
THE USE OF KRIGING IN STOCHASTIC MODEL UPDATING
AND ITS EFFECT ON PARAMETER ESTIMATES

Liang, P., DiazDelaO, F.A., Patelli, E., and Mottershead, J.E.

Institute of Risk and Uncertainty, School of Engineering, University of Liverpool,
Liverpool L69 3GH, UK.

E-mail of the corresponding author: j.e.mottershead@liverpool.ac.uk

SUMMARY: The Kriging predictor or Gaussian process emulator is a commonly used surrogate model for reduc-
ing the computational cost in the forward propagation of model updating. It has already been used and discussed
by many other researchers. As a stochastic model, the Kriging predictor provides not only the mean value of the
prediction but also the prediction variance. Previous work mainly used the prediction variance as a kind of judge-
ment on the model accuracy during the selection of design points and took only the mean value of the predictor
in the further study and production of results. Therefore, the model updating result obtained from only the mean
value of the Kriging predictor may be considered not accurate enough because of neglecting the prediction vari-
ance information. In order to investigate the effect of the Kriging prediction variance on parameter estimates, an
approach is developed in this paper for including it in model updating procedure. The approach is based on a trans-
fer method for the prediction variance and bootstrap algorithm. The main steps and the assumptions are presented,
followed by numerical examples using a univariate model updating problem. The results obtained show the effect
of the Kriging prediction variance on parameter estimates and are compared to results produced by conventional
methods that neglect the Kriging prediction variance in model updating.
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1. INTRODUCTION

The Kriging model is a very commonly used interpolation technique. It provides an efficient surrogate model for
the expensive forward propagation in model updating. Previous work on model updating with the Kriging model
mainly considered the mean value of the Kriging prediction. However, the prediction variance of the Kriging model
also affects the model-updating result. It indicates the accuracy of the Kriging prediction and therefore also affects
the parameters estimated by the model updating process using the Kriging model. The Kriging prediction variance
was used for selecting new design points to obtain a better Kriging model [1][2][3], for global optimisation of
time-consuming Monte-Carlo simulation [4], and for measuring the quality of the prediction of a Kriging model
[5]. In this paper, the Kriging prediction variance will be used with a variance transfer method and the bootstrap
technique in order to estimate the its effect on the parameters estimated by model updating with Kriging.
The rest of this article is organised as follows. The univariate problem concerned will be presented in Section 2.
Section 3 introduces the background theory of model updating using the Kriging model and kernel density estima-
tion. Section 4 explains the procedure for including the Kriging prediction variance in the model updating result.
The numerical examples are given in Section 5 for the univariate model-updating problem. A brief introduction of
the Kriging model, and the description of the model updating method with Kriging are provided in the Appendix.

2. THE UNIVARIATE PROBLEM

Figure 1 shows a 3-dof mass-spring system. It consists of three masses and six springs. The stiffness k2 is selected
as the updating parameter in this case study, and the third eigenvalue of the system ω2

3 is selected as the response
to be used for updating k2. Hence, for the Kriging model used as surrogate, k2 is the input and ω2

3 is the output.
Other parameters in the system are determined as following.
m1 = 1.0 kg,m2 = 4.0 kg,m3 = 1.0 kg



k1 = k3 = 0,k4 = 1.9 N/m or k4 = 2.0 N/m,k5 = 2.0 N/m,k6 = 1.0 N/m
The feasible range of parameter k2 is chosen as [6.5,9.5].

Figure 1 – 3-dof mass-spring system

Figure 2 presents the surfaces ω2
2 and ω2

3 with different k2, k4 values. The two surface are quite close to each other
and connect at the point (k2,k4) = (8,2)N/m, so that the response of the highest eigenvalue is represented by a
curve ω2

3 (k2) with a slope discontinuity when k4 = 2 N/m. The discontinuity then occurs at k2 = 8 N/m. This
particular case is that of crossing eigenvalues and is chosen especially because it presents a challenging problem
for the Kriging model and for the model updating. Any other value of k4 results in veering of the eigenvalues. We
select k4 = 1.9 N/m and k4 = 2.0 N/m as two cases for our particular study. The case of k4 = 1.9 N/m is a more
usual problem with a smooth response curve ω2

3 (k2). The method described in the following two sections will be
applied to these two problems and the results will be compared.
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3. BACKGROUND THEORY

A brief introduction of the background theory, including iterative model updating with a Kriging model, the prin-
ciple of the kernel density estimation, and the bootstrap algorithm for density estimations, to be used in the model
updating process will be presented in this section.

3.1. Model Updating with Kriging Predictor
If a Kriging predictor is constructed as a surrogate model for the mathematical (physical) model of the system. An
iterative model updating method is to be used with the Kriging model to evaluate the possible parameter values.



This method is described by Haddad Khodaparast et al [5] who gave recursive equation for the updating parameter
as (Eq. 25, [5])

θθθ l+1 = (HTH+D+U+V−A+W)−1
θθθ=θθθ l
{f(θθθ)+HT

µµµ−HT
ΛρΛρΛρ−g(θθθ)+Wθθθ}

θθθ=θθθ l
(1)

This equation comes from the optimisation problem minθ (ε
Tε), where ε is the error vector between measurement

zm and Kriging predictor output ẑ. The explanation of the matrices in Equation 1 is provided in the Appendix.
More details of the derivation of the recursive equation equation (1) can be found in [5].

3.2. Kernel Density Estimation
Kernel density estimation fX (x,σ) = 1

σn
√

2π
∑

n
j=1 exp

(
−(x−x( j))2

2σ2

)
will be implemented for estimating the proba-

bility distribution of the updated parameters from a limited number of samples. As this kernel density estimator
uses the normal distribution kernel, the smoothing parameter of the estimator, or the bandwidth h is equivalent to
the standard deviation σ in the kernel density function. In the specific case of normal distributed target function,

the bandwidth is given by σ =
(

4σ̂5

3n

) 1
5 , where σ̂ is the standard deviation of the samples and n is the sample size.

This estimation is optimal for estimating normal underlying densities. It should be noted that the σ in the kernel
density estimation function is different from the σ̂ in the bandwidth function. σ is the standard deviation of the
kernel, and σ̂ is the standard deviation of the samples to be estimated.

3.3. Bootstrap Algorithm for Density Estimation
The bootstrap is a re-sampling method for assigning measures of accuracy to sample estimates. It is the practice
of estimating properties of an estimator by measuring those properties when sampling from an approximating dis-
tribution. Bootstrap algorithm can be utilised for estimating the variation of density estimates [6]. New estimates
are constructed with re-sampled data and the variation of the estimates is obtained by by the repeated bootstrap
re-sampling to determine re-constructed density estimates. The algorithm is described in the following steps:

If {xi; i = 1, ...,n} is a set of data with probability density p. The bootstrap algorithm for this data is as follows [6]:
1. Form density estimate p̂ from data {xi; i = 1, ...,n}.
2. Resample (uniformly) n values from {xi; i = 1, ...,n}, with replacement, obtaining {x∗i ; i = 1, ...,n} (boot-

strap data). Note that in resampling with replacement our bootstrap dataset may contain the same xi multiple
times.

3. Form density estimate p̂∗ from data {x∗i ; i = 1, ...,n}.
4. Repeat steps 2&3 N times to obtain a family of bootstrap density estimates { p̂∗i ; i = 1, ...,N}.
5. The distribution of p̂∗i about p̂ mimics the distribution of p̂ about p.

The bootstrap density estimates reproduce the variance of p̂, and it is a useful tool for estimating the variance of a
density estimator.

4. ESTIMATING OF THE PROBABILITY DISTRIBUTION OF THE UPDATED PARAMETERS

In this section, an approximate calculation method for determining the covariance matrix of the random variables
is presented. The Jacobian matrix between the output and input of the Kriging model is derived and will be used for
the covariance calculation by linearisation of the input-output relationship from the Kriging predictor. The Kriging
prediction covariances will then be included in the model updating by re-sampling from the derived parameter
covariances. Kernel density estimates are constructed with the re-sampled data and its confidence intervals are
evaluated with the bootstrap algorithm.

4.1. Linear approximation using predicting variance from the Kriging model
In order to include the variance information given by the Kriging model in estimating parameters, a linear approxi-
mation will be used to transfer the Kriging output variance to parameter variance. We assume the parameter/output
relationship to be linear in the local area around an updated parameter. The parameter covariance matrix can be
determined from the outut prediction covariance matrix given by the Kriging model. A general form of a transfor-
mation between input vector θθθ and output vector Z can be expressed as

Z = Jθθθ (2)



where J is the Jacobian matrix between X and Y . Matrix J can be presented as

J =


∂ z1
∂θ1

∂ z1
∂θ2

· · · ∂ z1
∂θp

∂ z2
∂θ1

∂ z2
∂θ2

· · · ∂ z2
∂θp

...
...

...
∂ zn
∂θ1

∂ zn
∂θ2

· · · ∂ zn
∂θp

 (3)

Then, the relationship between CovZ, the covariance matrix of Z, and Covθθθ , the covariance matrix of θθθ , can be
written as

CovZ = JCovθθθ JT (4)

By using this equation, we can transfer the variance between θθθ and Z.
Specifically, for the Kriging model used in this report, the Jacobian matrix for the model in Equation 15 can be
written as

J = JI +JII (5)

where JI is the Jacobian matrix of the regression part, β0,i +bT
i θθθ + 1

2θθθ T Biθθθ , of the Kriging model.

JI =


b1

T +θθθ T B1
b2

T +θθθ T B2
...

bn
T +θθθ T Bn


|θθθ=θθθ∗

(6)

JII is the Jacobian matrix for the other part, λλλ T
i ri(θθθ).

JII =


∂λλλ T

1 r1(θθθ)
∂θθθ

∂λλλ T
2 r2(θθθ)
∂θθθ

...
∂λλλ T

n rn(θθθ)
∂θθθ


|θθθ=θθθ∗

(7)

where
∂λλλ T

i ri(θθθ)

∂θθθ
=
[

∂λλλ T
i ri(θθθ)
∂θ1

∂λλλ T
i ri(θθθ)
∂θ2

· · · ∂λλλ T
i ri(θθθ)
∂θp

]
(8)

∂λλλ T
i ri(θθθ)

∂θt
=−ζt,iνi ·λ T

i


(−1)s|θt −θ

(1)
t |νi−1Ci(θθθ ,θθθ

(1))

(−1)s|θt −θ
(2)
t |νi−1Ci(θθθ ,θθθ

(2))
...

(−1)s|θt −θ
(ns)
t |νi−1Ci(θθθ ,θθθ

(ns))

 , s =

{
0 θt ≥ θ

(h)
t

1 θt < θ
(h)
t

(9)

The equations above based on the differentiability of the Kriging model, which is related to the chosen of the
correlation function.
For a single updated value d of the parameter from the Kriging model updating, with the calculated parameter vari-
ance σk, a new sample should be sampled from the distribution N(d,σk). A kernel density estimate is constructed
with the new samples of all the updated parameter values, and the confidence intervals of this density estimate is
evaluated by bootstrapping. The whole process can be summarised as:

1. Deterministic model updating with the constructed Kriging model using equation (1).
2. Evaluate the variance of the updated parameters using equation (4).
3. Re-sample using a different dataset taken from the distribution of the updating parameters.
4. Evaluate the kernel density estimate of each of the new samples.
5. Bootstrap the new samples to evaluate the confidence interval of the density estimate.
6. Repeat from step 3.



5. NUMERICAL EXAMPLES

In this section, the numerical implementation of the model updating methodology will be presented using several
numerical simulation case studies. The simulation will be carried out for the univariate problem of the mass-spring
system. The procedure will be introduced in the following order.
• Multiple deterministic model updating and the updated parameter distribution determined using kernel den-

sity estimation. In this section, the uncertainty caused by the Gaussian process of the Kriging predictor will
not be taken account.

• Determining the distribution of the input, or updating parameter (stiffness) from the known distribution
on the output (natural frequency) by the approximate calculation using linearisation of the input-output
relationship from the Kriging predictor. The uncertainty from the Kriging predictor will be taken account in
the determination.

• Approximate calculation of output distribution by Monte Carlo simulation. The result of the simulation
taking account and not taking account of the uncertainty from the Kriging model will both be presented.

For constructing the Kriging model, design points need to be sampled from the feasible range of k2. As this is
a univariate problem, the sampling of the Kriging predictor started with three points, k2 = 6.5,8.0,9.5, two end
points and the middle point in the feasible range. A sequential procedure was used for design point sampling with
new design points added using the the maximal MSE criterion [2][7]. A quite coarse Kriging situation with only
4 design points was deliberately constructed for the two cases k4 = 1.9 N/m and k4 = 2.0 N/m. Figure 3 shows
the target functions given by mathematical models and the Kriging predictors. The second function is with slope
discontinuity at k2 = 8 N/m cannot be modelled accurately by Kriging with only 4 design points marked by circles
in Figure 3 and the 95% confidence interval of the Kriging predictors shown as a shaded region. It is obvious that
the Kriging model is less good in the case of the second target function. Surrogate models are needed as substitutes
for expensive FE-models. The purpose of constructing a Kriging predictor here is to demonstrate a strategy for
combining the Kriging predictor as a part of the a model updating procedure that fully takes account of the Kriging
variance.

Figure 3 – The 4 point Kriging model of the univariate system. Left: k4 = 1.9 N/m. Right: k4 = 2.0 N/m.

The model updating process is based on the Kriging predictor. Two sets of synthetic observation samples are used
for the comparison of the model updating results. The first sample sets consists of 10 samples, and the other one
consists of 100 samples. The sample generating method is as follows.

1. Generating parameter k2 from distribution N(8.5,0.5).
2. Calculating the corresponding ω2

3 (k2) using the mathematical model.
3. Mixing the calculated ω2

3 values with noise generated from N(0,0.001).
By using this procedure, the uncertainty in the measurement comes from two parts, the parameter uncertainty and
measurement noise.

5.1. Estimation of Parameter Distribution using Deterministic Model Updating
Model updating was applied for each measurement sample, and the initial value of k2 for updating was set as
8.5 for all the samples. After model updating, updated parameter mean values were obtained. The distribution of
parameter was evaluated by kernel density estimation with the updated parameter mean values. The kernel function
was chosen for normal distributions.



Updated results of two measurement sets for two cases are shown in Figure 4 and 5. Kernel density estimates for
updated parameters were compared with the true parameter densities (N(8.5,0.5)). The kernel density estimates
differ from the true densities because of an insufficient number of Kriging training points and from each other
because of the different numbers of samples used. But as the true parameter density would be unknown for a real
application, this density estimation is the maximum information that can obtained based on the current method.
Additionally, as the second function concerned in this case study contains a horizontal line where the eigenvalue
is insensitive to the parameter, the model updating results in this region cannot be expected to be accurate. This
problem also influences the accuracy of the parameter kernel density estimate. The parameter updating of strictly
non-monotonic functions would be a topic to be studied in the future.
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Figure 4 – Model updating results of 4 point Kriging model, k4 = 1.9 N/m. Left: 10 samples. Right: 100 samples.
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Figure 5 – Model updating results of 4 point Kriging model, k4 = 2.0 N/m. Left: 10 samples. Right: 100 samples.

5.2. Inclusion of Kriging Variance Information
The principle of the model updating is to find the values of parameters to minimise the difference between the
response calculated with parameters and the measured response. In the ideal situation, the updating process will
lead to a parameter value that reproduces the measured response exactly . If the response function is monotonic
and the surrogate model reflects the true model perfectly, the updating process will find the accurate value for the



updating parameter. However, the Kriging model only holds for perfect fitting at its design points. At other points,
the response calculated by the Kriging model is usually slightly different from the true model. As a result of this
small difference, the updated parameter values found with the Kriging model will slightly biased from the correct
value. The model updating based on the mean value of the Kriging model gives only one possible result in the
confidence interval of the Kriging model. There will be other valid points within the density of the Kriging outputs
that should be considered.

5.3. Updating using Kriging Variance Data and Bootstrapping
Figures 6 and 7 show the comparison of results from two different sample sizes for the two cases concerned. The
true distribution is denoted by the blue curve. The red curves are kernel density estimates obtained by sampling
from parameter densities obtained by inversion of equation (4). The blue dashed lines are 95% confidence intervals
obtained by bootstrapping. It can be seen that the confidence intervals in all cases enclose the red curves. Also the
general shape of the red curves and boundaries of the confidence intervals are similar. As the sample size increases,
the variation of the re-constructed density estimates reduces and the confidence intervals become narrower. The
crossing-modes curve with the greater Kriging prediction variance also creates greater variance in the parameter
densities. The results for the k4 = 2.0 N/m case with a 12 design point model is shown in Figure 8. As the Kriging
prediction variance gets smaller with more design points, the variation of the result also becomes smaller compared
to the 4 design-point case.
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Figure 6 – Bootstrapping results of the 4 point Kriging model, k4 = 1.9 N/m. Left: 10 samples. Right: 100 samples.
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Figure 7 – Bootstrapping results of the 4 point Kriging model, k4 = 2.0 N/m. Left: 10 samples. Right: 100 samples.



6.5 7 7.5 8 8.5 9 9.5
0

0.5

1

1.5

2

2.5

k
2

pd
f

 

 
KDE with resampled updated parameter
True distribution
95% Per. CI Plain Bootstrap

6.5 7 7.5 8 8.5 9 9.5
0

0.5

1

1.5

2

2.5

k
2

pd
f

 

 
KDE with resampled updated parameter
True distribution
95% Per. CI Plain Bootstrap

Figure 8 – Bootstrapping results of the 12 point Kriging model, k4 = 2.0 N/m. Left: 10 samples. Right: 100 samples.

6. CONCLUSION

This paper addresses the use of Kriging model in model updating and presents a method to incorporate the effect
of Kriging prediction variance in the estimation of model-updating parameters. Numerical implementations for a
univariate problem are described and the results obtained show the effect of Kriging prediction variance on the
model updating result. It shows that the Kriging prediction variance does produce an evident influence on model
updating results based on a Kriging model. Therefore for obtaining a more precise result, the prediction variance
of Kriging model should be considered in the model updating procedure and the method provided in the article
could be used to estimate the effect of Kriging prediction variance.

APPENDIX

Kriging predictor
A Universal Kriging predictor can be presented as

Z(θθθ) =
k

∑
j=1

β j f j(θθθ)+ ε(θθθ) (10)

The random function Z(θθθ) includes a regression model ∑
k
j=1 β j f j(θθθ), and a random process ε(θθθ). ε(θθθ) is assumed

to have mean zero and covariance Cov(θθθ ,ϑϑϑ) = σ2C(θθθ ,ϑϑϑ) between ε(θθθ) and ε(ϑϑϑ), where σ2 is the process
variance and C(θθθ ,ϑϑϑ) is the correlation.
In this report, a second order polynomial is used for the regression part in the Kriging model. Hence, the Kriging
model of the i-th output is expressed as

ẑi = β0,i +bT
i θθθ +

1
2

θθθ
T Biθθθ + εi(θθθ) (11)

where θθθ = [θ1,θ2, · · · ,θp]
T is the uncertain system parameter vector. bT

i = [β1,i,β2,i, · · · ,βp,i]
T ,

Bi =


2β11,i β12,i · · · β1p,i

2β22,i · · · β2p,i
. . .

...
sym. 2βpp,i

 , and the covariance of εi(θθθ) is

cov(εi(θθθ),εi(ϑϑϑ)) = σ
2
i Ci(θθθ ,ϑϑϑ) (12)

Ci(θθθ ,ϑϑϑ) =
p

∏
j=1

C j,i(θ j,ϑ j) (13)

C j,i(θ j,ϑ j) = exp(−ζ j,i|θ j−ϑ j|νi),1≤ νi ≤ 2 (14)

where ζ j,i and νi are the parameters of the correlation function at the i-th output.



The mean Kriging predictor may be expressed as

ẑi = β0,i +bT
i θθθ +

1
2

θθθ
T Biθθθ +λλλ

T
i ri(θθθ) (15)

where ri(θθθ) = [Ci(θθθ ,θθθ
(1)),Ci(θθθ ,θθθ

(2)), · · · ,Ci(θθθ ,θθθ
(ns))]T , θθθ (1), · · · ,θθθ (ns) are the design points, and λλλ i = R−1

i (Z:,i−
ΞΞΞ[[[β ])
The training of the Kriging predictor starts with a few initial training points. Ghoreyshi et al [2] used Latin hyper-
cube sampling (LHS) to generate initial points and a central composite design (CCD) was used in [5]. In this study,
a one dimensional system is used and the initial points are chosen as three points which are the two boundaries
points and the middle point of the region. Sacks et al [1] introduced several design criteria including Integrated
Mean Squared Error (IMSE), Maximum Mean Squared Error (MMSE), and Entropy. The MMSE criterion will be
used in this study. The maximum point of mean squared error (MSE) of Kriging predictor will be used to determine
the location of the new point in iteration.
For a Kriging predictor expressed as equation (10). The MSE for this predictor can be expressed as

MSE(ẑi(θθθ)) = σ
2
i [1−

(
fT (θθθ) rT (θθθ)

)(0 FT

F R

)−1(f(θθθ)
r(θθθ)

)
(16)

where ẑi(θθθ) is the linear predictor of zi(θθθ) at an untried θθθ . f(θθθ) = [ f1(θθθ), · · · , fk(θθθ)]
T is the vector of k functions in

the regression, F=

 fT (θθθ (1))
...

fT (θθθ (ns))

 is the ns×k expanded design matrix, R=R(θθθ (i),θθθ ( j)),1≤ i≤ ns;1≤ j≤ ns is the

ns×ns matrix of stochastic-process correlations between the design points, and r(θθθ)= [R(θθθ (1),θθθ), · · · ,R(θθθ (ns),θθθ)]T

is the vector of correlations between design points and an untried θθθ .
The goal of the MMSE criterion is to minimise

max
θθθ∈ΘΘΘ

MSE[(ẑi(θθθ)] (17)

In each training step, the MSE of the predictor is calculated and a maximum MSE point will be added to training
points in the next training step. Thus, the MSE of predictor will be reduced step by step with the increasing of the
number of training points. The training iteration stopped when the maximum MSE falls under a chosen threshold.

Model updating recursive equation
In the model updating recursive equation

θθθ l+1 = (HTH+D+U+V−A+W)−1
θθθ=θθθ l
{f(θθθ)+HT

µµµ−HT
ΛρΛρΛρ−g(θθθ)+Wθθθ}

θθθ=θθθ l

the process matrices H,D,U,V,A, f,g,W,µ,Λµ,Λµ,Λ are

H(θθθ) = [Hi j]n×p; Hi j = β j,i +θ jβ j j,i +
1
2

p

∑
k=1,k 6= j

βk j,iθk

n – the number of the Kriging outputs, p – the number of Kriging inputs, ns – the number of the Kriging design
points

D(θθθ) = [Di j]p×p; Di j =
1
2

p

∑
k=1

n

∑
l=1

(
Hl j

∂Hl j

∂θi
+Hlk

∂Hl j

∂θi

)
θk

U(θθθ) = [Ui j]p×p; Ui j =
n

∑
k=1

ns

∑
l=1

λl,kHk j
∂ rl,k(θ)

∂θi

V(θθθ) = [Vi j]p×p; Vi j =
n

∑
k=1

ns

∑
l=1

λl,k
∂Hk j

∂θi
rl,k(θ)

A = [Ai j]p×p; Ai j =
n

∑
k=1

µk
∂Hi j

∂θi
;

∂Hi j

∂θi
=

1
2

Bi j,k

f(θθθ) = { fi(θ)}p×1; fi(θ) =
n

∑
j=1

ns

∑
k=1

λk, jµ j
∂ rk, j(θ)

∂θi



g(θθθ) = {gi(θ)}p×1; gi(θ) =
1
2

n

∑
l=1

ns

∑
k=1

ns

∑
j=1

λ j,lλk,l

(
rk,l(θ)

∂ r j,l(θ)

∂θi
+ r j,l(θ)

∂ rk,l(θ)

∂θi

)
µµµ = zm−βββ 0

ΛΛΛ =


λ1,1 λ2,1 · · · λns,1 0 · · · · · · · · · · · · 0

0 · · · · · · 0 λ1,2 · · · λns,2 0 · · · 0
· · ·
· · · λns,n


λλλ i = (λi,1,λi,2, · · · ,λi,n)

T = R−1
i (Zi−Fβββ )

Matrix W is chosen to make (WTW+D+U+V−A+W) invertible. It may be chosen in the form W = λ I. Bi j,k
is the component of matrix Bk which is a parameter matrix in the Kriging predictor expression equation (11).
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