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ABSTRACT  

In this work a comparison among slope deposits (SD) maps obtained 

by integrating field measurements of SD depth and cluster analysis of 

morphometric data has been performed. Three SD depth maps have been 

obtained for the same area (SA1) by using different approaches. Two 

maps have been achieved by implementing both the supervised and 

unsupervised approaches and exploiting the dataset of SD depths 

previously collected in a region (SA2) characterized by the same bedrock 

lithology, although located 35 km far from the SA1. The results have been 

validated against a reference map based on SD depth measurements 

acquired during this work within the SA1 and mapped by unsupervised 

clustering. The outcome of the study shows the feasibility of the 

methodology proposed to obtain depth maps of SD. Nevertheless the very 

low map accuracy suggests that relationships among main morphometric 

variables and slope deposits depth are not constant at regional scale, 

although considering areas characterized by the same bedrock lithology. 
Hence, maps of SD depth should be based on depth data specifically 

acquired within the area under study. In order to improve the exploitation 

of SD depth datasets outside their provenance area, further research are  

necessary on clustering algorithms performance as well as additional 

morphometric and environmental variables to be employed in spatial 

analysis. 

KEY WORDS: Slope Deposits, Morphometric Analysis, Depth of Slope 

Deposits, Cluster Analysis, Environmental Variables. 

INTRODUCTION 

Landslides induced by intense rainfall events involving 

soils (slope deposits - SD) overlying bedrock (Daniels & 

Hammer, 1992; Arno & Birgit 2013) constitute a source of 

hazard within hilly and mountainous regions. For this reason, 

interest of the scientific community has been growing in 

performing landslide hazards/susceptibility evaluation for wide 

areas (regional assessment) to support sustainable spatial 

planning (Van Westen et al., 2006; Wu et al., 2015). The depth 

of SD is a fundamental parameter (Wu & Sidle, 1995; Terlien 

et al., 1995; Segoni et al., 2012) when implementing maps of 

shallow landslide susceptibility by physically based models, 

such as SHALSTAB (Montgomery & Dietrich, 1994; Dietrich 

& Montgomery, 1998). Therefore different approaches to 

estimate the spatial distribution of SD depth have been 

proposed in the literature (Hsu, 1994; Dietrich et al., 1995; 

Heimsath et al., 1999; Catani et al., 2010). 

The aim of this study is to compare the accuracy of SD 

depth maps obtained through cluster analysis methods, either 

by using SD depth measurements specifically acquired within 

the study area (Trefolini et al., 2015), or by exploiting the same 

kind of data previously collected within regions located far 

away from the study area, although characterized by similar 

geological properties. To this aim, two study areas situated in 

the Northern Apennines (Fig. 1), both characterized by the 

same bedrock lithology (sandstone of the Formazione del 

Macigno MAC), have been chosen. For the Study Area 1 

(SA1) three different SD depth maps have been obtained: the 

first (reference map) by using local, specifically acquired, 

measurements of SD depth, the others (test maps) by exploiting 

SD depth information collected in the Study Area 2 (SA2). 

METHODS 

SD depth data have been acquired in the field and have 

been classified into two groups, as shown in Tab. 1: four depth 

classes pertain to the group A (“thin SD” with depth ≤ 0.3 m) 

while three classes to the group B (“thick SD” with depth > 0.3 

m). Classes of group A were defined in order to describe the 

natural non-uniform spatial distribution of thin SD: class A1 is 

used to describe mainly outcropping bedrock; A2, instead, is 

used when thin SD prevail; those areas where non-mappable 

portions of SD deeper than 0.3 m also occur, are classified as 

either A1B or A2B. The above described SD depth 

nomenclature shouldn’t be regarded to as scale invariant and it 

refers to a mapping scale of 1:10.000. 

Transversal and longitudinal curvatures, flow accumulation 

and slope have been derived from a DEM with spatial 

resolution of 10 m and have been used as morphometric 

variables to describe the morphology of the study areas after 

being pre-processed. To this aim, for transversal and 

longitudinal curvatures, the data outside the range of the mean 

value ± 4.5 standard deviations (outliers) have been removed, 

while flow accumulation has been normalized by a lognormal 
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transformation. Then each variable has been rescaled to the 

same range. 

Assuming that, for areas characterized by homogeneous  

bedrock lithology, spatial distribution of SD depth is correlated 

with distribution of landforms (hence with morphometric 

description of ground surface) the above 4-variables 

morphometric representation has been  clustered,  and 

classified by using  the SD depth dataset and nomenclature, in 

order to obtain continuous SD depth maps. With the aim to 

assess the reliability of the SD depth mapping process, three 

depth maps have been produced for the SA1 by implementing 

three different and independent approaches. The reference map 

SA1-U (Fig. 2)  has been obtained by means of unsupervised 

clustering (ISODATA algorithm), as in Trefolini et al. (2015), 

by choosing 15 clusters to describe the morphometric space. 

Thereafter, each morphometric cluster have been assigned to 

depth classes by analyzing sampling distribution of SD depth 

measurements, collected in SA1. 

The test map SA1-S (Fig. 3) has been extracted by 

implementing a maximum likelihood algorithm (Richards & 

Xiuping, 2006). To this aim, the training dataset has been built 

by using the measurements collected in the SA2 (about 170 test 

sites). In order to get values by the four morphometric 

variables, a neighbourhood of 21 meters around each 

observation point has been used. Lastly the test map SA1-UM 

(Fig. 4) has been obtained by performing an unsupervised 

clustering, as for the reference depth map SA1-U, but in this 

case clustering has been applied to the morphometric space 

obtained by mosaicing both study areas. The 15 morphometric 

clusters have been classified into depth classes by exploiting 

the SA2 dataset of SD depth. 

The test maps (SA1-S and SA1-UM) have been compared 

with the reference map (SA1-U) and the results are shown by 

error matrix, as well as producer, user and total accuracies (for 

definitions and formulas, see Congalton & Green, 2009). 

RESULTS 

The results of maps comparison SA1-S vs. SA1-U are 

shown in Tab. 2. The total accuracy is very low (20.8%) and 

the best producer accuracy has been obtained for depth class 

B1 and the worst for B2. Whereas the best user accuracy has 

been obtained for depth class A2 and the worst for B2.  

The error matrix for comparison SA1-UM vs. SA1-U is 

shown in Tab. 3. For this map the total accuracy is even lower 

(15.3%). As for SA1-S, map the best producer accuracy has 

 

Fig. 1 – Map of the study areas: Study Area 1 (SA1 - red), located around the Carrara town; Study Area 2 (SA2 - orange), located along the left bank of the 

Serchio river (Map data ©2015 Google). Comparison has been performed among different SD depth maps of the SA1, obtained by SD depth measurements 

collected either in the same SA1 or in the SA2. 

Depth 

group 

Depth 

class 
Description 

A 
“thin 

SD” 

A1 
Continuous or prevailing outcropping bedrock; 

dSD generally ≤ 0.3 m. 

A1B 
As A1, with local not-mappable areas of SD 

pertaining to group B (SD depth > 0.3 m). 

A2 
Continuous or prevailing SD with SD depth 

generally ≤ 0.3 m. 

A2B 
As A2, with local not-mappable areas of SD 

pertaining to group B (SD depth > 0.3 m). 

B 
“thick 

SD” 

B1 Bedrock generally not outcropping; dSD 0.3-1 m. 

B2 Bedrock not outcropping; SD depth: 1-2 m. 

B3 Bedrock not outcropping; SD depth  > 2 m.  

Tab. 1 – Nomenclature used for classification of depth of SD  (modified from 

Trefolini et al. 2015). 
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been obtained for depth class B1 and the best user accuracy for 

depth class A2. Furthermore B2 depth class shows the worst 

producer and user accuracy. 

DISCUSSION AND CONCLUSION 

The maps of SD depth here presented (Fig. 3 and Fig. 4) 

show a reasonable distribution of SD depth classes. The thin 

depth classes (group A, Tab. 1) occur mostly in the ridge and 

nose areas, while thick depth classes (group B) develop along 

hillslopes with general thickening toward their bottom and in 

gently sloping areas. This result is in agreement with a general 

model of soil production, erosion, transport and sedimentation 

accepted in the literature (Daniels & Hammer, 1992; Arno & 

Birgit, 2013) and also observed during the field survey. 

Moreover the maps are not affected by noticeable “salt and 

pepper” effect. These results support the feasibility of 

segmentation methods of multidimensional morphometric 

space for the extraction of SD depth maps. 

Whereas, as regards the quantitative comparison between 

the reference map SA1-U and test maps (SA1-S and SA1-UM), 

the error matrix show a more complex framework. The A2B 

and B3 SD depth classes are predicted by the procedure based 

on SD depth data from the area SA2, but these classes are 

missing in the fieldwork dataset of the area SA1 and then in the 

map A1-U. This may account for low general accuracy because 

class B3 is widespread in the area SA2. Moreover Tab. 2 and 

 

Fig. 2 – Reference map SA1-U: unsupervised classification within SA1 

based on 140 SD depth measurements (white dots) collected in the same 

area. Depth classes as in Tab. 1. 

 

 

 

 Fig. 3 – Test map SA1-S: supervised classification within SA1 

based on 170 SD depth measurements collected in the SA2. Depth 

classes as in Tab. 1. 

 

 

 

 Fig. 4 – Test map SA1-UM: unsupervised classification obtained for 

the mosaic of SA1 and SA2 based on 170 SD depth measurements 

collected in the SA2. Depth classes as in Tab. 1 
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Tab. 3 highlight the general tendency of tests maps to develop 

deeper DS classes: A2 class in the reference map corresponds 

to B1 for 49.5% and 64.4% in SA1-S and SA1-UM 

respectively. In the same way, class B1 corresponds mainly to 

B2 (42.1% and 44.3%). The tendency of the maps obtained by 

SD depth data related to area SA2 to overestimate depth class 

is further evident for class B2 of SAI-U, generally 

corresponding to B3 (89.0% for SA1-S and 96.0% for SA1-

UM). 

In synthesis this work shows that predictive modeling of 

SD depth from one area to another nonadjacent area, although 

characterized by the same bedrock lithology, without any 

support by local field data, may be unreliable. Therefore new  

research are necessary with the aim of improving the 

exploitation of existing SD depth datasets outside the collection 

areas. For istance, new variables could be included in the 

analysis, such as: morphometric (elevation, flow length, aspect, 

etc.), engineering geology (rock mass quality of bedrock, 

weathering), land cover and meteo-climatic data. 
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Depth class SA1-S   

Producer 

Accuracy 

User 

Accuracy 

Total 

Accuracy 
Depth 

class 

SA1-U 

A2 A2B B1 B2 B3 

  

A2 24.5 1.7 49.5 18.8 5.5   24.5 74.1 

20.8 

A2B               
 

B1 6.9 9.4 28.8 42.1 12.8   28.8 36.7 

B2 1.7 0.0 0.1 9.2 89.0   9.2 13.1 

B3               
 

Tab. 2 - Error matrix, maps SA1-S vs. SA1-U. 

 

 
Depth class SA1-UM   

Producer 

Accuracy 

User 

Accuracy 

Total 

Accuracy 
Depth 

class 

SA1-U 

A2 A2B B1 B2 B3 

  

A2 19.8 0.0 64.4 3.4 12.4   19.8 72.0 

15.3 

A2B               
 

B1 7.7 0.9 22.7 44.3 24.3   22.7 25.9 

B2 0.0 0.0 0.4 3.6 96.0   3.6 7.0 

B3 
     

 
  

Tab. 3 – Error matrix, maps SA1-UM vs. SA1-U. 

 


