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Abstract 20 

Osteoarthritis is a degenerative joint disease and a world-wide healthcare burden. 21 

Characterized by cartilage degradation, subchondral bone thickening and osteophyte 22 

formation, osteoarthritis inflicts much pain and suffering, for which there are currently 23 

no disease-modifying treatments available. Mouse models of osteoarthritis are proving 24 

critical in advancing our understanding of the underpinning molecular mechanisms. 25 

The STR/ort mouse is a well-recognized model which develops a natural form of 26 

osteoarthritis very similar to the human disease. In this Review we discuss the use of 27 

the STR/ort mouse in understanding this multifactorial disease with an emphasis on 28 

recent advances in its genetics and its bone, endochondral and immune phenotypes.     29 

Keywords: STR/ort; osteoarthritis; articular cartilage; subchondral bone 30 

Running headline: The STR/ort mouse OA model– an update  31 
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Introduction 41 

Animal models are a vital tool for the study of osteoarthritis (OA). In particular they provide 42 

scope to examine the early aetiological processes where equivalent human samples are 43 

difficult to obtain, and they remain necessary in developing and testing new treatments1. 44 

Animal OA models consist broadly of those requiring invasive manipulation, such as surgical 45 

joint destabilization by ligament transection or meniscectomy, those destabilizing the joint 46 

without surgical manipulation such as collagenase-induced instability, those exploiting non-47 

surgical application of mechanical trauma, or those in which OA develops naturally2-4. 48 

Surgical models are representative chiefly of trauma-induced secondary human OA, whilst 49 

natural models offer an opportunity to investigate OA without known aetiology, akin to 50 

primary OA5. All of these OA models principally use the mouse; well-used mainly due to the 51 

ease with which its genome can be manipulated and because of its robust breeding capacities, 52 

easy husbandry and price of upkeep. In addition, its relatively short life-span allows for the 53 

examination of OA progression, from initiation to late degenerative stages, to be undertaken 54 

in a compressed timescale. 55 

Numerous mouse strains develop OA with advancing age, offering proof that genetic 56 

predisposition or susceptibility is an important factor. They, nonetheless, develop OA with 57 

differing incidences6; high incidence and severity was identified in the STR/1N mouse, from 58 

which the inbred STR/ort strain is directly derived. The STR/ort mouse is a well-recognized 59 

model of spontaneous OA and, to date, has featured in over 80 studies. STR/ort mice develop 60 

OA spontaneously early in life and show many human OA characteristics, including 61 

proteoglycan (PG) loss, articular cartilage (AC) fibrillation, active extracellular matrix 62 

(ECM) degradation, osteophyte formation and subchondral sclerosis. Herein, we will revisit 63 

(see Watanbe et al., 2011 and Mason et al., 20017, 8) past and new data from STR/ort mice 64 
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with view to revealing how they inform our understanding of early aetiology, 65 

pathophysiology and potential treatment of OA.   66 

Origins of the STR/ort mouse 67 

The STR/1N strain was first isolated by Strong (1951) during an extensive selective-breeding 68 

programme designed to identify traits for resistance to tumour induction at the site of injected 69 

carcinogens9. Tandem crosses between CBA, N, J and K strains generated a new NH strain 70 

that was treated for multiple generations with the carcinogen, 20-methylcolanthrene creating 71 

the NHO strain. Further selection using another carcinogen (4-methylcholantrene) ended with 72 

a piebald mutation and serendipitous generation of the STR/1N strain7, which exhibited 73 

obesity and spontaneous OA at a young age10. After some breeding without brother-sister 74 

pairing and arrival at the Institute of Orthopaedics, Stanmore (UK), the strain was renamed 75 

STR/ort, as it is now commonly known. The CBA mouse is the only remaining parental 76 

strain available today and it’s lack of overt OA makes it effective as a control11.  77 

STR/ort mouse OA phenotype 78 

STR/ort OA susceptibility genetics are uncertain and their phenotype is better characterised. 79 

STR/ort mice develop OA in knee, ankle, elbow and temporomandibular joints12-15. The first 80 

studies by Walton described a greater incidence of OA knee pathology in male than in female 81 

STR/ort mice; a sexual dimorphism in this model which is the opposite to that in the human 82 

disease16, 17. In male mice, Walton reported steadily increasing OA incidence and severity 83 

from 18wks of age. We have shown, by toluidine blue staining followed by the 84 

internationally-recognized OARSI grading system18, that the OA in the STR/ort mouse 85 

invariably predominates on the medial tibial plateau at the cruciate ligament insertion, is 86 

followed by AC clefting/fibrillation extending centrally and then later to medial femoral 87 

condyles and is accompanied by osteophyte development and by subchondral bone sclerosis 88 
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which, with extensive AC loss across both condyles, later becomes exposed. Chondrogenesis 89 

and ossification in collateral/cruciate ligaments, and meniscal hyperplasia, ossification and 90 

eburnation is seen in severely affected joints. This is consistent with greater chondrocyte 91 

proliferation, synovium hyperplasia and cluster formation in menisci of STR/1N mice19 92 

described as tentative evidence for reparative processes. It fails to match, however, with 93 

prominent synovial inflammatory infiltrates seen in STR/ort mice by some.  Our recent work 94 

examining whether gait changes are a meaningful measure of STR/ort OA severity showed 95 

that age-related modifications in paw area precede OA onset and may therefore be useful for 96 

longitudinal monitoring of OA development in these mice20. 97 

Only a few studies have explored OA-associated pain in this model. Increased basal and 98 

evoked prostaglandin E2 release has been observed in knee preparations from 18-week-old 99 

STR/1N mice, which may enhance nociceptor sensitivity and chronic OA pain21. However, 100 

we have found that male STR/ort mice do not exhibit any pain-associated behaviours with 101 

OA development, even when treated with the opioid antagonist naloxone20. They did 102 

however exhibit normal pain behaviours in response to complete Freund’s adjuvant-induced 103 

arthritis, suggestive that these mice are not inherently insensitive to joint pain20. Despite this, 104 

the precise nature of OA pain in STR/ort mice is unresolved. 105 

Mechanical aetiology of OA in the STR/ort mouse 106 

Several lines of evidence suggest that OA development in STR/ort mice involves a 107 

mechanical contribution. Indeed, Walton (1977) showed a close relationship between AC 108 

lesions and medial patella dislocation, medial collateral ligament calcification/ossification 109 

and lateral subluxation of the femur16 and that surgical patella fixation decreased OA, 110 

whereas patella dislocation in CBA mice induced OA22. Patella dislocation has also been 111 

linked to abnormal tibial internal torsion in STR/ort (STR/OrtCrlj) mice and to advanced age, 112 
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leading Naruse et al., (2009) to propose this as the cause of STR/ort OA23. However, Das-113 

Gupta et al., reported an incidence of patella dislocation in only 22% of STR/ort mice, 114 

reinforcing this with radiological studies showing not all mice with OA had displaced patellae, 115 

demonstrating that this cannot be a primary event24. We find that patella dislocation 116 

correlates with severe OA, but can be absent even in some STR/ort mice with severe AC 117 

degeneration (unpublished data). Other studies have indicated that this medial patellar 118 

luxation in STR/1N mice is likely due to medial tibia AC degeneration, pronounced 119 

instability and varus knee joint deformity, which contrasts with the valgus characterising 120 

knee OA in C57/Bl6 mice25, 26. Mechanical changes induced by patella dislocation could 121 

nonetheless be an important contributor and aggravator of OA development in STR/ort mice.   122 

Development of ankle OA in STR/ort mice has similarly been linked with calcaneal 123 

dislocation, with elevation progressively more pronounced in ageing mice where it eventually 124 

became parallel to the distal tibia (unpublished). The cause for this ankle deformity is 125 

unknown, but suggests a possible defect in maintaining joint stability with spontaneous 126 

subluxation and later severe disruption of navicular and tarsal bones in male STR/ort mice15. 127 

Together, these studies suggest a widespread instability phenotype that disrupts joint 128 

mechanics to promote OA. This was however deemed unlikely by scoring of multiple 129 

STR/ort mouse joints which found that patellar and calcaneal displacements rarely occurred 130 

in the same limb, suggesting they were likely independent events12.   131 

The anterior cruciate ligaments of STR/ort mice also exhibit lower ultimate strength, 132 

increased collagen metabolism and matrix metalloproteinase (MMP) activity compared to 133 

CBA mice at 20-30wks27, 28. This suggests that STR/ort mice have inherently weaker 134 

ligaments, which could facilitate patella dislocation and joint instability. Changes in 135 

ligaments and menisci in STR/ort OA joints, with chondrogenesis and ossification, are also 136 
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seen in surgical OA models, supporting their mechanical aetiology. These changes would, in 137 

turn, modify the mechanical properties of the ligaments and cause further joint damage.  138 

We have recently explored the importance of mechanical loading in lesion induction and 139 

pathological OA progression in STR/ort mice using a non-invasive knee joint trauma 140 

model29. We found that AC in STR/ort mice is relatively resistant to mechanical trauma - it 141 

can bear greater applied loads without failure – which is associated with thicker AC at all 142 

ages relative to CBA mice29. These data suggest that STR/ort mouse OA susceptibility is 143 

unlikely due to enhanced vulnerability of AC to mechanical lesion induction. We did, 144 

however, find that repetitive mechanical loading over a two week-long period promoted 145 

progression of spontaneously-occurring AC lesions in the medial tibia, suggesting that 146 

mechanical disturbances may nevertheless accelerate OA progression in these mice29. This 147 

merges well with human studies showing that mechanical loading of joints is likely a major 148 

determinant of both OA onset and progression and further highlights the attractiveness of the 149 

STR/ort mouse as a model for exploring interplay with mechanical factors in OA 150 

development.   151 

Genetic studies in the STR/ort mouse 152 

Numerous genetic and microarray analyses have been performed in STR/ort mice. Studies by 153 

Jaeger et al (2008) confirmed Mendelian OA inheritance and concluded that its polygenicity 154 

means that the allelic subset involved in OA predisposition unlikely reaches significance in 155 

any single-Quantitative Trait Loci (QTL) analysis30. Genotyping of male F2 (STR/ort x 156 

C57BL/6) using 96 microsatellite markers and phenotyping by weight, serum COMP 157 

biomarker levels and knee OA revealed three weight-, one serum COMP- and one OA-158 

associated QTL on chromosome 830.  Backcrossing F1 STR/ort male to C57BL/6N females 159 

and linkage by microsatellite markers, again showed polygenicity with a QTL for OA instead 160 
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mapped to a 20 centimorgan region, proximal to chromosome 4’s centromere (another linked 161 

to OA onset in C57BL/6N mice on chromosome 5 was identified)31; together these data 162 

might simply support the existence of multiple murine OA loci. 163 

Revisiting chromosome 8 and fine mapping of the OA-QTL revealed Wnt-related genes 164 

associated with altered chondrogenesis, including dickkopf 4 (Dkk4), secreted frizzled related 165 

protein 1 (Sfrp1) and fibroblast growth factor 1 (Fgfr1), with 23 polymorphic changes in the 166 

Sfrp1 gene identified in STR/ort in comparison to C57BL/6 mice32, suggesting that reduced 167 

Sfrp1 expression not only increases Wnt/β-catenin signalling early in life but also renders the 168 

AC prone to premature OA32. This is similar to various genome-wide expression profiling 169 

studies in human OA which have also identified members of the Wnt/β-catenin signalling 170 

pathway as candidate genes associated with OA.33, 34 171 

Our recent studies also support an epigenetic contribution to STR/ort OA (unpublished). 172 

Careful joint OA scoring in individually-tracked male mice at 26wks of age found an 173 

important maternal influence, with a significant correlation between OA severity and 174 

maternal litter parity, and to a lesser extent with maternal age. Interestingly, no correlations 175 

were found with litter size nor with the time between litters, which suggests an important 176 

maternal influence during embryo development that underpins OA severity in STR/ort mice.   177 

Articular cartilage phenotype of STR/ort mice 178 

Matrix remodelling 179 

STR/ort mouse AC undergoes structural demise similar to human OA. Morphologically, 180 

STR/ort mouse AC is thicker than in CBA, and whilst STR/ort chondrocytes express a 181 

normal spectrum of PGs and collagens, there are early changes in AC matrix integrity and 182 

chondrocyte phenotype and function35-37. These include a subtle, yet progressive decay in PG 183 
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orientation prior to any decline in quantity, which was proposed to reflect the increased free 184 

water-content characteristic of human OA38. In addition, STR/ort mouse AC catabolic and 185 

anabolic gene expression profiles closely resembled those seen in other mouse OA models 186 

and in human OA11, consistent with increased MMP expression and activity37, 39, 40. The 187 

importance of MMPs in AC degradation in STR/ort mice has been tested by administration of 188 

Ro 32-3555, an orally active collagenase selective inhibitor which protected against OA 189 

development (Table 1)41. In addition, intra-articular injections of CRB0017 (anti-ADAMTS5 190 

antibody) dose-dependently slowed OA progression in STR/ort mice ageing from 5-8 months 191 

(Table 1)42. The likelihood that the STR/ort mouse model will help identify new preventative, 192 

protective and curative avenues targeting AC in OA joints is therefore well supported.  193 

Subtle changes in STR/ort AC matrix composition, and in glycosaminoglycan PG content in 194 

particular, is observed in STR/ort male mice in comparison to age-matched CBA mice36, 43. 195 

Indeed, chondroitin sulphate content, predominantly C6S, is elevated in STR/ort mice at 8 – 196 

19 weeks (before OA onset), decreases at 24-26weeks of age, before increasing again 197 

thereafter (after OA onset)36. These changes in AC composition may therefore impact AC 198 

function prior to OA onset and this highlights potential targets for therapeutic intervention. 199 

Chondrocyte phenotype  200 

Alternative approaches to redress the lack of therapeutics in OA are also now emerging. 201 

Evidence suggests that the normally ‘stable’ AC chondrocyte adopts a more ‘transient’ 202 

phenotype similar to growth plate chondrocytes in OA35, 44-46. This phenotype switching also 203 

occurs in STR/ort mice with the hypertophic marker Col10a1 mRNA significantly increasing 204 

in STR/ort AC compared to non-OA AC11, 35, 47. Consistent with this, Col10a1 205 

immunolabelling has been observed throughout AC of STR/ort mice before histological OA 206 

is detected35.  207 
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TUNEL-positive chondrocytes are observed around OA lesions in STR/ort AC, indicating 208 

apoptosis and chondrocyte transiency, correlating with OA progression48. The lack of any 209 

changes in the ratio of Bax:Bcl-2 in STR/ort AC48 indicates that this apoptosis is perhaps 210 

attributable instead to increased chondrocyte adenosine production49. Aberrant control of 211 

upstream regulators of apoptosis have also been found in STR/ort mouse AC; including 212 

prohibitin-1, a protein which restricts generation of reactive oxygen species, mitochondrial 213 

disorganization, abnormal cristae morphology and increased sensitivity towards stimuli-214 

elicited apoptosis50. In both STR/ort, and human AC, accumulation of prohibitin-1 along with 215 

Pitx1 repression was detected in OA chondrocyte nuclei, consistent with elevated apoptosis.  216 

It appears that STR/ort mouse AC chondrocytes also have an altered metabolic phenotype, 217 

with those in OA–prone regions having low lactate and succinate dehydrogenase activities 218 

prior to OA onset51, 52. This aberrant metabolic phenotype is also evident in lower glucose 6-219 

phosphate dehydrogenase activity and different monoamine oxidase localisation specifically 220 

in AC regions where OA develops53-55; the latter exhibiting potential for therapeutic targeting 221 

in STR/ort mice.  222 

Cell signalling pathways 223 

Discovery of the molecular determinants of OA in STR/ort mice will undoubtedly shed light 224 

upon OA aetiopathogenesis in other species and as such, have been well investigated. Our 225 

transcriptional profiling of STR/ort AC at various ages revealed differential regulation of 226 

many signalling pathways11, including an underexplored pathway relating to genes normally 227 

associated with the contractile machinery of muscle cells; expression of this gene subset is 228 

high in both young STR/ort and CBA mice, but remains high in OA STR/ort when a 229 

significant decrease is seen in healthy CBA aged samples11.  230 
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Major pathways such as those provoked by the transforming growth factor (TGF) β 231 

superfamily have already been investigated. Expression of TGF-β1 was indeed elevated 232 

during OA development in STR/ort compared to age-matched CBA mice56. Further, AC 233 

chondrocyte TGF-β3 and SMAD-2P protein expression decreased in STR/ort mice with 234 

advancing OA severity, except in areas of osteophyte formation where elevated levels 235 

persisted57; blocking studies suggest that TGF-β3 is involved in early and bone 236 

morphogenetic proteins (BMPs) in late osteophytogenesis57, 58. 237 

Effective regulation of the Wnt pathway is proving critical in OA joint pathology59  and 238 

levels of sFRP1, the Wnt inhibitor, are reduced in AC chondrocytes of young STR/ort mice32. 239 

We have reported a role for another Wnt inhibitor, sclerostin. This shows marked enrichment 240 

at the osteochondral interface in the relatively unaffected lateral tibia but its expression was 241 

severely disrupted in medial tibial regions showing AC loss and subchondral bone 242 

thickening35. Similar differential expression patterns of matrix extracellular 243 

phosphoglycoprotein (MEPE), an inhibitor of cartilage matrix mineralisation60 and 244 

downstream sclerostin target61, were also observed in STR/ort mice, implicating a novel 245 

mechanism by which sclerostin, and hence Wnt signalling functions in OA35, 59. Hypoxia 246 

inducible factor 1 (HIF-1α) also plays a major role in joint homeostasis and its inhibition 247 

rapidly provokes OA development in Balb/C mice. Intriguingly, HIF-1α stabilisation failed to 248 

prevent OA in STR/ort mice62 which further supports use of STR/ort mice in discerning 249 

whether identical pathological pathways are common to all forms of OA.  250 

Oxidative stress  251 

Oxidative stress has been shown to contribute to OA progression. In STR/ort mice, oxidative 252 

stress (malondialdehyde) and the collagen type II degradation (CTX-II) biomarker levels are 253 

both higher than in CBA mice prior to OA onset, suggesting that oxidative stress is linked to 254 
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AC type II collagen degradation63. Even before OA onset, young STR/ort mice show 255 

decreased levels of extracellular superoxide dismutase, the major scavenger of extracellular 256 

reactive oxygen species (ROS) in AC, and elevated nitrotyrosine formation at all ages, 257 

suggesting that inadequate control of ROS plays a pathophysiological role in OA64. This role 258 

is supported by markedly lower OA incidence in STR/1N mice following dietary 259 

supplementation (Table 1)65. More recently, apurinic/apyrimidinic endonuclease 2 (Apex 2) 260 

was also claimed to play a critical role in DNA repair caused by oxidative damage in STR/ort 261 

(STR/OrtCrlj) joints66.  262 

Bone phenotype of the STR/ort mouse 263 

Subchondral bone thickening (sclerosis) in OA joints, although often considered secondary, 264 

is nonetheless one of the earliest detectable changes and we have observed sclerosis in 265 

STR/ort joints with OA onset and development35. This agrees with decreased 266 

osteoclastogenesis (85Sr incorporation), increased bone apposition that is spatially associated 267 

with AC lesions in early STR/ort mouse OA (polychrome sequential bone labelling) and with 268 

early MRI in STR/ort mice where changes in patellar tendon and local sclerosis were 269 

identified67, 68. They are also consistent with a recent comprehensive multimodal micro-270 

computed tomography study which determined compartment-, age- and site-specific changes 271 

in subchondral bone in STR/ort mice evoking temporal changes that lead to an altered 272 

architecture contributing to their OA phenotype69. 273 

STR/ort mice also have a generalised high bone mass phenotype in cortical and trabecular 274 

compartments too (vs C57Bl/6), associated with elevated osteoblast numbers and activity, 275 

and impaired osteoclast function70. Indeed, changes in bone remodelling have already been 276 

implicated in the early stages of STR/ort mouse OA, where raised urinary CTX-II levels were 277 

apparent in an OA subgroup of STR/ort mice (vs non-OA subgroup71). Consistent with an 278 
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inherent bone phenotype, we have recently reported that young (6-week) STR/ort have 279 

increased cortical and trabecular parameters in comparison to age-matched CBA mice35. 280 

Surprisingly, this difference is noted significantly earlier and is more marked in female 281 

STR/ort mice, with an almost complete bone marrow compression and extramedullary 282 

haematopoiesis observed by 9 months70. This raises an interesting paradox regarding sexual 283 

dimorphism in this strain, where females show - on one hand - higher bone mass and 284 

protection from reproducible AC degeneration and where - on the other - male OA appears 285 

not to be influenced by hormone status37, 72. It therefore seems unlikely that high bone mass 286 

alone is sufficient to accelerate OA onset. Sexually dimorphic OA development might instead 287 

be due to architectural bone differences. Thus, early internal tibial torsion and lower 288 

cancellous bone mineral density evident in males may explain the differential incidence of 289 

OA in this STR/ort strain73.  290 

Clues to these changing osteochondral relationships in STR/ort mice might be evident in the 291 

endochondral ossification required for long bone growth. We recently observed accelerated 292 

growth dynamics in comparison to CBA mice with STR/ort mice exhibiting (i) an 293 

acceleration in body weight gain and tibia length at sexual maturity (ii) Col10a1 and MMP13 294 

expression widely dispersed into the growth plate proliferative zone (iii) differences in 295 

growth plate maturation zone sizes (iv) a dramatic acceleration of growth plate closure with 296 

bone bridge formation particularly clustered to medial areas where OA later predominates35. 297 

Together these studies suggest that STR/ort mice have an inherent endochondral ossification 298 

defect that drives their OA pathology. Interestingly, the relationship between longitudinal 299 

long bone growth rates and OA development in humans is a completely unexplored area. It is 300 

intriguing nonetheless that canine hip dysplasia, a hereditary predisposition to degenerative 301 

OA, is more common in certain breeds, in particular those larger breeds which tend to grow 302 

more rapidly74.  303 
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STR/ort mouse immune phenotype  304 

Although OA is not primarily a classic inflammatory disorder, it is accepted that cytokines 305 

play an important pathogenic role75. Indeed, Chambers et al (1997) found elevated IL-1β 306 

levels in AC chondrocytes of STR/ort mice at all ages56. In addition, serum levels of IL-1β, 307 

IL-4, IL-10, interferon γ were markedly higher in STR/ort mice76. Our previous microarray 308 

analysis in AC identified NFkB signalling as the main pathway modified in STR/ort mice (vs. 309 

CBA11) and  immunolabelling for the NFkB subunit p65 confirmed elevated levels in AC 310 

chondrocytes of STR/ort mice from 8 weeks of age11. The NFkB pathway is a recognised hub 311 

for inflammatory signalling which suggests links between chondrocyte cytokine production 312 

and signalling and catabolic changes in OA cartilage in STR/ort mice.  313 

Together these studies suggest that STR/ort OA has an important inflammatory component 314 

and this is further cemented by observations of spleen and lymph nodes abnormalities16. We 315 

more recently showed that male STR/ort mice possess significantly bigger spleens (with 316 

greater cellularity), decreased naïve T cell numbers, but increased activated T and B cell 317 

numbers, indicating a heightened inflammatory status11. This could perhaps be explained by 318 

the high bone mass phenotype of STR/ort mice (described above) and compression of the 319 

bone marrow necessitating extramedullary hematopoiesis70. Oxidative stress is associated 320 

with increased inflammatory mediator production and as such, reported increases in oxidative 321 

stress in STR/ort mice (see above) may provide an alternative explanation for these raised  322 

inflammatory markers levels63. These studies suggest a central function of inflammatory 323 

pathways to in STR/ort mouse OA development; they may also reflect a common molecular 324 

aetiology linking these OA and immune phenotypes.  325 

STR/ort mice exhibit increased AC expression of beta-defensins 3 and 4, broad-spectrum 326 

antimicrobial components of innate immunity. These findings offer a link between host 327 
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defence mechanisms and inflammation with AC tissue-remodelling processes77. Moreover, it 328 

is recognised that CGRP may contribute to human joint pain and CGRP/CGRP receptor 329 

signalling may indeed be modified in STR/ort mouse synovium via increased CD11c(+) 330 

macrophages, with high IL-1β in F4/80(+) and high CGRP, CLR, and RAMP1 in the F4/80(-) 331 

cell fraction, which can be ameliorated upon macrophage depletion, suggesting that synovial 332 

macrophages and IL-1β production may be suitable therapeutic targets for treating OA pain78. 333 

Obesity/metabolic syndrome in the STR/ort mouse  334 

Obesity is now a recognised OA risk factor and it has been reported that the parent STR/1N 335 

strain exhibits higher blood cholesterol and phospholipids compared to DBA/2JN and A/LN 336 

strains10. STR/ort mice have also been described as hypercholesterolemic and hyperlipidemic 337 

(raised cholesterol, high-density and low-density lipoprotein, triglyceride and insulin) without 338 

different glucose levels compared to C57Bl6/J and CBA/JN79. Regardless, it has been 339 

suggested that STR/ort mice should not be termed obese as their weight is significantly lower 340 

than ob/ob mice80. STR/ort mice also show low levels of serum adiponectin, a key player in 341 

glucose and lipid metabolism, which resembles human primary hypertriglyceridemic patients. 342 

Despite this, a reduction in body weight of STR/ort mice, using fenofibrate treatment, did not 343 

modify serum lipid composition nor OA severity81, suggesting that lipid metabolism 344 

anomalies were not the primary cause of spontaneous OA in STR/ort mice.  345 

More recently, microarrays on STR/ort AC/subchondral bone described upregulation of 331 346 

genes related to development and function of connective tissues, and 290 genes 347 

downregulated linked to lipid metabolism, in particular genes that were directly interacting 348 

with peroxisome proliferator-activated receptor (PPAR) alpha/PPARgamma82. While 349 

PPARalpha and PPARgamma mRNA levels themselves were not significantly altered, 350 

multiple PPAR pathway components were, leading the authors to conclude that decreased 351 
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PPAR signalling contributes to OA progression in STR/ort mice by promoting 352 

osteoblastogenesis and enhanced bone formation.  353 

Concluding remarks 354 

The STR/ort mouse is an excellent model of spontaneous osteoarthritis with disease 355 

pathology starting early in life and showing many similar characteristics akin to human 356 

primary OA. The phenotype of the STR/ort mouse is well characterised with pathology 357 

observed in the knee, elbow, ankle and temporomandibular joints of male mice; this 358 

highlights the sexual dimorphism in this strain, whereby females show higher bone mass and 359 

protection from reproducible AC degeneration. The highly defined and reproducible disease 360 

pathology of the STR/ort mouse has, to date, offered the unique opportunity to identify the 361 

pathological role that key determinants of the AC and subchondral bone phenotypes play in 362 

spontaneous OA development, highlighting the attractiveness of this murine model in 363 

exploring the aetiopathogenesis of spontaneous OA. Whether research in the OA field should 364 

focus upon pre-clinical studies or on clinical studies in man is still a matter of debate, and has 365 

been elegantly debated in a recent editorial by Hunter and Little1. However, with new 366 

acceptance that broad generalisation regarding OA aetiopathogenesis is somewhat distracting 367 

and flawed in our pursuit of a single disease‐modifying treatment, research in the OA field 368 

will undoubtedly look to utilise animal models such as the STR/ort mouse to yield greater 369 

understanding of primary OA. The recent research discussed herein certainly indicates that a 370 

better understanding of the genes, molecules and processes contributing to STR/ort mouse 371 

OA will aide significantly in the identification of new preventative, protective and curative 372 

avenues for OA.   373 
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Naloxone Opiod 

antagonist 
No signs of pain-associated behaviours 20 

Ro 32-3555 
 

Collagenase 
inhibitor 

 

Reduction in joint space narrowing, osteophyte 
formation and protection against AC degradation 

and subchondral bone sclerosis 

41 
 

CRB0017 
 

anti-ADAMTS5 
antibody 

dose-dependently slowed OA progression in 
STR/ort mice ageing from 5-8 months 

42 

vitamins E, C, A, B6, 
B2, and selenium 

dietary 
supplementation 

Lower OA incidence 65 


