
Solving Parity Games in Big StepsSven SheweDepartment of Computer SieneUniversity of LiverpoolAshton Building, Ashton StreetLiverpool L69 3BXUnited Kingdomsven.shewe�liverpool.a.uk
AbstratThis artile proposes a new algorithm that improves the omplexity bound forsolving parity games. Our approah ombines MNaughton's iterated �xed pointalgorithm with a preproessing step, whih is alled prior to every reursive all.The preproessing uses ranking funtions similar to Jurdziński's, but with a re-strited o-domain, to determine all winning regions smaller than a prede�nedparameter. The ombination of the preproessing step with the reursive allguarantees that MNaughton's algorithm proeeds in big steps, whose size isbounded from below by the hosen parameter. Higher parameters lead to smallerall trees, but they also result in an expensive preproessing step. An optimalparameter balanes the ost of the reursive all and the preproessing step, re-sulting in an improvement of the known upper bound for solving parity gamesfrom O�m �2n �12 � to approximately O�m �6e1:6n2 �13 �.Keywords: parity games, �nite games of in�nite duration1. IntrodutionParity games have many appliations in model heking [13, 7, 6, 1, 28, 14℄and synthesis [28, 13, 26, 24, 19, 23, 25℄. In partiular, modal and alternating-time �-alulus model heking [28, 1℄, synthesis [25, 19, 23℄ and satis�abilityheking [28, 13, 26, 24℄ for reative systems, module heking [14℄, and ATL*model heking [6, 1℄ an be redued to solving parity games. This relevane ofparity games led to a series of different approahes to solving them [17, 8, 16, 20,30, 5, 29, 10, 11, 27, 18, 15, 2, 4, 12, 9℄.Preprint submitted to Journal of Computer and Systems Siene (JCSS) Otober 4, 2016



The omplexity of solving parity games is still an open problem. Parity gamesare memoryless determined [7, 3℄, whih implies that nondeterministi algorithmsan determine winning regions and strategies for both players. Due to their sym-metry, they are therefore in NP\CoNP [7℄, and by redution to payoff games [30℄,in UP\CoUP [10℄. Determining their membership in P ontinues to be a majorhallenge.All urrent deterministi algorithms have omplexity bounds whih are (atleast) exponential in the number of olours [17, 8, 30, 5, 29, 11, 4℄ (nO()), orin the square-root of the number of game positions [16, 12, 4℄ (approximatelynO(pn)). Pratial onsiderations suggest that we should assume that the numberof olours is small ompared to the number of positions. Indeed, almost all of theappliations listed above result in parity games where the number of olours is(sub-)logarithmi in the size of the game arena. �-alulus model heking is theonly exeption. In �-alulus model heking, however, the size of the game isdetermined by the produt of the transition system under onsideration (whih isusually large), and the size of the formula (whih is usually small). The numberof olours is determined by the alternation depth of the spei�ation, whih, inturn, is usually small ompared to the spei�ation itself. Algorithms that areexponential only in the number of olours are therefore onsidered to be the mostattrative.The �rst representatives of algorithms in the omplexity lass nO() follow theiterated �xed point struture indued by the parity ondition [17, 8, 29℄. The iter-ated �xed point onstrution leads to a time omplexity of O�m�n + 1��1�for parity games with m edges,  olours, and n game positions. The up-per omplexity bound for solving parity games was �rst redued by Browneet al. [5℄ to O�m� 2n �d0:5e+1�, and slightly further by Jurdziński [11℄ toO�m ( nb0:5)b0:5 �.The weakness of reursive algorithms that follow the iterated �xed point stru-ture [17, 8, 29℄ is the potentially inremental update ahieved by eah reursiveall. Reently, a big-step approah [12℄ has been proposed to redue the om-plexity of MNaughton's algorithm for games with a high number of olours( 2 !(pn)) to the bound nO(pn) known from randomized algorithms [16, 4℄.1.1. The Lineage of Our ApproahThe approah we disuss is drawing from MNaughton's approah [17, 8,29℄ and the extension to big steps of Jurdziński, Paterson, and Zwik [12℄. Theore observation of MNaughton's approah is that it helps to �nd solutions to2



paradises, a partiular type of sub-games. A paradise is a region of a game whereone player an fore a win without leaving the paradise. One a paradise is known,one an divide solving the game into three parts: the paradise, the attrator of theparadise, and the o-game of the attrator.In [17, 8, 29℄, a paradise for the player who loses on the highest olour isonstruted by solving a parity game with one olour less. (If there is no suhparadise, solving the game beomes simple.)Jurdziński, Paterson, and Zwik [12℄ observed that this provides very weakguarantees if the number of olours is high, say in the order of the number of gamepositions. They adjusted the algorithm by �rst produing all `small' paradises upto size pn. This an be done by individually onsidering all sets up to the sizeof pn and heking whether or not they are paradises of the player who loseson the highest olour of the game. The union of these paradises form a paradisethat must ontain all small paradises. Their algorithm �rst uses this novel wayof onstruting a paradise and then uses the reursive all from MNaughton'salgorithm [17, 8, 29℄. It thus either provides a paradise stritly bigger than pn oran immediate solution.The limitation of this onstrution is that a brute fore onstrution of a par-adise that ontains all small paradises does not bene�t from a small number ofolours. We overome this limitation by introduing a tehnique for the onstru-tion of small paradises that does bene�t from small number of olours. This teh-nique is a simple generalisation of Jurdziński's `small progress measures' [11℄.His approah is adapted by restriting the o-domain of the used ranking fun-tion. The resulting algorithm is exploited in the onstrution of paradises that arebounded by the size of a parameter par. Compared to [12℄, this results in a signif-iant ut in the ost for �nding small winning regions, sine the running time forthe preproessing algorithm is polynomial in the parameter, and exponential onlyin the number of olours: O �m � par+d0:5epar �� :1.2. ContributionThe different way of onstruting paradises that ontain all small paradises(up to a parameter) improves the omplexity of MNaughton's algorithm for therelevant lower end of the spetrum of olours, resulting in approximately the om-plexity O0�m  6e1:6n2 !()1A3



for solving parity games under the assumption that  2 o(pn), where() = 3 + 12 � 13 � 42if  is even, and () = 3 + 12 � 42 � 1if  is odd.Using a the parameter of approximately3r(3 6pen)22results in an O�m ��n2 �()� omplexity (for � � 6e1:6) for solving parity games,whih improves over the previously known O�m �2n �b0:5� bound [11℄.This redues the exponential fator from b 2 to less than 3 + 12 . It is, afterthe redution from  � 1 [17, 8, 29℄ to d 2e + 1 by Browne et al. [5℄, the seondimprovement that redues the exponential growth with the number of olours. Thedevelopment of the known omplexity bounds is outlined in the following table.# olours 3 4 5 6 7 8 9MNaughton [17℄ O(mn2) O(mn3) O(mn4) O(mn5) O(mn6) O(mn7) O(mn8)Browne & al. [5℄ O(mn3) O(mn3) O(mn4) O(mn4) O(mn5) O(mn5) O(mn6)Jurdziński [11℄ O(mn) O(mn2) O(mn2) O(mn3) O(mn3) O(mn4) O(mn4)Big Steps O(mn) O(mn1 12 ) O(mn2) O(mn2 13 ) O(mn2 34 ) O(mn3 116 ) O(mn3 920 )Besides the improved omplexity for a �xed number of olours, the approahalso provides an improved development of the base of the exponential expression.While previous algorithms had a base of O�n �, this has shrunk to O� n2 � in thisapproah.When solving parity games, we are often interested in winning strategies forthe players. For example, they serve as witnesses and ounter examples in modelheking, and as models in synthesis. When onstruting these strategies, theimprovement in the omplexity of the disussed approah is even higher. Con-struting winning strategies for both players does not inrease the omplexity ofthe proposed algorithm. The best previously known bound for onstruting win-ning strategies [11℄ has been O�m ( nd0:5e)d0:5 e�.4



# olours 3 4 5 6 7 8 9Jurdziński [11℄ O(mn2) O(mn2) O(mn3) O(mn3) O(mn4) O(mn4) O(mn5)Big Steps O(mn) O(mn1 12 ) O(mn2) O(mn2 13 ) O(mn2 34 ) O(mn3 116 ) O(mn3 920 )This extra advantage is yielded by an adjustment of the evaluation of threeolour games by a simple adjustment of Jurdziński's `small progress measures'approah [11℄, whih allow for determining the winning strategies of both play-ers.The artile is an extended version of the paper Solving Parity Games in BigSteps [21℄ inluding the improved analysis of three olour games from [22℄.2. In�nite GamesIn�nite games on �nite graphs are omposed of a game arena and an evaluationfuntion. Most of the time, we are interested in �nite games of in�nite duration,the speial ase where the game arena is �nite. We will �rst disuss arenas andthen turn to the evaluation funtions for safety, reahability, and parity games.2.1. ArenaGames are played on arenas. An arena is a triple A = (V0; V1; E), where� V0 and V1 are disjoint �nite sets of positions, alled the positions of Player0 and Player 1, respetively,� V = V0 ℄ V1 denotes the set of game positions, and� E � V � V is a set of edges,suh that (V;E) is a direted graph. The arena is also required not to ontainsinks; that is, every position p 2 V has at least one outgoing edge (p; p0) 2 E.An arena is alled a single player arena if all positions in V0 or all positionsin V1 have out-degree 1. Games are alled single player games, if their arena is asingle player arena.2.2. PlaysIntuitively, a game is played by plaing a pebble on the arena. If the pebbleis on a position p 2 V0, Player 0 hooses an edge e = (p; p0) 2 E from p toa suessor p0 and moves the pebble to p0. Symmetrially, if the pebble is on aposition q 2 V1, Player 1 hooses an edge e0 = (q; q0) 2 E from q to a suessorq0 and moves the pebble to q0. This way, they suessively onstrut an in�niteplay � = p0p1p2p3 : : : 2 V !. 5



2.3. StrategiesFor an arena A = (V0; V1; E), a strategy for Player 0 is a funtion f : V �V0 !V that maps eah �nite history of a play that ends in a position p 2 V0 to asuessor p0 of p. (That is, there is an edge (p; p0) 2 E from p to p0.) A play isf -onform if every deision of Player 0 in the play is in aordane with f .A strategy is alled memoryless if it only depends on the urrent position. Amemoryless strategy for Player 0 an be viewed as a funtion f : V0 ! V suhthat (p; f(p)) 2 E holds for all p 2 V0.For a memoryless strategy f , we denote with Af = (V0; V1; Ef) the arenaobtained fromA by deleting the transitions from positions of Player 0 that are notin aordane with f . (Af de�nes a direted graph where all positions of Player0 have out-degree 1.) The analogous de�nitions are made for Player 1. Note thatAf is a single player arena.2.4. Safety and Reahability GamesA safety game is a game S = (V0; V1; E; F ) with arena A = (V0; V1; E) and aset F � V of �nal (or: bad) positions.Eah play of a safety game is evaluated by heking whether or not it is on-tained in V r F : Player 0 wins a play � = p0p1p2p3 : : : if, for all i 2 !, pi =2 F .All games onsidered in this artile are 0-sum games. For boolean outome, thismeans that one player wins while the other player loses. In safety games, Player 1thus wins if there is an i 2 ! with pi 2 F . If we take the point of view of Player 1,the game beomes a reahability game, as Player 1 has the objetive to eventuallyreah a position in F .2.5. Parity GamesA parity game is a game P = (V0; V1; E; �) with arena A = (V0; V1; E) and asurjetive olouring funtion � : V ! C � ! that maps eah position of P to anatural number. The o-domain of � is alled the set of olours (or: priorities) anddenoted by C. Note that the o-domain C of � is �nite as the domain V is �nite.For tehnial onveniene1 we usually assume without loss of generality that the1The restrition that the minimal olour is 0 is only tehnial. If no position with olour 0exists, then we an redue all olours by 1 and hange the roles of Player 0 and 1. Winningregions and strategies for Player 0 (Player 1) in the resulting game are the winning regions andstrategies for Player 1 (Player 0) in the original game.6



minimal olour of a parity game is 0 = minfCg, and that C is an initial sequene2of the integers.Eah play is evaluated by the highest olour that ours in�nitely often. Player0 wins a play � = p0p1p2p3 : : : if the highest olour ourring in�nitely often inthe sequene �(�) = �(p0)�(p1)�(p2)�(p3) : : : is even, while Player 1 wins ifthe highest olour ourring in�nitely often in �(�) is odd.2.6. Winning Strategies and Winning RegionsA strategy f of Player 0 (Player 1) is alled p-winning if all f -onform playsstarting in p are winning for Player 0 (Player 1). A position p in V is winningfor Player 0 (Player 1) if Player 0 (Player 1) has a p-winning strategy. We allthe winning positions for Player 0 (resp. Player 1) the winning region of Player 0(resp. Player 1), denotedW0 (resp.W1).2.7. NotationAll operations on arenas extend to games. E.g., for a strategy f and a paritygame P = (V0; V1; E; �), Pf is the parity game with the arena onsisting of thearena Af and the olouring funtion �.For ease of notation, we sometimes use games when we refer to their arenasonly. We also use the ommon intersetion and subtration operations on digraphsfor arenas and games: P \ V 0 and P r V 0, for example, denote the parity gameswe get when we restriting the arena A(V0; V1; E) of P to A\V 0 = (V0\V 0; V1\V 0; E \ V 0 � V 0) and A r F = (V0; V1; E) \ V r V 0, respetively. Note thatour restrition to arenas without sinks fores us to hek that the resulting arenaspreserve this property.As many algorithms have to refer to both players, we use Player � for theplayer � 2 f0; 1g (usually the player who wins when the maximal olour oursin�nitely many times), and we use � = 1� � to refer to the other player.2.8. Memoryless DeterminayA lass of games is alled determined if the union of the winning regionsequals the set of positions. It is alled memoryless determined if eah player� 2 f0; 1g has, for a game G, a memoryless strategy f suh that all plays in Gf that2If a number, is missing in this sequene, we redue all greater olours by 2 without hangingaeptane of any play. Hene, winning regions and strategies are not affeted by this transforma-tion. 7



Proedure MNaughton(P):1. set  to the highest olour ourring in P2. if  = 0 or V = ; then return (V; ;)3. set � to  mod 24. set W� to ;5. repeat(a) set P 0 to Pr �-Attrator(��1();P)(b) set (W 00;W 01) to MNaughton(P 0)() if (W 0� = ; theni. set W� to V rW�ii. return (W0;W1)(d) set W� to W�[ �-Attrator(W 0� ;P)(e) set P to Pr �-Attrator(W 0� ;P)Figure 1: The algorithm MNaughton(P) takes a parity game P as input and returns the orderedpair (W0;W1) of winning regions of the players 0 and 1, respetively. V and� denote the positionsand the olouring funtion of the parity game P .start in W� are winning for Player �. Parity games are memoryless determined[7℄, and [3℄ ontains a simple proof for their memoryless determinay.2.9. Solving Parity GamesWhen solving parity games, we distinguish two questions: the non-onstrutive problem is to determine, for a given a parity game P the winningregions of both players. The onstrutive extension requires additionally requiresthe onstrution of winning strategies for both players.Most algorithms are presented with the non-onstrutive question in mind, butthe onstrutive extension is usually simple. The only point where it requiresspeial are is in the three olour games from Setion 4.5.3. MNaughton's AlgorithmIn this setion, we summarise MNaughton's algorithm for solving paritygames. The algorithm dates bak to MNaughton [17℄ and has �rst been pub-lished in this form by Emerson and Lei [8, 29℄.The algorithm is disussed in some detail and some of the proofs are repeatedbeause the algorithm disussed in Setion 5 builds on them.8



The algorithm is the algorithmi version of a simple proof of the memory-less determinay for parity games. The proof uses an indutive argument over thenumber of positions. As an indution basis, games with only one game positionare learly memoryless determined: there is only one strategy, and it is memory-less. The game is won by Player 0 if the olour of this position is even and byPlayer 1 if the olour of this position is odd.For general parity games P with highest olour , MNaughton's algorithm(Figure 1) �rst determines the set ��1() of positions with maximal olour.��1()arena
For the Player � =  mod 2 that wins if  ours in�nitely often (and is there-fore the dominating olour), this algorithm then onstruts the �-attrator A of��1().For an arena A = (V0; V1; E), a set T � V or target positions, and a Player� 2 f0; 1g, the �-attrator of T is the set of game positions, from whih Player �an fore the pebble into the set T of target positions. The �-attrator A of a setT an be de�ned as the least set that ontain T and that ontain a game position pof Player � in A if it ontains some suessor (all suessors) of p:�-Attrator(T;A)= TfS � T j 8p 2 V�8p0 2 S: (p; p0) 2 E ) p 2 S and8p 2 V�: (:9p0 =2 S: (p; p0) 2 E)) p 2 Sg.The �-attrator A of a set T of target positions an be onstruted by hoosing� A0 = T ,� Aj+1 = Aj [ fp 2 V� j 9p0 2 Aj: (p; p0) 2 Eg[ fp 2 V� j 8(p; p0) 2 E: p0 2 Aj g, and� A = Sj2!Aj .
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The onstrution also provides a memoryless strategy for Player � to move thepebble to T from all positions in A. Let ip = minfn 2 ! j p 2 Ang denote theindex of the �rst set Aip a position p 2 A is in. For a position in p 2 V� \ Ar T ,p has a suessor in p0 2 Aip�1 by de�nition, and we hoose the attrator strategyf suh that it maps p to suh a suessor. (For all p 2 V� \Ar T . f(p) 2 Aip�1.It is then easy to see that eah f -onform play p0p1p2 : : : that starts in A eithereventually reahes T , or satis�es ip0 > ip1 > ip2 > ip3 > : : :. However, asthe integers are well founded, no suh in�nite hain exists, suh that the latteralternative an be disarded. The play therefore eventually reahes the target setT . A itself provides a memoryless strategy to keep the pebble out ofA (and heneout of T ) for Player �: Player � an hoose a strategy g, suh that, for all p 2V� r A, g(p) =2 A. Note that suh an option must exist in a �nite game, as pwould otherwise be in A. Let us assume for ontradition that a g-onform playp0p1p2 : : : that starts outside of A eventually reahes A. Let pi be the �rst positionof this play in A. Then i > 0 (as p0 =2 A holds by de�nition). The de�nition of Athen implies that pi�1 2 A (ontradition to pi being the �rst position of the playin A).Lemma 3.1. For an arena A and a set T of target positions, the �-attrator of Tan be onstruted in time linear in the edges of A.Aarena
In the next step, the o-gameP 0 = PrA ofP is solved. The o-setC = VrAof the �-attrator A for some target set T is alled a �-trap, beause Player �annot leave C; he is trapped there.The o-game P 0 is smaller than P: ompared to P , it ontains less positions.By indution hypothesis, it is therefore memoryless determined.By indution over the size of the game, P 0 an therefore be solved by a reur-sive all of the algorithm.
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AW 0�W 0�arena
We all a subset P� � W� of a winning region of Player � 2 f0; 1g a �-paradise if it is a �-trap and Player � has a memoryless strategy f that is p-winningfor all p 2 P� in P \ P�. That is, if Player � has a winning strategy, suh that P�annot be left in any f -onform play (Ef \ P� � V r P� = ;).Lemma 3.2. [17, 8, 29℄ For a parity game P with �-trap T�, and a �-paradiseP� of P 0 = P \ T�, P� is a �-paradise for P .In fat, Player � an simply use the same winning strategy f for P as for P 0:as T� is a �-trap, Player � has no additional moves in P , and every f onformplay that starts in P� in P is also an f onform play in P 0.In partiular, the winning regionW 0� ofP 0 is a �-paradise inP by onstrution.So is its �-attrator in P .Lemma 3.3. [17, 8, 29℄ The �-attratorA� of a �-paradise P� for a parity gameP is a �-paradise for P , and a winning strategy for player � on A� an be om-posed of the winning strategy for Player � on P� and an attrator strategy onA� r P�.For a given �-paradise P� for Player � 2 f0; 1g in a parity game P , we anredue solving P to omputing the �-attrator A� of P�, and solving P r A�.Lemma 3.4. [17, 8, 29℄ Let P be a parity game, P� be a �-paradise with �-attrator A�, and let W 0� and W 0� be the winning regions of Player � and Player�, respetively, on P 0 = P r A�. Then� W� = W 0� is the winning region of Player � on P , and she an win byfollowing her winning strategy from P 0 on her winning region, and� W� = W 0�[A is the winning region of Player � and he an win by followinghis winning strategy for A (see Lemma 3.3) on A� and his winning strategyfrom P 0 onW 0�. 11



Proof. First, Player � an use her winning strategy for her winning region W�of P r A�, and use it in the larger game P , beause Player � has no additionalhoies in W� in P . Consequently, the set of g�-onform plays in P starting inW� oinides with the set of f�-onform plays in P r A� starting inW�.For the same reason, Player � wins with his strategy from every position inA�,by a omposition on the attrator strategy on A� r P� and her winning strategyon P�, see Lemma 3.3.Let g� be a winning strategy for player � in P 0. Every g�-onform play in Pstarting in a position not inW 0� either eventually reahes A�, and is then followedby a tail (remainder of the play) in P that starts in A�, whih is winning for � byLemma 3.3, or stays for ever in the sub-game P 0, and is thus winning for Player�, too. �We now distinguish two ases: Firstly, if W 0� is non-empty, we an reduesolvingP to onstruting the �-attrator U� ofW 0�, and solving the o-gameP 00 =P r U� by Lemma 3.4. U�arena
The o-game P 00 is simpler than P: Compared to P , it ontains less positions(though not neessarily less olours). By indution over the size of the game, P 00an therefore be solved by a reursive all of the algorithm.Seondly, if W 0� is empty, we an ompose the winning strategy for Player �on P 0 with his attrator strategy for the �-attrator of the target set ��1() to awinning strategy on P .Lemma 3.5. [17, 8, 29℄ Let P be a parity game with maximal olour , let � = mod 2 be the player who wins if  ours in�nitely many times, let A be the �-attrator of ��1() and let f be an attrator strategy for Player � on her positionson A r ��1(). If Player � has a winning strategy f 0 for every position in P 0 =P r A, then f and f 0 an be omposed to a winning strategy for Player � forevery position in P . 12



Proof. Let g be a strategy for Player � that agrees with f and f 0 on their respetivedomain. We distinguish two types of g-onform plays: those that eventually stayin P 0, and those that visit A in�nitely often. The latter plays ontain in�nitelymany -oloured positions and are therefore winning for player �. Games thateventually stay in P 0 onsist of a �nite pre�x, followed by an f 0-onform play inP 0. The highest olour ourring in�nitely often is therefore even for � = 0 andodd for � = 1, respetively. �Theorem 3.6. [17, 8, 29℄ For every parity game P = (V0; V1; E; �), the gamepositions are partitioned into a winning regionW0 of Player 0 and a winning re-gionW1 of Player 1. Moreover, Player 0 and Player 1 have memoryless strategiesthat are p-winning for every position p in their respetive winning region.Proof. The starting point of the indutive argument are games with a single posi-tion. They are trivially won by the player that wins on the olour of this position(indution basis).For the indution step, assume that the memoryless determinay holds forgames with up to n positions. For a parity game with n+1 positions, we an thenselet the highest olour max, set � to max mod 2 to identify the Player � whowins if max ours in�nitely often (note that max is the dominating olour in thisase), and set A = �-Attrator(��1(max);P), where ��1 is the pseudo inverse of�. Then P 0 = P r A is a�possibly empty�parity game with stritly less po-sitions and olours. (Note that, by the attrator onstrution, every position in P 0has a suessor, and the o-set of A is a �-trap.)By our indution hypothesis, the positions in P 0 are partitioned into winningregions of the two players, and both players have memoryless winning strategieson their winning regions.We an now distinguish two ases:1. The winning region of Player � on P 0 is empty. In this ase, Player � winsmemoryless by Lemma 3.5.2. The winning region of Player � is non-empty.ThenW 00� = �-Attrator(W 0�;P) is a � paradise for P by Lemmata 3.2 and3.3. We an therefore solve the remainder of the game, P rW 00� , individu-ally and use the respetive winning regions and (by indution, memorylesswinning strategies) of the players by Lemma 3.4.13



In Case (1) we are done and in Case (2) we have redued the problem to solv-ing a game with less positions. By indution, memoryless determinay extends tothe omplete game. �The worst ase running time of MNaughton's algorithm [17, 8, 29℄ (f. Pro-edure MNaughton of Figure 1) ours if U�, the �-attrator of the winningW�'of PrA, always has a small intersetion withA and ontains exatly one positionwith maximal olour .For parity games with  olours, MNaughton's algorithm requiresO�m��n +1��1� steps for games with n positions and m edges. It an be extended to alsoreturn the winning strategies for both players on their omplete winning region.4. Progress MeasuresAn alternative and struturally different approah is due to Jurdziński [11℄.In his algorithm, the progress of Player 0 towards proving that she an fore thehighest olour to be even (or Player 1 towards proving that he an fore the highestolour to be odd) is intuitively measured by a vetor that represents the worstpossible future.We start by generalising his approah by using oarser progress measures.Using oarser progress measures leads to an underapproximation of the winningregion of one player, and we will use this underapproximation of a winning regionin the following setion.While we have to re-prove the results of Jurdziński [11℄ for the more generalase, the struture of the proofs is very similar to the original ones. We lose thissetion by looking at the speial ase of three olour games, whih forms the basease of the algorithm proposed in the following setion.4.1. Progress MeasuresFor a parity game P = (V0; V1; E; �) with maximal olour d, the maximal�-progress measure is, for � 2 f0 ; 1g, a funtion % : V0 ℄ V1 ! M� whoseo-domainM�1 = fh : f0; : : : ; dg ! N j h() = 0 if  mod 2 = �, andh() � j��1()j otherwiseg [ f>gontains a maximal element > and a set of funtions from f0; : : : ; dg to the inte-gers. The o-domainM�1 satis�es the requirement that14



� every integer i � d is mapped to 0 if i mod 2 = �, while� all other integers i are mapped to a value bounded by the number j��1(i)jof i-oloured game positions.h is often onsidered as a tuple. A �-progress measureM� �M�1is a downward losed subset ofM�1 that ontains the maximal element (> 2M�.Downward losedness means that, ifM� ontains a funtion h 2 M�, then everyfuntion h0 2 M�1 that is point-wise smaller than h (h0(i) � h(i) 8i � d) is alsoontained inM�.4.2. Linear Pre-Orders onM�For eah olour  � d, we de�ne a relation B �M� �M�, whih is essen-tially the lexiographi order, ignoring all olours smaller than . B is de�ned asthe smallest relation� that ontains f>g �M� and� that ontains a pair of funtions (h; h0) 2 B if� there is a olour 0 �  suh that h(0) > h0(0), and h(00) = h0(00)holds for all olours 00 > 0, or�  mod 2 = �, and h(0) = h0(0) holds for all 0 � .B0 de�nes an order on M� � the lexiographi order when h is read as atuple, where higher olours have higher priority. B de�nes a linear pre-order �the lexiographi order when h is read as a tuple but ut off after olour .4.3. Pre-Order on Progress MeasuresFrom this order, we infer the linear pre-order v on progress measures, whihrequires that B0 is satis�ed on every position of the game (% v %0 , 8p 2V: %(p)B0 %0(p)).We all a �-progress measure % valid if� every position p 2 V� has some suessor p0 2 V with %(p)B�(p) %(p0), and� for every position p 2 V� and every suessor p0 2 V of p, %(p)B�(p) %(p0)holds. 15



Progress measures are ranking funtions that an intuitively be used to es-timate the worst-ase future ourrene of `bad' positions prior to positionswith higher olour. A valid �-progress measure that is not onstantly > anbe used to partly evaluate a parity game. Let, for a �-progress measure %,win(%) = V r %�1(>) denote the game positions that are not mapped to themaximal element > ofM�.Theorem 4.1. [11℄ LetP = (V0; V1; E; �) be a parity game with valid �-progressmeasure %. Then Player � wins on win(%) with any memoryless winning strategythat maps a position p 2 win(%) \ V� to a position p0 with %(p)B�(p) %(p0).Suh a suessor must exist, sine the progress measure is valid. The v-leastvalid �-progress measure is well de�ned and an be omputed ef�iently for smallM�.Theorem 4.2. Thev-least valid �-progress measure %� exists and an, for a par-ity game withm edges and  olours, be omputed in time O(m jM�j).The proof is very similar to the proof of a similar laim for the maximal o-domainM�1 in Jurdziński's work [11℄. We �rst introdue some notation.For a given progress measure %i, we all an edge (p; p0) a lift-edge if%i(p) 7�(p) %(p0). We all a position p 2 V� of Player 0 liftable if all outgo-ing edges are lift edges, and we all a position p 2 V1 of Player 1 liftable if someoutgoing edge is a lift edge.We lift a liftable position by applying the following loal update:� at some liftable position p 2 V� where the validity riterion is loally vio-lated to %i+1(p) = minf% 2 M� j 9(p; p0) 2 E: %B�(p) %i(p0)g, or� at some liftable position p 2 V� where the validity riterion is loally vio-lated to %i+1(p) = minf% 2 M� j 8(p; p0) 2 E: %B�(p) %i(p0)g.and %i+1(q) = %i(q) for all positions q 6= p.Proof. First, it is easy to see that the position-wise minimum of two valid �-progress measures forms a valid �-progress measure. With the �nite domain,this implies that %� is well de�ned as the position-wise minimum over all valid�-progress measures.To ompute it, we an start with an arbitrary �-progress measure smaller than%� � in partiular, with the progress measure %0 that assigns the onstant funtion16



to 0 to all positions. While %i is not valid, we update it to %i+1 by updating thefuntion loally, using a lift operation.Obviously, the update is still smaller or equal to %�. For all q 2 V , %�(q) B0%i(q), we get for the lifted position p:%i+1(p) = minf% 2 M� j 9(p; p0) 2 E: %B�(p) %i(p0)gB0 minf% 2 M� j 9(p; p0) 2 E: %B�(p) %�(p0)gB0 %�(p) if p 2 V� and%i+1(p) = minf% 2 M� j 8(p; p0) 2 E: %B�(p) %i(p0)gB0 minf% 2 M� j 8(p; p0) 2 E: %B�(p) %�(p0)gB0 %�(p) if p 2 V�.As %� is valid, this implies %i+1 v %�.The �niteness of the domain guarantees termination. �When using the maximal o-domainM�1, whih ontains the funtion % thatassigns eah olour  with  mod 2 6= � to %() = j��1()j, for the progress mea-sures, the v-least valid �-progress measure %� determines the omplete winningregion of Player �.Theorem 4.3. [11℄ For a parity game P = (V0; V1; E; �) and for the o-domainM�1 for the progress measures, win(%�) oinides with the winning regionW� ofPlayer � for the v-least valid �-progress measure %�.4.4. �=k-ParadiseInstead of using this tehnique to solve the parity game, we will use the algo-rithm to onstrut a partiular type of paradises, whih we all �=k-paradises.De�nition 4.4 (�=k-Paradise). We all a �-paradise P k� a �=k-paradise if it on-tains all �-paradises of size � k.The ef�ient onstrution of �=k paradises is an essential ingredient in the al-gorithm disussed in the following setions. For their onstrution, we draw fromthe ef�ient omputation of the v-least valid �-progress measure (Theorem 4.2).Instead of using the maximal o-domainM�1, the smaller o-domainM�k isused for the progress measures, whih ontains only those funtions h that satisfyPd=0 h() � k for some parameter k 2 N . (d denotes the highest olour of theparity game). The size ofM�k an be estimated by17



jM�k j � � k + d0:5(d + 1)ek �+ 1.UsingM�k instead ofM�1, win(%�) ontains all �-paradises of size � k + 1(where %� denotes the v-least valid �-progress measures).Theorem 4.5. Let P = (V0; V1; E; �) be a parity game, and let P� � V bea �-paradise of size jP�j � k + 1. Then there is a valid �-progress measure% : V !M�k with P� = win(%).Proof. Sine P� is a �-paradise, E and V� \P��V rP� are disjoint, and Player� an stay in P�. Moreover, Player � has a memoryless strategy f that is winningon every game position in P� suh that f(p) 2 P� for all p 2 V� \ P�.If we restrit P to P 0 = Pf \ P�, then the winning region of Player � musttherefore over the whole set P� of game positions of P 0.To solve P 0, we an use the maximal o-domainM�10. By Theorem 4.3, thev0-least progress measure %0� for this o-domain satis�es win(%0�) = P�. SineM�10 �M�k is ontained inM�k (P� must ontain at least one position with evenolour if � = 0, resp. one position with odd olour if � = 1), we an extend %0�to a valid �-progress measure % on P by setting %(p) = %0�(p) for all p 2 P�, and%(p) = > otherwise. �By Theorem 4.2, we an ompute the v-least valid �-progress measure %� intime O(m jM�kj), and, by Theorem 4.1, we an onstrut a winning strategy forPlayer � on win(%�) within the same omplexity bound.Corollary 4.6. For a given parity game P with  olours and m edges, we anonstrut a �=(k + 1)-paradise P k+1� for Player � in time O�m ( k + d0:5ek )�.A winning strategy for Player � on P k+1� an be onstruted within the sameomplexity bound.4.5. Three Colour GamesWhen using Jurdziński's algorithm [11℄ for solving parity games with olours, the size jM�1j of the maximal o-domain an be estimated by( nb0:5)b0:5 + 1 if � = 0, and by ( nd0:5e)d0:5e + 1 if � = 1. From Theorem 4.3we therefore get the well established omplexity for �nding the winning regionsof and the winning strategy for one of the players in three olour games.Corollary 4.7. [11℄ Parity games with maximal olour 2 an be solved and awinning strategy for Player 0 an be onstruted in time O(mn).18



The algorithm desribed in the previous subsetion provides a partition of thewinning regions and a winning strategy for Player �, but not for a winning strategyof Player �. In priniple, her winning strategy an be omputed using a �-progressmeasure, but, for games with an odd number of olours, this is slightly moreexpensive. We dediate this subsetion to the speial ase of three olour games,beause they play a role as a base ase for the algorithm disussed in the followingsetion.We all parity games with maximal olour 2 three olour games. Corollary 4.7shows that a non-onstrutive solution for three olour games as well as a winningstrategy for Player 0 an be obtained in time O(mn). To see why Jurdziński'salgorithm [11℄ does not provide a strategy for Player 1, let us summarise his algo-rithm for the simple ase of a three olour games P = (V0; V1; E; �).For three olour games, the 0-progress measures an be viewed as mappings% : V ! f0; : : : ; n1g [ f>g, where n1 = j��1(1)j denotes the number of 1-oloured positions.The starting point of the algorithm is the trivial progress measure %0 that mapsall positions of P to 0. Starting from %0, we lift the progress measure stepwise ata liftable position p 2 V until a �xed point is reahed.For the trivial progress measure %0, an edge is a lift-edge if, and only if, itoriginates from a 1-oloured position, and a position is liftable if, and only if, itis 1-oloured. For an ef�ient implementation, it suf�es to attah a �ag to everyedge that indiates whether this edge is a lift-edge, to keep trak of the number ofoutgoing lift-edges for every game position, and to keep the liftable positions in adoubly linked list.In order to lift %i, any liftable position p an be taken from the list of liftablepositions. (If no liftable position remains, the least �xed point is reahed.) Afterlifting %i at position p, it suf�es to hek for eah inoming and outgoing edge ofp if the �ag that indiates liftability needs to be adjusted and, if so, to inrease thenumber of outgoing lift-edges for the respetive predeessor of p (for inomingedges), or to derease the number of outgoing lift-edges for p (for outgoingedges), respetively. If a position beomes liftable (non-liftable), it is added to(removed from) the list of liftable positions.While this algorithm provides good omplexity bounds for the non-onstrutive analysis of three olour games, it does not provide a winning strategyfor player 1 on her winning region. Note that the naive extension � �xing the edgeused for the last update as strategy for player one � is not sound: Figure 2 showsa small example of a single player Bühi game (Bühi games are games with19



a bdFigure 2: The example shows a single player Bühi game (that is, a game where all positions areoloured by 1 or 2), where all positions belong to Player 1 (V0 = ;). The positions a, b, and  areoloured by 1, while position d is oloured by 2 (indiated by the double line).only the olours 1 and 2), where all positions are positions of Player 1 (V0 = ;).The positions a, b, and  are oloured by 1, while position d is oloured by 2.Player 1 an hoose a self-loop at position a (in whih ase she wins), or movein a Hamiltonian yle (in whih ase she loses). If we start with twie lifting atposition a (%1(a) = 1, %2(a) = 2) followed by lifting at position b (%3(b) = 3), (%4() = >), d (%5(d) = >), and again at a (%6(a) = >) and b (%7(b) = >),all positions are orretly marked as winning for Player 1; but the last update ofposition a relies on %5(d) = >, and the naive approah would result in a losingstrategy.We show that a variant of the algorithm an be used to also onstrut a winningstrategy of Player 1 on her omplete winning region. It suf�es to store intermedi-ate strategies for Player 1, and to keep two sets of liftable positions instead of one� one set for positions that are liftable without hanging the intermediate strat-egy of Player 1, and one set of positions that are liftable, but only if the strategyof Player 1 is hanged. The adapted algorithm always gives preferene to liftablepositions from the �rst set. If only liftable positions from the latter set remain, oneof these positions is lifted and the intermediate strategy is updated aordingly.In the single player game from the example of Figure 2, we an either startwith the self-loop at position a and thus with a winning strategy, or with the losingstrategy to move from a to d. In the �rst ase, we never have to adjust the strategy.(One possible sequene of progress measure updates is (%1(a) = 1, %2(a) = 2,%3(a) = 3, %4(a) = >, %5(b) = >, %6() = >, %7(d) = >.) In the latter ase,we �rst ompute the �xed point for the single player game, where the moves ofPlayer 1 are restrited by her strategy. (One possible sequene of progress measureupdates is (%1(a) = 1, %2(b) = 2, %3() = 3.) One the �xed point for this strategyis reahed, the strategy is adjusted by hoosing the self-loop at position a. (Onepossible sequene of further progress measure updates is (%4(a) = 2, %5(a) = 3,20



%6(a) = >, %7(b) = >, %8() = >, %9(d) = >.)Theorem 4.8. For parity games with maximal olour 2, the proposed algorithman be used to solve the parity game and to onstrut winning strategies for bothplayers on their respetive winning region in time O(mn).Proof. The proposed hanges to Jurdziński's algorithm only impose a partiularorder on the lifting operations, whih ould oinidentally our in his algorithm,too. This implies the orretness of the least �xed point and thus the orretnessof the resulting winning regions and strategy of Player 0 (f. Corollary 4.7).For the orretness of the winning strategy of Player 1 on her winning re-gion, we show by indution that every time the intermediate strategy needs to behanged, say from f to f 0, the intermediate progress measure %f� is the v-leastvalid 0-progress measure %f� for Pf .Indution Basis: For any initial strategy f the laim holds trivially � up to the�rst adjustment of the intermediate strategy the algorithm resembles the originalalgorithm for Pf .Indution Step: Consider the situation after hanging the intermediate strategyfrom f to f 0 by hoosing a lift-edge (p; p0). Let us ompare the v-least valid0-progress measure %f� for Pf with the v-least valid 0-progress measure %f 0� forPf 0 .We �rst show %f�(p) 6= %f 0� (p). To see this, we develop the v-least valid 0-progress measure %f 0� for Pf 0 from the trivial progress measure %0, where we applyan update at position p only, if no update at any other position is possible.Let %0, %1, %2, %3, : : : be the sequene of progress measures onstruted thisway, where %f 0� is the limit. Note that %0 v %1 v %2 v %3 v : : : v %f 0� and%0(p) � %1(p) � %2(p) � %3(p) � : : : � %f 0� (p) hold.We show by indution that %f 0� (p) � %f�(p) implies %i v %f�(p) for all i 2 !.Let us assume %f 0� (p) � %f�(p).Indution Basis: %0 v %f� trivially holds.Indution Step: We distinguish two ases. First, if position p is lifted, we havethat %i+1(p) � %f 0� (p), whih is � %f�(p) by assumption. For all other posi-tions q 2 V with q 6= p, we have %i(q) � %f�(q) (by indution hypothesis)and %i+1(q) = %i(q), whih implies %i+1(q) � %f�(q).Seond, if position q 6= p is lifted, we �rst observe that q has the samesuessors in Pf and Pf 0 . %i v %f� implies for all suessors q0 of q that21



%i(q0) � %f�(q0) holds. Taking into aount that %f� is a valid 0-progressmeasure, this implies %i+1(q) � %f�(q).For all other positions q00 2 V with q00 6= q, we have %i(q00) � %f�(q00) (byindution hypothesis) and %i+1(q00) = %i(q00), whih implies %i+1(q00) �%f�(q00).As %f 0� is the limit of these progress measures, we get %f 0� v %f�.Similarly, we an establish that %f�(p) � %f 0� (p) implies %f� v %f 0� .Note that both diretions together show that %f�(p) = %f 0� (p) implies %f� = %f 0� ,whih ontradits the assumption that (p; p0) was a lift-edge.It also shows that %f 0� (p) > %f�(p) implies that the next swith in strategy takesplae when %f 0� (p) is reahed. (Unless %f 0� (p) is also the v-least valid 0-progressmeasure for P , in whih ase the proedure terminates there.)What remains is to exlude %f�(p) > %f 0� (p). We �rst observe that %f�(p) 6=?, beause (p; p0) would not be a lift-edge in this ase. Let us now assume forontradition that Æ = %f�(p)� %f 0� (p) > 0.We now re-alulate the 0-progress measure %f� forPf from the trivial progressmeasure %0.Let %0, %1, %2, %3, : : : be the sequene of progress measures onstruted thisway, where %f� is the limit. We show by indution that, for all %i, we have %i(q) �%f 0� (q) + Æ for all positions q 2 V .Indution Basis: For %0, this is implied by %0 v %f 0� .Indution Step: We distinguish two ases. First, if position p is lifted, we havethat %i+1(p) � %f�(p) beause %f� is the limit of the sequene of progressmeasures, and we have %f�(p) = %f 0� (p) + Æ by assumption. For all otherpositions q 2 V with q 6= p, we have %i+1(q) = %i(q), whih implies%i+1(q) � %f 0� (q) + Æ with the indution hypothesis.Seond, if a position q 6= p is lifted, we �rst observe that q has the samesuessors in Pf and Pf 0 . For eah suessor q0 2 V it holds that %i(q0) �%f 0� (q0) + Æ. As %f 0� is valid, these inequations imply with the equal set ofsuessors %i+1(q) � %f 0� (q) + Æ by the lifting rules.For all other positions q00 2 V with q00 6= q, we have %i(q00) � %f 0� (q00) + Æ(by indution hypothesis) and %i+1(q00) = %i(q00), whih implies %i+1(q00) �%f 0� (q00) + Æ. 22



Proedure Winning-Regions(P):1. set d to the highest olour ourring in P2. if d � 2 then return ThreeColour(P)3. set � to d mod 24. set n to the size jV j of P5. set W� to ;6. repeat(a) set W 0� to �-Attrator(Approximate(P; par(n; d); �);P)(b) set W� to W� [W 0�() set P to P rW 0�(d) set P 0 to Pr �-Attrator(��1(d);P)(e) set (W 00;W 01) to Winning-Regions(P 0 )(f) if W 0� = ; theni. set W� to V rW�ii. return (W0;W1)(g) set W� to W�[ �-Attrator(W 0� ;P)(h) set P to Pr �-Attrator(W 0� ;P)Figure 3: The Proedure Winning-Regions(P) takes a parity game P as input and returns theordered pair (W0;W1) of winning regions for Player 0 and Player 1, respetively. V and � denotethe game positions and the olouring funtion of the parity game P . ThreeColour(P) solves athree olour game P (.f. Theorem 4.8), Approximate(P ; par; �) omputes a �=(par+1)-paradise(.f. Corollary 4.6), and �-Attrator(F;P) omputes the �-attrator of a set F of game positionsin a game P (.f. Lemma 3.1).This implies in partiular %f�(p0) � %f 0� (p0) + Æ. This ontradits the assump-tion, that (p; p0) was a lift edge. �5. Big StepsAs observed by Jurdziński, Paterson, and Zwik [12℄, the draw-bak of M-Naughton's algorithm is the potentially small hange that ours in every reur-sive all: Eah reursive all provides a paradise for the player who loses on thehighest olour, and if the attrator of the paradise inludes one (or, more gener-ally, few) positions with maximal olour, many iterations are needed. This anbe hanged by oupling it with an alternative way to ompute �=k-paradises forthis player, where k = par(n; d) is set to a parameter par that may depend on thenumber of positions and the highest ouring olour.23



Figure 3 provides an overview on the proposed algorithm. The input to thealgorithm is a parity game P , and the output is the ordered pair onsisting of thewinning regions for the players.The algorithm �rst determines the highest olour d of P (line 1). In line 2,three olour games are overed, that is, games with highest olour � 2. Suhgames are solved using the onstrutive algorithm disussed in Subsetion 4.5.For games with a higher maximal olour than 2, the algorithm proeeds by deter-mining the Player � = d mod 2 that wins if the highest olour d ours in�nitelyoften (line 3).In every iteration of the repeat loop, the proposed big step algorithm (Figure 3)�rst onstruts a �=(par + 1)-paradise (f. Subsetion 4.4) for an appropriate pa-rameter par.
P par�arena

By Lemma 3.4, we an now redue solving P to onstruting the �-attratorP par� of P par� (line 6a), and to solving P 0 = P r P par� .
P par�arena

The algorithm then ontinues with the steps known from MNaughton's algo-rithm. That is, it next determines the set ��1(d) of positions with maximal olourin P ,
P par���1(d)arena
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and then onstruts the �-attrator A of ��1(d) in P 0 (line 6d).
P par�Aarena

In the next step, the o-game P 00 = P 0 r A of P 0 is solved by a reursive allof Proedure Winning-Regions (line 6e).
P par�AW 0�W 0�arena

By Lemma 3.2, the winning region of player � in P 00 is a � paradise in P 0.If W 0� is empty, we an again evaluate the game immediately by Lemma 3.5(line 7f ). If W 0� is non-empty, we an redue solving P 0 to onstruting the �-attrator U� of W 0�, whih is a �-paradise in P 0 by Lemma 3.3, and to solvingP 00 = P 0 rW 0� (line 6h) by Lemma 3.4.
P par�U�arena

W 0� 6= ; ) jU� [ P par� j > parThe Proedure Winning-Regions therefore omputes the winning regions or-retly.Theorem 5.1. [12℄ For a given parity gameP , ProedureWinning-Regions om-putes the omplete winning regions of both players.Note that all operations an be extended to also return the winning strategiesfor both players without extra ost. 25



Ef�ieny. While we know little about the size of P par� (whih may be empty)and W 0� (whih may be singleton), we know that their union is greater than par,beause their union is a �-paradise (as the union of two �-paradises), and wouldotherwise be ontained in P par� .We an therefore impose an upper bound on the number of iterations, whihdepends on the size of the parameter. While bigger parameters slow down theapproximation proedure (.f. Corollary 4.6), they restrit the size of the all tree.For reasonable numbers of olours (that is, if the number of olours is inO(pn)), the best results are obtained if the parameter is hosen suh that theost of alling the approximation proedure (line 6a) and the ost of the reursiveall (line 6e) are approximately equivalent. This is the ase if we set the parameterapproximately to 3qn2 .For a high number of olours (that is, if the number of olours is in !(pn)),the best results are obtained if the ost of alling the approximation proedure(line 6a) approximately oinides with the size of the all tree.The key ingredients for our ef�ient big step approah are:1. an algorithm for the ef�ient onstrution of �=par-paradises (Setion 4.4),2. a orretness proof for the overall algorithm, and3. a omplexity analysis for suitable parameters for a reasonable and a highnumber of olours, respetively (Setion 6).6. ComplexityWhile the orretness of the algorithm is independent of the hosen parameter,its omplexity ruially depends on this hoie. We argue in favour of hoosingthe parameter par suh that the ost of onstruting a �=par-paradise and the ostof a reursive all are balaned. We analyse this for games with a �xed number ofolours in two steps. In a �rst step, we identify the omplexity in the usual terms,showing that parity games an be solved in timeO�m � n()�;where () = 3 + 12 � 42 � 1 if  is odd,and () = 3 + 12 � 13 � 42 if  is even.26



We then disuss how the base of the exponent is affeted when the olours areviewed as a parameter. It is ustomary to give this growth in a form ofO�m ��n +1��1� for MNaughton's algorithm [17, 8, 29℄ and O� � m � � nb0:5 �b0:5 � forJurdziński's [11℄, and something similar might be expeted here. However, it turnsout that the onstant fator is falling muh faster: we show that the omplexity isapproximately O0�m � 6e1:6n2 !()1Afor a �small� (o(pn)) number of olours. The term �approximately� is used aswe only show the omplexity to be in O �m � ��n2 �()� for all � > 6e1:6.Finally, we show that, when the number of olours is high, we obtain thenO(pn) omplexity known from the older big-step approah of Jurdziński, Pater-son, and Zwik [12℄.6.1. Coarse Analysis � Fixed Number of ColoursFor the important lass of parity games with a reasonable number of olours�  2 O(pn)�we hoose the parameter suh that the ost for the reursive all(line 6e) oinides with the omplexity of omputing the approximation (line 6a).First, we show that the Proedure Winning-Regions indeed proeeds in big steps.Lemma 6.1. For a parameter par(n; ), the repeat loop of the algorithm is iter-ated at most � npar(n;)+2�+ 1 times.Proof. As disussed in the proof of Theorem 5.1, the �-attrator A of the om-puted approximation P par� (line 6a) and the winning region W 0� of Player � are�-paradises on P and P r A, respetively. Thus, their union U is a �-paradiseof P . If the size of U does not exeed par + 1, U is ontained in P par� by Corol-lary 4.6. In this ase,W 0� is empty, and the loop terminates. Otherwise, a supersetof U is subtrated from P during the iteration (lines 6 and 7h), whih an happenat most � npar(n;)+2� times. �Building on this observation, we de�ne a parameter par suh that the require-ment of equal omplexities is approximately satis�ed. In order to do so, we pro-eed in two steps, starting with establishing the omplexity for a �xed number ofolours. In this oarse analysis, the number of olours is not treated as a parame-ter, but assumed to be �xed. The following table provides an overview.27



number of olours 3 4 5 6 7 8paradise onstrution - O(mn) O(mn1 12 ) O(mn2) O(mn2 13 ) O(mn2 34 )hosen parameter par - n 12 n 12 n 23 n 712 n 1116number of iterations npar - n 12 n 12 n 13 n 512 n 516solving omplexity O(mn) O(mn1 12 ) O(mn2) O(mn2 13 ) O(mn2 34 ) O(mn3 116 )The olour oding shall help to identify similar omplexities. The startingpoint is the solving omplexity for three olours from Theorem 4.8. One we havedetermined the ost of solving parity games with  olours, we invest a similaramount of time into onstruting the �=par paradise for games with +1 olours.For four olours, this is O(mn). One we have determined how muh we arewilling to invest into onstruting the �=par paradise, we an infer the parameter.For four olour games, this is pn. And one we have determined the parameter,we an infer �rst the number of iterations, e.g., pn for four player games, andthen the omplexity as the ost of eah iteration times the number of iterations,e.g., O(mn1:5) for games with four olours.To apture this behaviour, we �x the funtion  suh that() = 3 + 12 � 1d0:5eb0:5 = 3 + 12 � 42 � 1if  is odd, and() = 3 + 12 � 13 � 1d0:5eb0:5 = 3 + 12 � 13 � 42if  is even, and hoose �() = ()d0:5(+ 1)e :These de�nitions imply (+ 1) = () + 1� �().In the following proof,  is treated as a onstant.Theorem 6.2. Solving a parity game P with  > 2 olours,m edges, and n gamepositions an be performed in time O�mn()�.Proof. This is simple to prove by indution, where the indution basis ( = 3) isprovided by Theorem 4.8. 28



For the indution step ( 7! + 1), we hoose the parameter ofpar(n; ) = n�():This provides a omplexity of O�mn()� for the approximation in line 6(a) byTheorem 4.2, whih together with the indution basis provides a omplexity ofO�mn()� of eah iteration of the loop (lines 6(a) to 6(h)).With Lemma 6.1, we an infer the laimed omplexity �rst of the loop, andonsequently (as the ost of lines 1 through 5 is dwarfed by the ost of the loop)for the algorithm. �6.2. Parameter for  2 o(pn) � Finer AnalysisIn this subsetion, we provide an analysis for the omplexity of the algorithmthat treats the number of olours as a parameter. It is removed from the previoussubsetion, beause we believe that most users would be happy with the simpleroarse analysis.In a more �ne-grained analysis, we start with adjusting the algorithm slightly,suh that the parameter is adjusted in every iteration of the loop (Figure 4).In the remainder, we assume  2 o(pn), and establish the onsisteny of theestimations that, for par � (�0n)�()3p+ 1 ;whih onverges to 3q (�0n)2 for a growing number of olours , the time the algo-rithm takes is estimated by a funtion t0(n; ) witht0(n; ) 2 O�(�00gn)()3p!2 �time for small onstants �00g and �0.Theorem 6.3. Parity games with o(pn) olours an be solved inO�m� (�00gn)()3p!2 �time for all �00g > � = 63pe .Before turning to the proof, we provide an intuition for the problems that ourand the funtions and parameters we will use in the proof.
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Proedure Winning-Regions(P):1. set d to the highest olour ourring in P2. if d � 2 then return ThreeColour(P)3. set � to d mod 24. set W� to ;5. repeat(a) set n to the size jV j of P(b) set W 0� to �-Attrator(Approximate(P; par(n; d); �);P)() set W� to W� [W 0�(d) set P to P rW 0�(e) set P 0 to Pr �-Attrator(��1(d);P)(f) set (W 00;W 01) to Winning-Regions(P 0 )(g) if W 0� = ; theni. set W� to V rW�ii. return (W0;W1)(h) set W� to W�[ �-Attrator(W 0� ;P)(i) set P to Pr �-Attrator(W 0� ;P)Figure 4: The adjusted Proedure Winning-Regions(P), whih hanges the parameter in eahiteration of the loop.Intuition and de�nitions. We will use an indutive argument, whih is slightlyompliated by the problem that, after removing the attrator of a paradise, thenumber of positions is redued, but not neessarily the number of olours. It istherefore possible that neither the assumption  2 o(pn) nor  � pn extend toall parts of the all tree.This proves to be a minor tehnial problem, whih we meet with some re-writing. We �rst de�ne a parametern0 =  � pn;whih has the properties n0 � n, n0 2 o(n),  2 o(pn0), and � n0.It is important to note that n0 is global: it is alulated one before exeutingthe algorithm, and it is never updated during the exeution of the algorithm.Intuitively, we start with n + n0 positions rather than with n positions, andalulate the omplete time as if we had n0 positions more than we atually have.Let us refer to them as n0 shadow positions.Thus, the time we need to solve parity games with n positions and  olours is30



estimated by t0(n; ) = t(n+ n0; )�and not by t(n; )�and we an uset(n; ) = 0 for all n � n0:(As the n0 shadow positions do not exist and are only used for our estimations, weknow that, if there are at most n0 positions left, they are all shadow positions: thegame is empty.)Next, we de�ne the onstants that used in the proof.�0g > �g � �0 = 3 6pep2are used for the estimation of the running time and the alulation of the parame-ter, and �00g > �0g > �g > 2r2e � �0g > 2r2e � �0 = 63pe = �are used in the estimations of the running time. Note that �00g an �rst be seletedarbitrarily lose to �, and the remaining onstants an be assigned afterwards.Finally, we de�ne a onstant �01 = 6s� ��0g� ;�01 is a onstant (slightly) below 1, whih is used in a proof.With these onstants in plae, we �x the parameter to bepar(n; ) = &��0n��()3p+ 1 ' :As it is dif�ult to argue with eiling operators, we also de�ne �;n � �0 to be thesmallest onstant greater or equal to �0, suh that ��;nn��()3p+1 is an integer. We thende�ne � = supf�;n j n > 2g ;and observe that lim!1 � = �0. Note that we only use a �;n in a ontext, wheren > n0, while 2 � 2 � n0 < n holds. While the de�nition avoids the use of n0,2 < n is an important property for the de�nition to be useful.31



Lemma 6.4. For �xed �0g > �g � � and �g > 2q2e � �0g, and for  2 o(pn), therunning time of the approximation algorithm with parameter par(n; ) for a paritygame with + 1 olours andm edges is in O�m � (�gn)()3p!2 �.Proof. By Corollary 4.6, the running time for the approximation is inO�m ( par(n; ) + d0:5(+ 1)epar(n; ) )�. Realling thatpar(n; ) = ��n��()3p+ 1 ;we an obtain with () = �()d0:5(+ 1)e that the running time is inO m � (�n + 3p + 1 � d0:5(+ 1)e)() � d0:5(+ 1)e! � 3p+ 1d0:5(+1)e! :Using  2 o(pn), we obtainO�(�n+ 3p+ 1 � d0:5(+ 1)e)()� � O�(�0gn)()�:Finally, we use d0:5(+ 1)e! � 3p+ 1d0:5(+1)e � (2e) 2 23 and 13p!2 � e 23 23to infer d0:5(+ 1)e! � 3p + 1d0:5(+1)e �  2r2e!() � 13p!2 ;where the three `�' refer to fators between the respetive two terms, whih aresubexponential in . The subexponential fator of the third `�' is swallowedby the strit inequation �g > 2q2e � �0g when we estimate the running time byO�m � (�gn)()3p!2 �. �The time onsumed by an iteration of the loop is dominated by the reursiveall and the approximation. For the proof, we make the onstants hidden by theOnotation expliit. 32



Corollary 6.5. For + 1 olours (i.e., for maximal olour ) and a �xed �g > �,there is a onstant � suh that the time onsumed during one iteration of a loop isbounded by the time spent by the reursive all plus � �m (�gn)()3p!2 time steps. �In referene to the dominating role played by the approximation in this bound,we estimate the running time for n positions, m edges (left impliit), and  + 1olours by ta(n; + 1) = � �m(�gn)()3p!2 :Proof of Theorem 6.3 We �rst sharpen  2 o(pn) to n0 = pn � �00g��0g�0g n. Wethen provide a funtion t0(n; ) that bounds the running time of the algorithm,where t0(n; ) = t(n+ n0; );and t(n; ) is the funtion we disuss below. t(n; ) is intuitively the running timefor n � n0 real and n0 shadow positions, whereas t0(n; ) would refer to n realpositions. Realling that, for n � n0, there are only shadow and no real positions,we set t(n; ) = 0 for all  2 ! and all n � n0.For given onstants as de�ned above, we hoose the minimal k 2 ! suh thatthe following properties hold for all  � k.1. � � �g,2. �01 � �0g1��() � �0�() � (+1)+1 � 1, and3. n(+1) � (n � par(n; ))(+1) � �01 � par(n; ) � ( + 1) � n(+1)�1 holdsfor all n > �0g�00g��0g 2 (and thus for all values of interest: smaller values n arealso smaller than n0).We now prove our laim by indution. For the indution basis, we observethat Theorem 6.2 implies that the following holds for all  � k for an arbi-trary (but �xed) onstant k 2 N : the running time of the algorithm is boundby �0 �m � (�gn)()3p!2 . (Thus, for all  � k, we an follow the simpli�ed version ofthe algorithm referred to in Theorem 6.2.)Before ontinuing with the indution step, we let�0 = maxf�; �0g�0133



be the maximum of the onstant �0 from above and the onstant � from Corol-lary 6.5, divided by the the onstant (slightly) below 1.We then de�ne the following series of onstants.�i+1 = �i + �0 � ��g�0g�(i+1) :We use the onstant �1 = limi!1 �i for the limit of this series. We then relaxthe indution basis to the observation that, for all  � k and n > n0 (reall thatn0 � 2), t(n; ) = � �m � (�0gn)()3p!2is an upper bound on the running time of the algorithm for n positions (inludingshadow positions).For the indution step from  to +1, we an use as indution hypothesis thatt(n; ) bounds the running time (with shadow positions) of the algorithm.We now start an indutive proof for  + 1, whih is provided as an indutionover n.IB: For the indution basis, we reall that t(n; + 1) = 0 for all n � n0.IS: Let n > n0. For the indution step from all n0 < n to n, we assume that wehave shown the property for all n0 < n (indution hypothesis) and show thatit also holds for n.The �rst relevant observation is that �pn implies ()� par(n; + 1).We have used this in (3) to estimaten(+1) � (n� par(n; ))(+1) � �01 � par(n; ) � (+ 1) � n(+1)�1� �01 � � �0�()3p+1� � (+ 1) � n() :From here, we an estimate the running time (with shadow positions) asfollows.
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t(n; + 1)� t(n� par(n; ); + 1)= �+1 �m � �0g(+1)3p(+1)!2 � �n(+1) � (n� par(n; )(+1)�� �+1 � ��01 � �0g1��() � �0�() � (+1)+1 � �m � (�0gn)()3p!2� �+1 �m � (�0gn)()3p!2� � �m � (�0gn)()3p!2 + ta(n; + 1)= t(n; ) + ta(n; + 1) :Consequently, we an infer thatt(n; + 1) � t(n; ) + ta(n; + 1) + t(n� par(n; + 1)holds for the hosen funtion, whih establishes the estimation in the innerindution.This, in turn, loses the estimation for the outer indution.What remains it to see that the t0(n; ) = t(n+n0; ) has the required property.But this is implied by n0 � �00g��0g�0g � n. �While one an use this proof to establish this bound for �00g arbitrarily lose to�, note that this has a signi�ant impat on the onstant fator.Using again ! � � e�, we obtain:Corollary 6.6. Parity games with o(pn) olours an be solved inO�m��n2 �()� time for all � > 6e1 23 .6.3. High number of oloursWe lose with a rough analysis of the ost for medium and high numbers ofolours. In both ases, we aim at roughly aligning the the size of the all tree andthe ost of the approximation.Different to the previous subsetion, we �x the parameter initially and do notadjust it during the algorithm. We assume that the number of olours and theparameter are large, e.g., ; par 2 !( 3pn), in our estimation (the main target is 2 
(pn)). 35



For  = pn, we roughly balane the ost of the approximation for a parameterin �(pn) and the size of the all tree.To get an impression of the size of the all tree, we an enode eah node ina all tree by a sequene of all and return symbols. If we assume  olours anda parameter par (whih remains onstant for simpliity), then eah node in suh aall tree an be enoded by a sequene, where� the number of alls is smaller than the number of olours and� the number of alls and par times the number of returns is at most the num-ber of positions.The number of leaves enoded by these sequenes an be estimated fromabove by � + npar �, where the estimation from above allows any sequene of alls and npar returns. The number of positions in the all tree is of the sameorder.The ost of a single estimation with parameter par is O�m� par + d0:5epar ��.For  � pn, we selet par = . This results in an estimation of the ost of theapproximations of 2O() (assuming  2 
(logn)), and an estimation of the size ofthe all tree of (1 + n2 )O().Theorem 6.7. Parity games with n positions and  � pn olours an be solvedin �1 + n2�O() time.For  � pn, we hoose a parameter around pn, e.g., par = dpne. Thisresults in a all tree of approximate size and approximation whih takes approxi-mate time �1 + pn�O(pn). The ost of the overall omputation is therefore alsoin �1 + pn�O(pn).Noting that  � pn is not used in the estimation, we get:Theorem 6.8. Parity games with n positions and  olours an be solved in�1 + pn�O(pn) time.This essentially boils down to the nO(pn) result of Jurdziński, Paterson, andZwik [12℄, with a slight improvement when log � pn� is in o(logn).36
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