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ABSTRACT

We design a new fast algorithm to automatically segment a 2D cloud of points into persistent regions.
The only input is a dotted image without any extra parameters, say a scanned black-and-white map
with almost closed curves or any image with detected edge points. The output is a hierarchy of
segmentations into regions whose boundaries have a long enough life span (persistence) in a sequence
of nested neighborhoods of the input points. We give conditions on a noisy sample of a graph, when
the boundaries of resulting regions are geometrically close to original cycles in the unknown graph.

c� 2015 Elsevier Ltd. All rights reserved.

1. Introduction: the problem, summary and applications

1.1. Problem: automatic segmentation of a noisy 2D cloud
Recognizing closed contours is a primary phenomenon ac-

cording to Gestalt laws of perception. Humans can easily form
closed loops from incomplete contours. Closed contours bound
holes or semantic regions whose extraction is needed for higher
level image understanding. So a robust location of holes and
their boundaries is a key part of any low level vision system.

The problem is most similar to Saund (2003), who found
perceptually closed contours using weights of various quality
criteria. Completing closed contours is equivalent to finding re-
gions bounded by these contours. The segmentation problem
will be solved in the hardest form without using extra input pa-
rameters: given only a noisy sample C of a graph G ⇢ R2,
reconstruct closed contours approximating all cycles of G.

The input is a cloud C, which is a finite set of points with any
real coordinates in the plane R2, see Fig. 1. Such a cloud can be
a noisy sample or a scan of a hand-drawn sketch or an artistic
drawing. The input can also be a binary black-and-white image
or a sparse cloud of points without any pixel connectivity.

The output is a hierarchy of segmentations into regions
whose boundaries are non-self-intersecting cycles of straight
edges connecting points in a given cloud. Fig. 1 shows a cloud
C and the most persistent segmentation, which was found by
using only C without parameters. All regions bounded by re-
sulting contours are painted with random colors for simplicity.

⇤⇤Corresponding author: Tel.: +44-1913343081; fax: +44-1913343051;
e-mail: vitaliy.kurlin@gmail.com (Vitaliy Kurlin)

Fig. 1. Input: a noisy cloud C randomly sampled near a graph G ⇢ R2.
Output: randomly painted most persistent regions (best viewed in colour).

The algorithm finds the full hierarchy of segmentations in
time O(n log n) for a cloud of n points. The boundary contours
in a 1st segmentation of the hierarchy have approximation guar-
antees for noisy samples of a graph G ⇢ R2 in Theorem 11.

In addition to the motivations of Saund (2003) we give four
more applications for locating holes and their boundaries.

Auto-closure of polygons. A typical di�culty for users of
graphics software is to accurately match endpoints of a polygo-
nal line for painting a resulting region. The suggested approach
resolves this di�culty without asking users for extra input.

Hierarchical segmentation. When there is no single ideal
segmentation as in most natural images, the algorithm can pro-
pose several most likely segmentations, which are rigorously
quantified by their stable-under-noise topological persistence.
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Automatic colorization. Artistic drawings are line sketches
that often contain gaps, but may give an impression of closed
contours. We may enhance these black-and-white drawings by
automatically painting regions that appear visually closed.

Map reading. Conventional paper maps contain many level
set curves. These curves are often split into disjoint arcs by
labels showing actual heights above the sea level. Hence auto-
completion of contours can help faster digitize paper maps.

1.2. Related Work on Topology-based Image Segmentation

Pixel-based segmentation is a traditional approach to find
boundary contours in a pixel-based image. Such a segmentation
usually minimizes an energy function that contains a cost of as-
signing a single label and a cost of assigning di↵erent labels
to neighboring pixels. The resulting minimization problem is
often NP-hard. Including higher-order potentials between more
than two pixels has even larger computational costs and still en-
codes only local properties. Chen et al. (2011) suggested the
first binary segmentation with global topological constraints,
e.g. when a foreground object is connected and has no holes.

Extra parameters are essentially needed for many algo-
rithms including Chernov and Kurlin (2013) and the image
segmentation by Letscher and Fritts (2007). They start with
a Delaunay triangulation of a point cloud C as in our first step.
Then small triangles merge to form persistent regions using two
threshold parameters: ↵ for the radius of disks centered at the
points of C, and p for the desired level of persistence. We sub-
stantially improve this method to avoid any input parameters
and prove guarantees by using the stability of 1D persistence.

Fig. 2. A cloud C and its (non-unique) Delaunay triangulation Del(C)

Fast 1D persistence for o↵sets of 2D point clouds can be
computed in time O(n log n) by the standard algorithm of Attali
et al. (2009). This approach was applied by Kurlin (2014b) for
counting topologically persistent holes in noisy clouds. How-
ever, the 1D persistence diagram contains only unstructured
data. A segmentation of a cloud requires more information
about adjacency relations of persistent regions. We substan-
tially extend the algorithm from Attali et al. (2009) by adding
the new sophisticated data structure Map(↵), see section 4.

Homology inference conditions were obtained in many
cases to guarantee a correct topological reconstruction from a
sample C. In addition to topological guarantees, for the first
time Theorem 11 provides a lower bound for the unknown noise
level " and gives conditions on a graph G when reconstructed
contours are geometrically 2"-close to true cycles of G.

The metric graph reconstruction is a related problem
solved in Aanjaneya et al. (2012). The input is a large abstract
metric graph Y , the output is another smaller metric graph X̂.

If Y is a good "-approximation to an unknown graph X, then
X, X̂ are homeomorphic. So the input and output are in di↵er-
ent spaces, not in the same R2 as in our segmentation problem.

1.3. Contributions: Parameterless Algorithm and Guarantees
The key di↵erences between the new automatic solution and
all the past segmentation methods above are the following.
• We solve the harder problem of completing closed contours
or segmenting a cloud of points without any extra parameters.
• Input points can have any real coordinates in R2, the algorithm
works for feature points in images at any subpixel resolution.
• The algorithm is unsupervised and outputs a hierarchy, where
one can get a segmentation with a required number of regions.
• The quality of segmentations is measured by the stable-under-
noise persistence, which leads to guarantees in Theorem 11.

No scale parameters are needed, because a given cloud is
analyzed for all values of a radius ↵. The 1st output consists of
those contours whose persistence is above a 1st widest gap in
a persistence diagram, see Definition 2 and 5. The 2nd output
has contours with a persistence above the lowest of the first 2
widest gaps etc. If exactly k regions are needed, one can select
contours corresponding to k cycles with highest persistence.

Data-driven measurements are used for quantifying persis-
tence of contours. If a point cloud C lives in a metric space, we
have only a distance function for studying a shape of C. So a
natural representation of such a shape is the ↵-o↵set C↵, which
is the union of disks with a radius ↵ > 0 and centers at all points
of C. This complicated ↵-o↵set C↵ continuously deforms to the
simpler ↵-complex C(↵) for any ↵, see Fig. 3 and Definition 1.

Fig. 3. The ↵-o↵set C↵ deforms to the ↵-complex C(↵) for ↵ =
p

2.

The persistence of a contour is its life span in the sequence
of nested o↵sets C↵. When ↵ is increasing, a contour is born
at some ↵ = birth and dies in a larger o↵set at ↵ = death. The
persistence is death � birth, see Definition 2. For C in Fig. 2,
the 1st contour is born at ↵ =

p
2 and persists until all triangles

of Del(C) are covered by disks of a larger radius ↵, see Fig. 3.

Here is a high-level description of the key contributions.
• Near linear time: for any n points in R2, a hierarchy of seg-
mentations is computed in time O(n log n), see Theorem 9.
• Guarantees: if a cloud C is densely sampled from a good
enough graph G ⇢ R2, all contours of G can be geometrically
approximated by using only the cloud C, see Theorem 11.
• Stability: the output is globally stable under noise in a cloud
C, namely remains in a small o↵set of C, see Corollary 12.
• Experiments on synthetic and natural images in section 6
confirm that the results are robust even for really large noise.
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2. Persistent homology of ↵-complexes C(↵) in the plane

The ↵-o↵sets C↵ have complicated shapes, but continuously
deform to ↵-complexes, which are substructures of a Delaunay
triangulation, see Edelsbrunner (1995).

Definition 1 (↵-complexes C(↵) and holes). A Delaunay tri-
angulation Del(C) on a cloud C ⇢ R2 consists of all triangles
whose vertices are from C and whose circumcircles enclose no
points of C. For any scale ↵ > 0, the ↵-complex C(↵) is ob-
tained from Del(C) by removing all open edges longer than 2↵
and all open triangles with circumradii more than ↵. A hole
of C(↵) is a bounded connected component of R2 � C(↵). The
boundaries of all holes are boundary contours of C(↵).

If ↵ > 0 is small, the ↵-complex C(↵) consists of all iso-
lated points of C. For any large enough ↵, the complex C(↵) is
Del(C). So the ↵-complex C(↵) is built on isolated points of C
by adding edges and triangles at the following critical values:
• an edge between points pi, p j 2 C is added at ↵ = 1

2 d(pi, p j);
• an acute triangle (that has all angles less than ⇡2 ) is added at
the critical value ↵ equal to the circumradius of the triangle;
• a non-acute triangle T is added to C(↵) at the scale ↵ that is
equal to the half-length of the largest side in the triangle T .

All ↵-complexes form the filtration {C(↵)} that is a nested
sequence C = C(0) ⇢ . . . ⇢ C(↵) ⇢ . . . ⇢ C(+1) = Del(C).

Fig. 4. The ↵-o↵set C↵ deforms to the ↵-complex C(↵) for ↵ = 2.

The summary of topological changes in the filtration {C(↵)}
is quantified by life spans (from birth to death) of holes. For the
cloud C in Fig. 2, the first hole is born at the scale ↵ =

p
2 in

Fig. 3 and splits into 2 smaller holes at ↵ = 2, see Fig. 4.
The left-hand-side hole in Fig. 4 is a square, which shrinks to

the triangle with sides 4, 2
p

5, 2
p

5 in C(
p

5), see Fig. 5. The
triangle has the circumradius R2 = 2.5 and enters C(↵) at the
scale ↵ = 2.5, hence the hole persists over 2  ↵ < 2.5.

The right-hand-side hole in Fig. 4 splits again at ↵ =
p

5 giv-
ing birth to the 3rd triangular hole with sides 2

p
2, 2
p

5, 2
p

5.
This acute triangle has the circumradius R3 =

5
3

p
2 ⇡ 2.357

and enters C(↵) at ↵ = R3, so the 3rd hole persists overp
5  ↵ < R3. The remaining hole in C(2.5) contains the Delau-

nay triangle with the largest circumradius R1 =
5
7

p
26 ⇡ 3.642,

see 2. So the most persistent hole lives over
p

2  ↵ < R1.
The 1-dimensional homology H1(S ) counts holes of a com-

plex S ⇢ R2. Formally, H1(S ) is a vector space generated by 1-
dimensional cycles that enclose holes of S . If a connected com-
plex S ⇢ R2 consists of V vertices, E edges, F triangles, then

Fig. 5. The ↵-complexes C(↵) of the cloud C in Fig. 2 for ↵ =
p

5, 2.5.

�(S ) = V�E+F is the Euler characteristic and �1(S ) = 1��(S )
is the first Betti number equal to the number of holes of S .

The complex C(
p

2) in Fig. 3 has V = E = 17, F = 0,
so �1 = 1. The vector space H1(S ) of linear combinations
with coe�cients in the field Z2 = {0, 1} is determined by
dim H1(S ) = �1(S ), so H1(S ) = Z�1(S )

2 . The ↵-complex
C(
p

5) ⇢ R2 in Fig. 5 has 3 holes and H1(C(
p

5)) = Z3
2.

Since any ↵-o↵set C↵ continuously deforms to the ↵-
complex C(↵), see Edelsbrunner (1995), they have the same
homology H1. In practice, H1(C↵) is unstable under pertur-
bations of a cloud C. This instability is resolved by the more
advanced concept of persistent homology that tracks changes in
the homology H1(C↵) across all scales ↵ > 0.

Induced maps in homology. Any inclusion of complexes ◆ :
X ! Y induces the linear map ◆⇤ : H1(X)! H1(Y). Namely, let
a homology class � 2 H1(X) be represented by a cycle

P
i aiei,

where ai 2 Z2 and ei are edges of the complex X. Then the class
◆⇤(�) 2 H1(Y) is represented by the linear combination

P
i aiei

considered in the di↵erent (smaller or larger) space H1(Y).
Inclusions C(↵i) ⇢ C(↵ j) for any ↵i < ↵ j induce a sequence

of linear maps H1(C(↵i)) ! H1(C(↵ j)) decomposable into a
sum of elementary sequences over life spans of each hole. The
↵-complexes for the cloud C in Fig. 2 induce H1(C(0)) = 0!

! H1(C(
p

2)) = Z2 ! H1(C(2)) = Z2
2 ! H1(C(

p
5)) = Z3

2 !

! H1(C(R3)) = Z2
2 ! H1(C(R2)) = Z2 ! H1(C(R1)) = 0,

which decomposes as a sum of 3 sequences 0! Z2
id! Z2 ! 0

over 3 life spans
p

2  ↵ < R1, 2  ↵ < R2 and
p

5  ↵ < R3.

Definition 2 (persistence diagram PD{C(↵)}). A homology
class � 2 H1(C(↵i)) is born at a scale ↵i = birth(�) if � is
not in the image of the map H1(C(↵)) ! H1(C(↵i)) for any
↵ < ↵i. The class � dies at ↵ j = death(�) � ↵i when the image
of � under H1(C(↵i)) ! H1(C(↵ j)) merges into the image of
H1(C(↵)) ! H1(C(↵ j)) for some smaller ↵ < ↵i. For instance,
� 2 H1(C(↵i)) dies at ↵ j if its image in H1(C(↵ j)) vanishes.
By the elder rule a younger hole born at ↵i dies by merging
another older hole, which was born earlier at ↵ < ↵i. All dots
(birth, death) form the persistence diagram PD{C(↵)} ⇢ R2.

The filtration {C(↵)} of ↵-complexes for the cloud C in
Fig. 2 has the persistence diagram in Fig. 6 containing 3 dots
(birth, death) for the 3 life spans of holes or their boundaries.

Points near the diagonal have a low persistence death � birth
and are considered as noise. If µ > 1 di↵erent holes are born
and die at the same scales, the corresponding dot (birth, death)
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Fig. 6. The persistence diagram of {C(↵)} for the cloud C in Fig. 2.

has the multiplicity µ. It is safe to add to a persistence diagram
all diagonal points (↵,↵) with infinite multiplicity, because they
have persistence 0, so PD{C(↵)} is a multi-set of dots.

Definition 3 (the bottleneck distance). Let ||p � q||1 =
max{|x1 � x2|, |y1 � y2|} be the distance between p = (x1, y1),
q = (x2, y2) in R2. The bottleneck distance between persistence
diagrams PD and PD0 is dB = inf supq2PD ||q� (q)||1 over all
bijections  : PD! PD0 of multi-sets PD and PD0.

Stability Theorem 4 below is a key foundation of topological
data analysis saying that the persistence diagram is stable under
perturbations of original data. We quote only a simple version
of the Stability Theorem for filtrations by the distance function.

Theorem 4 (stability for "-samples). Cohen-Steiner et al.
(2007) Let a finite cloud C ⇢ R2 of points be an "-sample of a
plane graph G ⇢ R2, namely C ⇢ G" and G ⇢ C". Then the
bottleneck distance dB(PD{G↵},PD{C↵}) is at most ".

For any cloud C ⇢ R2, all 1D homology classes in H1(C(↵))
die when the ↵-complex C(↵) becomes the full Delaunay tri-
angulation. Hence the 1D persistence diagram PD{C(↵)} con-
tains finitely many o↵-diagonal dots (birth, death) and infinitely
many diagonal dots (↵,↵). After the introduction above, we de-
fine the new concept of diagonal gaps in persistence diagrams.

Definition 5 (diagonal gaps and subdiagram PDk). For the
filtration {C(↵)} of a cloud C ⇢ R2, a diagonal gap is a largest
strip {0  a < y � x < b} that has dots on the boundary lines,
but not inside the strip, see Fig. 6. For any integer k � 1, the
k-th widest diagonal gap has the k-th largest vertical width
b � a. If there are several widest gaps with the same width, we
choose the lowest gap. The k-th subdiagram PDk ⇢ PD{C(↵)}
consists of all dots above the lowest of the first k widest gaps.

Each k-th widest gap separates dots (birth, death) with a
higher persistence death � birth from dots with a lower persis-
tence. The gap between the diagonal birth = death and a dot
with a lowest persistence death � birth > 0 is also considered,
e.g. this gap is 3rd widest in Fig. 6. Definition 6 introduces a
new structure of persistent regions and their boundaries on C.

For the filtration {C(↵)} of ↵-complexes, all dots
(birth, death) in the full persistence diagram PD{C(↵)} are
in a 1-1 correspondence with all acute triangles in a Delaunay
triangulation Del(C). Indeed, each hole dies inside one acute
triangle T when ↵ becomes equal to the circumradius of T .

Any non-acute triangle T ⇢ Del(C) gives no birth to a hole,
because T becomes completely covered by the 3 disks around
the vertices of T when the radius ↵ equals the half-length of a
longest side, before the scale ↵ reaches the circumradius of T .

Definition 6 (k-th segmentation of C into persistent regions).
To get the initial segmentation of a cloud C ⇢ R2, we recur-
sively merge each acute triangle in Del(C) with all non-acute
triangles along their longest sides until all non-acute triangles
are merged. To get the k-th segmentation, we keep only those
initial regions that correspond to mk dots (birth, death) in
the k-th subdiagram PDk{C(↵)}. We recursively merge every
remaining region along its longest boundary side with its
adjacent region until we get exactly mk final persistent regions.

The persistence diagram in Fig. 6 has only one dot (
p

2,R1)
above the 1st widest gap. The boundary of the corresponding
region is the closed contour C(

p
2) in Fig. 3. The remaining 3

right-angled triangles outside the complex C(
p

2) merge with
the external region. By Definition 6 the 1st segmentation of C
consists of the single region enclosed by C(

p
2), see Fig. 9.

The key information about merged regions is missing in the
classical 1D persistence diagram PDk{C(↵)} consisting of only
dots (birth, death). Hence the new algorithm in section 4 sub-
stantially extends the standard persistence computation to get a
hierarchy of persistent structures directly on a cloud C.

3. Duality between ↵-complexes and ↵-graphs in the plane

We analyze the evolution of contours in the filtration of 2D
↵-complexes C(↵) using the simpler filtration of 1D ↵-graphs
C⇤(↵) that are dual to C(↵). Let us associate a node vi to every
triangle in Del(C), call the external region of the triangulation
Del(C) also a ‘triangle’ and represent it by an extra node v0. So
vi are abstract nodes shown as small red circles in Fig. 7.

Definition 7 (↵-graphs C⇤(↵) of a cloud C). Let the metric
graph C⇤ dual to Del(C) have the nodes v0, v1, . . . , vk and edges
of a length 1

2 di j connecting nodes vi, v j such that the corre-
sponding triangles in Del(C) share a longest side of the length
di j. The ↵-graph C⇤(↵) is obtained from C⇤ by removing all
edges not longer than ↵. Any isolated node v (except v0) is re-
moved from the graph C⇤(↵) if the corresponding triangle Tv in
Del(C) is not acute or has a small circumradius rad(v)  ↵.

The smallest graph C⇤(+1) is the isolated vertex v0 corre-
sponding to the external region of Del(C). When ↵ drops from
2.5 to

p
5 in Fig. 7, two isolated nodes v2 and v3 enter C⇤(↵),

because rad(v2) = R2 = 2.5, rad(v3) = R3 =
5
3

p
2 >
p

5. How-
ever, these nodes remain isolated in C⇤(

p
5) because all sides

of their triangles have half-lengths not longer than
p

5.
The ascending filtration of a Delaunay triangulation Del(C)

by ↵-complexes gives rise to the descending filtration of ↵-
graphs C⇤ = C⇤(0) � . . . � C⇤(↵) � . . . � C⇤(+1) = {v0}.
Each connected component of C⇤(↵) has the corresponding re-
gion enclosed by a boundary contour of the complex C(↵).

For instance, if C(↵) contains a triangular cycle, but not the
enclosed triangle Tv, then the circumradius rad(v) > ↵ and the
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Fig. 7. The complex C(↵) and graph C⇤(↵). Left: ↵ = 2.5. Right: ↵ =
p

5.

corresponding node v belongs to C⇤(↵). So there is a 1-1 corre-
spondence between all isolated nodes (except v0) of the graph
C⇤(↵) and all triangular boundaries of C(↵). This duality ex-
tends to all components of C⇤(↵) and all boundaries of C(↵).
The following duality result is topological folklore and follows
original ideas from Delfinado and Edelsbrunner (1995).

Lemma 8 (duality between C and C⇤). For any scale ↵ > 0,
all components of the ↵-graph C⇤(↵) are in a 1-1 correspon-
dence with all boundary contours of the ↵-complex C(↵).

Proof. When ↵ is decreasing, the birth of a boundary contour
in C(↵) means that a small hole appears around the center (of
the circumcircle) of an acute triangle Tv ⇢ Del(C). By Defini-
tion 7 at the same time the isolated node v corresponding to the
triangle Tv enters the graph C⇤(↵) as a new component.

The death of a boundary contour in C(↵) means that the con-
tour is torn at its longest edge e for ↵ = half-length of e. If the
edge e is shared by triangles Tu,Tv, the corresponding nodes
u, v become linked, their components merge in C⇤(↵).

So there is a 1-1 correspondence between births of contours
in C(↵) and components in C⇤(↵), and similarly between their
deaths. In general, for any fixed value of ↵, each component of
C⇤(↵) containing nodes v1, . . . , vk is dual to the contour going
along the boundary of the union T1 [ . . . [ Tk ⇢ Del(C) of the
triangles represented by the nodes v1, . . . , vk 2 C⇤(↵). ⇤

When ↵ is decreasing from +1 to 0, the ↵-complex C(↵) ⇢
R2 is shrinking, while C⇤(↵) is growing by Duality Lemma 8.
Initially, C(+1) = Del(C) and we show all triangles of Del(C)
in blue. If a triangle disappears from C(↵) at a critical value ↵,
for all smaller ↵ we put a small red circle in this triangle.

4. New data structure Map(↵) for segmenting 2D clouds

The nice algorithm of Attali et al. (2009) for a fast 1D persis-
tence requires an essential extension for segmenting 2D clouds,
because the 1D persistence diagram PD{C↵} has no information
about adjacency of required persistent regions. Informally, we
will merge all noisy dots in PD{C↵}with a small number of dots
above the widest gap, which leads to a final segmentation.

Nodes of the ↵-graph C⇤(↵) with attributes are stored in the
array Forest(↵). Components of C⇤(↵) describing persistent re-
gions are in the array Map(↵). Briefly, the algorithm maintains
a union-find structure on Forest(↵) and updates adjacency rela-
tions in Map(↵) when one region mergers another one.

By Definition 7 all nodes of C⇤(↵) are in a 1-1 correspon-
dence v $ Tv with all triangles of a Delaunay triangulation

Del(C), where the external region of Del(C) is also called a
‘triangle’. We call a node u 2 Forest(↵) blue if Tu 2 C(↵), oth-
erwise u is red. Initially for a large ↵, all nodes are isolated and
blue. When ↵ is decreasing, the nodes start turning red and join
each other to form red components of the ↵-graph C⇤(↵).

Fig. 8. The complex C(↵) and graph C⇤(↵). Left: ↵ = 2. Right: ↵ =
p

2.

Merging two components. When two nodes become linked
and their red components merge, a younger component dies.
Since ↵ is decreasing, a component is younger if its first node
was born at a smaller scale ↵ than the older component. The
older component survives by the elder rule (Edelsbrunner and
Harer, 2010, p. 150), which aims to maximize persistence.

The new larger red component contains the dead nodes from
the younger component and the live nodes (or corresponding
live triangles) from the older component. Since ↵ is decreasing,
any younger component dies at a smaller value of ↵ than its
birth. So the persistence of a red component in C⇤(↵) and the
corresponding boundary contour in C(↵) is birth � death > 0.

The height of a directed tree with a root is the number of
nodes in a longest directed path, so a single node has height 1.

In the structure Forest(↵) any node v has these attributes:
• birth(v) = sup{↵ | v 2 C⇤(↵)} = sup{↵ | Tv ⇢ C(↵)};
• uplink(v) is a unique upward parent node of v 2 Forest(↵);
• height(v) is the height of Tree(v) going down from a node v;
• Live(v) is the list of all triangles that are alive in Tree(v);
• bar(v) is the index of the region in Map(↵) containing Tv.

Forest(↵) with uplinks and heights is a union-find structure.
This structure misses adjacency relations between geometric re-
gions and will be extended to the new structure Map(↵). Indeed,
when a new node u is linked to another node v in Forest(↵), it is
usually not checked if the corresponding regions are adjacent.

For each acute triangle Tv in Del(C), the corresponding node
v has birth(v) = circumradius rad(v) of Tv. For any non-acute
triangle Tv, the node v is linked to an existing component when
↵ is the half-length of the longest edge of Tv, so Tv merges with
its neighbor. Starting from any node v, we come to root(v) by
going up along uplinks until the node root(v) is a self-parent.

Then u, v belong to the same component of Forest(↵) if and
only if root(u) = root(v) as in a union-find structure. When we
need to join nodes u, v from di↵erent components, we actually
join their roots by adding a shorter tree to a taller tree.

Any root keeps the important information about its tree.
For instance, the birth time for any node v is extracted
as birth(root(v)). To justify the notation bar, any dot
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(birth, death) 2 R2 can be considered as the interval
[birth, death) ⇢ R. These intervals or bars form a bar code
equivalent to PD. A value bar(v) = k means that the triangle Tv
is in the region whose boundary contour was the k-th to die.

Structure Map(↵) of persistent regions. Any region R con-
sists of triangles whose corresponding nodes v1, . . . , vk form a
connected component of C⇤(↵), and R has these attributes:
• ind(R) is the index of the region R in the array Map(↵);
• birth(R) = scale ↵ when a 1st triangle enters the region R;
• death(R) = ↵ when R mergers with an older superior region;
• Core(R) is a list of nodes whose triangles form the region R;
• sup(R) is the index of the superior region merged with R.
• heir(R) is the node v < Core(R) adjacent to a node u 2 Core(R)
such that linking u, v mergers R and its superior region (of v);

The input is a set of n points given by real coordinates
(x1, y1), . . . , (xn, yn) 2 R2. We start by finding the Delaunay
triangulation Del(C) in time O(n log n) with O(n) space.
Initialization. We set birth(v0) = +1 for the external node
v0 2 Forest(↵). After finding Del(C), we go through each
triangle Tv of Del(C) and set the birth of the corresponding
node v 2 Forest(↵) as the circumradius rad(v) for acute Tv and
birth(Tv) = 0 for non-acute Tv. All bar(v) have the initial value
0 meaning that the bar indices are undefined. All arrays Live(v)
and Map(↵) are empty. We sort all edges of the triangles of
Del(C) in the decreasing order starting from the longest edge of
a length d. We start from the initial largest value ↵ = 1

2 d.
The ‘while’ loop goes through each edge e of Del(C) in the
decreasing order of length until Forest(↵) becomes connected.
Let the edge e be shared by adjacent triangles Tu,Tv. If ↵ is go-
ing down through the critical value equal to the half-length of e,
we link the corresponding nodes u, v in the ↵-graph C⇤(↵). This
addition doesn’t a↵ect Forest(↵) if u, v were already connected,
namely they have a common root as in Case 1 below.

It is possible that one of the nodes, say u, was not included in
Forest(↵) at the initialization stage, because the corresponding
triangle Tu is not acute, so u was blue. In this Case 2 discussed
below we link the single node u to the red component of v.

If the nodes u, v are in di↵erent trees of Forest(↵), we merge
these trees by linking their roots in Case 3. Final Case 4 below
studies the exception when both triangles Tu,Tv are not acute.
Then Tu,Tv are right-angled and have the common hypotenuse
e, otherwise Tv is enclosed by the circumcircle of Tu, which is
forbidden in a Delaunay triangulation Del(C) by Definition 1.

At the end Map(↵) will contain adjacency relations of all
regions in addition to the 1D persistence diagram PD{C(↵)} as
pairs (birth, death). Each region R will have the index sup(R) of
its adjacent more persistent region that merged with R.
Case 1: the edge e has the same region on both sides, namely
the neighboring triangles Tu,Tv sharing the edge v have the
same root root(u) = root(v). This value of ↵ is not critical,
because both nodes u, v were already connected in Forest(↵).
Case 2: e is the longest edge of a non-acute triangle Tu and
another triangle Tv with v 2 Forest(↵). We find root(v) and
add u to Forest(↵) setting uplink(u) = root(v), birth(u) =

birth(root(v)). We increase height(root(v)) by 1 only if it was
1. If bar(v) is defined, then the node v belongs to the already
dead region R 2 Map(↵) with ind(R) = bar(v). Hence u joins
this region R and we set bar(u) = bar(v). If bar(v) is undefined,
then Tv is a live triangle and we add u to Live(root(v)).

Case 3: both birth(root(u)), birth(root(v)) > 0. Then the two
components of Forest(↵) containing the nodes u, v merge. As-
sume that birth(root(u))  birth(root(v)), so the component of u
is younger, hence dies. We create a new region R in Map(↵), say
with an index i, by setting birth(R) = birth(root(u)), death(R) =
↵ (the current value equals the half-length of e). All nodes
w 2 Live(root(u)) die and we set bar(w) = i for them.

If bar(v) is already defined, the component of v has died and
we can set sup(R) = bar(v). Otherwise the component of v will
die later and we set heir(R) = v remembering to update sup(R)
using heir(R) after the ‘while’ loop is finished. Then we copy
the list Live(root(u)) to Core(R) so that the region R knows all
its nodes (triangles) that were alive just before R died.

Subcase 3a: height(root(u))  height(root(v)). Then we
link root(u) of the shorter tree to root(v) of the taller tree to
keep to maximum height of all trees in Forest(↵) minimal, so
root(v) becomes uplink(root(u)). If the heights were equal,
then height(root(v)) jumps up by 1. All live triangles from
Live(root(v)) are kept at the root of the new larger tree.

Subcase 3b: height(root(u)) > height(root(v)). Then we link
root(v) of the shorter tree to root(u) of the taller tree. Hence
root(u) becomes uplink(root(v)), but height(root(u)) remains
the same. We should keep all triangles from Live(root(v)) at the
root of the new tree replacing Live(root(u)) by Live(root(v)). So
it is important to save Live(root(u)) in Core(R) as we did.

Case 4: birth(root(u)) = 0 = birth(root(v)) means that both tri-
angles Tu,Tv are not acute and share their longest edge. This
is possible only if Tu,Tv are right-angled with a common hy-
potenuse. Hence u, v form a new red component of C⇤(↵).

The external region in Map(↵). When Forest(↵) becomes con-
nected, it remains to add to Map(↵) the last entry R correspond-
ing to the external region of Del(C). The last root v has the list
Live(v) containing the node v0. Similarly to Case 3, Live(v) is
copied to Core(R) and we set bar(w) equal to the index ind(R)
for any node w 2 Live(v), but heir(R) is not needed.

Initial segmentation. Each triangle from Del(C) contributes
to a single component of Map(↵), namely all lists Core(R)
are disjoint. Hence Map(↵) contains m = O(n) entries and
can be sorted in time O(n log n) in the decreasing order of
pers = birth � death. We output the initial segmentation where
all triangles from Core(R) have a color associated with R. The
1st picture in Fig. 9 shows 3 initial regions corresponding to all
3 dots in the 1D persistence diagram PD{C↵} from Fig. 6.

The k-th widest gap in persistence. We find the k-th gap be-
tween decreasing persistences of regions in sorted Map(↵) in
time O(n log n). In the conditions of Theorem 11, the 1st gap
separates m dots (birth, death) corresponding to true cycles of
a graph G. Even if the conditions do not hold, the widest gap
gives an approximation to the expected number m of regions,
which can also be set by a user, for a final segmentation below.
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Algorithm 1 Build Map(↵) of persistent regions in a cloud C
1: Input: a cloud C of n points (x1, y1), . . . (xn, yn)
2: Compute Del(C) with k triangles on the n points of C
3: Sort edges of Del(C) in the decreasing order of length
4: Forest  isolated nodes v0, . . . , vk with all birth times 0

except birth(v0)  +1 and for each acute triangle Tv ⇢
Del(C) we update birth(v) circumradius of Tv

5: Set the number of links in Forest(↵): l 0
6: while l < k (stop when Forest(↵) becomes a tree) do
7: Take the next longest edge e, set ↵ 1

2 length(e)
8: Find u, v dual to the triangles Tu,Tv that share e
9: Find root(u), root(v) going along uplinks from u, v

10: if root(u) = root(v) then Case 1: no changes, hence
11: continue the loop without increasing the number l.
12: end if
13: if birth(root(u)) = 0 and birth(root(v)) > 0 then
14: (there is also a symmetric case with u, v swapped)
15: Case 2: (u is blue, v is red) run Algorithm 2 below.
16: The number of links l l + 1, continue the loop.
17: end if
18: if 0 < birth(root(u))  birth(root(v)) then
19: (u younger than v, another case with u, v swapped)
20: Case 3: components of u, v merge, run Algorithm 3
21: The number of links l l + 1, continue the loop.
22: end if
23: if birth(root(u)) = 0 = birth(root(v)) then
24: Case 4: (the triangles Tu,Tv are right-angled)
25: Set birth(u) = birth(v) ↵, uplink(v) u,
26: height(u) height(u)+1, add the node v to Live(u)
27: The number of links l l + 1, continue the loop.
28: end if
29: end while
30: Return array Map(↵) of regions generated by Case 3

Algorithm 2 : link the node u to the component of the node v
1: Set uplink(u) root(v), birth(u) birth(root(v))
2: if height(root(v)) = 1 then height(root(v)) 2
3: end if
4: if bar(v) is already defined then set bar(u) bar(v)
5: else Add u to Live(root(v)) in the subtree at root(v)
6: end if

Algorithm 3 : the younger component becomes a region R
1: Create a new region R 2 Map(↵) of the younger node u
2: Set birth(R)  birth(root(u)), death(R) = ↵, Core(R)  

Live(root(u)), bar(w) ind(R) for each w 2 Live(root(u))
3: if bar(v) is defined then sup(R) = bar(v)
4: else heir(R) = v (the region of v will enter Map later)
5: end if
6: if height(root(u))  height(root(v)) then
7: uplink(root(u)) root(v)
8: height(root(v)) + + if height(root(u)) = height(root(v))
9: else uplink(root(v)) root(u)

10: Live(root(u)) Live(root(v))
11: birth(root(u)) birth(root(v))
12: end if

Fig. 9. Initial segmentation: 3 regions. Final segmentation: 1 region.

Indices sup(R) of superior regions. We go through each region
R 2 Map(↵) and build the 1-1 correspondence old index 7! new
index in sorted Map(↵). We go again through each R and access
the node heir(R) whose bar index bar(heir(R)) is the original
(non-sorted) index of the superior region that merged with R.
Using the 1-1 correspondence of indices in Map(↵) above, we
know the new index sup(R) of this superior or more persistent
region with a higher persistence that merged with R.
Final segmentation into m regions. Now we form m regions,
where m can be the number of dots in the 1st (or k-th) subdia-
gram of PD{C↵} or m can be user-defined. We go through all
regions R of sorted Map(↵) starting from the least persistent re-
gion. If the current index ind(R) > m, we add the list Core(R)
to Core(sup(R)), which enlarges the superior region that has the
index sup(R) and a higher persistence. If ind(sup(R)) > m,
the region sup(R) will also merge with its superior later. After
merging all regions of ind(R) > m with their superiors one by
one, we output lists Core(R) of triangles for ind(R) = 1, . . . ,m.

5. Fast running time and reconstruction guarantees

The main results are Theorem 9, guarantees for boundaries
in Theorem 11 and global stability of output in Corollary 12.

Theorem 9 (fast computation of persistent contours). For
any point cloud C of n points in the plane, the algorithm in
section 4 computing the full hierarchy of segmentations has the
time complexity O(n log n) and memory space O(n).

Proof of Theorem 9. A Delaunay triangulation Del(C) for a
cloud C ⇢ R2 of n points has l = O(n) triangles and is found in
time O(n log n) (de Berg et al., 2008, section 9.1). The ‘while’
loop in Algorithm 1 goes once through not more than O(n)
edges in Del(C). We can associate to each edge e its two in-
cident triangles Tu,Tv ⇢ Del(C) in advance, so identifying the
corresponding nodes u, v in line 8 is easy. We prove that finding
root(u), root(v) in line 9 by going along uplinks in any tree of
Forest(↵) with l nodes requires O(log l) = O(log n) steps.

The height of a tree can increase only in Case 2 (from 1 to 2)
or in Case 3, where the height jumps by 1 after we link two trees
of the same height. In Case 3 we always link a shorter tree to
a taller one. So any two paths in a tree from a root to terminal
nodes (leaves) can di↵er by at most 1, where we include all
trivial paths consisting of a single node.

Hence almost any node is linked to at least nodes one level
down, except all terminal nodes and some nodes only one level
up. Then any tree of height h � 1 should contain at least 2 j�1

nodes at level 1  j  h � 1 plus at least one node at level h,
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so at least 1 + 2 + 22 + · · · + 2h�2 + 1 = 2h�1 nodes in total. If
l � 2h�1, then the height is h  1 + log2 l = O(log l).

All other steps in the ‘while’ loop from section 4 need O(1)
time. Then we spend O(n log n) time for sorting O(n) entries in
Map(↵). The lists Live(v) of triangles are disjoint in Forest(↵)
as well as similar lists Core(R) in Map(↵). Then O(n) Delaunay
edges, triangles or corresponding nodes with attributes need
only O(n) space in Forest(↵) and similarly in Map(↵). ⇤

Continuous maps between spaces f0, f1 : X ! Y are called
homotopic if they can be included into a continuous family of
maps ft : X ! Y , t 2 [0, 1]. A set S ⇢ R2 is contractible to a
point q 2 S if the identity id : S ! S is homotopic to S ! q.

Let L be any closed non-self-intersecting loop in R2. We
consider all o↵sets L↵ when ↵ is increasing. If ↵ > 0 is small,
L↵ is the thickening of L with the radius ↵. There is a first
critical scale ↵ when the internal boundary of L↵ touches itself,
so L↵ is no longer a topological annulus. There is a last critical
scale ↵ when the internal boundary of L↵ shrinks to a point, so
L↵ becomes contractible, which is true for all larger radii ↵.

Fig. 10. The ‘heart’ graph has ✓ = 0. The ‘figure-eight’ graph has ✓ > 0.

A round disk is contractible to its center, but we can not con-
tract a circle to one point always staying within the circle. Be-
low we consider closed loops that go along boundaries of re-
gions in R2 � G. The internal loop of the graph igoes along
the short vertical edge twice, first up and then down.

Definition 10 (radius ⇢ of a cycle, thickness ✓ of a graph G).
A cycle L of a graph G ⇢ R2 is basic if L is non-self-intersecting
and encloses a bounded region of R2�G. When ↵ is increasing,
the hole enclosed by the ↵-o↵set L↵ is born at ↵ = 0 and dies
at the scale ↵ = ⇢(L) that is called the radius of the cycle L. So
the hole enclosed by L has the life span 0  ↵ < ⇢(L).

In general, when ↵ is increasing, new holes can be born in
G↵, let they be enclosed by L1, . . . , Lk at their birth times. The
thickness ✓(G) = max

j=1,...,k
⇢(Lj) is the maximum persistence of

these smaller holes born during the evolution of o↵sets G↵. If
no such holes appear, then ✓ = 0, otherwise ✓ > 0, see Fig. 10.

If a cycle L ⇢ R2 encloses a convex region, then the only hole
of L↵ completely dies when ↵ is the radius ⇢(L), so ✓(L) = 0.

The heart-shaped cycle L in the first picture of Fig. 10 en-
closes a non-convex region, however no new holes are born in
L↵, so ✓(L) = 0. The figure-eight-shaped graph G in the second
picture of Fig. 10 has a positive thickness equal to the radius
⇢(L1) of the largest cycle born in G↵ when ↵ is increasing.

A cloud C is an "-sample of a graph G ⇢ R2 if C ⇢ G"
and G ⇢ C". Theorem 11 gives conditions on C and G when
the 1st segmentation in the output hierarchy for C has boundary
contours close to all basic cycles of the unknown graph G.

Theorem 11 (guarantees for the 1st segmentation). Let C
be any "-sample of a connected graph G ⇢ R2 with a thickness
✓(G) � 0 and m � 1 basic cycles having ordered radii
⇢1  . . .  ⇢m. If ⇢1 > 7" + ✓(G) + max

i=1,...,m�1
{⇢i+1 � ⇢i}, then the

1st segmentation of C from Definition 6 has exactly m regions
whose boundary contours are in the 2"-o↵set G2" ⇢ R2. If ↵(C)
is maximum birth over all dots in PD1{C(↵)}, then ↵(C)  ".

The cloud C in Fig. 2 can be considered as an "-sample of the
graph G = C(

p
2) in Fig. 3 for " =

p
2. Then ✓(G) = R2 � 2 =

0.5 is the maximum persistence of a new hole born in G↵. Since
G has only one radius ⇢1 = R1 ⇡ 3.642, which is the minimum
scale when G↵ becomes contractible, the inequality of Theo-
rem 11 fails. However PD{C↵} in Fig. 6 above the widest gap
has 1 dot corresponding to one region enclosed by G in Fig. 9.
So the algorithm may give a correct reconstruction beyond the
guarantees of Theorem 11 when a noisy sample is ‘uniform’.

Proof of Theorem 11. The homology H1(G) is generated by m
basic cycles L1, . . . , Lm that enclose m holes (bounded regions
in the complement R2 �G). These m cycles give dots (0, ⇢i) in
the vertical axis of the 1D persistence diagram PD{G↵}.

Fig. 11. Left: 1D persistence diagram PD{G↵} for a graph G satisfying The-
orem 9. Right: perturbed diagram PD{C↵} for a noisy "-sample C of G.

All other dots in the 1D persistence diagram PD{G↵} come
from smaller holes in the ↵-o↵sets G↵ that were born later. The
maximum persistence death � birth of these holes is bounded
above by the thickness ✓(G), see Definition 8 and Fig. 11.

The given inequality ⇢1 > 7" + ✓(G) + max
i=1,...,m�1

{⇢i+1 � ⇢i}
guarantees that the widest diagonal gap {✓(G) < y � x < ⇢1} in
PD{G↵} is wider than any other gaps including the higher gaps
⇢i+1 � ⇢i between the dots (0, ⇢i) 2 PD{G↵}, i = 1, . . . ,m � 1.

By Stability Theorem 4 the perturbed diagram PD{C(↵)} is
in the "-o↵set of PD{G↵} ⇢ [m

i=1(0, ⇢i) [ {y � x < ✓(G)} with
respect to the L1 metric on R2. All noisy dots near the diagonal
in PD{C(↵)} can not be higher than ✓(G) + 2" after projecting
along the diagonal {x = y} to the vertical axis {x = 0}.

The remaining dots can not be lower than ⇢1 � 2" after the
same projection (x, y) 7! y� x. Hence the smaller diagonal strip
{✓(G)+2" < y� x < ⇢1�2"} of the vertical width ⇢1�4"�✓(G)
is still empty in the perturbed diagram PD{C(↵)}.

By Stability Theorem 4 any dot (0, ⇢i) 2 PD{G↵}, i � 2, can
not jump lower than the line y�x = ⇢i�2" or higher than y�x =
⇢i + ". Then the widest diagonal gap between these perturbed
dots has a vertical width at most max

i=1,...,m�1
{⇢i+1 � ⇢i} + 3".
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Since all dots near the diagonal have diagonal gaps not wider
than ✓(G) + 2", the 2nd widest gap in the perturbed diagram
PD{C(↵)} always has a vertical width smaller than ⇢1�4"�✓(G).
Hence the 1st widest gap in PD{C(↵)} covers the diagonal strip
{✓(G) + 2" < y � x < ⇢1 � 2"}, which is within the 1st widest
gap {✓(G) < y � x < ⇢1} in the original diagram PD{G↵}.

Then the subdiagram PD1{C(↵)} above the line y�x = ⇢1�2"
contains exactly m perturbations (bi, di) of the original dots
(0, ⇢i) in the vertical strip {0  x  "}. Hence the 1st seg-
mentation of C from Definition 6 has exactly m final regions
corresponding to the m dots in the subdiagram PD1{C(↵)}.

It remains to prove that the boundary contours @C in the
1st segmentation of a cloud C are 2"-close to G. All dots in
PD1{C(↵)} are at most " away from their corresponding dots
(0, ⇢i) 2 PD{G↵}. Hence the critical scale ↵(C) is at most ".

A longest boundary edge e ⇢ @C of any region correspond-
ing to a dot (bi, di) 2 PD1{C(↵)} has the half-length bi, because
adding e made the boundary contour closed. Moreover, merg-
ing other regions along their longest boundary sides can make
a longest boundary edge of the final region only shorter.

Then all edges in the boundary contours @C have half-lengths
at most ↵(C)  ". Hence @C is covered by the disks with the
radius " and centers at all points of C, so @C ⇢ C" ⇢ G2". ⇤

Since resulting contours pass through points of C, the output
is locally sensitive to perturbations of C. However, the result
below confirms a global stability of boundaries in a small o↵set.

Corollary 12. In the conditions of Theorem 11 if another cloud
C̃ is �-close to C, then the boundaries in the 1st segmentation
from Definition 6 for the perturbed cloud C̃ are within the (2�+
4")-o↵set of the boundaries in the 1st segmentation for C.

Proof. Since C̃ is �-close to C, which is "-close to the graph
G ⇢ R2, the perturbed cloud C̃ is (� + ")-close to G.

Theorem 11 for the "-sample C and (� + ")-sample C̃ says
that the boundaries @C of the 1st segmentation are 2"-close to
G and the boundaries @C̃ are (2� + 2")-close to the graph G.

Hence these boundaries are (2� + 4")-close to each other. ⇤

6. Conclusions and experiments on synthetic and real data

Clouds C of n = 1000 points in Fig. 12–13 were randomly
sampled around graphs G ⇢ R2 (the regular octagon with 4 big
diagonals in Fig. 12, a lattice graph in Fig. 13) as follows:
(1) choose a random seed point p in the graph G so that the
distribution of seeds over the total length of G is uniform;
(2) choose a final point q in [p� ", p+ "]⇥ [p� ", p+ "], which
is the square neighborhood of a size " around the seed p.

The noise bound " is needed only for generating a cloud C,
the algorithm uses only C, not ". The 2nd picture of Fig. 12 is
the 1D persistence diagram PD{C↵} with exactly 8 dots above
the yellow widest gap. The initial regions in the 3rd picture of
Fig. 12 are in a 1-1 correspondence with all dots from PD{C↵}.
The final segmentation in the 4th picture has only 8 regions
obtained by merging ‘noisy’ regions of lower persistence.

Fig. 12. Top: cloud C and 1D persistence diagram PD{C↵} with yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 13. Top: cloud C and 1D persistence diagram PD{C↵} with yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

The initial segmentation in the 3rd picture of Fig. 13 contains
more than 9 large regions. However only 9 regions have a large
enough persistence, all others correctly merge them in the 4th
picture. So the size doesn’t matter, but the persistence does!

The clouds C in Fig. 14–15 are samples of binary images. C
is rather sparse in Fig. 14, but the widest gap in PD{C↵} sepa-
rates 2 dots corresponding to the final 2 non-convex regions.

The 1st pictures in Fig. 16–19 are from the Berkely segmen-
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Fig. 14. Top: cloud C of n = 159 points and diagram PD{C↵}with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 15. Top: cloud C of n = 852 points and diagram PD{C↵}with the yellow
widest gap. Bottom: initial and final segmentations (best viewed in color).

tation database, see Martin et al. (2001). The 2nd pictures are
clouds C obtained as Canny edge points with the low threshold
75 and ratio 3. The clouds C in Fig. 16 and 19 have a lot of clut-
ter, but the final segmentation in the 4th pictures correctly iden-
tify a shape of the object corresponding to the only dot above
the 1st widest gap in the diagrams from the 3rd pictures.

The final 2 pictures in Fig. 17 and 19 show the 2nd segmen-
tations from the hierarchy, which separate two hands from the

face in Fig. 17 and the boat from its shadow in Fig. 19.
The summary of the key contributions is below.

• The O(n log n) time algorithm from section 4 accepts any
cloud of points in R2 without extra parameters and outputs a
hierarchy of segmentations selected by their persistence.
• Theorem 11 proves that the persistent contours approximate
true contours of a graph G given only by a noisy sample C.
• Corollary 12 guarantees a global stability of boundaries in the
1st segmentation of C under perturbations of a given cloud C.

In comparison with the earlier conference version in Kurlin
(2014a), Theorem 11 has been extended from the partial case
✓(G) = 0 to a wider class of graphs with any thickness ✓(G) � 0.
The proposed algorithm has the C++ code at http://kurlin.org
and outputs only boundaries of persistent holes. The exten-
sion to a graph with hanging vertices and branches is in Kurlin
(2015a). Gaps in 1D persistence are studied for more general
filtrations in Kurlin (2015b). Here are further open problems.
• Smooth boundary contours in a final segmentation of C.
• Extend Theorem 11 to noisy samples with unbounded noise.
• Use persistence to locate holes in high-dimensional clouds.

The author is open to collaboration, thanks all reviewers for
help and EPSRC for funding his secondment at Microsoft.
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Fig. 16. Top: image 86016 from BSD500 and cloud C of 19627 Canny edge
points. Bottom: PD{C↵} and final segmentation with a correct object.

Fig. 17. Top: image 302003 from BSD500 and cloud C of 5388 Canny edge
points. Middle: PD{C↵}with 1st widest gap and segmentation with 1 region
Bottom: PD{C↵} with 2nd widest gap and segmentation with 4 regions.

Fig. 18. Top: image 3096 from BSD500 and cloud C of 1614 Canny edge
points. Bottom: PD{C↵} and final segmentations with a correct object.

Fig. 19. Top: image 15088 from BSD500 and cloud C of 6565 Canny edge
points. Middle: PD{C↵}with 1st widest gap and segmentation with 1 region
Bottom: PD{C↵} with 2nd widest gap and segmentation with 2 regions.



12

Pattern Recognition Letters
journal homepage: www.elsevier.com

Supplementary materials (basic definitions and more experiments) for the paper
A fast persistence-based segmentation of noisy 2D clouds with provable guarantees

Vitaliy Kurlina,⇤⇤

aMicrosoft Research, 21 Station Road, Cambridge CB1 2FB and Mathematical Sciences, Durham University, Durham DH1 3LE, UK.

ABSTRACT

To avoid any confusion we continue numbering definitions and figures as in the 11-page paper.
c� 2015 Elsevier Ltd. All rights reserved.

Appendix A: ↵-complexes and their persistent homology

We briefly remind key concepts and results also introducing
the ↵-complexes in a di↵erent way to give a new perspective.

Definition 13 (a plane graph, its cycles and holes). A plane
graph is a subset G ⇢ R2 consisting of finitely many vertices
and non-intersecting arcs joining vertices. A cycle of G is a
subset L ⇢ G consisting of edges connecting adjacent vertices:
p1 to p2, p2 to p3 and so on until pk to p1. A cycle is a closed
loop, but may have self-intersections. A cycle L ⇢ G is called
basic if L encloses a hole, which is a connected region R2 �G.

If every bounded region in the complement R2�G of a plane
graph is a triangle, then the graph G defines a triangulation on
its vertices. The following Delaunay triangulation Del(C) is a
small and quickly computable structure on a cloud C ⇢ R2.

Definition 14 (Delaunay triangulation). For a cloud C =
{p1, . . . , pn} ⇢ R2 of n points, a Delaunay triangulation Del(C)
has all triangles with vertices pi, p j, pk 2 C whose circumcircle
doesn’t enclose any other points of C, see Fig. 2.

A Delaunay triangulation is not unique if C contains 4 points
on the same circle. The boundary edges of Del(C) form the con-
vex hull(C) of C. The complement R2 � hull(C) will be called
the external region. If Del(C) has k triangles and b boundary
edges, then counting E edges over k triangles gives 3k+b = 2E.
By the Euler formula n � E + (k + 1) = 2 in the plane, we con-
clude that k = 2n � b � 2, E = 3n � b � 3, so Del(C) has O(n)
edges and triangles. Also Del(C) can be quickly computed in
time O(n log n), see (de Berg et al., 2008, section 9.1).

⇤⇤Corresponding author: Tel.: +44-1913343081; fax: +44-1913343051;
e-mail: vitaliy.kurlin@gmail.com (Vitaliy Kurlin)

A Delaunay triangulation Del(C) is an example of a gen-
eral 2-dimensional complex consisting of vertices, edges and
triangles in R2. To study the shape of a cloud C at di↵erent
scales, we shall define subcomplexes that contain the elements
of Del(C) whose sizes are bounded above by a fixed radius ↵.

For a point pi 2 C, the Voronoi cell consists of all points
q 2 R2 that are closer to pi than to all other points of C, so
V(pi) = {q 2 R2 : d(pi, q)  d(p j, q) for any j , i}. Then
a Delaunay triangulation Del(C) consists of all triangles with
vertices p, q, r 2 C such that V(p) \ V(q) \ V(r) is not empty.
If the Voronoi cells are restricted to a scale ↵ > 0, we get the ↵-
complexes C(↵). For any p 2 R2 and ↵ > 0, denote by B(p;↵)
the closed disk with the center p and radius ↵.

Definition 15 (↵-complexes). For a finite cloud C ⇢ R2, the ↵-
complex C(↵) ⇢ R2 contains all edges between points p, q 2 C
such that V(p)\B(p;↵) meets V(q)\B(q;↵), see (Edelsbrunner
and Harer, 2010, section III.4). Similarly, the ↵-complex C(↵)
contains all triangles with vertices p, q, r such that the full in-
tersection V(p)\ B(p;↵)\V(q)\ B(q;↵)\V(r)\ B(r;↵) , ;.

Definition 16 (homology group H1 of a complex S ). Cycles
of a complex S can be algebraically written as linear com-
binations of edges with coe�cients 0 or 1 in the group
Z2 = Z/2Z = {0, 1}. The vector space C1 consists of all these
linear combinations. The boundaries of all triangles in S (as
cycles of 3 edges) generate the subspace B1 ⇢ C1. The quotient
space C1/B1 is the 1-dimensional homology group H1(S ).

Appendix B: more experiments on synthetic and real data

Fig. 20–27 show that many graphs are correctly recon-
structed from noisy samples generated as in Fig. 11–12.
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Fig. 20. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 21. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 28 shows binary images whose random samples are pro-
cessed in Fig. 13–14 in the paper and in Fig. 29–32 below. De-
spite the sparse cloud C in Fig. 31 has only 137 points, the
widest gap in the persistence diagram clearly separates 3 dots
leading to 3 expected regions, see the last picture in Fig. 28.

As in the paper, Canny edge points are extracted from images
in Fig. 33–36 with the same low threshold 75 and ratio 3.

The cloud C in the 2nd picture of Fig. 35 has many noisy out-

Fig. 22. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 23. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

liers. However the 1st segmentation gives a single correct shape
in the 4th picture obtained without extra input parameters.

Fig. 34 and 36 show 2 segmentations from the hierarchy cor-
responding to the 1st and 2nd widest gaps in persistence.
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Fig. 24. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 25. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Edelsbrunner, H., Harer, J., 2010. Computational topology. An introduction.
AMS, Providence.

Fig. 26. Top: cloud C of n = 1000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 27. Top: cloud C of n = 2000 points, diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 28. Binary images whose samples are processed in Fig. 13–14, 29–32.
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Fig. 29. Top: cloud C of n = 636 points and diagram PD{C↵}with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 30. Top: cloud C of n = 1146 points and diagram PD{C↵} with the

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 31. Top: cloud C of n = 137 points and diagram PD{C↵}with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).

Fig. 32. Top: cloud C of n = 63 points and diagram PD{C↵} with the yellow

widest gap. Bottom: initial and final segmentations (best viewed in color).
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Fig. 33. Top: image 388006 from BSD500 and cloud C of 1489 Canny edge

points. Bottom: PD{C↵} and final segmentations (best viewed in color).

Fig. 34. Top: image 135069 from BSD500 and cloud C of 1136 Canny edge

points. Middle: PD{C↵}with 1st widest gap and segmentation with 1 region

Bottom: PD{C↵} with 2nd widest gap and segmentation with 2 regions.

Fig. 35. Top: image 372019 from BSD500 and cloud C of 6637 Canny edge

points. Bottom: PD{C↵} and final segmentations (best viewed in color).

Fig. 36. Top: image 107072 from BSD500 and cloud C of 5394 Canny edge

points. Middle: PD{C↵}with 1st widest gap and segmentation with 1 region

Bottom: PD{C↵} with 2nd widest gap and segmentation with 4 regions.


