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summary

An important problem in wireless sensor networks is to find an optimal number
of randomly deployed sensors to guarantee connectivity of the resulting network
with a given probability. The authors describe a general method to compute the
probabilities of connectivity and coverage for one-dimensional networks with ar-
bitrary densities of inter-node spacings. A closed formula for the probability of
connectivity is derived when inter-node spacings have arbitrary different piece-
wise constant densities. Explicit estimates for a number of sensors to guarantee
connectivity of the network are found for constant and normal densities.
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1 Introduction

The problems of connectivity and coverage in wireless sensor networks have been exten-
sively investigated [1]. Theoretical properties of random networks or graphs are summarized
in [10]. One-dimensional networks are simple, but are widely used in practice for monitoring
roads, rivers, coasts and boundaries of restricted areas. One-dimensional networks that are
deployed along paths can often provide nearly the same information about moving objects
as two-dimensional networks, but require fewer sensors and have a lower cost. Random
networks are usually modelled by using a probability density of positions of sensors defined
over an entire domain. For instance, all sensors are uniformly distributed in a segment [14].
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Sensors of random one-dimensional networks are practially deployed one by one along
a trajectory of a vehicle. Hence the authors consider probability densities of inter-node
spacings (distances between successive sensors), not densities of positions of sensors. It is
assumed that inter-node spacings are independent random variables, but not necessarily
identical. So a network may contain some powerful sensors that can be at a larger distance
apart. The proposed approach expresses the probability of connectivity as a function in
the number of nodes for arbitrary densities, in a closed form for piecewise constant densi-
ties. Explicit estimates closed to optimal are found for a number of sensors to guarantee
connectivity of a random network for classical probability densities (constant and normal).

The paper is organised as follows. Section 2 reviews previous results and states problems.
Section 3 explores relations between connectivity of one-dimensional networks and two-
dimensional networks. The method for computing the probabilities of connectivity and
coverage is introduced in Section 4. Section 5 discusses explicit estimates for a number of
sensors needed to guarantee connectivity for a constant density with two parameters and a
truncated normal density. Conclusions and further problems are summarised in Section 6.
Appendices A–B contain proofs of the main theorems and corollaries from Sections 4 and
5. Appendices C–D discuss more general results for arbitrary piecewise constant densities.

2 Previous results and formulation of problems

Many previous results on connectivity are asymptotic in the number of sensors, see [2, 4] for
two-dimensional networks and [10] for random graphs. Rates of convergence in asymptotic
formulae are often hard to analyse. For example, connectivity may be guaranteed for 106

sensors, but not for 1000 sensors. A standard assumption for finite networks is the uniform
distribution of sensors. Exponential densities of positions of sensors were also considered in
a segment [5] and in a square [7, 10, 11, 12, 13]. For n sensors distributed independently
and uniformly in a segment [0, L], the probability of connectivity was found in [3]:

P ′
n =

i<L/R∑

i=0

(−1)i
(
n− 1

i

)(
1− i

R

L

)n
, where

(
n− 1

i

)
= 0 for i ≥ n.

The upper bound i <
L

R
in the sum implies that 1 − i

R

L
> 0, but P ′

n ≥ 0 seems hard to

prove by combinatorial methods. This method was generalised to the exponential density
in [6] and we shall extend it to arbitrary densities of inter-node spacings in section 4.

Suppose that a sink node at the origin x0 = 0 collects some information from other
sensors. Let L be the length of a segment, where one deploys n sensors that have a
transmission radius R. Number all sensors in the increasing order of their positions:
0 = x0 ≤ x1 ≤ · · · ≤ xn ≤ L. Let fi(s) be the probability density function of the i-th
distance di = xi−xi−1. Technically, the density fi(s) should be defined over the whole seg-
ment [0, L]. Our practical examples consider densities fi(s) that are concentrated around a
transmission radius R. The resulting network is connected if the distance yi between any
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Figure 1: A 2-dimensional network along a narrow road

successive sensors, including the sink node, is not greater than R. The densities fi depend
on a practical way to deploy sensors. The transmission radius R is an input parameter,
because the range of radii is often restrictive. The key practical problem is to find relative
estimates for a minimum number of sensors to guarantee connectivity and coverage.

The Connectivity Problem is to find an optimal number of randomly deployed sensors
in the segment [0, L] such that the network is connected with a given probability p.

The Coverage Problem is to find an optimal number of randomly deployed sensors such
that the network is connected and covers the segment [0, L] with a given probability p.

3 A reduction of dimension: from two to one

This section shows how the connectivity problem in dimension 2 can be reduced to dimension
1. Let us deploy sensors from a vehicle moving along a river or a path in a forest. Then all
sensors are located in a narrow road of some width W , as shown in Fig. 1.

Assume that the width W of the road is less than a transmission radius R. Denote the
two-dimensional positions of the sensors by pairs (x1, y1), . . . , (xn, yn). Order all sensors by
their x-coordinates. The coordinate yi ∈ [−W/2,W/2] can be considered as a deviation of
the i-th sensor from the central horizontal segment [0, L].

The results below relate the connectivity of the two-dimensional network of sensors
(x1, y1), . . . , (xn, yn) and the one-dimensional network of the projections x1, . . . , xn.

Proposition 3.1 (The Dimension Down Proposition). Consider a connected 2-dimensional
network along a straight road of a width W . Each distance between successive sensors is
less than a transmission radius R. Then the 1-dimensional network of the projected sensors
with the positions x1, . . . , xn is connected for the same transmission radius R. If a road is
not straight, then connectivity is guaranteed for the larger radius R+W , see Fig. 2.

Proposition 3.2 (The Dimension Up Proposition). Consider a 2-dimensional network
along a straight road of a width W . Suppose that the 1-dimensional network of the projected
sensors x1, . . . , xn is connected for a transmission radius R. Then the original 2-dimensional
network is connected for the transmission radius

√
R2 +W 2. If a road is not straight, then

connectivity is guaranteed for the larger transmission radius R+W .
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Figure 2: A 2-dimensional network along a non-straight road

Proof of the Dimension Down Proposition. Let d̃i be the Euclidean distance between suc-
cessive sensors (xi−1, yi−1) and (xi, yi) of a 2-dimensional network that is connected for a
transmission radius R. The Pythagoras theorem says that the distance between successive

projected sensors is |xi − xi−1| =
√
d̃2i − |yi − yi−1|2 ≤

√
d̃2i ≤ R. Hence, the successive

sensors at xi−1 and xi are within the radius R as required.

For a non-straight road, let ri be the shortest distance from the sensor (xi, yi) to the
central curve, so ri ≤ W/2. Two successive sensors (xi−1, yi−1) and (xi, yi) and their
projections form a quadrilateral (possibly, self-intersecting), see Fig. 2. Estimate one side
of the quadrilateral by using three others: |xi − xi−1| ≤ d̃i + ri−1 + ri ≤ R + W . Here
|xi − xi−1| denotes the Euclidean distance on the plane between the projected sensors.
Hence the projected sensors xi−1, xi are within the radius R+W .

Proof of the Dimension Up Proposition. The projected sensors xi form a connected network
for a transmission radius R, so |xi − xi−1| ≤ R. The width of a straight road is W ,
hence |yi − yi−1| ≤ W . The Pythagoras theorem says that the Euclidean distance d̃i
between successive sensors (xi−1, yi−1) and (xi, yi) of the original 2-dimensional network
is d̃i =

√
|xi − xi−1|2 + |yi − yi−1|2 ≤

√
|xi − xi−1|2 +W 2 ≤

√
R2 +W 2. So the sensors

(xi−1, yi−1) and (xi, yi) are within the radius
√
R2 +W 2 as required.

For a non-straight road, let ri be the shortest distance from the sensor (xi, yi) to the
road, so ri ≤ W/2. Two successive sensors (xi−1, yi−1) and (xi, yi) and their projections
form a quadrilateral, see Fig. 2. Estimate one side of the quadrilateral by using others:
d̃i ≤ |xi−xi−1|+ ri−1+ ri ≤ R+W . Here |xi−xi−1| denotes the Euclidean distance on the
plane between the projected sensors. Hence the original sensors at (xi−1, yi−1) and (xi, yi)
are within the radius R+W of each other as required.

4 General expression for the probability of connectivity

Recall that n sensors with a transmission radius R are deployed in a segment [0, L] so that
the i-th distance di = xi − xi−1 between successive sensors has a probability density fi(s)
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for i = 1, . . . , n. Assume that the densities f1, . . . , fn are integrable and
L∫

0
fi(s)ds = 1,

i = 1, . . . , n. Hence the i-th distance can take values from 0 to L. So the n-th sensor may
not be within [0, L] and only xn ≤ nL holds. A network is proper if all sensors are within
[0, L]. A proper network is connected if the distance di = xi − xi−1 between any successive
sensors, including the sink node x0 = 0, is less than R.

Our aim is to compute the conditional probability that a proper network is connected,
namely the probability that the network is connected assuming that the network is proper.
By Bayes’ formula the answer will be a quotient, the probability that the network is proper
and connected over the probability that the network is proper.

In practice all networks are proper, because sensors are always deployed along a fixed
trajectory of a vehicle. Hence the probability that a network is proper is close to 1 for all
practical densities fi concentrated around a transmission radius R. The key ingredients are
evaluations of the function vn(r, l) that is recursively defined for n ≥ 0 as follows:

v0(r, l) = 1 if r, l > 0;

vn(r, l) = 0 if r ≤ 0 or l ≤ 0;

vn(r, l) = 1 if r ≥ l > 0, n > 0;

vn(r, l) =
r∫

0
fn(s)vn−1(r, l − s)ds if r < l, n > 0.

Proposition 4.1 (The Probability Proposition). For 0 < r ≤ l in the above notations,
vn(r, l) is the probability that an array of random distances (d1, . . . , dn) with probability

densities f1, . . . , fn, respectively, satisfies
n∑

i=1
di ≤ l and 0 ≤ di ≤ r for i = 1, . . . , n.

The variables r and l play the roles of the upper bounds for the distance between suc-
cessive sensors and the sum of distances, respectively. Namely, vn(L,L) is the probability
that a 1-dimensional network is proper, i.e. all sensors are within [0, L], and vn(R,L) is the
probability that a network is proper and connected.

Theorem 1 (The Connectivity Theorem). Let n sensors x1, . . . , xn having a transmission
radius R be deployed in [0, L] so that a sink node is fixed at x0 = 0 and the distances
di = xi − xi−1, i = 1, . . . , n, have given probability density functions f1, . . . , fn. Then the

probability of connectivity of the resulting network is Pn =
vn(R,L)

vn(L,L)
, where vn(r, l) was

recursively defined above. So the probability Pn is independent of the order of sensors.

Given a required probability p of connectivity, the answer to the Connectivity Problem
from section 2 is a minimum number n of sensors such that Pn ≥ p. For n = 1, Connectivity
Theorem 1 above gives the probability of connectivity

P1 = P (0 ≤ d1 ≤ R) = v1(R,L) =

R∫

0

f1(l)dl since v1(L,L) =

L∫

0

f1(l)dl = 1.
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Theorem 2 (The Coverage Theorem). Under the conditions of Connectivity Theorem 1,

the probability that the network is connected and covers [0, L] is
vn(R,L)− vn(R,L−R)

vn(L,L)
.

Connectivity Theorem 1 leads to explicit estimates for a number of sensors to guarantee
connectivity with a given probability for classical densities in section 5. The Connectivity
and Coverage Theorems will be proved in Appendix A by generalising a method of [3]. More
practical densities depend on a radius R and will be discussed in appendices C–D.

5 Corollaries for constant and normal densities

In this section one derives explicit estimates for a number of sensors to guarantee connec-
tivity of networks for two classical probability densities. Start from the constant density

f(l) =
1

b− a
over any subsegment [a, b] ⊂ [0, L]. It means that each sensor is thrown from

a moving vehicle at a random uniform distance between a and b away from the previous

sensor. This case includes the simplest uniform density f(l) =
1

L
for a = 0, b = L.

✲

✻

! !

! !

!!!

−

Figure 3: The constant density over the segment [a, b]

The left endpoint a should be less than the transmission radius R, otherwise no sensor
communicates with its neighbours. The mathematical expectation of the distance between

successive sensors is
a+ b

2
. This average should be lower than the transmission radius R

in practice to increase the probability of connectivity. For example, for a network of a sink

node at 0 and one sensor at d1, the probability of connectivity is P (0 ≤ d1 ≤ R) =
R− a

b− a
.

It is the area under the density f(l) =
1

b− a
over the interval a ≤ l ≤ R, see Fig. 3.

Corollary 5.1 (The Constant Corollary). If in Connectivity Theorem 1 the distances between
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successive sensors have the constant density f(l) =
1

b− a
on [a, b], then

the probability of connectivity is P c
n =

n∑
k=0

(−1)k
(n
k

)
(L− a(n− k)−Rk)n

n∑
k=0

(−1)k
(n
k

)
(L− a(n− k)− bk)n

.

Assume that
a+ b

2
≤ R ≤ b. The resulting network is connected with a probability p, where

0.17 ≈ 1−
√
ln 2 ≤ p < 1, if the number of sensors satisfies n ≥ max

{
1 +

L− b

a
, 3 log2

1

1− p

}
.

The sums in P c
n above include all expressions taken to the power n if they are positive.

The computational complexity is the number of standard operations like multiplications
and evaluating simple functions like lnx. The computational complexity of P c

n is linear
in the number n of sensors. A linear algorithm computing P c

n above initialises the array
consisting of n + 1 elements L − iR, i = 0, . . . , n, then finds n ln(L − a(n − k) − Rk) and

exp(n ln(L− a(n− k)−Rk)) = (L− a(n− k)−Rk)n. All n+ 1 binomial coefficients

(
n

k

)

can be computed in advance. So the total complexity of computing P c
n is O(n).

For n = 1, one gets P c
1 =

(L− a)− (L−R)

(L− a)− (L− b)
=

R− a

b− a
as expected above. If a given

probability p is too close to 1, then the estimate from Constant Corollary 5.1 depends on

p, e.g. n ≥ 29 for p = 0.9999. However, in all reasonable cases, the maximum is 1 +
L− b

a
,

which is independent of p. The restrictions
a+ b

2
≤ R ≤ b say that the distance between

successive sensors is likely to be less than R since [0, R] covers more than a half of [a, b].

Each distance di = xi − xi−1 between successive sensors belongs to the interval [a, b].
Such a network lies within the given segment [0, L] only if an ≤ L. Hence the number n of

sensors should satisfy n <
L

a
. In the boundary case an = L, all sensors should be located at

the exact positions xi =
ia

n
, i = 1, . . . , n. This event clearly happens with the probability

0, so the numerator of P c
n vanishes for L = an in Constant Corollary 5.1.

Table 1: Number of sensors to guarantee connectivity for f(l) =
1

b− a
, a = 0.2R, b = 1.6R

Transmission radius R, m. 200 150 100 50 25

Minimum number of sensors 14 19 30 63 132

Our estimate of min number 18 27 43 93 193

Max number of sensors L/a 25 34 50 100 200
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Figure 4: The probability of connectivity for f(l) =
1

b− a
, a = 0.2R, b = 1.6R, R = 50m
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Figure 5: The probability of connectivity for f(l) =
1

b− a
, a = 0.4R, b = 1.4R, R = 50m

Figs. 4, 5, 6 show the probability of connectivity for different segments [a, b] and R =
50m. These probabilities were computed by randomly generating many networks according
to a given density f(l) and checking if the generated network is connected. Fig. 4 shows the
probability P c

n of connectivity for 1 ≤ n ≤ 100, L = 1 km, R = 50m, a = 0.2R, b = 1.6R.
This graph implies that if the required probability of connectivity is p = 0.95 and R = 50m,
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Table 2: Number of sensors to guarantee connectivity for f(l) =
1

b− a
, a = 0.4R, b = 1.4R

Transmission radius R, m. 200 150 100 50 25

Minimum number of sensors 10 13 20 41 83

Our estimate of min number 10 14 22 47 97

Max number of sensors L/a 13 17 25 50 100

then the minimum number of sensors is 63, see the fourth number in the second row of
Table 1. The estimates in the third row are from Constant Corollary 5.1.

The maximum possible number of sensors is
L

a
= 100. Then P c

100 = 0 since the sensors

should be fixed at exact positions in [0, L], which explains the drop to 0 in Fig. 6. The

maximum number of sensors in Tables 1, 2, 3 is
L

a
, which gives probability 0 in this extreme

case. All numbers slightly less than the maximum give a probability close to 1. Namely,

subtracting
b

a
− 1 = 7 from the last row in Table 1 gives the previous row. This follows

from the restriction n ≥ 1 +
L− b

a
=

L

a
−
( b

a
− 1

)
.
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Figure 6: The probability of connectivity for f(l) =
1

b− a
, a = 0.6R, b = 1.2R, R = 50m

Tables 1, 2, 3 imply that the minimum number of sensors (to guarantee connectivity)

decreases if
b− a

R
decreases. For b−a ≤ R, the estimate from Constant Corollary 5.1 is very
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Table 3: Number of sensors to guarantee connectivity for f(l) =
1

b− a
, a = 0.6R, b = 1.2R

Transmission radius R, m. 200 150 100 50 25

Minimum number of sensors 8 10 15 31 61

Our estimate of min number 8 11 15 32 65

Max number of sensors L/a 10 13 17 34 67

close to the exact minimum number of sensors when sensors are deployed non-randomly at
a distance slightly less than R. The found estimate for the minimum number of sensors
requires few computations, which is a practical advantage.

Now consider the truncated normal density over [0, L], i.e. f(s) =
c

σ
√
2π

e−(s−µ)2/2σ2

,

where the constant c guarantees that
L∫

0
f(s)ds = 1. The normal density has exponentially

decreasing tails, so distances between successive sensors are likely to be close to the mean
distance µ. Hence the mean µ should be less than the transmission radius R and the number

n of sensors can not be greater than
L

µ
, otherwise last sensors are likely to be outside [0, L].

That is why the Normal Corollary below gives an upper bound for the number of sensors
that make a network connected, not a lower bound as in previous corollaries.

Corollary 5.2 (The Normal Corollary). If in Connectivity Theorem 1 the distances between
successive sensors have the truncated normal density on [0, L] with a mean µ and a standard
deviation σ, then the network is connected with a given probability p for

n ≤ min

{
p(1− p)

ε
,

1

4µ2

(√
4µL+ σ2Φ−2(p)− σΦ−1(p)

)2
}
, where

Φ(x) =
1√
2π

x∫

−∞

e−s2/2ds and ε = Φ
(
−µ

σ

)
+ 1− Φ

(
R− µ

σ

)
.

Values of the normal distribution Φ(x) are in standard tables. Table 4 shows estimates for
the maximum number of sensors in [0, L] with L = 1 km, µ = 0.6R, σ = 0.1R in such a way
that the resulting network is connected with probability p = 0.9975. Then Φ−1(p) ≈ 2.8,

ε ≈ 0.000063 and the first upper bound in Normal Corollary 5.2 gives n ≤ p(1− p)

ε
≈ 40,

which is the overall upper bound for R = 25m. For radii R ≥ 50m, the second upper bound

is smaller than the first one and is close to
L

µ
. This is the exact number of sensors when all

distances are not random and equal µ, because Φ−1(p)
σ

R
≈ 0.28 is small.
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Table 4: Number of sensors to guarantee connectivity, the normal case µ = 0.6R, σ = 0.1R

Transmission radius R, metres 200 150 100 50 25

Our estimate of maximum number 7 11 16 33 65

Average number of sensors L/µ 8 11 17 33 67

Number of non-random sensors L/R 5 6 10 20 40

The estimates from Table 4 are close to optimal, e.g. for the radius R = 150m the
non-random distribution of sensors at distance 149m apart requires 6 sensors plus a sink
node, while the estimate above gives 11. The ratio 6/11 is close to the mean µ/R = 0.6
since distances between successive sensors should be around µ = 0.6R.

6 Conclusions and Further Problems

The main results of the paper consist of the following.

i) Derivation of general formulae for the probability of connectivity and coverage of random
one-dimensional networks when inter-node spacings have arbitrary probability densities.
Explicit expressions for piecewise constant densities are derived in Appendices C-D.

ii) Estimates for a number of sensors to guarantee connectivity of a random one-dimensional
network in the classical case when inter-node spacings have a constant or normal density.
Examples are presented and it is shown that these estimates are closed to optimal for
constant densities and for normal densities as it can be seen from Tables 2, 3, 4.

Problems that are of theoretical and practical importance and we will consider in our
future research are the following.

• For a given number of sensors, find an optimal probability density of inter-node spacings
to maximise the probabilities of connectivity and coverage of the resulting network.

• extend the analytical approach from Appendix A to two-dimensional networks, when
sensors are randomly deployed along non-straight paths that fill a two-dimensional area.
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Appendix A. Proofs of the theorems from section 4

Let us recall the convolution and Laplace transform, which will be used in the proof of
Connectivity Theorem 1, Coverage Theorem 2, Constant Corollary 5.1 and Normal Corol-

lary 5.2. The convolution of functions f and g is f∗g(s) =
+∞∫
−∞

f(l)g(s−l)dl. The convolution

is commutative, associative, distributive and respects constants c, namely

(cf) ∗ g = c(f ∗ g), f ∗ g = g ∗ f, (f ∗ g) ∗ h = f ∗ (g ∗ h) f ∗ (g + h) = f ∗ g + f ∗ h.

The convolution is very important in probability theory, because the density of the sum of
two random variables is the convolution of the densities of the variables.

For a function f(l) and r > 0, introduce the truncated function: f [r](l) = f(l) for
l ∈ [0, r] and f [r](l) = 0 otherwise. Let u(l) be the unit step function equal to 1 for l ≥ 0
and equal to 0 for l < 0. Then f [r](l) = f(l)(u(l)−u(l− r)). We use the partial convolution
f(r, l) ∗ g(r, l) only for the argument l, while r remains constant. The following lemma
rephrases the definition of vn(r, l) in terms of convolutions.

Lemma 6.1. For probability densities f1, . . . , fn, the function vn(r, l) from Section 3 equals
the iterated convolution f [r]

n ∗ · · · ∗ f [r]
1 ∗ u(l), where r < l and n > 0.

Proof is by induction on n. The base n = 1 is trivial: f [r]
1 ∗ u(l) =

r∫

0
f1(s)u(s − l)ds =

r∫

0
f1(s)ds = v1(r, l) since s ≤ r < l. The inductive step from n − 1 to n follows by the

recursive definition of vn in section 4, namely vn(r, l) = f [r]
n ∗ vn−1(r, l). !

The Laplace transform of a function f(l) is the function LT{f(l)}(s) =
+∞∫

0
e−slf(l)dl.

The Laplace transform is a linear operator that converts a convolution into a product, i.e.
LT{f ∗ g} = LT{f}LT{g} and also LT{af + bg} = aLT{f}+ bLT{g}. The inverse Laplace
transform LT−1 is also a linear operator. The following well-known properties of the Laplace
transform can be easily checked by integration.

Lemma 6.2. For any α,β and integer m ≥ 0, one has

(a) LT{lmu(l)} =
m!

sm+1
,

(b) LT{e−αllmu(l)} =
m!

(s+ α)m+1
,

(c) LT{(l − β)mu(l − β)} =
m!e−βs

sm+1
,

(d) LT{e−α(l−β)(l − β)mu(l − β)} =
m!e−βs

(s+ α)m+1
. !

Lemma 6.2 allows one to compute the inverse Laplace transform, e.g. LT−1{1/s} = u(l)
by Lemma 6.2(a). Lemma 6.3 below gives a powerful method for computing the function
vn(r, l), which is used in Connectivity Theorem 1.
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Lemma 6.3. For densities f1, . . . , fn on [0, L], set g(s) =
1

s
LT{f [r]

n (l)} · . . . · LT{f [r]
1 (l)}.

Then the function vn(r, l) equals the inverse Laplace transform LT−1{g(s)}(l).

Proof of Lemma 6.3. One has vn(r, l) = f [r]
n ∗ · · · ∗ f [r]

1 ∗ u(l) by Lemma 6.1. Set g(s) =

LT{vn(r, l)} and gi(s) = LT{f [r]
i (l)}, i = 1, . . . , n. The Laplace transform is considered

with respect to l, the variable r is a fixed parameter. The Laplace transform converts the
convolution into the product, hence g(s) = g1(s) . . . gn(s)/s as expected since LT{u(l)} =
1/s by Lemma 6.2(a). The order in the product g(s) does not matter as the convolution is
commutative. So any reordering of the densities gives the same result and the probability
of connectivity does not depend on this order. !

Proof of Connectivity Theorem 1. Let 0 = x0 ≤ x1 ≤ · · · ≤ xn ≤ L be the positions of a
sink node and n sensors. Let the distances di = xi − xi−1, i = 1, . . . , n, be independent
and have probability densities fi(s). Any network can be represented by ordered sensors
(x1, . . . , xn) or, equivalently, by the distances (d1, . . . , dn) between successive sensors. Then
the conditional probability of connectivity is the probability that the network is proper and

connected, i.e.
n∑

i=1
di ≤ L and 0 ≤ di ≤ R, divided by the probability that the network

is proper, i.e.
n∑

i=1
di ≤ L and 0 ≤ di ≤ L. The required formula Pn =

vn(R,L)

vn(L,L)
for the

conditional probability of connectivity follows from Probability Proposition 4.1 stated in
section 4. Permuting densities leads to the same probability Pn due to the commutativity
property of the convolution from Lemma 6.1. !

Proof of Probability Proposition 4.1.
Let us illustrate the proof first in the partial cases n = 1, 2. For n = 1 and L > r,

P (0 ≤ d1 ≤ r) =

r∫

0

f1(s)ds = v1(r, l) and P (0 ≤ d1 ≤ l) =

l∫

0

f1(s)ds = v1(l, l).

For n = 2, let the number d2 belong to an interval [s, s+∆] ⊂ [0, r] for some small ∆ > 0.
The probability of this event E is P (E) = P (s ≤ y2 ≤ s + ∆) ≈ f2(s)∆, the area of the
narrow rectangle below the graph of f2 over [s, s+∆]. The random variables d1 = x1 − x0

and d2 = x2 − x1 are independent. The probability of connectivity is

P (E)P (0 ≤ y1 ≤ l − s) ≈ f2(s)∆ · v1(r, l − s).

The total probability is the limit sum of these quantities over all intervals [s, s+∆] covering

[0, R] when ∆ → 0. Hence the probability is
r∫

0
f2(s)v1(l − s)ds = v2(r, l).

The case n > 1 is by induction on n. If the network is proper and connected, the n-th

distance dn = xn − xn−1 ≥ 0 is not greater than r and not greater than l −
n−1∑
i=1

di. The
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former condition means that the last sensor is close enough to the previous one. The latter
condition guarantees that all the sensors are within [0, l].

Split [0, r] into equal segments of a small length ∆ > 0. Suppose for a moment that
fn(s) is constant on each segment [s, s+∆], where s = j∆, j = 0, . . . , [r/∆]−1. The general
case will be obtained by taking the limit when ∆ → 0.

The probability P (dn ∈ [s, s+∆]) approximately equals fn(s)∆, the area below the graph
of fn(s) which is assumed to be constant over a short segment [s, s +∆]. The probability
that the n− 1 sensors form a connected network in [0, l− dn] is approximately vn−1(r, l− s)
by the induction hypothesis.

Since the distances are independent, the joint probability is fn(s)∆ · vn−1(r, l− s). The
total probability is vn(r, l), the limit sum over all these events as ∆ → 0:

[r/∆]∑

j=1

fn(j∆)∆ · vn−1(r, l − j∆) →
r∫

0

fn(s)vn−1(r, l − s)ds.

The final expression above is the standard definition of the Riemannian integral of the
function fn(s)vn−1(r, l − s) over [0, r] as a limit sum.

Proof of Coverage Theorem 2. By Probability Proposition 4.1, the function vn(R,L) equals
the probability of the event E(L) that n sensors are deployed within [0, L] and form a
connected network. The network covers [0, L] if also at least one sensor is in [L−R,L], i.e.
the event E(L − R) does not happen. Hence the probability that the network is proper,
connected and covers [0, L] is vn(R,L)− vn(R,L−R). The required conditional probability

that all sensors are within [0, L] is
vn(R,L)− vn(R,L−R)

vn(L,L)
.

Appendix B. Proofs of the corollaries from section 5

Iterated convolutions respect constant factors, namely

(cnfn)
[r] ∗ · · · ∗ (c1f1)[r] ∗ u = cn . . . c1f

[r]
n ∗ · · · ∗ f [r]

1 ∗ u.

Hence we may consider probability densities without extra factors if we are interested only
in the conditional probability Pn from Connectivity Theorem 1. Indeed, the product of
these factors will cancel after dividing vn(R,L) by vn(L,L).

Proof of Constant Corollary 5.1. The truncated constant density over the segment [a, b]
without extra factors is f [r](l) = u(l− a(r))− u(l− b(r)), where [a(r), b(r)] = [a, b]∩ [0, r] is
the domain, where the probability density is defined and restricted to [0, r]. For instance, if
0 < a < R < b < L then a(L) = a(R) = a and b(L) = b, b(R) = R.

By Connectivity Theorem 1 and Lemma 6.1, P c
n is expressed in terms of vn(r, l) =

(f [r])(n∗) ∗ u(l). Lemma 6.2(c) for m = 0, β = a(r), β = b(r) implies that

LT{u(l − a(r))− u(l − b(r))} =
e−a(r)s − e−b(r)s

s
.

14



Apply Lemma 6.3 multiplying n factors and dividing by s:

g(s) =
(e−a(r)s − e−b(r)s)n

sn+1
=

n∑

k=0

(−1)k
(
n

k

)
e−a(r)s(n−k)−b(r)sk

sn+1
.

After expanding the binom, compute the inverse Laplace transform of each term above by
Lemma 6.2(d) for the parameters α = 0, β = a(r)(n− k) + b(r)k, m = n as follows:

vn(r, l) = LT−1{g(s)} =
n∑

k=0

(−1)k
(
n

k

)
(l − a(r)(n− k)− b(r)n)n

n!
.

To get the final formula for the conditional probability P c
n =

vn(R,L)

vn(L,L)
of connectivity,

substitute a(L) = a(R) = a, b(L) = b, b(R) = R and cancel n!

We estimate a minimum number of sensors to guarantee connectivity with a probability

p. The condition n ≥ 1 +
L− b

a
, i.e. L − a(n − 1) − b ≤ 0, implies that the denominator

of P c
n from the Constant Corollary is equal to (L− an)n corresponding to m = 0. Another

assumption
a+ b

2
≤ R means that b ≤ 2R, hence the numerator of P c

n contains only two

terms: (L− an)n − n(L− a(n− 1)−R)n. The equivalent inequalities

P c
n = 1− n

(
L− a(n− 1)−R

L− an

)n

≥ p,

(
L− an

L− a(n− 1)−R

)n

≥ n

1− p
and

(
1 +

R− a

L− a(n− 1)−R

)n

≥ n

1− p
are weaker than

(
1 +

R− a

b−R

)n

≥ n

1− p
, because L −

a(n− 1) ≤ b. Since
a+ b

2
≤ R, then r =

R− a

b−R
≥ 1. By Lemma 6.4 the required inequality

(1+r)n ≥ 2n ≥ n

1− p
follows from the bound n ≥ 3 log2

1

1− p
in Constant Corollary 5.1.

Lemma 6.4. For any 0.17 ≈ 1−
√
ln 2 ≤ p < 1, if t ≥ 3 log2

1

1− p
, then 2t ≥ t

1− p
holds.

Proof. We shall prove that the function f(t) = (1 − p)2t − t ≥ 0 for t ≥ −3 log2(1 − p)
and 1 −

√
ln 2 ≤ p < 1. Under these restrictions, the function f(t) is increasing. Indeed,

f ′(t) = (1 − p)2t ln 2 − 1 ≥ 0, because 2t ≥ 2−3 log2(1−p) =
1

(1− p)3
≥ 1

(1− p) ln 2
since

the equivalent condition
√
ln 2 ≥ 1 − p is given. It remains to prove that 2t ≥ t

1− p
for

t = −3 log2(1 − p). Substitute: 2−3 log2(1−p) =
1

(1− p)3
≥ t

1− p
. So we need to deduce

the inequality t = 3 log2
1

1− p
≤ 1

(1− p)2
or x2 ≥ 3 log2 x, where x =

1

1− p
. The function

g(x) = x2−3 log2 x has g′(x) = 2x− 3

x ln 2
, the minimum point x =

√
3

2 ln 2
≈ 1.47 and the

approximate minimum value g(1.47) ≈ 0.49. Hence g(x) = x2 − 3 log2 x > 0 for x > 0.
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In the proof of Normal Corollary 5.2 apply the following estimate for iterated convolu-
tions of truncated densities by using tails of the normal density f(s).

Lemma 6.5. Let distances di have the normal density f(s) =
1

2π
√
σ
exp

(
− (s− µ)2

2σ2

)
over

R with a mean µ and a deviation σ. Then

vn(r, l) = (f [r])(n∗) ∗ u(l) ≥ P
( n∑

i=1

di ≤ l
)
− nε, where ε = 1−

r∫

0

f(s)ds.

Proof of Lemma 6.5 is by induction on n. The base n = 1 is easy: v1(r, l) =

+∞∫

−∞

f [r](s)u(l − s)ds =

+∞∫

−∞

f(s)u(l − s)ds−
∫

R−[0,r]

f(s)u(l − s)ds ≥
l∫

−∞

f(s)ds− ε

= P (d1 ≤ l)− ε since u(l − s) ≤ 1 and

∫

R−[0,r]

f(s)u(l − s)ds ≤
∫

R−[0,r]

f(s)ds = ε.

The induction step from n− 1 to n is similar: vn(r, l) =
+∞∫
−∞

f [r](s)vn−1(r, l − s)ds =

+∞∫

−∞

f [r](s)P
( n−1∑

i=1

di ≤ l − s
)
ds− (n− 1)ε

r∫

0

f(s)ds ≥

≥
+∞∫

−∞

f(s)P
( n−1∑

i=1

di ≤ l − s
)
ds−

∫

R−[0,r]

f(s)ds− (n− 1)ε

≥ P
( n∑

i=1

di ≤ l
)
− nε using P

( n−1∑

i=1

di ≤ l − s
)
≤ 1. !

Proof of Normal Corollary 5.2. By Connectivity Theorem 1 the probability of connectivity

is Pn =
vn(R,L)

vn(L,L)
, where the denominator vn(L,L) = (f [L])(n∗) ∗u(L) is computed using the

truncated normal density over [0, L], while in vn(R,L) = (f [R])(n∗) ∗ u(L) the same density
is truncated over the shorter interval [0, R].

As usual, forget about extra constants in front of f(s) =
1

σ
√
2π

exp

(
− (s− µ)2

2σ2

)
. For

a given probability p we will find a condition on n such that Pn ≥ p. We will make the
inequality Pn ≥ p simpler and stronger after replacing the complicated values vn(L,L) and
vn(R,L) by their upper and lower bounds, respectively.
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The denominator vn(L,L) is the iterated convolution of normal densities truncated over
[0, L]. This convolution of positive functions becomes greater if we integrate the same

functions over R. Then vn(L,L) ≤ P (
n∑

i=1
di ≤ L), the probability that the sum of n normal

variables with the mean µ and deviation σ is not greater than L. The sum
n∑

i=1
di is the

normal variable with the mean nµ and deviation σ
√
n.

Then P (
n∑

i=1
di ≤ L) = Φ

(
L− nµ

σ
√
n

)
, where the standard normal distribution is Φ(x) =

1√
2π

x∫
−∞

e−s2/2ds. Taking into account the lower estimate of vn(R,L) from Lemma 6,

replace the inequality Pn ≥ p by the following stronger one:

1− nε/P
( n∑

i=1

yi ≤ L
)
≥ p or Φ

(
L− nµ

σ
√
n

)
≥ nε

1− p
.

Split the last inequality into two simpler ones:

Φ

(
L− nµ

σ
√
n

)
≥ p and p ≥ nε

1− p
.

The latter inequality gives n ≤ p(1− p)

ε
as expected, where

ε =
1

σ
√
2π

∫

R−[0,R]

f(s)ds = Φ
(
−µ

σ

)
+ 1− Φ

(
R− µ

σ

)
.

The former inequality above becomes quadratic for the variable
√
n, i.e.

L− nµ ≥ σΦ−1(p)
√
n, µn+ σΦ−1(p)

√
n− L ≤ 0.

The final quadratic inequality implies that
√
n is not greater than the second root

1

2µ

(√
4µL+ σ2Φ−2(p)− σΦ−1(p)

)
of the quadratic polynomial. So

n ≤ 1

4µ2

(√
4µL+ σ2Φ−2(p)− σΦ−1(p)

)2
as required.

Appendix C. Networks with sensors of different types

We derive an explicit formula and an algorithm for computing the probability of connec-
tivity when inter-node spacings have different constant densities. These general settings
will help study heterogeneous networks containing sensors of different types, e.g. of differ-
ent transmission radii. Assume that each distance between successive sensors has one of
k independent constant densities fj(l) = cj on [aj , bj ] ⊂ [0, L] and fj(l) = 0 otherwise,

j = 1, . . . , k. The condition
L∫

0
fj(l)dl = 1 implies that

1

cj
= bj − aj for each j = 1, . . . , k.
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Note that the types of densities may not respect the order of sensors in [0, L], e.g.
the 1st and 3rd distances can be from the 2nd group of densities equal to f2(l), while
the 2nd distance can be from the 1st group. In this case we say that index 1 belongs to
group 2, symbolically (1) = 2. Here the brackets (·) denote the operator transforming an
index i = 1, . . . , n of a distance into its group number (i) that varies from 1 to k. For
a heterogeneous network, the function vn(r, l) from section 4 is a sum over arrays of signs
Q = (q1, . . . , qn) depending on the densities {f1, . . . , fk}. Let [aj(r), bj(r)] be the intersection
of the intervals [0, r] and [aj , bj ], where fj ̸= 0. Set q±i =

1± qi
2

, e.g. 1+ = 1, 1− = 0.

Corollary 6.1 (The Heterogeneous Corollary). In the above notations and under the condi-
tions of the Connectivity Theorem assume that the i-th distance between successive sensors
has the probability density f(i)(l) = c(i) on [a(i), b(i)], i = 1, . . . , n. Then the probability of

connectivity of the resulting heterogeneous network equals Ph
n =

vn(R,L)

vn(L,L)
, where

vn(r, l) =

⟨Q⟩<l∑

Q=(q1,...,qn)

CQ

n!

(
l−⟨Q⟩

)n
, CQ =

n∏

i=1

(−1)q
+
i c(i), ⟨Q⟩ =

n∑

i=1

(
a(i)(r)q

−
i +b(i)(r)q

+
i

)
.

The indices in the brackets (i) from the last formula above take values 1, . . . , k for each
i = 1, . . . , n, i.e. [a(i)(r), b(i)(r)] is the segment where the (i)-th density f(i) is defined after
restricting to [0, r]. In particular, if each i-th distance has its own density, then (i) = i and
the indices i, j = 1, . . . , n coincide.

We show that Constant Corollary 5.1 follows from Heterogeneous Corollary 6.1 for

one constant density f1 =
1

b− a
on [a, b], i.e. k = 1. To compute vn(L,L), note that

[a1(L), b1(L)] = [a, b]. Let k be the number of pluses in an array Q. Then CQ =
(−1)k

b− a
and

⟨Q⟩ = a(n− k) + bk. So the sum over Q can be rewritten as a sum over 0 ≤ k ≤ n. For any

fixed k, there are

(
n

k

)
different arrays Q containing exactly k pluses. By the Heterogeneous

Corollary, the common term in the sum vn(L,L) over k is (−1)k
(
n

k

)
(L− a(n− k)− bk)n.

The only difference in computing vn(R,L) is that b1(R) = R, which leads to the formula
from Constant Corollary 5.1.

The complexity to compute the function vn(r, l) from Heterogeneous Corollary 6.1 is
O(2n), because vn(r, l) is a sum over 2n arrays of signs and ⟨Q⟩ is a weighted sum of
endpoints ai(r), bi(r). In general, the expression ⟨Q⟩ can take 2n different values. If there
are only k different endpoints then the algorithm has the polynomial complexity O(nk),
see 3-step Density Corollary 6.3 in Appendix D. If all [aj , bj ] ⊂ [0, R], then the network is
connected and the formula above gives 1. Indeed, vn(R,L) = vn(L,L) since aj(R) = aj(L)
and bj(R) = bj(L), j = 1, . . . , k.

Proof of Heterogeneous Corollary 6.1
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extends the proof of Constant Corollary 5.1. Consider the truncated densities

f [r]
i (l) = c(i)

(
u
(
l − a(i)(r)

)
− u

(
l − b(i)(r)

))
, i = 1, . . . , n, where

(i) denotes the group containing the i-th distance. By Lemma 6.2(c) for m = 0 gives

LT{f [r]
i }(s) = c(i)

e−a(i)(r)s − e−b(i)(r)s

s
.

Substitute each Laplace transform LT{f [r]
i }(s) into the function g(s) from Lemma 6.3 and

expand the product g(s), which gives the following sum of 2n terms:

g(s) =
1

s

n∏

i=1

c(i)
e−a(i)(r)s − e−b(i)(r)s

s
=

∑

Q

CQ
e−⟨Q⟩s

sn+1
.

The sum is taken over arrays Q = (q1, . . . , qn) of signs. The sign qi = −1 means that the
term with a(i)(r) is taken from the i-th factor, the sign qi = +1 encodes the second term
with b(i)(r). The total power of the exponent in the resulting term corresponding to Q

is −⟨Q⟩s, where ⟨Q⟩ =
n∑

i=1
(a(i)(r)q

−
i + b(i)(r)q

+
i ). So each minus contributes −a(i)(r)s to

the total power, while each plus contributes −b(i)(r)s. Each plus contributes (−1) to the

coefficient CQ, i.e. CQ =
n∏

i=1
(−1)q

+
i c(i) as required.

Compute the inverse Laplace transform by Lemma 6.2(d):

vn(r, l) = LT−1{g(s)} =
∑

Q

CQ

n!

(
l − ⟨Q⟩

)n
u(l − ⟨Q⟩), where

u(l − ⟨Q⟩) can be replaced by the upper bound l < ⟨Q⟩ as in the final formula. !

Here is the algorithm to compute vn(r, l) in Heterogeneous Corollary 6.1:

• initialise two arrays a(i)(r) and b(i)(r), where i = 1, . . . , n;

• make a computational loop over 2n arrays Q = (q1, . . . , qn) of signs;

• for each array Q = (q1, . . . , qn), compute ⟨Q⟩ and check the upper bound l ≤ ⟨Q⟩, then
add CQ(l − ⟨Q⟩)n to the current value of the function vn(r, l).

The algorithm to compute vn(L,L) is similar, simply replace R by L. If we need only
Ph
n , forget about n!, which is cancelled after dividing vn(R,L) by vn(L,L).

Appendix D. Piecewise Constant Densities

This appendix shows how to compute the probability of connectivity by building any piece-
wise constant density from elementary blocks in Heterogeneous Corollary 6.1. The engine
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is Average Density Corollary 6.2 below dealing with the average f(s) =
1

k

k∑
j=1

fj(s) of con-

stant densities fj(s) = cj on [aj , bj ] and fj(s) = 0 otherwise. The factor
1

k
guarantees that

L∫

0
f(s)ds = 1, which follows from

∫ L
0 fj(s)ds = 1.

For any ordered partition n = n1 + · · · + nk into k non-negative integers, denote by
(n1, . . . , nk) the collection of densities, where the first n1 densities equal f1, the next n2

densities equal f2 etc. For example, for two constant densities f1, f2, number n = 3 can be
split into two non-negative integers in one of the four ways, namely 3 = 0 + 3 = 1 + 2 =
2 + 1 = 3 + 0. Then (1, 2) denotes the collection (f1, f2, f2), i.e. the 1st distance in such a
network has the density f1, while the remaining two distances have the density f2. For each
partition (n1, . . . , nk) or, equivalently, a collection of constant densities, let v(n1,...,nk)

n (r, l)
be the function defined by the formula from Heterogeneous Corollary 6.1 in Appendix C.

Corollary 6.2 (The Average Density Corollary). In the above notations and under the
conditions of Connectivity Theorem 1, if distances between successive sensors have the

probability density f(l) =
1

k

k∑
j=1

fj(l) on [0, L], then the probability of connectivity is

Pn =

∑
v(n1,...,nk)
n (R,L)/n1! . . . nk!

∑
v(n1,...,nk)
n (L,L)/n1! . . . nk!

. Both sums are taken over all collections of densities

(n1, . . . , nk) corresponding to ordered partitions n = n1 + · · ·+ nk.

The products n1! . . . nk! can not be cancelled in the formula above, because the numer-
ator and denominator of Pn are sums of many terms involving different products n1! . . . nk!
over all ordered partitions n = n1 + · · · + nk. The complexity to compute Pn is O(n2n).
Indeed, each v(n1,...,nk)

n is computed by the algorithm described after Heterogeneous Corol-
lary 6.1 using O(2n) operations. In partial cases the computational complexity can be
reduced to polynomial, see comments after 3-step Density Corollary 6.3 below. The algo-
rithm computing the probability from Average Density Corollary 6.2 applies the algorithm
from Heterogeneous Corollary 6.1 to each function v(n1,...,nk)

n (R,L) and v(n1,...,nk)
n (L,L),

then substitute results into the final formula.

Proof of Average Density Corollary 6.2. Forget about the factor
1

k
as usual. Set gj(s) =

LT{f [r]
j }, j = 1, . . . , k. Lemma 6.3 implies that vn(r, l) = LT−1{g(s)}, where g(s) =

1

s

( k∑
j=1

gj(s)
)n

. Expand the brackets: g(s) =
∑ n!

n1! . . . nk!

gn1
1 . . . gnk

k

s
, where the sum is

taken over all partitions n = n1 + · · ·+ nk into k non-negative integers.

By Lemma 6.3 each term gn1
1 . . . gnk

k /s is the inverse Laplace transform of the function

v(n1,...,nk)
n (r, l), where the first n1 distributions equal f1, the next n2 distributions equal f2
etc. It remains to cancel n! in the final expression. !

By taking sums of constant densities cj on [aj , bj ], one can get any piecewise constant
function on [0, L]. Any reasonable probability density can be approximated by sufficiently
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many piecewise constant functions. Hence Heterogeneous Corollary 6.1 and Average Density
Corollary 6.2 are building blocks for computing the probability of connectivity for any
real-life deployment of sensors. This universal approach is demonstrated for the sum of
two constant densities over two different segments. So the density in question is a 3-step
function depending on the transmission radius R and one more parameter C. The graph of

the density is in Fig. 7. Let f =
f1 + f2

2
be the density on [0, L] such that

f1(l)

2
=

⎧
⎨

⎩
C if l ∈ [0, R],

0 otherwise;

f2(l)

2
=

⎧
⎨

⎩

1

R
− C if l ∈ [R/2, 3R/2],

0 otherwise,

where C, R are chosen so that 0 < C <
1

R
,
3

2
R ≤ L and

L∫

0
f(l)dl = 1, see Fig. 7.

✲

✻

! ! ! !

!

!

❜

❜

!!

l

f(l)

RR/2 3R/2

C

1/R

1/R − C

Figure 7: The piecewise constant distribution depending on R,C

From Fig. 7, for a network of a sink node at 0 and one sensor at d1, the probability of

connectivity is P (0 ≤ d1 ≤ R) =
CR+ 1

2
. This is the area of the first two rectangles below

the graph of f(l). For example, if C =
0.9

R
, then P1 = 0.95 as shown in Fig. 8 below. Hence

one sensor is likely to be close enough to the sink, although such a network can not cover the
whole segment [0, L]. The 3-step Density Corollary shows how to compute the probability of
connectivity explicitly for a piecewise constant density by using Heterogeneous Corollary 6.1
and Average Density Corollary 6.2.

Corollary 6.3 (The 3-step Density Corollary). Under the conditions of Connectivity Theo-
rem 1 for the piecewise constant density f(l) above, the probability of connectivity is

P s
n =

n∑
m=0

m∑
k1=0

n−m∑
k2=0

(−1)k1+k2(L− (2k1 + k2 + n−m)R/2)n

Dmk1!(m− k1)!k2!(n−m− k2)!
n∑

m=0

m∑
k1=0

n−m∑
k2=0

(−1)k1+k2(L− (2k1 + 2k2 + n−m)R/2)n

Dmk1!(m− k1)!k2!(n−m− k2)!

,
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where Dm = C−m
( 1

R
− C

)m−n
. The sums are over all possible values of m, k1, k2 such

that the expressions in the brackets (taken to the power n above) are positive.

The complexity to compute the probability P s
n above is O(n3), because the sums in the

numerator and denominator are over three non-negative integers not greater than n and
each term requires O(1) operations. The result holds in the following extreme cases. If

C =
1

R
, i.e all distances are in [0, R], then set dm = 0 for m < n. Hence m = n, k2 = 0 and

the sums over m, k1, k2 reduce to the same sum over k1 = 0, . . . , n in the numerator and

denominator. So Pn = 1 as expected for C =
1

R
.

If C = 0, i.e. each distance is uniformly distributed on [R/2, 3R/2], then set Dm = 0
for m > 0. So m = 0, k1 = 0 and the result containing only sums over k2 = 0, . . . , n
coincides with P c

n from Constant Corollary 5.1 with [a, b] = [R/2, 3R/2]. Indeed, cancel D0

and multiply the numerator and denominator by k2! to get

(
n

k2

)
.

P s
n =

n∑
k2=0

(−1)k2(L− (k2 + n)R/2)n/k2!(n− k2)!

n∑
k2=0

(−1)k2(L− (2k2 + n)R/2)n/k2!(n− k2)!
.

or P s
n =

n∑
k2=0

(−1)k2
( n
k2

)
(L− (n− k2)R/2− k2R)n

n∑
k2=0

(−1)k2
( n
k2

)
(L− (n− k2)R/2− 3k2R/2)n

.

In 3-step Density Corollary 6.3 for n = 1, both sums contain only four non-zero terms
corresponding to (m, k1, k2) = (0, 0, 0); (0, 0, 1); (1, 0, 0); (0, 1, 0). Then all the factorials
equal 1 and we get the probability expected from Fig. 7:

P s
1 =

( 1
R − C)(L− R

2 )− ( 1
R − C)(L−R) + CL− C(L−R)

( 1
R − C)(L− R

2 )− ( 1
R − C)(L− 3R

2 ) + CL− C(L−R)
=

CR+ 1

2
.

Proof of 3-step Density Corollary 6.3. In the notations of Heterogeneous Corollary 6.1 there
are only k = 2 densities. Let the first m distances between successive sensors have the
probability density f1, while the last n−m distances have the density f2. An array Q splits
into two parts of m signs and n−m signs. Let k1, k2 be the number of pluses in each part.

To compute v(m,n−m)
n (L,L) from Average Density Corollary 6.2 for the partition n =

m+ (n−m), note that [a1(L), b1(L)] = [0, R], [a2(L), b2(L)] = [R/2, 3R/2],

CQ =
(−1)k1+k2

Dm
, ⟨Q⟩ =

(
k1 + k2 +

n−m

2

)
R.
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Table 5: Minimum number of sensors for the piecewise constant density, C =
0.9

R
.

Transmission radius, m. 250 200 150 100 50

Min number of sensors 12 17 25 44 105

So the sum over arrays Q can be rewritten as a sum over k1, k2. For fixed values of these

parameters, there are

(
m

k1

)(
n−m

k2

)
different arrays of signs. After cancelling the factorials

m! and (n−m)! in Average Density Corollary 6.2, the sum
n∑

m=0
v(m,n−m)
n (L,L) equals the

denominator of the probability P s
n. The only difference in computing vn(R,L) is that

b2(R) = R, not 3R/2. Hence 2k2 is replaced by k2.

0 50 100 150
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 ≤ n ≤150

0 
≤ 

P n ≤
 1

Figure 8: The probability of connectivity for the density f(l) with C =
0.9

R

Consider the piecewise constant density f(l) for C =
0.9

R
in Fig. 7. Table 5 shows the

minimum number of sensors such that the network in [0, L] is connected with probability
0.95, where L = 1km. Fig. 8 shows the probability P s

n ≥ 0.2, which were computed by
generating many random networks. The threshold p = 0.95 is passed in Fig. 8 for the
minimum number n = 105, see the last number in the second of row of Table 5.
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