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Abstract. Survival signature has been presented recently to quantify
the system reliability. However, survival signature-based analytical meth-
ods are generally intractable for the analysis of realistic systems with
multi-state components and imprecisions on the transition time. The
availability of numerical simulation methods for the analysis of such sys-
tems is required. In this paper, novel simulation methods for computing
system reliability are presented. These allow to estimate the reliability
of realistic and large-scale systems based on survival signature including
parameter uncertainties and imprecisions. The simulation approaches are
generally applicable and efficient since only one estimation of the survival
signature is needed while Monte Carlo simulation is used to generate
component transition times. Numerical examples are presented to show
the applicability of the proposed methods.
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1 Introduction

The structure of a complex system cannot be sequentially reduced considering
alternative series and parallel sections. Consequentially, the study of the relia-
bility of such systems is still a topical subject in the literature and it has obvious
importance in many application areas [11]. Traditionally, the reliability analysis
of systems is performed adopting different well-known tools such as reliability
block diagram, fault tree and success tree methods, failure mode and effect anal-
ysis, and master logic diagram [12]. The main limitation of these traditional
approaches is their lack of applicability for very large systems.

In recent years, the system signature [16] has been recognized as an important
tool to quantify the reliability of systems consisting of independent and identi-
cally distributed (iid) or exchangeable components with respect to the random
failure times. System signature separates the system structure from the com-
ponent probabilistic failure distribution. However, when it is adopted to solve
a complex systems with more than one component type, it requires the com-
putation of the probabilities of all possible different ordering statistics of each
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component failure lifetime distributions, which is an intractable and tedious pro-
cedure. In order to overcome the limitations of the system signature, Coolen and
Coolen-Maturi [7] proposed the use of survival signature for analysing complex
systems consisting of more than one single component type increasing the appli-
cability of such approach to characterise complex systems and networks. System
survival signature can also be derived from the subsystems survival signature
[8], which provides a theory for reliability analysis on real world systems of non-
trivial size. Based on the above concepts, Feng et al. [10] developed an analytical
method to calculate survival functions of systems with uncertain components pa-
rameters which belong to the exponential family. The analytical solutions are
exact within the assumptions made, but they are sometimes hard or impossi-
ble to derive for large complex systems. Hence, general applicable numerical
solutions are required to perform numerical experiments, analysing the effect of
different distribution types and to overcome the limitation of analytical methods
that are usually based on ad-hoc solutions and limited to some specific families
of probability distribution functions. Simulation methods can be used for the
sensitivity analysis of multi-criteria decision models [6], optimise models with
rare events [15] and perform multi-attribute decision making [18].

In this paper, efficient simulation approaches are proposed to estimate the
reliability of large systems based on survival signature without the calculation
of all the cut-sets, which is a challenging and error prone task. The proposed
simulation approaches are applicable to any system configuration and able to
consider different representations of the uncertainties. The numerical implemen-
tation of the proposed approaches is based on two open source packages: the
R package “ReliabilityTheory” [4, 3] adopted to calculate the survival signature
and OpenCossan [14] a Matlab toolbox for uncertainty quantification and reli-
ability analysis. The applicability and efficiency of the proposed approaches are
demonstrated by solving numerical examples.

2 Background

2.1 Survival signature

Suppose there is one system formed by M components. Let the state vector of
components be x = (x1, x2, ..., xM ) ∈ {0, 1}M with xi = 1 if the i-th component
is in working state and xi = 0 if not. Φ = Φ(x) : {0, 1}m → {0, 1} defines the
system structure function, i.e., the system status based on all possible x. Φ is 1
if the system functions for state vector x and 0 if not.

Now consider a system with K ≥ 2 types of M components, with mk indi-
cating the number of components of each type and

∑K
k=1mk = M . It is assumed

that the failure times of the same component type are independently and identi-
cally distributed (iid) or exchangeable. Coolen et al. [8] introduced the survival
signature for such a system, denoted by φ(l1, l2, ..., lK), with lk = 0, 1, ...,mk for
k = 1, 2, ...,K, which is defined to be the probability that the system functions
given that lk of its mk components of type k work, for each k ∈ {1, 2, ...,K}.
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There are
(
mk

lk

)
state vectors xk with precisely lk components xki equal to 1, so

with
∑mk

i=1 x
k
i = lk. xki denotes the state of the i-th component of type k.

Let Sl1,l2,...,lK denote the set of all state vectors for the whole system for
which

∑mk

i=1 x
k
i = lk, k = 1, 2, ...,K. Assume that the random failure times of

components of the different types are fully independent, and in addition the
components are exchangeable within the same component types, the survival
signature can be rewritten as:

φ(l1, ..., lK) =

[
K∏

k=1

(
mk

lk

)−1]
×

∑
x∈Sl1,l2,...,lK

φ(x), (1)

Ck(t) ∈ {0, 1, ...,mk} denotes the number of type k components working at time
t. Assume that the components of the same type have a known CDF, Fk(t) for
type k. Moreover, the failure times of different component types are assumed
independent, then:

P (

K⋂
k=1

{Ck(t) = lk}) =

K∏
k=1

P (Ck(t) = lk) =

K∏
k=1

(
mk

lk

)
[Fk(t)]mk−lk [1− Fk(t)]lk

(2)
Hence, the survival function of the system with K types of components becomes:

P (Ts > t) =

m1∑
l1=0

...

mK∑
lK=0

φ(l1, ..., lK)P (

K⋂
k=1

{Ck(t) = lk}) (3)

Equation (3) separates the structure of the system from the failure time distri-
bution of its components, which is the main advantage of the system signature.
The survival signature only needs to be calculated once for any system, which is
similar to the system signature for systems with only single type of components.
For a special case of a system with only one type (K = 1) of components, the
survival signature and the system signature [16] are directly linked to each other
through a simple equation, however, the latter cannot be easily generalized for
systems with multiple types (K ≥ 2) of components [7]. This implies that all
attractive properties of the system signature also hold for the method using the
survival signature. The survival signature is easy to apply for systems with mul-
tiple types of components, and one could argue it is much easier to interpret
than the system signature.

2.2 Modelling the uncertainties

Multiple mathematical concepts can be used to characterize variability and un-
certainty. Often in practical situations very limited data are available, and to
avoid the inclusion of subjective and often unjustified hypothesis, the impre-
cision and vagueness of the data can be treated combining probabilistic and
set theoretical components in a unified construct allowing the identification of
bounds on probabilities for the events of interest in order to give a different
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prospective to the resultss [5]. Random Set theory is a general framework suited
to model uncertainty represented as cumulative distribution functions (CDFs),
intervals, probability boxes, normalized fuzzy sets (also known as possibility dis-
tributions) and Dempster-Shafer [9, 17] structures without making any implicit
or explicit assumption at all. Explanatory examples of such flexible frameworks
are provided in [13, 2, 1].

Without entering in the mathematical formalism, the Random Sets can be
understood as random variables that sample sets and not points as realizations.
These realization are called focal elements. When all focal elements are single-
tons, then the Random Set becomes a random variable.

Focal elements propagated through a model produce a collection of sets and
not points. These sets are generally identified by means of an opportune opti-
mization strategy. The collection of these set produces the so called Dempster-
Shafer structure [9]. The upper and lower bounds of these structures form the
distribution bounds of model output.

3 Simulation approaches

The survival signature presented in the Section 2.1 can be adopted in a Monte
Carlo based simulation method to estimate the system reliability in a simple
and efficient way. A possible system evolution is simulated by generating random
events (i.e. the random transition time such as failures of the system components)
and then estimating the status of the system based on the survival signature (Eq.
1). Then, counting the occurrence number of a specific condition (i.e. number of
system failures), it is possible to estimate the reliability of the system.

3.1 Reliability analysis of system without Imprecision

The simulation approach is based on the realizations of failure events of the
system’s components. Then, for each failure event the status of the system is
generated based on the probability that the system is working knowing that a
specific number of components are working. Such probability is given by the
survival signature as defined in Eq. 1. Suppose there is a system with M compo-
nents, K component types and mk components of type k. Hence, M =

∑K
k=1mk.

The survival signature is computed only once before starting the Monte Carlo
simulation. Without loss of generality, the lifetime distributions of components
are irrespective of the time they enter into service and once failed they can not be
repaired. The reliability of the system can be estimated adopting the following
procedure:

1 Sample the failure times for each component.The failure time of component
type k is obtained sampling from the CDF Fk corresponding to it.

2 Order the failure times ti ≤ ti+1 for i = 1, 2, . . . ,M . Hence, t1 represents the
first failure of a system component, t2 the second failure and so on.

3 At each failure time, it is easy to calculate the number of components working
for each component type: Ck(ti).
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4 Evaluate the survival signature which applies immediately after the corre-
sponding failure indicated as φti ≡ φ(C1(ti), C2(ti), . . . , CK(ti)).

5 Set i = 1 and draw from a Bernoulli distribution with probability 1 − φti
the system status X1 at time ti, if Xi = 1 the system fails.

6 If the system does not fail at ti, then consider ti+1. The probability that the
system functions at time ti+1 is φti+1

/φti = qi+1, given that it has survived
at time ti. So the system failure at time ti+1 Xi+1 is drawn from a Bernoulli
distribution with the probability 1− qi+1.

7 Repeat Step 6 to process other failure times (i← i+ 1).

The above procedure is repeated for N samples and the status of the system over
the time is collected in appropriated counters. It should be noted that with the
assumption that the system fails if no component functions, this implies that
qi∗ = 0 for i∗ ≤ M . Hence the system fails certainly at this ti∗ if it has not
failed before. The proposed algorithm is applicable to any system and requires
the calculation of the survival signature only once.

It is also possible to estimate the system reliability without the necessity to
sample the system status at each component failure time. The idea is to interpret
the survival signature as a normalised “production capability” of the system
defined by the Equation 1. For instance, if all the components are working, the
system output is 1. If all components are in failure status, the system output is
0. Hence, instead of sampling the system state at each failure time, the survival
signature is evaluated immediately after each sampled component failure time
and collected in proper counters. In other words, for each Monte Carlo simulation
this method generates a random grid of time points at which to evaluate the
probability of survival to those times that represents the “production level of
the system”. Finally, the survival function is obtained by directly averaging of
the survival signature over the time, i.e. computing the expected production
level of the system adopting an algorithm derived from the approach proposed
in [19]. Hence, the reliability of the system can be estimated modifying the steps
5-7 of the proposed approach as follows:

5’ Compute the probability of survival (production level) of the system by
evaluating the survival signature φ at each sampled component failure time
ti. For instance, the probability that the system survivals at time t1 is φt1 .

6’ Collect the value of the survival signature in appropriate counters (i.e. Y (j) =
Y (j) + φti for j : ti−1 ≤ j ∗ dt < ti) where Y represents the counter and dt
the discretisation time used to store the results.

The above procedure is repeated forN samples and the reliability of the system is
computed averaging the values of the survival signatures (P (Ts > t) ≈ 1

N Y (t)).
The uses of the survival signature makes this approach extremely efficient since it
does not require to sample the system output at each component transition time
(i.e. component failures). The flow chart of the simulation methods proposed for
estimating the reliability of non-repairable systems is shown in Figure 1.
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Fig. 1. Flow chart of the proposed numerical approaches.

3.2 Reliability Analysis of Systems with Imprecision

Reliability analysis of complex systems requires the probabilistic characterization
of all the possible component transitions. This usually requires a large data-set
that is not always available. In fact, it might not be possible to unequivocally
characterize some component transitions due to lack of data or ambiguity. As
mentioned in Section 2.2, to avoid the inclusion of subjective and often unjus-
tified hypotheses, the imprecision and vagueness of the data can be treated by
using concepts of imprecise probabilities. Randomness and imprecision are con-
sidered simultaneously but viewed separately at any time during the analysis
and in the results. The probabilistic analysis is carried out conditional on the
elements from the sets, which leads eventually to sets of probabilistic results.

Considering the imprecisions in the component parameters will lead to bounds
of the survival function of the systems and it can therefore be seen as a con-
servative analysis, in the sense that it does not make any additional hypothesis
with regard to the available information. In some instances, analytical methods
will not be appropriate means to analyse a system. Again, simulation methods
based on survival signature can be adopted to study systems considering param-
eter imprecision. A naive approach consists in adopting a double loop sampling
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where the outer loop is used to sample realizations in the epistemic space. In
other words, each realization in the epistemic space defines a new probabilis-
tic model that needs to be solved adopting the simulation methods proposed
above. Then the envelop of the system reliability is identified. However, since
almost all the systems are coherent ( a system is coherent if each component
is relevant, and the structure function is non decreasing) it is only necessary to
compute the analysis reliability twice using the lower and upper bounds for all
the parameters, respectively.

4 NUMERICAL EXAMPLES

4.1 Bridge System

The purpose of this numerical example is to verify the proposed algorithms since
analytical solutions are available. The bridge system comprises six components,
which belong to two types. It has no series section or parallel section which
can enable simplification (see Figure 2). The survival signature can easily be
computed either manually or using the R-package ReliabilityTheory [4]. The
values of the survival signature are reported in Table 1. In this example the

Fig. 2. Block diagramme of the bridge system with two types of components. The
number inside the boxes represent the component type.

failure times of component type 1 and 2 both obey exponential distributions with
parameters shown in Table 2. It is also assumed that the component once failed
can not be repaired. The survival function of the bridge system is then calculated
by means of the two proposed methods and compared with the analytical solution
as shown in Figure 3. The simulations have been performed using N = 5000
samples and collecting the results in 2000 counters. The discretisation time is
only required to collect the numerical results (i.e. survival function) although the
simulation of the system is continuous with respect to the time. The variance of
the estimators evaluated at time t = 0.8 and calculated by repeating the Monte
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Fig. 3. Survival function of the bridge system calculated by means of the proposed
simulation methods and analytical method, respectively.

Carlo simulation 20 times, is 3.0 ·10−5 using the Algorithm 1 and 1.4 ·10−5 with
the Algorithm 2, respectively.

The system is also analysed in presence of imprecision on the parameter value.
In particular, the only bounds of the exponential parameter is known as shown
in Table 2. To estimate the bounds of the survival function, the analysis have
been performed twice, using the lower and upper bound for all the parameters
as explain in Section 3.2. The results are shown in Figure 4 and compared with
analytical solutions estimated adopting the method presented in [10] showing a
perfect agreement.

4.2 Imprecise System

In order to illustrate the efficiency and the applicability of the proposed sim-
ulation approaches a complex system composed by 8 components of 5 types is
analysed. The component failure types and distribution parameters are shown
in Table 4. In addition, it is assumed that the exact configuration of part of
the system is unknown as shown in Figure 5. However, the system can still be
described using the survival signature although affected by imprecision as shown
in Table 3. Algorithm 2 is used to estimated the bounds of the survival function
of the system by collecting the values (i.e. intervals) of the survival signature
during the Monte Carlo simulation. The collected bounds are then used to es-
timate the bounds of the survival function as details in Ref [13]. For coherent
systems as explain in Section 3.2. In principle, Algorithm 1 can also be used for
the estimation of the reliability bounds although it requires some modifications
in the sampling of the system status. The upper and lower bounds of survival
function for the system with imprecision both in the survival signature and on
the component distribution parameters are shown in Figure 6. The simulation
have been performed using 5000 samples. This example shows the flexibility and
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Fig. 4. Bounds of the survival function of the bridge system calculated by means of
the simulation methods and compared with analytical solution.

Fig. 5. An eight components system without knowing the exact configuration.

the applicability of the simulation approaches proposed for analysing complex
systems affected by imprecision where no analytical solutions are available.

5 Conclusions

Complex systems occur in various engineering applications, the survival signa-
ture has been shown to be a practical method for performing reliability analysis
of complex systems with multiple component types. However, there always ex-
ist maintainability and imprecision within systems and the analytical methods
are only applicable in a few cases (e.g., for components only with exponential
distribution types).

In this paper, efficient simulation methods have been proposed for system re-
liability estimation. In principle, the simulation methods proposed in this paper
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Table 1. Survival signature of the bridge system of Fig.2

l1 l2 φ(l1, l2)

0 [0, 1, 2, 3] 0
[1, 2] [0, 1] 0
1 2 1/9
1 3 1/3
2 2 4/9
2 3 2/3
3 [0, 1, 2, 3] 1

Table 2. Failure rates of the components in the bridge system.

Component type Distribution type λ λ (with imprecision)

1 Exponential 0.8 [0.4, 1.2]
2 Exponential 1.5 [1.3, 2.1]

Table 3. Imprecise survival signature of the system of Fig.5, φ(l1, l2, l3) = 0 and
φ(l1, l2, l3) = 1 for both lower and upper bounds are omitted.

l1 l2 l3 [φ(l1, l2, l3)]

1 1 1 [1/8,1/8]
1 1 2 [1/4,1/4]
1 2 1 [1/5,1/4]
1 2 2 [3/7,1/2]
1 3 1 [1/4,3/8]
1 3 2 [1/2,1/2]
1 4 1 [1/4,1/2]
1 4 2 [1/2,1/2]
2 0 1 [0,1/2]
2 0 2 [0,1]
2 1 1 [1/4,3/4]
2 1 2 [1/2,1]
2 2 1 [1/2,1]
2 3 1 [3/4,1]
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Table 4. Components failure types and distribution parameters for system of Fig.5

Component type Distribution Parameters

1 Weibull ([1.6, 1.8], [3.3, 3.9])
2 Exponential ([2.1, 2.5])
3 Weibull ([3.1, 3.3], [2.3, 2.7])
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Fig. 6. Upper and lower bounds of survival function for the system in Fig 5.

have the ability to analyse system reliability by using only component failure
time simulation and the survival signature, which is of great value for many sys-
tems in real world. The proposed simulation methods are generally applicable
and able to deal with imprecision in the component distribution parameters as
well in the system configuration (i.e. in the survival signature). Furthermore,
they can easily be used to analyse non-repairable and repairable systems. The
simulation methods are extremely fast and they can be adopted to analyse real-
istic and complex systems. The feasibility and effectiveness of the presented ap-
proaches have been illustrated with two numerical examples, the results indicate
that simulation methods based on survival signature are efficient for analysing
reliability on complex systems.
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