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Abstract: Survival signature has been presented recently to quantify the system reliability as an alternative to 

the system signature. It not only holds the merits of system signature, but has the advantage for system with 

more than one type of components. In real world, however, due to lack of knowledge or data, there always exit 

uncertainties and imprecisions in components parameters. This makes system reliability analysis by using 

survival signature-based analytical method intractable, which is a challenging problem in system reliability 

analysis area. In this paper, system reliability is computed by using a simulation based method and survival 

signature. The novel proposed method allow to estimate the reliability of realistic and large-scale systems 

including parameter uncertainty and imprecision. A numerical example is presented to show the applicability of 

the approach. 
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1. Introduction 
A system is a collection of components, 
subsystems or assemblies arranged to a specific 
design in order to achieve desired functions with 
acceptable performance and reliability. System 
reliability analysis is essential to system safety 
and availability. In recent years, system 
signature has been recognized as an important 
tool to quantify reliability of systems and 
networks consist of independent and identically 
distributed (iid) components with random failure 
times (Samaniego 2007). System signature 
separates the structure of the system from the 
failure time distribution of the components. 
Some recent advances are presented by Eryilmaz 
(2010). However, when it comes to a system 
with more than one type of components, it 
requires computation of the probabilities of all 
possible different orderings of the order statistics 
of each component failure lifetime distributions, 
which is complex and tedious procedure not 
feasible for real work systems.  

In order to overcome the limitations of the 
system signature, Coolen and Coolen-Maturi 
(2012) proposed the survival signature as 
improved concept, which does not rely any more 
on the restriction to one component type. 
Specifically, the characteristics of the 
components do not need to be independently and 
identically distributed. Recent developments 
have opened up a pathway to perform a 
reliability analysis using the concept of survival 
signature even for relatively complex systems. 
Aslett et al. (2014) presented the use of the 
survival signature for networked systems 
reliability quantification from a Bayesian 
perspective. Coolen and Coolen-Maturi (2015) 
have shown how the survival signature can be 
derived from the signatures of two subsystems 
in both series and parallel configuration, and 
they have developed a nonparametric-predictive 
inference scheme for system reliability using the 
survival signature.  

In the real world, however, due to limited 
data and information available, it is difficult to 
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characterize probabilistically the failure time of 
components. Since the reliability and 
performance of systems are directly affected by 
uncertainties, a quantitative assessment of 
uncertainty is widely recognized as an important 
task in practical engineering (Modarres 2006). 
Ferson et al. (2004) presented probability box, 
or p-box, to represent uncertain quantities. The 
defining characteristic of a p-box are the 
probability intervals that define upper and lower 
bounds on the cumulative probability over the 
domain of the uncertain quantity. Beer et al. 
(2013) used fuzzy set theory and imprecise 
probability theory to deal with the uncertainties. 
Considering imprecisions might lead to 
impractical computational costs especially for 
detailed models. Recently, Coolen et al. (2014) 
proposed non-parametric predictive inference 
for system reliability using the survival 
signature. Based on the above comcepts, Feng et 
al. (2015) developed an analytical method to 
calculate survival functions of systems with 
uncertain components parameters which belong 
to exponential distribution.  

To deal with the imprecisions and 
uncertainties within components parameters, it is 
difficult to use analytical methods, especially for 
complex systems. Therefore, it can resort to 
simulation methods to quantify the system 
reliability. For instance, Marseguerra and Zio 
(2000) introduced optimization approach based 
on the combination of a generic algorithms and 
Monte Carlo simulation. Naess et al. (2009) 
presented the most advantage of Monte Carlo 
simulation method is that the failure criterision 
is usually relatively easy to check almost 
irrespective of the complexity of the system. The 
composite systems reliability evaluation based 
on Monte Carlo simulation and cross-entropy 
methods can be seen in Gonzalez et al. (2013). It 
can be seen that most of the current simulation 
methods evolve from Monte Carlo simulation, 
which is because this approach has its simplicity 
to implement at any levels of reliability analysis. 
However, Monte Carlo simulation method can 
require long computation time to produce 
satisfactory results. In order to speed up the 
simulation time for large systems and small 
failure probabilities, Au and Beck (2001) 
presented subset theory. The powerful software 
OpenCossan is able to deal with different 

representation of uncertainties, just refer to 
Patelli et al. (2012, 2014). Advanced line 
sampling was used to improve simulation 
efficiency in (De Angelis et al. 2015). 

In this paper, an efficient simulation 
approach is proposed to estimate the reliability 
of system based on survival signature. The 
proposed methodology is very flexible and 
allows to consider different representation of the 
uncertainty. The applicability and efficiency of 
the proposed approach is demonstrated by 
solving an illustrative example. 

This paper is organized as follows. Section 2 
presents a brief introduction of the survival 
signature and the relating system survival 
signature. Survival signature-based simulation 
method for system reliability is presented in 
Section 3. The performance of the proposed 
method is illustrated by analyzing a complex 
system. Finally Section 4 closes the paper with 
conclusions. 

2. Illustration of the Survival Signature 
Suppose there is one system formed by m 
components. Let the state vector of components 
be  x = (x1 , x2, ⋯, xm ) ∈ {0, 1}m

 with xi  =1 if 
the ith component is in working state and xi = 0 
if not. ∅ = ∅(x) ∶  {0,1}m → {0,1}  defines the 
system structure function, i.e., the system status 
based on all possible x . ∅  is 1 if the system 
functions for state vector x and 0 if not. 

Now consider a system with K ≥ 2 types of 
m components, with mk  indicating the number 
of components of each type and ∑ mk

K
k=1 = m. 

It is assumed that the failure times of the same 
component type are independently and 
identically distributed or exchangeable. The 
survival signature becomes ∅(𝑙1, 𝑙2, … , 𝑙𝑘), with 
𝑙𝑘 = 0,1, … , 𝑚𝑘  for 𝑘 = 1,2, … , 𝐾 . There are 
(mk

lk
)  state vectors xk  with precisely lk 

components xi
k equal to 1, so with ∑ xi

km
i=1 = lk. 

Let Sl1,l2,…,lK
 denote the set of all state vectors 

for the whole system for which ∑ xi
kmk

i=1 = lk , 
k = 1,2, … , K. Assume that the random failure 
times of components of the different types are 
fully independent, and in addition the 
components are exchangeable within the same 
component types, the survival signature can be 
written as:  

∅(𝑙1, … , 𝑙𝑘) = [∏ (𝑚𝑘
𝑙𝑘

)
−1

𝐾
𝑘=1 ] × ∑ ∅(𝑥)𝑥∈𝑆𝑙1,…,𝑙𝑘

     (1) 
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Ck(t) ∈ {0,1, … , mk} denotes the number of 
k  components working at time t . Assume that 
the components of the same type have a known 
CDF, Fk(t)  for type k . Moreover, the failure 
times of different component types are assumed 
independent, then: 

P(⋂ {Ck(t) = lk}K
k=1 ) = ∏ P(Ck(t) = lk)K

k=1 =

∏ (mk

lk
) [Fk(t)]mk−lk[1 − Fk(t)]lkK

k=1               (2) 

Hence, the survival function of the system 
with K types of components becomes 

𝑃(𝑇𝑠 > 𝑡) =
∑ …

𝑚1
𝑙1=0 ∑ ∅(𝑙1, … , 𝑙𝐾)𝑃(⋂ {𝐶𝑘(𝑡) = 𝑙𝑘}𝐾

𝑘=1 )
𝑚𝑘
𝑙𝑘=0     (3) 

It is obvious from the above equations that 
the survival signature can separate the structure 
of the system from the failure time distribution 
of its components, which is the main advantage 
of the system signature. What is more, the 
survival signature only need to be calculated 
once for any system, which is similar to the 
system signature for systems with only single 
type of components. It is easily seen that 
survival signature is closely related with system 
signature. For a special case of a system with 
only one type of components, the survival 
signature and the Samaniego's signature 
(Samaniego 2007) is directly linked to each 
other through a simple equation, however, the 
latter cannot be easily generalized for systems 
with multiple types of components (Coolen et al. 
2012). 

This implies that all attractive properties of 
the system signature also hold for the method 
using the survival signature, also the survival 
signature is easy to apply for systems with 
multiple types of components, and one could 
argue it is much easier to interpret than the 
system signature. 

3. Survival Signature-based Simulation 

Method 
In this section, survival signature-based 
simulation methods are used for reliability 
analysis on systems without and with parameter 
uncertainties and imprecisions, respectively. The 
definitions and calculation steps can be 
illustrated with reference to the complex system 
shown in Fig. 1. 

 

Figure 1. Complex system with two types of 

components 

It can be seen from the above figure that the 
complex system has no series section or parallel 
section which can enable simplification and it 
comprises of six components, which belonging 
to two types. Results of survival signature of the 
system can be seen in Table 1. 

Table 1. Survival signature of the complex system. 

𝑙1 𝑙2 ∅(𝑙1, 𝑙2) 

0 0 0 

0 1 0 

0 2 0 

0 3 0 

1 0 0 

1 1 0 

1 2 1/9 

1 3 1/3 

2 0 0 

2 1 0 

2 2 4/9 

2 3 2/3 

3 0 1 

3 1 1 

3 2 1 

3 3 1 

 

3.1 Reliability analysis on system without 

imprecision 
Suppose components failure times of type 1 and 
type 2 obey Weibull distribution and gamma 
distribution, respectively. Their parameters can 
be seen in Table 2.  

Table 2. Parameters of components in the complex 

system. 

Component 

Type 

Distribution 

Type 

Parameters 

(𝛼, 𝛽) 

1 Weibull (1.2, 2.3) 

2 Gamma (0.8, 1.3) 
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It can use simulation method to conduct the 
complex system reliability assessment because 
there are no approximations or assumptions in 
the simulation approach. The survival signature 
gives the probability that the system functions 
knowing the number of components for each 
type (i.e. 𝑙1  and 𝑙2 ) that are working. This 
system is equivalent to a system composed by 
two components that can be in four states (state 
0, state 1, state 2 and state 3). Therefore, the 
survival signature can be interpreted as the 
``production capability'' of the system. For 
instance, if all the components are working (or 
they are all in state 3), the system output is 1. If 
only one component of type 1 and two 
components of type 2 are working (or 
component 1 in state 1 while component 2 in 
state 2), the system output is 1/9 and so on. 

The survival signature-based method used to 
simulate the expected output of the system over 
the time is derived from the approach proposed 
in Zio et al. (2006). The major steps of the 
method are as follows: 

Step 1: sampling the transition times of the 
first component type, hence a sequence of 
transition times 𝑡1, 𝑡2, 𝑡3 and 𝑡4 are obtained. 

Step 2: Repeating the procedure of step 1 for 
the component type 2, which will obtain 4 
additional transition times. 

Step 3: Reordering all the transition times of 
(t1, t2, …, t8). 

Step 4: Computing the probability that the 
system functions for each time interval, which 
based on survival signature. 

Step 5: Repeating the steps 1 to 4 for n 
system histories and averaging the obtained 
results. 

Therefore, the probability of the system to 
survival over the time t is obtained. The survival 
signature-based simulation method follows the 
productivity idea, which gives each run an 
expected survival function. This simulation 
method fully takes survival signature into 
account. Therefore, this approach is more 
efficient for inference on the system survival 
function.  

In order to verify the simulation method, the 
results obtained by the survival signature-based 
simulation method are compared with the 
analytical solution and shown in Fig. 2. 

 

Figure 2. Survival functions of the complex system 

calculated by survival signature-based simulation 

method and analytical method 

It can be derived from the above figure that 
the survival function got by survival signature-
based simulation method is agree with the result 
got through analytical solution.  

3.2 Reliability analysis on system with 

imprecision 
The Probabilistic uncertainty and imprecision in 
components parameters are challenging 
phenomena in reliability analysis of complex 
systems. They require appropriate mathematical 
modelling and quantification to obtain realistic 
results when calculating the reliability of 
systems (Beer et al. 2013). The imprecisions in 
the component parameters will lead to lower and 
upper bounds of survival function of the 
systems, how to deal with the imprecisions 
within parameters is a practical problem in 
engineering.  

Continue using the complex system in Fig.1, 
the distribution types and imprecise parameters 
of components are shown in Table 3. 

Table 2. Parameters of components in the complex 

system considering imprecision. 

Component 

Type 

Distribution 

Type 

Parameters 

(𝛼, 𝛽) 

1 Weibull ([1.2,1.8], 

[2.3,2.9]) 

2 Gamma ([0.8,1.6], 

[1.3,2.1]) 

 
In some instances analytical method will not 

be an appropriate means to analysis a system. 
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For example, the system may be too complex or 
exits uncertainties within components, all of 
which will prevent the use of a general 
analytical method codes. In these situations, the 
system reliability performance can be simulated 
using survival signature-based Monte Carlo 
method. This method not only has the advantage 
of survival signature to handle complex systems 
reliability problems, but can recur to Monte 
Carlo simulation to deal with the uncertainties 
within the systems. 

Double loop sampling involves two layers of 
sampling: the outer loop is called the parameter 
loop since it concerns sampling different values 
for the set of distribution parameters for all of 
the uncertain quantities; while the inner loop 
goes by the name of probability loop because it 
involves sampling from precise probability 
distribution functions. As a matter of fact, 
double loop sampling implicates sampling from 
an analytical distribution whose parameters have 
been generated by sampling. 

To solve the parameter epistemic 
imprecision within components, it is just need to 
add an optimization loop around the survival 
signature-based simulation methods cited in 
Section 3.1 to estimate the bounds. In other 
words, it can be done by adding a simple Monte 
Carlo loop and sampling the values of 
components parameters from uniform 
distributions. 

Fig. 3 presents the survival function bounds 
calculated by the double loop sampling 
simulation method which based on the survival 
signature. 

 

Figure 3. Lower and upper bounds of survival 

functions of the complex system calculated by 

survival signature-based simulation method 

4. Conclusions 
The survival signature has been shown to be a 
practical method for conducting reliability 
analysis of complex systems with multiple 
component types. A survival signature-based 
simulation method has been proposed for system 
reliability estimation. The proposed approach is 
extremely efficient since the system model only 
needs to be analysed once in order to get the 
survival signature. The proposed simulation 
method gives out a stepped survival function for 
every run. In order to get the survival function of 
the system, it is necessary to average the stepped 
survival functions after simulation. The 
proposed approach is generally applicable. It 
allows to solve and analyse problems 
considering different representation of the 
uncertainty.  

In principle, the simulation method proposed 
in this paper has the ability to analyse system 
reliability by using only component failure time 
simulation and the survival signature, which is 
of great value for many systems in the real 
world. The feasibility of the proposed method 
has been illustrated analysing complex system. 
Future research direction may focus on 
repairable systems. 
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