 

is the saturation of mortality trajectory on a horizontal line corresponding to constant 

mortality rate [16-19] or (c) a decline of mortality with increasing age [10, 20]. The late-life 

mortality slow-down was observed for human [4, 21] as well as non-human populations [16, 

22-24]. 
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Theoretical studies of mortality dynamics are mainly devoted to two main problems, 

namely  how the biological processes underlying mortality result into the exponential law and 

what are the causes of deviations from the exponential law that are observed at young and 

extremely old ages. Mathematical verifications of the exponential law have been performed 

from different points of view ranging from a genetic theory of population ageing [25] to the 

application of reliability theory to ageing and longevity [9].  

The evolutionary theories that were proposed to explain ageing, and to answer the 

question of why organisms grow old and die, are mostly based on the assumption of a loss of 

selective significance of phenotypes developing during post-reproductive ages [26-28]. One 

such theory is introduced by Medawar and known as the mutation accumulation theory [29, 

30]. Medawar’s hypothesis states that gene alleles or mutations that are neutral at early life 

but deleterious at later life, escape natural selection and are transferred to the next generation 

before their deleterious effects become evident. Such mutations can therefore accumulate in 

the population by a genetic drift and reveal themselves via the diseases associated with the 

post-reproductive period. Another evolutionary theory, known as antagonistic pleiotropy, 

states that genes, with beneficial effects early in life but with deleterious actions later in life, 

could be favoured by selection and accumulate in the population [31]. The theory of 

disposable soma, proposed by Kirkwood [32, 33], postulates that organisms have a limited 

amount of energy and that specific gene mutations save energy for reproductive aspects by 

reducing the amount of energy used for maintenance, leading to non-reproductive damages. 

Ageing is therefore a result of the accumulation of damages that are not repaired by the 

organism [34]. These hypotheses take for granted the fact that the length of the reproductive 

period itself may depend on a number of genetic determinants associated with environmental 

and population factors. 
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There are also other attempts to explain the Gompertz law which are not based on 

evolutionary theories. One of such theories relates mortality to inadequate responses of the 

organism to energy demands and shows that the exponential increase of mortality is 

associated with a linear decrease of vitality (where vitality was defined as the capacity of an 

individual to resist damage) [35]. Sacher and Trucco have related the Gompertz law to the 

effect of stochastic and homeostatic forces [36, 37], and Shklovskii - to the exponentially rare 

escape of abnormal cells from immunological response [38]. Furthermore, Gavrilov and 

Gavrilova have applied the reliability theory to explain ageing and the Gompertz law by 

considering age-related failure kinetics of systems (machines) and their components [9]. They 

have shown that the rate of machines’ failure as a function of age can reproduce the known 

mortality laws (Gompertz law, compensation effect, late-life deceleration) and therefore the 

reliability theory can be used to explain biological ageing.  

The above mentioned compensation effect is another universal law of mortality (in 

addition to the Gompertz law) and refers to the inverse relationship (negative correlation) 

between the scale and shape parameters that characterise the Gompertz law. The 

compensation law states that if different populations of the same species demonstrate 

different mortality dynamics, then a high initial mortality rate (scale parameter) in a 

population is compensated with a low rate of change of mortality with age (shape parameter) 

or similarly a low initial mortality rate is compensated with a high rate of change of mortality 

with age [9, 35, 39]. 

Many mathematical models have been introduced to reproduce the observed mortality 

patterns [19, 40-43]. Some of them are designed to generate mortality patterns over the entire 

lifespan while others aim to reproduce a specific part of those patterns. For example, a 

function that outlines an inverse relationship between mortality and age, is used to generate 

the decline of mortality at very young ages [44] whereas the logistic-type and quadratic 
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functions are used to create the late-life mortality plateau and the late-life mortality decline, 

respectively [9-11].  

A number of studies consider the heterogeneity of populations to model and analyse 

their impact on the mortality dynamics [45-47]. The heterogeneity can be introduced in 

different ways. For example it can be based on an assumption that the population is 

comprised of cohorts (subpopulations) such that the members of each cohort, at a given age, 

face the same probability of death [12, 48]. For the reason that all the individuals of each 

cohort are exposed to identical mortality dynamics, each subpopulation is considered as 

homogeneous. However, in reality, each single individual has specific genetic, biological and 

physiological characteristics which contribute differently to a lifespan of each individual. 

Therefore, an alternative way to introduce the heterogeneity is based on the consideration that 

each single individual in a population has his own specific traits and faces certain mortality 

dynamics. The force of mortality acting upon each individual has then a cumulative effect on 

the mortality process in the entire population. In this approach, the heterogeneity at individual 

level can be represented in two different ways. The first one refers to individual frailty as to a 

measure of the chances of survival [46, 49]. In the second, an individual vitality process is 

used to reproduce human mortality patterns [50-53], and thus it focuses on the process 

leading up to death. Under this consideration, vitality is defined as a measure of survival 

capacity which declines over age and is subject to stochastic changes. The intrinsic mortality 

is then a result of complete loss of vitality (each individual is born with an initial level of 

vitality and dies when his vitality declines to zero), while extrinsic mortality occurs when an 

environmental challenge exceeds the (non-zero) vitality level. The model of vitality processes 

was used to analyse the time-evolution of intrinsic and extrinsic mortality in terms of changes 

in the parameters by fitting the model to consecutive period data [50, 52] and also to explore 

the late-life mortality plateaus [53]. Thus, the concept of heterogeneity is used, in all these 
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works, to explain the deviations of mortality from the exponential growth at young and very 

old ages [54-57]. 

Recently another mathematical model of heterogeneous population was proposed and 

used for the analysis of human mortality dynamics across the entire lifespan [12] as well as 

for the analysis of the evolution of mortality dynamics in Sweden over the 20th century [58]. 

The main feature of this model (distinguishing it from other existing models of heterogeneous 

population), is the assumption that the mortality rate in each subpopulation increases 

exponentially over all ages in a similar way to what is described by the Gompertz law. This 

assumption allowed for an accurate reproduction of the entire mortality pattern and an 

explanation of certain features of mortality dynamics and their evolution over time. It has 

been shown that the best fit to actual human mortality data is generally achieved by a four-

subpopulation model and that the deviations of mortality from the exponential increase can 

be explained by such heterogeneity [12]. Furthermore, by fitting the four-subpopulation 

model to actual (Swedish) mortality data for consecutive periods over the 20th century, it was 

shown that the population tends to become more homogeneous over time [58]. This analysis 

has also validated the applicability of the compensation effect of mortality to each 

subpopulation in the model.  

Since the above model of a heterogeneous population has been shown to be extremely 

useful for analysis of mortality data, there arises a question of whether this model reflects the 

real structure of the population and, if yes, what quality underlies the heterogeneity? The 

present work is devoted to the above question and represents a natural extension of the 

previous studies [12, 58] based on this model. We start by comparing the considered model 

[12] with a wide-range of other commonly used parametric models and show that it is one of 

the best models when the judgement is made on the basis of the quality of fit to the observed 

data. We then show that the model can explain the apparent controversial observations for 
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old-age mortality (deceleration, mortality plateau and decline) which are not in contradiction 

with one another, but reflect a similar and coherent process underlined by the heterogeneity 

of populations. Finally, we tackle the problem of the nature of a population’s heterogeneity. 

Although the heterogeneity of populations can be conditioned by various factors such as 

disparities in life-style, environmental and socio-economic conditions we analyse the case of 

genotypic difference between subpopulations. We presume that the responses to 

environmental factors are largely shaped by an organism’s genetic landscape and certain gene 

polymorphisms can affect the dynamics of ageing and mortality. In this work we check 

whether the population dynamics of putative gene variations can be aligned with mortality 

dynamics of suggested distinct subpopulations. We assume that individuals belonging to 

different subpopulations differ by genotype and have differential resistance to environmental 

perturbations. Changes in the environment would favour different subpopulations in different 

contexts and their resultant differential mortality may have an impact on the dynamics of the 

mortality characteristic for a population. Furthermore, it was previously shown [58] that the 

evolution of mortality dynamics in Sweden over the 20th century was for two reasons: 

changes in mortality dynamics of subpopulations, and changes in the structure of populations 

as represented by the fractions made by subpopulations (resulting to homogenisation of the 

population). While changes in the mortality dynamics of subpopulations are most likely 

driven by environmental changes [59, 60], the change in the population structure can be 

explained in terms of population dynamics. Based on the difference in mortality dynamics of 

subpopulations (and assuming that the difference is due to a single gene) we have calculated 

their relative Darwinian fitnesses and confirmed that the calculated fitnesses allow for an 

explanation and accurate reproduction of the homogenisation process of populations. 

The paper is structured as follows. In Section 2 we introduce different mathematical 

models for mortality and describe the technique used for an evaluation of allele frequency 
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dynamics in population genomics. We then show that the model of a heterogeneous 

population is one of the best models for fitting actual cohort mortality data over the entire 

lifespan (Section 3.1) or for ages over 80 (Section 3.2). We emphasise that it can explain 

controversial data on late-life mortality (Section 3.3). Finally, we show in Section 3.4 that the 

homogenisation of the heterogeneous population as revealed by the evolution of period 

mortality data in Sweden over the 20th century can be explained by changes in allele 

frequency due to different fitnesses corresponding to different subpopulations. We conclude 

with a discussion of the obtained results and provide further arguments on genotypic 

differences between subpopulations having different mortality dynamics in Section 4.   

2 Mathematical modelling 
In this section we give a description of a few popular models which are commonly used 

for fitting mortality data (these models later will be compared with each other in terms of 

their fit to a given set of data). For the scope of this analysis, we use so-called “parametric” 

models that are models expressing mortality rates across the lifespan with fixed (i.e. time-

independent) parameters. We exclude therefore the models that also consider the time 

dependency of mortality patterns such as the notable Lee-Carter model. The description of 

parametric models is followed by a description of the method of calculating the selection 

process in a population of diploid organisms which is later used for the analysis of the 

evolution of heterogeneous populations.     

2.1 Models of mortality 

Exponential functions: Gompertz, Makeham and Weibull 

The first developed parametric model and the one that remains the most notable in 

literature is the Gompertz model [19]. The Gompertz model (or Gompertz law) states the 

exponential increase of mortality with age in a significant portion of lifespan (from sexual 
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maturity to extremely old ages). According to the Gompertz law, the central death rate at age 

x, is given by 

=                                                                   (1) 

where  is the initial mortality rate (scale parameter) and  is the rate of change of mortality 

with age (shape parameter). It is remarkable that the Gompertz law does not only hold for 

human populations but also for other biological species [39].  

The Makeham model [40] is an extension of the Gompertz law which represents the 

death rate as the sum of an age-dependent component (the Gompertz function) describing 

deaths due to age-related diseases or disorders, and an age-independent component (a 

constant ) describing deaths due to external factors such as accidents or certain infectious 

diseases: 

= + .                                                                (2) 

A third exponential parametric model is the Weibull model [61] which expresses the 

mortality rate as a power function of age:  

= .                                                                  (3) 

According to these three exponential models, mortality rates diverge to infinity as age 

tends to infinity. The difference in concavity or convexity of these functions, and the 

difference in their initial values when = 0  ( =  for Gompertz, = +  for 

Makeham and = 0 for Weibull), distinguish them in terms of their usage. The Gompertz 

and Makeham models are generally used to describe the mortality of biological species while 

the Weibull function is widely used to describe the ageing and failure rate of technical 

systems and devices [62, 63].  

Logistic functions: Perks, Beard and Kannisto 
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The logistic-type functions which shape sigmoid curves are commonly used in the 

analysis of mortality dynamics at old ages. These curves saturate, reaching horizontal 

asymptote, and can therefore produce the late-life mortality plateau [64, 65]. The general 

form of a logistic curve is expressed as a four-parameter function: 

= + 1 + ,                                                          (4) 

which is known as the Perks model. 

Different variations of logistic function can be used in order to reduce the number of 

parameters. A three-parameter logistic function is formed by setting =  in equation (4) or 

the three-parameter function introduced by Beard [66] by setting = 0. Also, a simple two-

parameter logistic function used by Kannisto [65] is formed by setting = 0 and =  in 

equation (4).  

The logistic function in equation (4) saturates asymptotically to + /  as age 

increases while the Beard function tends to the constant / . The Kannisto model has an 

asymptote equal to one and this model is used in a common procedure for the construction of 

life tables in order to smooth the noisy death rates observed at ages 80 and above [15]. 

The Gompertz and Makeham models could be considered as special cases of equation 

(4). If = 0, equation (4) is transformed into the Makeham model and if = = 0 – into 

the Gompertz law. However, in both these models, the mortality rate tends to infinity as age 

increases which is in contrast to the logistic-type functions and due to the elimination of the 

denominator from the logistic form.  

Michaelis-Menten kinetics 

Michaelis-Menten kinetics is an outcome of a well-known model in biochemistry that 

describes the dynamics of catalysed reactions [67]. The kinetics is represented by an equation 
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which describes the saturation of a reaction rate when the substrate concentration is 

increasing. The Michaelis-Menten equation has also been used to model several other 

processes. For example, Monod who was working in the field of environmental engineering 

used this equation to model the growth rate of microorganisms as a function of the nutrient’s 

concentration [68]. In this study, we suggest using the Michaelis-Menten equation 

(disregarding its parameters and variable terminology) to fit mortality data and to be 

compared with other asymptotic mortality functions that reproduce the mortality levelling-off 

at very old ages (i.e. the logistic-type functions). Following the form of the Michelis-Menten 

equation, the mortality at age  can be expressed as: 

 = exp .                                                        (5) 

Exponential-Quadratic function 

An exponential-quadratic function (known also as the Coale-Kisker model) is usually 

used to fit mortality data and show the deceleration of mortality rate and its decline at very 

old ages [69]. The exponential-quadratic function is given by  

  ln( ) = + + ,                                                     (6) 

where for a concave down parabola with a maximum point,  should be less than zero. 

Heligman-Pollard model 

Heligman-Pollard model [43] is an eight-parameter function that can reproduce 

mortality patterns of the entire lifespan with sufficient accuracy. The model was originally 

formulated for the ratio of death and survival probabilities ( / ) and composed of three 

terms where the first term reflects the sharp decline of mortality at childhood, the second 

reflects the accidental hump that is observed during the reproductive period (ages 15-40), and 
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the third term (which is a Gompertz function) reflects the exponential increase of mortality at 

post-reproductive ages: 

= ( ) + ( ( )  ( )) + .                               (7) 

The last term of the Heligman-Pollard model is usually modified to the logistic form /(1 + ) to allow the saturation of mortality at extremely old ages. In this study, we used 

the Heligman-Pollard model to fit actual mortality rates (which are best approximated by the 

central death rate, ) instead of the ratio / .  

Model of heterogeneous population 

Mathematically, the model of a heterogeneous population, which postulates the 

exponential mortality dynamics for constituent subpopulations, expresses the mortality rate 

 at age , as a sum of weighted exponential terms:  

= , , = , = , ,                                  (8) 

where the sub-index  indicates the -th out of  subpopulation, ,  is the central death rate 

at age x of subpopulation ,  is the initial mortality rate of the -th subpopulation, and  is 

its mortality coefficient which gives the rate of change of mortality with age [12, 58]. The 

weights ,  are fractions formed by each subpopulation  at age  in the entire population, 

and their sum is equal to unity at all ages. Finally, the mortality rate at age 0 of the 

subpopulation  is equal to  and thus we have the relation , = , which leads to the last 

term in equation (8). For clarity and consistency purposes, in the remaining part of this study 

the first subpopulation represents the one with the highest initial mortality ( = 1), the second 

is the one with the second highest initial mortality level ( = 2), etc. 
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2.2 Model for dynamics of alleles based on diploid genetics 

Natural selection is an evolutionary process taking place within a population and 

states that individuals with certain heritable traits have the ability to survive and reproduce 

offspring more often than individuals’ deficient in those traits. Since these traits are heritable, 

the proportion of individuals carrying genotypes that express these traits is gradually 

increasing over time. Hence, natural selection similarly to the other primary evolutionary 

forces (mutation, migration and genetic drift) causes changes in allele frequencies in a 

population. The ability of any individual to pass genes to the next generation is determined by 

fitness. The more likely an individual is, to survive and live long enough to mate and 

reproduce, the higher their fitness is. A measure of fitness can be given by an average number 

of offspring that are born from parents of a given genotype [70]. Selection is therefore 

conditioned by the variation of fitness between different genotypes. A simple model of 

natural selection that counts the frequencies of alleles (and subsequently the number of 

individuals with specific genotypes) over discrete generations is described in this section. 

A diploid gene with alleles  and  splits the population into three groups of 

individuals having three distinct genotypes: ,  or . The notations  and  are used to 

denote the frequencies of alleles  and  respectively and the notations ,  and  are used 

to define the frequencies of genotypes ,  and , where + = 1 and + + =1. After a single step of random mating the frequencies of the three genotypes are = , = 2  and =  satisfying the Hardy-Weinberg equilibrium [71]. Each allele frequency 

can also be expressed in terms of genotype frequencies. In other words the frequency of an 

allele is equal to the frequency of homozygote genotype formed by two duplicates of that 

allele plus half of the frequency of the heterozygote genotype ( = +  and = +
).   
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The absolute fitness of each genotype (denoted as ,  and  accordingly) is 

considered here by the average number of offspring produced by the individuals who carry 

this genotype. Relative fitness, i.e. the fitness of one genotype relative to that of another, is 

given by the ratio of their absolute fitnesses. Since this study deals with human populations, 

certain assumptions, i.e. organisms are diploid, reproduction is sexual and mating is random, 

are assured. It is also assumed that neither mutations or gene flows take place, and that 

stochastic effects due to genetic drift are negligible (the population size is large enough). 

Based on these assumptions the following formulas for the change of allele frequencies from 

generation  to generation + 1 can be derived: 

= + 12 = +                                      (9 ) 

= + 12 = +                                      (9 ) 

where the denominator in both fractions is the normalised factor = + 2 +
 [71], representing the average number of children per individual in the population of 

interest. The changes in genotype frequencies between two subsequent generations are shown 

in Table 1. 

3 Results 
In this section, the mortality models described earlier are fitted to actual mortality data 

for the entire lifespan in Section 3.1 and for very old ages (above age 80) in Section 3.2, and 

comparisons between the fits of the models are performed. The data used in this study are 

death rates for Swedish, Norwegian and Japanese populations (both sexes combined) taken 

from the Human Mortality Database (http://www.mortality.org, assessed July 2016) [72]. 

Nonlinear least squares regression is used to fit the models to the data as provided by the tool 



17 
 

Solver in Microsoft Excel [73, 74]. A justified version of the Bayesian Information Criterion 

(BIC) [75] is used to evaluate the goodness-of-fit of the models. The BIC is defined as 

= ln + ln( ), 

where  is the number of data points,  is the sum of squared residuals divided by the 

number of data points and  is the number of free parameters [76, 77]. In Section 3.3 the 

study focuses on mortality at very old ages and shows that the model of a heterogeneous 

population can reproduce and explain various old-age mortality observations, namely 

deceleration, plateau and decline of mortality rate. In Section 3.4 the evolution of mortality 

dynamics in heterogeneous populations and specifically homogenisation of populations over 

time is derived from the changes in genotype frequencies in successive generations through 

the process of natural selection.  

3.1 Comparing mortality models by fitting data over the entire lifespan 

The model of heterogeneous population with different numbers of subpopulations as 

well as the Gompertz, Makeham, Perks and Heligman-Pollard models are fitted to cohort 

mortality data over the entire lifespan for the total (males and females) Swedish population. 

The BIC values as calculated by fitting the models to the 1890-1900 Swedish cohort data are 

shown in Figure 1. The model that gives the lowest BIC value provides the best fit to the 

data. The values in Figure 1 indicate that Gompertz, Makeham and Perks models are the 

weakest models in terms of data fitting. The model of heterogeneous population gets better 

with an increase in the number of subpopulations from two to six but any further increase in 

the number of subpopulations does not result in significant improvements. Also, the 

Heligman-Pollard model fits the data over the entire lifespan very well and is competitive to 

the model of heterogeneous population. Heligman-Pollard model fits data better than the 

model of heterogeneous population comprised of up to four subpopulations, but worse when 
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the number of subpopulations increases to five or above. The actual fits of the six-

subpopulation and Heligman-Pollard models to the 1900 cohort Swedish death rates are 

shown in Figure 2. 

The Heligman-Pollard model fits the age-dependent mortality patterns very accurately 

since it imposes a pre-defined mortality pattern. Indeed the Heligman-Pollard model divides 

the mortality pattern into three distinct components observed over the past century, namely 

infant, accidental and adult mortality. On the other hand, the model of heterogeneous 

population is more abstract, since it does not impose any pre-specified pattern: it assumes that 

the most basic feature of biological populations are their heterogeneity and all peculiarities of 

population mortality dynamics are conditioned by interplay between mortalities of 

subpopulations. Subpopulations in turn are homogeneous and their mortality dynamics 

simply follow the exponential law. The model can then be adapted to any dataset and can 

reproduce very different mortality curves. This flexibility allows (i) to fit mortality data very 

well for any part of the lifespan (see for example Section 3.2 on old ages), (ii) to reproduce 

different and potentially controversial observed mortality patterns (see Section 3.3 for an 

example related to old-age mortality) and (iii) to capture any new and thus unexpected 

mortality features (for example the reduction of external causes of death may result in the 

elimination of the accidental hump [78]). 

3.2 Comparing mortality models by fitting data for ages beyond 80 

In this section we focus on mortality at very old ages (above age 80) and analyse the 

phenomenon of late-life mortality divergence from the exponential dynamics. For this 

analysis we use the models designed for old-age mortality described in Section 2.1. All these 

models were fitted to cohort Swedish data for ages 80-109.  We have fitted the models to 

single-year cohort data but the obtained results were not conclusive. Due to the scarcity of 

long-lived individuals, the statistical noise of mortality rates at old-ages is high and thus, it is 
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difficult to draw any conclusions from single-year data as the optimal model differs across 

cohorts (i.e the Gompertz model, the logistic-type models or the heterogeneous population 

model reveal the best fit for some cohorts). Therefore, we decided to use more data in order 

to reduce the noise present in the data and thus, to be able to capture the underlying trend 

[79]. For model fitting we have used the data averaged for eleven birth cohorts (from 1890 

cohort to 1900 cohort). The BIC values calculated by fitting the models to the data are shown 

in Table 2. 

The logistic-type models (Perks, 3-parameter logistic, Beard and Kannisto) and the 

Michaelis-Menten-type model show convergence to a certain limit as age increases and are 

therefore suitable to explain the late-life mortality deceleration and the existence of mortality 

plateaus. The exponential-quadratic model can generate a concave down parabola and 

therefore explains the decline of mortality at old ages. The exponential models by Gompertz, 

Makeham and Weibull fail to explain the late-life mortality slow down, because the death 

rates expressed by these functions tend to infinity as age increases. Even if the subpopulation 

mortality rates also diverge as age tends to infinity, the model of heterogeneous population 

appears to be the only model which, due to interplay between subpopulations, can reproduce 

all observations (deceleration, plateau and decline) in mortality in later life. 

From the results shown in Table 2, one can conclude that the model of a heterogeneous 

population composed of two subpopulations provides the best fit to the mortality data at old 

ages. For the averaged Swedish data, the mortality curve generated by the model of a 

heterogeneous population increases exponentially, asymptotically to the level of the 

dynamics of the frailest subpopulation between ages 80 and 90, then decelerates to reach the 

level of the dynamics of the most robust subpopulation and then keeps increasing 

exponentially at that level (Figure 3A). Similar results and conclusions have been derived by 

fitting the models presented in Table 2 to the death rates of ages 80+ for other developed 
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countries, including Norway (Figure 3B) and Japan (Figure 3C). Interestingly, the Japanese 

data are better fitted by the three-subpopulation model. The trajectory of mortality that fits 

the Japanese data increases exponentially along the level of the frailest subpopulation then 

decelerates for a couple of years, then creates a plateau and finally re-accelerates after the age 

of 108. Besides, similar results are obtained when males and females are analysed separately, 

as illustrated on Figure 4 with Japan. 

On the basis of the analysis presented in Figures 3 and 4 we conclude that different 

observations on mortality dynamics at extremely old ages can be explained by the 

heterogeneity of populations, which is further developed in the following section. 

3.3 Late-life mortality slow-down due to population heterogeneity 

Heterogeneity suggests that late-life mortality slow-down is a result of the variation in 

robustness between sub-cohorts having a significant number of survivors at old ages. In 

addition, heterogeneity permits us to explicate three different observations in late-life 

mortality, namely deceleration, saturation and the decline of mortality rates. Figure 5 shows 

that the simple model of a heterogeneous population composed of only two subpopulations 

can reproduce all these observations. In Figure 5A the frailest subpopulation (i.e. the 

subpopulation that dies out fastest) is the one that has the highest mortality rate at age 80, 

, = 0.08, and the highest mortality coefficient, = 0.11, as compared to the most 

robust subpopulation that has a mortality at age 80 of , = 0.04 , and a mortality 

coefficient of = 0.09 . The variation in the proportions of the two subpopulations 

determines the formation of the three different late-life phenomena. For example, if the 

fraction of the frailest subpopulation at age 80 in Figure 5A is , = 0.5, then the overall 

mortality of population shows a deceleration, if , = 0.88 - a plateau and if , = 0.98 - 

a decline.  
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A mortality cross-section, shown in Figure 5B, occurs when one of the subpopulations 

has a lower mortality rate than the other at younger ages, but higher at older ages (i.e. it is 

more robust initially but becomes frailer after a cross-section). In particular, the theoretical 

subpopulations presented in Figure 5B have mortality rates at age 80 and mortality 

coefficients , = 0.09 , = 0.07  and , = 0.04 , = 0.15  respectively. The 

fractions , = 0.2, 0.5 and 0.8 for the subpopulation with the lowest mortality rate at age 

80 are used to reproduce deceleration, plateau and decline respectively. 

The mortality trajectories presented in Figure 5 illustrate that apparently controversial 

observations in mortality dynamics for old ages are not necessarily in contradiction with each 

other and can be explained by the heterogeneity of populations. 

3.4 Evolution of mortality dynamics: homogenisation and natural selection 

The model of a heterogeneous population [12] have previously been used to analyse the 

evolution of Swedish period death rates over the 20th century [58]. In a view of 

incompleteness of cohort data for this century the analysis was done on the basis of period 

data. Although the model of heterogeneous population is designed primary for dealing with 

cohort data it was found that on the basis of period data one can still make reliable 

conclusions. It was shown that the best fit model involves four subpopulations: the first 

subpopulation reproduces the initial decline of mortality for infants, the second - the mortality 

at childhood, the third - the accidental mortality during reproductive period and the fourth - 

the exponential (Gompertz) growth of mortality at adult span. The analysis of mortality 

evolution, as examined by using this model, showed that the parameters which characterise 

the mortality dynamics of each subpopulation evolve through time displaying two remarkable 

features. The first is the confirmation of the compensation effect for each evolving 

subpopulation, and the second is the homogenisation of the entire population manifested by 

the reduction in the initial fractions of the first three subpopulations (that are also the smallest 
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subpopulations) and an increase in the initial fraction of the fourth subpopulation (from 67% 

at the beginning of the 20th century to 99% at its end).  

An alternative way to examine the evolution of Swedish mortality dynamics over the 

20th century is to modify the model of heterogeneous population by making parameters time-

dependent and fitting the model to the entire set of period mortality data over age and time so 

that the fit will be represented on a three-dimensional surface. The death rates for ages 0 to 

100 and for the one-century period (101 years from 1900 to 2000) compose a dataset of 

10201 points. On the other hand, the four-subpopulation model has 12 parameters of which 

11 are independent (the condition that the sum of the fractions ,  at each age is equal to 

unity reduces by one the number of free parameters). Each of the 11 parameters is assumed to 

change linearly or exponentially over time according to their trend-lines [58]. Each linear or 

exponential trend is characterised by two parameters (a scale and a shape parameter) and 

therefore the modified time-dependent model has 22 free parameters. Thus, this approach 

requires the estimation of the values of only 22 parameters in order to fit the 10201 data 

points while in order to fit data separately for each year [58] one would require to estimate 

the values of 11 unknown parameters for each of 101 data points (or in other words, 1111 

unknown parameters in total to fit the 10201 data points). 

 The 3-dimensional surface that is reproduced by fitting the modified model to age- 

and time-related Swedish data is shown in Figure 6D. The initial mortalities ,  and the 

mortality coefficients  for each subpopulation  are assumed to change linearly over time as 

shown in Figures 6A and 6B respectively. The negative correlation between the initial 

mortality and the mortality coefficient in each subpopulation indicates the validation of the 

compensation law of mortality. The initial fractions of the four subpopulations are assumed to 

change exponentially over time (Figure 6C). The phenomenon of homogenisation is evident 

as the initial fraction of the most robust subpopulation (red line in Figure 6C) increases over 
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time and dominates at the end of the century, while the fractions of the other three 

subpopulations decrease and these subpopulations almost disappear by the end of the century. 

The most robust subpopulation has the smallest initial mortality rate, and more individuals 

belonging to this subpopulation survive to more advanced ages compared to the individuals 

from the other subpopulations. 

Further examination of the results shown in Figure 6 indicates that all individuals 

from the first two subpopulations, reflecting infant and child mortality, die before sexual 

maturity and the reproductive period and therefore they do not leave offspring. The other two 

subpopulations have individuals that survive till reproductive age and consequently leave 

offspring who contribute to the next generation. However, the most robust subpopulation 

contributes relatively more and if we assume that these two subpopulations differ by 

genotype, the evolution of their initial fractions can be explained by natural selection. This 

problem is addressed in the following part of our study, namely we assume that the third and 

fourth subpopulations differ by a single gene (which has two alleles) and check whether the 

change in the fractions of these subpopulations follows the changes in allele frequencies over 

generations due to natural selection. 

We use the model for evolution of allele frequencies in diploid organisms as 

described in Section 2.2 and assume that alleles  and  indicate two distinct traits related to 

mortality dynamics. Choosing from two possibilities we pick up on an assumption that the 

allele  is dominant and therefore the heterozygotes  have the same mortality-related 

phenotype as the homozygotes . Furthermore, the individuals carrying genotypes  and 

 are assumed to belong to the third subpopulation while individuals with  genotype 

belong to the fourth. To calculate Darwinian fitness, we make the following simple 

assumptions concerning the reproductive behaviour of the individuals who make up the 

population: (1) reproductive behaviour does not depend on genotype (note that mortality 



24 
 

depends on genotype and makes the fitness genotype specific); (2) reproductive age is set 

from the age of 20 to the age of 40; (3) within this age interval, reproduction takes place with 

the constant probability, , at any age (i.e. it is the same for both subpopulations and 

independent of age). We believe that by using these assumptions we can obtain a relatively 

good approximation of the spreading process of a favourite allele in the population due to its 

effect on mortality only, and thus the dynamics of the relative sizes of two subpopulations. 

For a more precise analysis, one can adjust the model assumptions by taking into account real 

fertility related data, the age dependence of reproduction probability, and by specifying the 

reproductive age-interval more accurately (which is different for males and females). 

However, here we keep the model as simple as possible and leave various extensions to the 

framework, which we are introducing here, for future studies.     

Based on the above assumptions we can calculate the absolute fitnesses of individuals 

that belong to the third and the fourth subpopulations which will be denoted by  (= =) and  (= ) respectively. Fitnesses can be evaluated based on mortality dynamics 

and expressed as functions of the parameters that describe the exponential mortality dynamics 

of these two subpopulations as shown in Table 3. In this table, ,  represents the number of 

individuals in subpopulation  at age 0. 

The absolute and relative fitnesses of subpopulations are found using their initial 

mortalities and mortality coefficients which are obtained by fitting the heterogeneous model 

with four subpopulations to the Swedish period data. The estimated initial fractions of two 

subpopulations (third and fourth), which are involved in reproduction, for the period 1900 

(starting point of the examined time-interval) are normalised to have a sum equal to one 

(since we do not consider subpopulations 1 and 2 which are not involved in reproduction) and 

are then used to calculate the frequencies of alleles  and  (or values of  and ) in 1900.  
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Possessing all of the above considerations and the equations that describe the flow of 

alleles due to selection (equations 9a and 9b), the changes of genotype frequencies over 

generations are calculated presuming that each generation corresponds to 25 calendar years 

totalling four generations per century. Following this, changes in genotype frequencies are 

compared with the evolution of the initial fractions in the model of heterogeneous population 

over the 20th century. The outcome of this analysis is shown in Figure 7. Thus, assuming that 

the difference in mortality dynamics of two subpopulations is conditioned by a difference in a 

single gene and taking an average value of relative fitness (black dashed line in Figure 7A), 

we calculate how the relative fractions of the subpopulations (corresponding to +  

genotype frequency for subpopulation 3 and  genotype frequency for subpopulation 4, 

black lines in Figure 7B) evolve due to natural selection. We can state that the obtained result 

is surprisingly close to the changes of the fractions (red triangles and blue dots in Figure 7B) 

in the best-fit model of heterogeneous population. The significance of this result is that it 

serves as a self-consistency test for the model of heterogeneous population [58].  

Our further calculations have shown that dividing the century into three or five 

generations (i.e. the time interval between generations is 33 or 20 years respectively) does not 

significantly change the genotype frequencies observed in Figure 7B (frequencies 

decrease/increase by about 15%). Averaging fitnesses of subpopulations over each generation 

rather than over the entire century, does not significantly change the obtained results either 

(note that in the model, where the evolving population is discretised into generations, 

consideration of fitnesses for each year or for any intervals shorter than the duration of the 

generation does not make sense).   



26 
 

4 Discussion 
The aim of this study was to show the advantages of the model of heterogeneous 

population (introduced in [12]) in terms of fitting the mortality data and to give a biological 

justification supporting this model. This was done in a few steps. In the first step we 

compared this model with a number of other parametric models which were used to fit actual 

mortality data. We found (Sections 3.1 and 3.2) that the model of heterogeneous population is 

advantageous compared to the other models as it has the flexibility to be adapted to any 

dataset and therefore provides the best fit to mortality data for the data over the entire lifespan 

as well as for old (over 80) ages. In the second step we demonstrated (Section 3.3) that 

contrary to other considered models, the model of heterogeneous population can reproduce 

and explain controversial observations in late-life mortality (deceleration, plateau and 

decline). In the third step we assumed that population heterogeneity reflects the genetic 

variation between subpopulations, and showed (Section 3.4) that the natural selection model 

based on differential mortality can explain and quantitatively reproduce the homogenisation 

of the Swedish population within a one-century period. Based on these results, we conclude 

that heterogeneity, beyond its convenient use in reproducing characteristics of age-structured 

populations, has a fundamentally inherent role in understanding the mortality dynamics 

across the lifespan and the evolution of these dynamics over time. 

The model of Heligman-Pollard is known for its excellent fit to the mortality data over 

the entire lifespan. Here we have shown that the model of heterogeneous population can 

provide with even better fit to that data. Besides, it is important to note that these two models 

are very different in nature. While the Heligman-Pollard model imposes a pre-defined 

mortality pattern, the model of heterogeneous population allows the mortality pattern to be 

adapted to the fitted data. Both models are thus extremely useful in different contexts. The 

Heligman-Pollard model is better for forecasting purposes, as it avoids projecting unrealistic 
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patterns far into the future. However, as a wide variety of mortality patterns can be modelled 

using a different number of subpopulations, the model of heterogeneous population allows us 

to capture new and unexpected patterns, providing a greater flexibility in data modelling. In 

addition to this, in the model of heterogeneous population, the model parameters do not lose 

their interpretation in demographic terms, even with an increase in the number of parameters 

in the model. This flexibility is important for data analysis as mortality patterns evolve 

through time due to several factors (medical improvements, changes in life-style conditions, 

biological evolution, etc.) and this can be modelled as some subpopulations die out and some 

new ones become more pronounced in a quantitative sense. Furthermore, mortality dynamics 

of subpopulations change over time and these changes can be detected via fitting procedures.  

The population heterogeneity as defined in [12] is significantly different from the 

heterogeneity as defined in other models including those based on vitality processes [50-53]. 

According to [53] the heterogeneity results from two components, an evolving one and an 

initial one. A cohort is initially homogeneous if the individuals are assumed to have the same 

vitality at birth. In initally homogeneous cohort the heterogeneity emerges if the vitality of 

individuals in the cohort changes differently (i.e. has stochastic component). It is a form of 

evolving heterogeneity in survival capacity. In contrast, the initial heterogeneity refers to the 

heterogeneity in survival capacity at birth. A distribution of the initial vitality is developed 

and thus the individuals of a cohort have different vitality level at birth. The heterogeneity in 

our model is rather similar  to the initial heterogeneity, that is the subpopulation fractions in 

our model are the analogue to the initial vitality distribution in [53]. While the time-evolution 

of the evolving heterogeneity was discussed in [50, 52], the time-evolution of the initial 

heterogeneity has not been analysed yet. Therefore, the homogenization of the population that 

is discussed within our model framework cannot be directly compared to models based on 

vitality processes. However, [50] and [53] mention that the initial vitality can, in part, be 



28 
 

determined by genetic inheritance, which is in line with the core assumption used in our 

paper in order to explain the homogenisation of the population. 

The introduction of subpopulations with different mortality characteristics can easily be 

justified on the basis of biological and medical observations. Certain diseases tend to follow 

others due to strong associations at genetic and cellular levels, and connections at the cellular 

level get amplified at the population level when a number of diseases emerge as comorbid 

[80-82]. Susceptibility to a particular disease may stratify a part of population to having a 

particular dynamic of age-related accumulation of other associated diseases, and 

consequently a specific dynamic of mortality. To some extent this process is related to one 

described in the reliability theory [9], where age-related failure kinetics will be different for 

particular human physiological systems and their components, and will have a different 

impact on different human subpopulations. More studies are required on accumulation trends 

for particular diseases with an emphasis on mortality curves on one hand, and underlying 

genomic factors on the other. We believe that the complex structure of human populations in 

respect to evolving disease patterns in different age-groups will be revealed from these 

studies and more evidence will be available for refining the mathematical models. Having 

this knowledge we may be able to understand and better predict mortality dynamics in 

complex human populations by using a pallet of primary disease-associated genomic 

markers. 

Our analysis of the evolution of allele frequencies (under the assumption that genomic 

differences are responsible for the difference in mortality rates between subpopulations) has 

indicated that the homogenisation of the Swedish population in the 20th century can be 

explained by the selection process in favour of a particular subpopulation better fitted to a 

changing environment during the studied period. The force of selection as calculated on the 

basis of mortality-related heterogeneity of the population is known as the force of mortality 
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selection [54]. To provide an intuitive explanation of this force we note that the individuals 

belonging to frail subpopulations tend to die at younger ages (and more frequently before the 

reproductive ages) than ones from more robust subpopulations. Therefore frail 

subpopulations leave less offspring than more robust subpopulations. Consequently, the 

proportion of individuals belonging to more robust subpopulations increases through 

generations. Although we do not aim to propose a fully-specified and completely realistic 

evolutionary model, we show that using very simple assumptions we can relate the evolution 

of the heterogeneous structure of populations to genetics and natural selection. Thus this 

paper paves the way for many potential extensions regarding genetics and evolutionary 

theories. 

There are many studies indicating that the currently observed increase in longevity is 

primarily associated with environmental changes [83]. In order to link this statement with our 

results on the evolution of allele frequencies, we would suggest considering the following 

hypothetical scenario. Consider the population carrying a gene with two alleles  and . 

There are three different kinds of individuals: ,  and  in this population for which 

we can assume the same pattern of mortality and reproduction (three identical 

subpopulations) so that the genetic structure of this population is in equilibrium. Now assume 

that due to some environmental change the mortality of individuals carrying  is reduced. If 

this reduction hits the reproductive period, the frequency of  will tend to increase which will 

result in a change to the structure of the population and to gradual change in its mortality 

dynamics causing an increase in longevity. If the initial frequency of allele  is small then a 

jump in mortality patterns in cohort data should be observed with no further evolution. 

Contrary to this, if the initial frequency of allele  is small, then the jump will be replaced by 

a gradual evolution, associated with an increase of allele  frequency. Obviously the period 

data should show a gradual evolution of mortality patterns in both cases.  



30 
 

In this paper we focus on two subpopulations whose mortality dynamics evolve 

differently (in response to the same environmental changes) and this shows a change in the 

overall mortality pattern. Mortality patterns of both subpopulations change over the 20th 

century but for our analysis we have averaged the characteristics of the subpopulations by 

taking their average fitness. Thus we have reduced our analysis to the following idealised 

case: environmental change has happened on or before 1900 and this has changed the 

mortality patterns for subpopulations 3 and 4. The latter causes the changes in fitnesses of 

subpopulations, follow up gradual changes in the population structure and consequently lead 

to gradual increase in longevity. We do not address the question of why mortality of 

subpopulations changes in a certain way (in response to environmental changes), but taking 

these changes as granted we confirm that the change in the structure of populations 

(represented by fractions of subpopulations) correlates with the evolution of frequency of the 

hypothetical allele.  

The surprising part of this result is the time scale of the process: the selection process 

causes significant changes to take place in the population within one century (over four 

generations). In the model we have assumed that there is no difference in the reproductive 

behaviour of individuals belonging to different subpopulations and thus the difference in 

fitnesses is only conditioned by the difference in mortality patterns of the subpopulations, 

namely by their initial mortalities and mortality coefficients. As these parameters are time 

dependent, the relative fitnesses of subpopulations also change over time. In our study 

illustrated in Figure 7, we have ignored the fact that the fitnesses of the subpopulations 

evolve over time and used the average fitnesses over the entire century to calculate changes 

during four generations. This was done for two reasons: (1) to illustrate the process in a very 

simple case when the fitnesses do not change over time and (2) to properly account for 
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variations in fitnesses from year to year, we would have to give up the idea of discrete 

generations and design a much more sophisticated model (i.e. design a virtual population). 

An interesting question concerning the evolution of subpopulations analysed in Figure 

7, concerns the relationship between them in the 19th century. Our preliminary study shows 

that subpopulation 3 (which is almost extinct by the end of the 20th century) had a higher 

relative fitness for most of the 19th century as its mortality rate was lower than that of the 

fourth subpopulation and as a consequence the fraction of subpopulation 3 was increasing in 

the 19th century (and then decreased in the 20th century).  

In this paper we have presented a very simple, almost caricature, natural selection 

model to compare its outcome with the evolution of subpopulations in the fits of 

heterogeneous model to mortality data. Surprisingly close correspondence between the time 

evolution of the subpopulation in the model of heterogeneous population and the evolution of 

genome frequencies can already be highlighted on the basis of this model. This finding 

naturally paves the way for many interesting research questions and future research studies 

associated with the development of more realistic models based on genetics and natural 

selection. More complex models should be based on more accurate representation of 

reproduction patterns and take into account the effect of more than one gene polymorphism 

and naturally occurring splits in frequencies of different gene variants.  

Several additional extensions of this work are foreseen.  The first one is associated 

with the impact of the environment on mortality changes. Indeed, the sharp reduction in 

overall mortality during the 20th century and especially the dramatic decline of premature 

(infant and child) mortality in almost all countries is mainly a result of environmental 

changes and improvements [59, 60] and to a lesser extent, biological evolution. However, in 

our model framework, we do not explicitly account for environmental factors. Each 

subpopulation reacts in its own way to the environmental changes, and the mortality pattern 
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of each subpopulation (here the scale and shape parameters of their exponential dynamics 

shown in Figures 6A and 6B) evolves differently over time. Therefore, we should further 

explore the effects of environmental change on mortality dynamics of heterogeneous 

populations (that would be reflected in the evolution of the model parameters), on 

reproductive success, reproduction windows and duration of lifespan (interesting results can 

be found in [84, 85]). Second, the consideration of the heritability of phenotypic mortality-

related traits which are affected by genetic variations and environmental factors would be of 

great value. Third, future research could involve deeper consideration of the age-dependent 

fertility rate, male-female ratio, wider or narrower reproductive periods and changes over 

time including time-dependent fitnesses. Fourth, the effects of in and out migration, 

mutations and genetic drift could be examined. Finally an extensive literature exists on 

biological ageing and its potential relation to some longevity genes. Linking this stream of 

research with the model proposed in this study could reveal new mortality modelling tools 

and improve our knowledge on mortality and longevity matters.  
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Figure Legends 
 

Figure 1: BIC values for different mortality models fitted to the Swedish 1890-1900 cohort 

mortality data. The fits by Gompertz, Makeham, Perks and Heligman-Pollard models and the 

fits by the model of heterogeneous population consisting of two to seven subpopulations are 

shown. 

 

Figure 2: 1900 cohort Swedish mortality data fitted by the model of heterogeneous 

population composed of six subpopulations (panel A) and the Heligman-Pollard model 

(panel B). The dots represent the observed central death rates, while the dashed curves in 

panel A indicate the exponential mortality dynamics of each subpopulation in the model of 

heterogeneous population and in panel B - the dynamics of the three components of the 

Heligman-Pollard model. Note that the plots are given in semi-logarithmic scale. 

 

Figure 3: Model of heterogeneous population fitted to averaged 1890-1900 cohort death 

rates for ages over 80 for Swedish (A), Norwegian (B) and Japanese (C) populations. The 

dots represent the observed central death rates, while the exponential mortality dynamics of 

the subpopulations are shown by the dashed lines and the mortality dynamics of the entire 

population are shown by the black solid lines. Note that the plots are shown on a semi-

logarithmic scale. 

 

Figure 4: Model of heterogeneous population composed of three subpopulations fitted to 

averaged 1890-1900 cohort death rates for ages over 80 for Japanese male (A) and 

Japanese female (B) populations. The dots represent the observed central death rates, while 

the exponential mortality dynamics of the subpopulations are shown by the dashed lines and 
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the mortality dynamics of the entire population are shown by the black solid lines. Note that 

the plots are shown on a semi-logarithmic scale. 

 

Figure 5: Theoretical trajectories (solid curves) of old-age (80-110) mortality dynamics for 

a heterogeneous population composed of two subpopulations. Variations in relative sizes of 

the subpopulations permit the reproduction of all three observations for late-life mortality: 

deceleration, plateau and decline. Once the individuals of the frailest subpopulation die out 

the mortality of the entire population follows the exponential dynamics of the most robust 

subpopulation. In panel A the frailest subpopulation remains the same one over ages, while 

in panel B the frailest subpopulation before age 90 becomes the most robust one from age 90. 

Note that the plots are shown on a semi-logarithmic scale. 

 

Figure 6: Time-evolution of mortality dynamics in the mathematical model of a 

heterogeneous population. The model of a heterogeneous population composed of four 

subpopulations is modified to contain time-dependent parameters and is used to fit period 

Swedish death rates for ages 0 to 100 and for the entire 20th century period (1900-2000). The 

resulting fitted surface of the modified model to the age- and time-related Swedish data is 

shown in panel D. The initial mortalities and the mortality coefficients of subpopulations are 

assumed to change linearly over time (fits are shown in panels A and B respectively) while 

their initial fractions change exponentially (shown in panel C). Note that the plot in panel A 

is shown on a semi-logarithmic scale.  

 

Figure 7: Population homogenisation as a consequence of natural selection. The relative 

fitnesses of individuals belonging to the third (blue circles) and the fourth (red triangles) 
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subpopulations, as calculated according to the formulas in Table 3, are shown in panel A. 

The relative fitness of the third subpopulation varies from year to year with an average value 

of 0.27 (black dashed line) over the entire century. This average value is used to calculate the 

changes in genotype frequencies due to natural selection as shown in panel B (black circles), 

over four generations (each lasting 25 calendar years as indicated by the vertical lines in 

panel B). Calculated genotype frequencies are interpolated linearly (solid lines connecting 

circles in panel B) within each generation to be comparable with the normalised initial 

fractions of the third (blue circles) and the fourth (red triangles) subpopulations modelled to 

fit the Swedish data for the period 1900 to 2000.  
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Tables 
 

Genotype    

Frequency of 

genotype at 

generation  

=  = 2  =  

 Absolute fitness    

Frequency of 

genotype at 

generation + 1 

+
 2 + +

 +
 

Table 1: Recurrence relation of genotype frequencies between two consecutive generations 

in a diploid genetics model with random mating. 
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Model Equation Number of 
parameters BIC →  

Gompertz =  2 -153.446 ∞ 

Makeham = +  3 -150.045 ∞ 

Weibull =  2 -156.711 ∞ 

Heterogeneous 
2-subpopulations = , ,  5 -168.653 ∞ 

Heterogeneous 
3-subpopulations = , ,  8 -156.422 ∞ 

Perks = + 1 +  4 -152.169 +  

3-parameter 
Logistic = + 1 +  3 -143.727 + 1 

Beard = 1 +  3 -155.570  

Kannisto = 1 +  2 -134.444 1 

Michaelis-Menten = /( ) 3 -156.843 /  

Exponential-
Quadratic =  3 -156.668 0 

(for < 0) 

Table 2: Comparison of BIC values for several parametric models fitted to the averaged 

1890-1900 Swedish cohort data for ages beyond 80. All model parameters are assumed to be 

greater than or equal to zero except for the parameters  and  in the exponential-quadratic 

model where they are assumed to be negative. 
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Subpopulation 3rd 4th  

Genotypes +   

Initial fraction , = + = + 2  , = =  

Absolute fitness = , exp , 1 −  = , exp , 1 −  

Relative fitness /  1 

Table 3: Genotype frequencies and fitnesses in terms of the model parameters. The absolute 

fitness of individuals belonging to each subpopulation is calculated as a total number of 

person-years within the reproductive period (assumed to cover ages 20 to 40) multiplied by a 

probability to reproduce, , which is assumed to be age-independent and constant for all 

individuals. Note that since the initial mortality and mortality coefficient of each 

subpopulation change over time, the absolute and relative fitnesses also change over time.   
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