
Homology, Homotopy and Applications, vol. 14(1), 2012, pp.159–180

COMPUTING BRAID GROUPS OF GRAPHS WITH
APPLICATIONS TO ROBOT MOTION PLANNING

VITALIY KURLIN

(communicated by Robert Ghrist)

Abstract
An algorithm is designed to write down presentations of

graph braid groups. Generators are represented in terms of
actual motions of robots moving without collisions on a given
connected graph. A key ingredient is a new motion planning
algorithm whose complexity is linear in the number of edges
and is quadratic in the number of robots. The computing algo-
rithm implies that 2-point braid groups of all light planar graphs
have presentations where all relators are commutators.

1. Introduction

1.1. Brief summary
This is a research on the interface between topology and graph theory with applica-

tions to motion planning algorithms in robotics. Consider moving objects as zero-size
points that travel without collisions along fixed tracks that form a connected graph,
say on a factory floor or road map. These objects will be called ‘robots’, although the
reader may use a more neutral and abstract word like ‘token’.

For practical reasons, discrete analogues of configuration spaces of graphs are stud-
ied. Then robots can not be very close to each other, at least one full open edge apart.
This discrete approach reduces the motion planning of real (not zero-size) vehicles to
combinatorial questions about ideal robots that move on a subdivided graph.

1.2. Graphs and theirs configuration spaces
Let us recall basic notions. A graph G is a 1-dimensional finite CW complex whose

1-cells are supposed to be open. The 0-cells and open 1-cells are called vertices and
edges, respectively. If the endpoints of an edge e are the same, then e is called a
loop. A multiple edge is a collection of edges with the same distinct endpoints. The
topological closure ē of an edge e is the edge e itself with its endpoints.

The degree deg v of a vertex v is the number of edges attached to v, i.e., a loop
contributes 2 to the degree of its vertex. Vertices of degree 1 or 2 are hanging or trivial,
respectively. Vertices of degree at least 3 are essential. A path (a cycle, respectively)

Received November 4, 2009, revised June 8, 2011; published on June 4, 2012.
2000 Mathematics Subject Classification: 57M05, 20F36, 05C25.
Key words and phrases: graph, braid group, configuration space, fundamental group, homotopy type,
deformation retraction, collision free motion, planning algorithm, complexity, robotics.
Article available at http://intlpress.com/HHA/v14/n1/a8 and doi:10.4310/HHA.2012.v14.n1.a8
Copyright c⃝ 2012, International Press. Permission to copy for private use granted.

This is the modified version of the paper published in
Homology, Homotopy and Applications, v. 14 (2012), p. 159-180

160 VITALIY KURLIN

of a length k in G is a subgraph that consists of k edges and is homeomorphic to a
segment (a circle, respectively). A tree is a connected graph without cycles.

The direct product Gn = G× · · ·×G (n times) has the product structure of a
‘cubical’ complex such that each product c̄1 × · · ·× c̄n is isometric to a Euclidean
cube [0, 1]k, where c̄i is the topological closure of a cell of G. The dimension k is the
number of the cells ci that are edges of G. The diagonal of the product Gn is

∆(Gn) = {(x1, . . . , xn) ∈ Gn | xi = xj for some i ̸= j}.

Definition 1.1. Let G be a graph, n be a positive integer. The ordered topological
configuration spaceOC(G,n) of n distinct robots in G is Gn −∆(Gn). The unordered
topological configuration space UC(G,n) of n indistinguishable robots in G is the
quotient of OC(G,n) by the action of the permutation group Sn of n robots.

The ordered topological space OC([0, 1], 2) = {(x, y) ∈ [0, 1]2 | x ̸= y} is the unit
square without its diagonal. This space is homotopy equivalent to a disjoint union of
two points. Spaces X,Y are homotopy equivalent if there are continuous maps

f : X → Y, g : Y → X such that g ◦ f : X → X, f ◦ g : Y → Y

can be connected with the identity maps idX : X → X, idY : Y → Y , respectively,
through continuous families of maps. In particular, X is contractible if X is homotopy
equivalent to a point. A space X can be homotopy equivalent to its subspace Y by
a deformation retraction that is a continuous family of maps ft : X → X, t ∈ [0, 1],
such that ft|Y = idY , i.e., all ft are fixed on Y , f0 = idX and f1(X) = Y .

The unordered topological space UC([0, 1], 2) ≈ {(x, y) ∈ [0, 1]2 | x < y} is con-
tractible to a single point. More generally, OC([0, 1], n) has n! contractible con-
nected components, while UC([0, 1], n) deformation retracts to the standard con-
figuration xi = (i− 1)/(n− 1), i = 1, . . . , n, in [0, 1]. If a connected graph G has a
vertex of degree at least 3, then the configuration spaces OC(G,n), UC(G,n) are
path-connected. Swap robots x, y near such a vertex as shown in Figure 1.

x

x x

x xy y

y y
y

Figure 1: Swapping two robots x, y without collisions on the tripod T

Definition 1.2. Given a connected graph G having a vertex of degree at least 3, the
graph braid groups P(G,n) and B(G,n) are the fundamental groups π1(OC(G,n))
and π1(UC(G,n)), respectively, where arbitrary base points are fixed.

For the tripod T in Figure 1, both configuration spaces OC(T, 2), UC(T, 2) are
homotopy equivalent to a circle; see Example 2.1, i.e., B(T, 2) ∼= Z, P(T, 2) ∼= Z,
although P(T, 2) can be considered as an index 2 subgroup 2Z of B(T, 2) ∼= Z.

Definition 1.3. The ordered discrete space OD(G,n) consists of all the products
c̄1 × · · ·× c̄n such that each ci is a cell of G and c̄i ∩ c̄j = ∅ for i ̸= j. The unordered
discrete space UD(G,n) is the quotient of OD(G,n) by the action of Sn.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 161

The support supp(H) of a subset H ⊂ G is the minimum union of closed cells
containing H. For instance, the support of a vertex or an open edge coincides with
its topological closure in the graph G. The support of a point interior to an open
edge e is ē, i.e., the edge e with its endpoints. A configuration (x1, . . . , xn) ∈ Gn is
safe if supp(xi) ∩ sup(xj) = ∅ whenever i ̸= j. Then the discrete configuration space
OD(G,n) consists of all safe configurations:

OD(G,n) = {(x1, . . . , xn) ∈ Gn | supp(xi) ∩ supp(xj) = ∅, i ̸= j}.

A path in a graph G is essential if the path connects distinct vertices of degrees not
equal to 2. A cycle in G is essential if the cycle contains a vertex of a degree more than
2. Since only connected graphs are considered, a non-essential cycle coincides with
the whole graph. Subdivision Theorem 1.4 provides sufficient conditions such that
the configuration spaces OC(G,n),UC(G,n) deformation retract to their discrete
analogues OD(G,n),UD(G,n), respectively. Then B(G,n) ∼= π1(UD(G,n)).

Theorem 1.4 ([1, Theorem 2.1]). Let G be a connected graph, n ! 2. The discrete
spaces OD(G,n),UD(G,n) are deformation retracts of the topological configuration
spaces OC(G,n),UC(g, n), respectively, if both conditions (1.4a) and (1.4b) hold:

(1.4a) Every essential path in G has at least n+ 1 edges;
(1.4b) Every essential cycle in G has at least n+ 1 edges.

The conditions above imply that G has at least n vertices, so OD(G,n) ̸= ∅. A
strengthened version of Subdivision Theorem 1.4 for n = 2 only requires that G has
no loops and multiple edges [1, Theorem 2.4]. The topological configuration spaces
of two points on the Kuratowski graphs K5,K3,3 in Figure 2 deformation retract
to their smaller discrete analogues. In OD(K5, 2), if the first robot is moving along
an edge h ∈ K5, then the second robot can be only in the triangular cycle C ⊂
K5 − h. In total, these ten triangular tubes h× C form the oriented surface of genus
6. Similarly, computing the Euler characteristic, we conclude that OD(K3,3, 2) is the
oriented surface of genus 4. These are the only graphs without loops whose discrete
configuration spaces OD(G, 2) are closed manifolds; see [1, Corollary 5.8].

Students of L. Sabalka [12] have extended Subdivision Theorem 1.4 for any n > 2
to the optimal criterion where n+ 1 is replaced by n− 1 in condition (1.4a).

Figure 2: Kuratowski graphs K5 and K3,3

1.3. Main results
There are two known approaches to computing graph braid groups suggested by

Abrams [1, Section 3.2] and by Farley and Sabalka [5, Theorem 5.3]. In the former
approach any pure graph braid group splits as a graph of simpler groups, which gives

162 VITALIY KURLIN

a nice global structure of the group and proves that all graph braid groups are torsion
free [1, Corollary 3.7 on p. 25]. The latter approach is based on the discrete Morse
theory developed by Forman [7]. One writes presentations of graph braid groups by
retracting a big discrete configuration space to a smaller subcomplex.

This paper proposes another local approach based on the classical Seifert–van
Kampen Theorem 3.1. Presentations are computed step-by-step starting from simple
graphs and adding edges one-by-one, which allows us to update growing networks in
real-time. Resulting Algorithm 1.5 expresses generators of graph braid groups using
actual motions of robots, i.e., as a list of positions at discrete time moments. The
key ingredient is new motion planning Algorithm 4.3 to connect any configurations
of n robots. The computational complexity of Algorithm 4.3 is linear in the number
of edges and is quadratic in the number of robots.

Algorithm 1.5. For a connected graph G, there is an algorithm to write down a
presentation of the graph braid group B(G,n). Generators are represented by actual
paths between configurations; see step-by-step instructions in Subsection 4.1.

According to [6, Theorem 5.6], the braid groups of planar graphs having only
disjoint cycles have presentations where each relator is a commutator, not necessarily
a commutator of generators. To demonstrate the power of Algorithm 1.5, this result is
extended to a wider class of light planar graphs. A planar connected graph G is called
light if any cycle C ⊂ G has an open edge h such that all cycles from G− h̄ do not
meet C. Removing the closure h̄ from G is equivalent to removing the endpoints of h
and all open edges attached to the endpoints. Any loop or a multiple edge provides
an edge h satisfying the above condition. Figure 3 shows a non-light planar graph
with four choices of a (dashed) edge h and corresponding (fat) cycles from G− h̄.
Indeed, in each case the fat cycles from G− h̄ meet any cycle C containing h.

Figure 3: A non-light planar graph with four choices of a closed edge h̄

Corollary 1.6. The braid group B(G, 2) of any light planar graph G has a presenta-
tion where each relator is a commutator of motions along disjoint cycles.

A stronger version of Corollary 1.6 with a geometric description of generators and
relators is given in Proposition 4.8 in the case of unordered robots.

Outline
Section 2 considers basic examples and recalls related results. Section 3 introduces

the computing engine of Propositions 3.2, 3.4, 3.6 updating presentations of graph
braid groups by adding edges one-by-one. Section 4 lists step-by-step instructions of
Algorithm 1.5 computing graph braid groups. As an application, 2-point braid groups
of light planar graphs are described in simple combinatorial terms.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 163

Acknowledgements

The author thanks the anonymous referee for helpful suggestions and Lucas
Sabalka for his valuable corrections in Subsections 2.2, 3.1 and 4.2.

2. Discrete configuration spaces of a graph

In this section discrete configuration spaces are discussed in more detail. These
spaces are recursively constructed in Lemmas 2.5 and 2.6. Further assume that the
number of robots is n ! 2.

2.1. Configuration spaces of the tripod T
This subsection describes configuration spaces of two points on the tripod T . The

tripod T consists of three hanging edges e1, e2, e3 that are attached to the central
vertex v; see Figure 4.

T (T e�)-! (T e�)-! (T e�)-!

e

ee

e

e
e

v

v

v

v

1

1

1

1

2

3 2

2

2

3
3

3

Figure 4: The tripod T and (T × e1)−∆, (T × e2)−∆, (T × e3)−∆

Example 2.1. The ordered topological space OC(T, 2) is the union of three 3-page
books T × e1, T × e2, T × e3 shown in the right-hand side pictures of Figure 4 with-
out the diagonal ∆ = {(x, y) ∈ T 2 | x ̸= y}. Then OC(T, 2) consists of the six sym-
metric rectangles ei × ej (i ̸= j) and six triangles from the squares ei × ei, i = 1, 2, 3,
after removing their diagonals; see the left-hand side picture of Figure 5 and [2,
Example 6.26].

Example 2.2. The ordered topological space OC(T, 2) deformation retracts to the
polygonal circle in the right-hand side picture of Figure 5. This circle is the ordered
discrete space OD(T, 2) having 12 vertices vi × vj (i ̸= j) and v × vi, vi × v, i =
1, 2, 3, symmetric under the permutation of factors. The unordered spaces UC(T, 2),
UD(T, 2) are the quotients of the corresponding ordered spaces by the rotation
through π and are homeomorphic to OC(T, 2),OD(T, 2), respectively. Hence the
graph braid groups B(T, 2) ∼= Z, P(T, 2) ∼= Z can be computed by using the simpler
discrete spaces UD(T, 2),OD(T, 2), which is reflected in Theorem 1.4.

2.2. Recursive construction of discrete spaces
This subsection explains recursive constructions of discrete configuration spaces.

The constructions will be used in Section 3 to compute fundamental groups of the
configuration spaces.

164 VITALIY KURLIN

OC(T,2) OD(T,2)

e���e

e���e e���e

e���e

e���ee���e

e���v

e���v

e���v v���e

v���e

v���e

v���e

v���e

v���e

e���v

e���ve���v

e���v

1

1 3

3

13

2

3
1

2
2

3

2 2

1

1

3

2

3

1

33

1

1

1

3 3

2

3

1

1

2

2

22

3

22

Figure 5: The ordered space OC(T, 2) and its discrete analogue OD(T, 2)

Example 2.3. Let us show how to construct the ordered space OD(T, 2) adding the
closed edge ē1 to the subgraph T − (e1 ∪ v1) = ē2 ∪ ē3 ≈ [0, 1]. If both robots x, y are
not in the open edge e1, then (x, y) ∈ OD(T − e1, 2), where T − e1 ≈ v1 ∪ ē2 ∪ ē3,
i.e., either x = v1, y ∈ ē2 ∪ ē3 (or vice versa) or (x, y) ∈ OD(ē2 ∪ ē3, 2). Since x can
not be close to y by Definition 1.3 (e.g., if x ∈ e1, then y ∈ {v2, v3}), then one has

OD(T, 2) ≈ OD(T − e1, 2) ∪ ({v2, v3}× ē1) ∪ (ē1 × {v2, v3}),

where

OD(T − e1, 2) ≈ OD(ē2 ∪ ē3, 2) ∪
(
v1 × (ē2 ∪ ē3)

)
∪
(
(ē2 ∪ ē3)× v1

)
.

The subspace OD(T − e1, 2) consists of four fat segments in the right-hand side
picture of Figure 5, where the two horizontal segments represent OD(ē2 ∪ ē3, 2).
Taking the quotient by swapping the robots, similarly decompose the unordered space

UD(T, 2) ≈ UD(ē2 ∪ ē3, 2) ∪
(
(ē2 ∪ ē3) ×̃ v1

)
∪ ({v2, v3} ×̃ ē1).

Here A ×̃B denotes the quotient of (A×B) ∪ (B ×A) over the symmetry that swaps
the factors. The left-hand side picture of Figure 6 shows the subspace UD(ē2 ∪
ē3, 2) ≈ [0, 1] and the whole space UD(T, 2) ≈ S1. The segments v2 ×̃ ē1 and v3 ×̃ ē1
are glued at the endpoints v2 ×̃ v1, v3 ×̃ v1 and v2 ×̃ v, v3 ×̃ v, respectively.

(���������)��v e����ee����e

v e

v e

UD(���������,2) UD(G-e,n)

UD(G,n) :

UD(G-Nbhd(e),n-1) e

UD(T,2) :

1

1

1

22 33

2

3
~

~

~

~

Figure 6: Attaching the cylinder in the recursive construction of UD(G,n)

Example 2.3 motivates the following notion. The neighbourhood Nbhd(e) of an
open edge e ∈ G consists of ē and all open edges attached to the endpoints of e. For

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 165

instance, the complement to the neighbourhood Nbhd(e1) in the tripod T consists of
the hanging vertices v2, v3; see the left-hand side picture of Figure 4.

Example 2.4. Extending the recursive idea of Example 2.3, let us construct the or-
dered 2-point space OD(G, 2) of any connected graph G. Fix an open edge e ⊂ G
with vertices u, v and consider the case when one of the robots, say y, stays in e.
Then x ∈ G−Nbhd(e) because x can not be in the same edge e and also in the edges
adjacent to e. If both robots x, y are not in e, then (x, y) is in the smaller ordered
space OD(G− e, 2). Then OD(G, 2) is a union of smaller subspaces:

OD(G, 2) ≈ OD(G− e, 2) ∪
(
(G−Nbhd(e))× ē

)
∪
(
ē× (G−Nbhd(e))

)
.

Here the first cylinder (G−Nbhd(e))× ē is glued to OD(G− e, 2) along the sub-
graphs (G−Nbhd(e))× u and (G−Nbhd(e))× v. The second cylinder is symmetric
to the first one. Taking the quotient over swapping the factors, one gets

UD(G, 2) ≈ UD(G− e, 2) ∪ ((G−Nbhd(e)) ×̃ ē),

where A ×̃B = ((A×B) ∪ (B ×A))/ ∼. Lemmas 2.5 and 2.6 are discrete analogues
of Ghrist’s construction of the ordered topological space OC(G,n) [8, Lemma 2.1].

Lemma 2.5. Let a connected graph G have an open edge e with vertices u, v. Then
the ordered discrete space OD(G,n) is homeomorphic to the union

OD(G,n) ≈ OD(G− e, n) ∪n
i=1 (OD(i)(G−Nbhd(e), n− 1)× ē),

where

OD(i)(G−Nbhd(e), n− 1)× ē = {x ∈ OD(G,n) | xi ∈ ē}

is glued to OD(G− e, n) along

OD(i)(G−Nbhd(e), n− 1)× u = {x ∈ OD(G−Nbhd(e), n) | xi = u}

and

OD(i)(G−Nbhd(e), n− 1)× v = {x ∈ OD(G−Nbhd(e), n) | xi = v}, i = 1, . . . , n.

Proof. In the space OD(G,n) of all safe configurations x = (x1, . . . , xn) consider the
smaller subspace OD(G− e, n), where xi /∈ e for all i = 1, . . . , n. The complement
OD(G,n)−OD(G− e, n) consists of configurations with xi ∈ e for some i. By Def-
inition 1.3 the other robots xj /∈ Nbhd(e) for j ̸= i, i.e., the complement is

OD(G,n)−OD(G− e, n) ≈ ∪n
i=1OD(i)(G−Nbhd(e), n− 1)× e.

The bases of each cylinder above are subspaces of the smaller configuration space:

OD(i)(G−Nbhd(e), n− 1)× u, OD(i)(G−Nbhd(e), n− 1)× u ⊂ OD(i)(G− e, n).

The cylinder OD(i)(G−Nbhd(e), n− 1)× e represents motions when the i-th robot
moves along e, while the other robots travel within OD(G−Nbhd(e), n− 1).

In Sections 3 and 4 the simpler unordered case is considered. For subspaces Aj of
the ordered space of nj robots, the direct product A1 × · · ·×Ak lives in the ordered
configuration space of n = n1 + · · ·+ nk robots. The unordered configuration space
of the same n robots has no similar direct products. One can take the union of the

166 VITALIY KURLIN

products consisting of the factors A1, . . . , Ak over all orders and then quotient the
union by the permutation group Sn. The result can be denoted by A1 ×̃ · · · ×̃Ak.

Lemma 2.6. Let a connected graph G have an open edge e with vertices u, v. Then
the unordered discrete space UD(G,n) is homeomorphic to (see Figure 6)

UD(G,n) ≈ UD(G− e, n) ∪ (UD(G−Nbhd(e), n− 1) ×̃ ē),

where the subspace UD(G−Nbhd(e), n− 1) ×̃ ē is glued to UD(G− e, n) along

UD(G−Nbhd(e), n− 1) ×̃ u and UD(G−Nbhd(e), n− 1) ×̃ v.

Proof. Quotient the ordered space from Lemma 2.5 by the permutation group Sn:

OD(G,n)
≈−−−−→ OD(G− e, n) ∪n

i=1 (OD(i)(G−Nbhd(e), n− 1)× ē)

quotient

⏐⏐$ f

⏐⏐$

UD(G,n)
g−−−−→ UD(G− e, n) ∪ (UD(G−Nbhd(e), n− 1) ×̃ ē).

The natural projection f above is continuous by the pasting lemma. The induced
map g is bijective and continuous by the universality property of quotients and defines
a homeomorphism since UD(G,n) is compact, while its image is Hausdorff.

2.3. Homotopy types of configuration spaces
This subsection recalls general results on homotopy types of configuration spaces.

A topological space X is called aspherical or a K(π, 1) space, if the space X has a
contractible universal cover, in particular πi(X) = 0 for i > 1. A covering p : Y → X
is universal, if the cover Y is simply connected. Then the covering p has the universal
property that, for any covering q : Z → X, there is another covering Y → Z whose
composition with q : Z → X gives the original covering p : Y → X.

Proposition 2.7 (Asphericity of configuration spaces, Ghrist [8, Corollary 2.4, The-
orem 3.1] for topological spaces and Abrams [1, Section 3.2] for discrete spaces).
Every component of OC(G,n),UC(G,n),OD(G,n),UD(G,n) is aspherical.

Ghrist [8, Corollary 2.4, Theorem 3.1] proves the above result for the ordered topo-
logical space OC(G,n), which implies the same conclusion for UC(G,n), because the
universal cover of a component of UC(G,n) is a universal cover of some component
of OC(G,n) as mentioned by Abrams [1, the proof of Corollary 3.6].

Proposition 2.8 implies that the homotopy type of discrete spaces depends on the
graph G, but not on the number n of robots. It was proved by Ghrist [8, Theorems 2.6
and 3.3] for OC(G,n). The result easily extends to the unordered case.

The circle S1 is excluded below, because its unordered space UC(S1, n) is homo-
topically equivalent to a circle, while OC(S1, n) deformation retracts to a disjoint
union of (n− 1)! circles indexed by permutations of n robots up to cyclic shifts.

Proposition 2.8 (Homotopy type of topological configuration spaces). If a con-
nected graph G ̸≈ S1 has exactly m essential vertices (of degree at least 3), then
OC(G,n) and UC(G,n) deformation retract to m-dimensional complexes.

For instance, the configuration spaces of two robots in the tripod T having a single
essential vertex deformation retract to a 1-dimensional circle; see Examples 2.1, 2.2.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 167

3. Fundamental groups of unordered discrete spaces

In this section one computes graph braid groups. Namely, one shows how their
presentations change by Seifert–van Kampen Theorem 3.1 after adding new edges to
a graph. Let X,Y be open path-connected subsets of X ∪ Y such that X ∩ Y ̸= ∅ is
also path-connected. If X,Y are not open in X ∪ Y , then they usually can be replaced
by their open neighbourhoods that deformation retract to X,Y , respectively. Assume
that X,Y,X ∩ Y,X ∪ Y have a common base point. If α is a finite vector of elements,
then a group presentation has the form ⟨α | ρ⟩, where the relator ρ (a vector of words
in the alphabet α) denotes the vector relation ρ = 1. A practical reformulation of the
Seifert–van Kampen Theorem is below.

Theorem 3.1 (Seifert–van Kampen Theorem [3, Theorem 3.6 on p. 71]). If presen-
tations π1(X) ∼= ⟨β | λ⟩, π1(Y) ∼= ⟨γ | µ⟩ are given and π1(X ∩ Y) is generated by
(a vector of) words α, then the group π1(X ∪ Y) has the presentation π1(X ∪ Y) ∼=
⟨β,γ | λ,µ,αX = αY ⟩, where αX ,αY are obtained from the words α by rewriting
the words α in the alphabets β, γ, respectively.

As an example, consider the 2-dimensional torus X ∪ Y , where X is the com-
plement to a closed disk D, while Y is a open neighbourhood of D, i.e., X ∩ Y
is an annulus. Then X is homotopically equivalent to a wedge of two circles, i.e.,
π1(X) ∼= {α,β | } is free, π1(Y) ∼= ⟨ | ⟩ is trivial and π1(X ∩ Y) ∼= Z, hence

π1(X ∪ Y) ∼= {α,β | αβα−1β−1}

as αβα−1β−1 represents the boundary of D.

Presentations of the groups π1(UD(G,n)) ∼= B(G,n) will be written down step-by-
step by adding edges to the graph and by monitoring changes in the presentations.
The base of our recursive computation is the contractible space UD([0, 1], n) of n
robots in a segment whose fundamental group is trivial.

In Proposition 3.2 one glues a hanging edge to a vertex of degree at least 2, e.g.,
to an internal vertex of [0, 1], which may create an essential vertex (of degree at least
3). In Proposition 3.4 one adds a hanging edge to a hanging vertex of degree 1, which
does not create an essential vertex. In Example 3.5 and Proposition 3.6 one attaches
an edge creating cycles. Algorithm 1.5 computing graph braid groups is essentially
based on Propositions 3.2, 3.4, 3.6. Each step shows how a group presentation is
gradually becoming more complicated.

3.1. Adding a hanging edge in the unordered case

Here one shows how a braid group of a graph changes after adding a hanging edge.
In a graph H choose a hanging (open) edge e ⊂ H attached to a hanging vertex u
and a vertex v of degree at least 3. If the vertex v has degree deg v, then H −Nbhd(e)
consists of k = deg v − 1 disjoint subgraphs H1, . . . , Hk. If an edge ej ̸= e attached at
v is also hanging, then the corresponding graph Hj is the other endpoint of ej .

In UD(H,n) if one robot is in e, then the remaining n− 1 unordered robots from
H −Nbhd(e) split into k ordered subsets having j1, . . . , jk robots in the subgraphs
H1, . . . , Hk respectively, so j1 + · · ·+ jk = n− 1. For an ordered set J = (j1, . . . , jk)

168 VITALIY KURLIN

of non-negative integer indices such that j1 + · · ·+ jk = n− 1, let

UDJ(H −Nbhd(e), n− 1)

be the quotient of

UD(H1, j1)× · · ·×UD(Hk, jk)

by the action of the permutation group Sn−1.
UD(H −Nbhd(e), n− 1) splits into the subspaces UDJ(H −Nbhd(e), n− 1)

over all J = (j1, . . . , jk) with ordered non-negative integers such that j1 + · · ·+ jk =
n− 1. For n = 2, the index J degenerates to a single index j = 1, . . . , deg v − 1 of the
subgraph Hj containing the only remaining robot. Fix base points:

a ∈ UD(H − (e ∪ u), n), cJ ∈ UDJ(H −Nbhd(e), n− 1).

u

e

! !

v

H�:

"#$!#% &c���e)

"#$!#% &c���e)

b& & c���uc���uc���vc���v

aUD(H-(e��u),n) UD(H-(e��u),n-1) u

UD(H,n) :

UD (H-Nbhd(e),n-1) e
J

subspaces

1

2 2 2

1 1 1
-1

-1

2 12

2

1

21

1
2

~

~

~

~ ~ ~ ~

~

Figure 7: Adding a hanging edge e to a non-hanging vertex v

Figure 7 shows two spaces of the form UDJ (H −Nbhd(e), n− 1) ×̃ ē indexed for
simplicity by 1 and 2 as in the case n = 2. Fix a point

b ∈ UDJ(H − (e ∪ u), n− 1) ×̃ u,

which can be chosen as c1 ×̃ u, where c1 is any fixed base point among cJ ’s. In
UD(H −Nbhd(e), n− 1) find a path εJ from a to cJ ×̃ v, a path τJ from b to cJ × u
for all J = (j1, . . . , jk), k = deg v − 1. The configurations cJ ×̃ u, cJ ×̃ v are connected
by the motion (cJ ×̃ ē) when n− 1 robots stay fixed at cJ ∈ UD(H −Nbhd(e), n− 1)
and one robot moves along ē; see Figure 7. Adding εJ , τ

−1
J at the start and end of the

motion (cJ ×̃ ē), respectively, one gets the paths δJ going from a to b in UD(H,n).
Let us make some conventions. For a loop β ⊂ UD(H − (e ∪ u), n− 1) represent-

ing a motion of n− 1 robots, the loop (β{xn = u}) ⊂ UD(H − (e ∪ u), n− 1) ×̃ u
denotes the motion when n− 1 robots follow β and one robot is fixed at u. The index
n is only a part of the notation (β{xn = u}) since the robots are not ordered. The
subspaces UDJ(H −Nbhd(e), n− 1) can also be disconnected, at least for n = 2. So
π1(UDJ (H −Nbhd(e), n− 1)) is interpreted as a formal union of presentations for
the fundamental groups of the connected components from UDJ(H −Nbhd(e), n−
1). For instance, a generator of π1(UDJ(H −Nbhd(e), n− 1)) for J = (j1, . . . , jk)
means a motion when j1 robots complete a loop in the subgraph H1, other j2 robots
complete a loop in the subgraph H2 disjoint from H1 etc.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 169

Proposition 3.2 (Adding a hanging edge e to a non-hanging vertex v). In the nota-
tions above and for presentations

π1(UD(H − (e ∪ u), n)) = ⟨α | ρ⟩

and

π1(UD(H − (e ∪ u), n− 1)) = ⟨β | λ⟩,
π1(UDJ(H −Nbhd(e), n− 1)) = ⟨γJ | µJ⟩,

the group π1(UD(H,n)) is generated by α, δ1(β{xn = u})δ−1
1 , δ1δ

−1
J , subject to

ρ = 1, δ1(λ{xn = u})δ−1
1 = 1, (γJ{xn = v}) = δ1(γJ{xn = u})δ−1

1 .

Proof. By the recursive construction from Lemma 2.6 one has

UD(H,n) ≈ UD(H − e, n) ∪ (UD(H −Nbhd(e), n− 1) ×̃ ē).

Since H − e splits into the vertex u and the remaining subgraph H − (e ∪ u), then the
space UD(H − e, n) splits into the subspaces UD(H − (e ∪ u), n), where all robots
are in H − (e ∪ u), and UD(H − (e ∪ u), n− 1) ×̃ u, where one robot is at u.

The non-connected subspaceUD(H −Nbhd(e), n− 1) ×̃ ē splits into the subspaces
UDJ(H −Nbhd(e), n− 1) ×̃ ē connecting the subspaces

UD(H − (e ∪ u), n) and UD(H − (e ∪ u), n− 1) ×̃ u.

Indeed, the complement H −Nbhd(e) is obtained from H by removing u, v and all
open edges attached to the vertex v of degree deg v.

Add the subspaces UDJ (H −Nbhd(e), n− 1) ×̃ ē over all J = {j1, . . . , jk} to
UD(H − (e ∪ u), n). The group π1(UD(H − (e ∪ u), n)) is not affected. Actually, the
added subspaces deformation retract to UDJ(H −Nbhd(e), n− 1)× v. This defor-
mation is represented by a gradual movement of one robot along ē towards v.

To apply Seifert–van Kampen Theorem 3.1 correctly, add all the paths δJ to the
resulting union above to get the new generators δ1δ

−1
J ; see Figure 7. Here 1 denotes

one fixed multiple index J for simplicity, e.g., 1 = (n− 1, 0, . . . , 0).
Consider the space UD(H − (e ∪ u), n− 1) ×̃ u as a subspace of UD(H,n). For-

mally a loop β ∈ π1(UD(H − (e ∪ u), n− 1)) becomes the loop (β{xn = u}) from
π1(UD(H − (e ∪ u), n− 1) ×̃ u), where one robot remains fixed at u. The same argu-
ment applies to the relator λ. No other relations appear as the intersection of ∪JδJ ,
and UD(H − (e ∪ u), n) ∪J (UDJ (H −Nbhd(e), n− 1) ×̃ ē) contracts to a.

Take the union with the subspace UD(H − (e ∪ u), n− 1) ×̃ u. So one adds the
generators and relations of π1(UD(H − (e ∪ u), n− 1)) = ⟨β | λ⟩. The intersection
deformation retracts to the wedge of UDJ (H −Nbhd(e), n− 1) ×̃ u over all J . Then
each generator γJ gives a relation between the words representing (γJ{xn = v}) in
the spaces UD(H − (e ∪ u), n) and UD(H − (e ∪ u), n− 1) ×̃ u. In the latter space
the loop can be conjugated by δ1, which replaces b by the point a ∈ UD(H,n).

In Proposition 3.2 the loops δ1(γJ{xn = u})δ−1
1 live in UD(H − (e ∪ u), n) with

the base point a and can be expressed in terms of the generators δ1(β{xn = u})δ−1
1 .

So the last equality in the presentation is a valid relation between new generators. In
the case n = 2 the multiple index J degenerates to a single index j = 1, . . . , deg v − 1.
So one adds exactly deg v − 2 new generators of the form δ1δ

−1
j , j = 2, . . . , deg v − 1.

170 VITALIY KURLIN

3.2. Stretching a hanging edge in the unordered case

This subsection shows how the presentation of a braid group of a tree changes after
stretching a hanging edge of a tree. First consider the degenerate case of stretching
a hanging edge e of the tripod T in the top left picture of Figure 8.

Example 3.3. Let H be the tree obtained by adding a hanging edge g to the hanging
vertex u of the tripod T in the top left picture of Figure 8. Namely, T = H − (g ∪ s),
where s is the only hanging vertex of g in the tree H. The complement F = H −
Nbhd(g) consists of two hanging edges distinct from e and meeting at the centre v
of the tripod T . Let us compute the braid group B(H, 2) by using B(T, 2) ∼= Z from
Example 2.2. By Lemma 2.6 the unordered space UD(H, 2) has the form

UD(H, 2) ≈ UD(H − g, 2) ∪ (F ×̃ ḡ) ≈ UD(T, 2) ∪ (T ×̃ s) ∪ (F ×̃ ḡ).

Here the two components of UD(H − g, 2) are connected by the band F ×̃ ḡ. First
apply Seifert–van Kampen Theorem 3.1 to the union UD(T, 2) ∪ (F ×̃ ḡ). Then the
fundamental group is unchanged, i.e., it is isomorphic to B(T, 2) ∼= Z. Indeed, the
union deformation retracts to UD(T, 2). Then apply the same trick taking the union
with T ×̃ s. So one gets B(H, 2) ∼= Z for the same reasons.

T s

F��g
UD(H,2):

UD(T,2)

u

a��u

(a���g)

a��s
g

v

v
1

2v

s

H:

UD(T,n), T=H-(g s)

UD(T,n-1)��s
UD(H,n):

UD(H-Nbhd(g),n-1)��g

~ ~

~

~

~
~

~

Figure 8: Stretching a hanging edge in a tree H

Proposition 3.4 below extends Example 3.3 to a general tree H. Choose an (open)
edge g ⊂ H with a hanging vertex s and vertex u of degree 2. Fix a base point:

a ∈ UD(H −Nbhd(g), n− 1) ⊂ UD(H − (g ∪ s), n− 1).

Denote by (a ×̃ ḡ) the motion from a ×̃ u to a ×̃ s in the space UD(H,n), when
n− 1 robots stay fixed at a, while one robot moves along ḡ; see the right picture of
Figure 8. Then, for a loop γ ∈ π1(UD(H −Nbhd(g), n− 1)), both loops (γ{xn = u})
and (a ×̃ ḡ)−1(γ{xn = s})(a ×̃ ḡ) pass through the base point a ×̃ u ∈ UD(H,n).

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 171

Proposition 3.4 (Stretching a hanging edge). In the notations above and for pre-
sentations π1(UD(H − (g ∪ s), n)) = ⟨α | ρ⟩ and

π1(UD(H − (g ∪ s), n− 1)) = ⟨β | λ⟩, π1(UD(H −Nbhd(g), n− 1)) = ⟨γ | µ⟩,

π1(UD(H,n)) is generated by α, (a ×̃ ḡ)(β{xn = s})(a ×̃ ḡ)−1 subject to ρ = 1,

(a ×̃ ḡ)(λ{xn = s})(a ×̃ ḡ)−1 = 1, (γ{xn = u}) = (a ×̃ ḡ)(γ{xn = s})(a ×̃ ḡ)−1.

Proof. By the recursive construction from Lemma 2.6 one has

UD(H,n) ≈ UD(H − g, n) ∪
(
UD(H −Nbhd(g), n− 1) ×̃ ḡ

)
.

Here the subspace UD(H −Nbhd(g), n− 1) ×̃ ḡ is glued to UD(H − g, n) along
UD(H −Nbhd(g), n− 1) ×̃ s and UD(H −Nbhd(g), n− 1) ×̃ u. Since g is hanging,
then H −Nbhd(g) has the two components: the hanging vertex s and the remaining
tree T = H − (g ∪ s), hence UD(H − g, n) ≈ UD(T, n) ∪ (UD(T, n− 1) ×̃ s).

Since the edge e is hanging in H − (g ∪ s) before stretching, then the complement
H −Nbhd(g) and the space UD(H −Nbhd(g), n− 1) ×̃ ḡ are connected. Adding
UD(H −Nbhd(g), n− 1) ×̃ ḡ to UD(T, n) does not change the presentation. Indeed,
the added subspace deformation retracts to UD(H −Nbhd(g), n− 1) ×̃ u.

Add UD(T, n− 1) ×̃ s meeting the union along UD(H −Nbhd(g), n− 1) ×̃ s. By
Seifert–van Kampen Theorem 3.1, to get a presentation of π1(UD(H,n)) with the
base point a ×̃ u, one adds the generators (a ×̃ ḡ)(β{xn = s})(a ×̃ ḡ)−1 and relations
(a ×̃ ḡ)(λ{xn = s})(a ×̃ ḡ)−1 coming from the group π1(UD(T, n− 1)). Add the new
relations (γ{xn = u}) = (a ×̃ ḡ)(γ{xn = s})(a ×̃ ḡ)−1 saying that the generators of
the group π1(UD(H −Nbhd(g), n− 1)) after adding the stationary robot become
homotopic through the subspace UD(H −Nbhd(g), n− 1) ×̃ ḡ.

3.3. Creating cycles in the unordered case
This subsection extends computations to graphs containing cycles. First let us

show how the braid group changes if an edge is added at two vertices of a tripod.

Example 3.5. Let G be the graph obtained from the tripod T in the top left picture
of Figure 9 by adding the edge h at the vertices r, w. By Lemma 2.6 one has

UD(G, 2) ≈ UD(G− h, 2) ∪
(
(G−Nbhd(h)) ×̃ ē

)
≈ UD(T, 2) ∪ (ē ×̃ h̄).

Geometrically the band ē ×̃ h̄ is glued to the hexagon UD(T, 2) as shown in the
bottom left picture of Figure 9. To compute the graph braid groupB(G, 2), first add to
the band ē ×̃ h̄ the motions ε, τ ⊂ UD(T, 2) connecting the base configuration u ×̃ v
to u ×̃ r, u ×̃ w, respectively. This adds a generator to the trivial fundamental group
of the contractible band ē ×̃ h̄. Second, add the union (ē ×̃ h̄) ∪ (ε ∪ τ) to UD(T, 2),
which gives UD(G, 2). The intersection of the spaces attached above has the form
(ē ×̃ r) ∪ (u ×̃ h̄) ∪ (ē ×̃ w) and is contractible. Hence B(G, 2) ∼= F2 is the free group
with two generators as the free product of B(T, 2) ∼= Z and π1((ē ×̃ h̄) ∪ ε ∪ τ) ∼= Z.

Proposition 3.6 extends Example 3.5 to a general graph excluding the case G ≈
S1. Choose an (open) edge h ⊂ G with vertices r, w such that G− h is connected.
Let G−Nbhd(h) consist of k connected components. Then UD(G−Nbhd(h), n− 1)

172 VITALIY KURLIN

e��h

e��r

e��w b r b w
UD(G-h,n)

UD(G,n) :

UD(G-Nbhd(h),n-1)��h

UD(G,2):

UD(T,2)
a

(b��h)

!
!

"
"

G�:
e

r

w

v
u h

~

~

~ ~ ~

~

~

Figure 9: Adding an edge h creating cycles

splits into subspacesUDJ(G−Nbhd(h), n− 1) indexed by J = (j1, . . . , jk) with non-
negative integer entries such that j1 + · · ·+ jk = n− 1; see similar notations before
Proposition 3.2. Fix a ∈ UD(G− h, n) and bJ ∈ UDJ(G−Nbhd(h), n− 1).

Denote by (bJ ×̃ h) ⊂ UD(G,n) the motion such that one robot goes along the
edge h from r to w, while the other robots remain fixed at the base configuration
bJ ∈ UDJ(G−Nbhd(h), n− 1); see the right picture of Figure 9. In the case k = 1,
when G−Nbhd(h) is connected, one can skip the index J . Take paths εJ , τJ going
from a to bJ ×̃ r, bJ ×̃ w, respectively, in UD(G− h, n); see Algorithm 4.3. Then
εJ(bJ ×̃ h)τ−1

J is a loop with the base point a in the space UD(G,n).

Proposition 3.6 (Adding an edge h creating cycles). Given the presentations

π1(UD(G− h, n)) = ⟨α | ρ⟩ and π1(UDJ (G−Nbhd(h), n− 1)) = ⟨βJ | λJ⟩,

the group π1(UD(G,n)) is generated by α, εJ (bJ ×̃ h)τ−1
J subject to ρ = 1 and

εJ (βJ{xn = r})ε−1
J = (εJ(bJ ×̃ h)τ−1

J) · (τJ(βJ{xn = w})τ−1
J) · (εJ(bJ ×̃ h)τ−1

J)−1.

Proof. Each of the subspaces UDJ (G−Nbhd(h), n− 1) ×̃ h̄ meets the subspace
UD(G− h, n) along UDJ (G−Nbhd(h), n− 1) ×̃ r, UDJ (G−Nbhd(h), n− 1) ×̃ w.

First add to each subspace UDJ(G−Nbhd(h), n− 1) ×̃ h̄ the union of the paths
εJ ∪ τJ as shown in Figure 9, where indices J are skipped for simplicity. The funda-
mental group of (UDJ(G−Nbhd(h), n− 1) ×̃ h̄) ∪ (εJ ∪ τJ) is isomorphic to the free
product of B(G−Nbhd(h), n− 1) and Z generated by the loop εJ (bJ ×̃ h)τ−1

J . Sec-
ond, add to UD(G− h, n) each union (UDJ (G−Nbhd(h), n− 1) ×̃ h̄) ∪ (εJ ∪ τJ).
The intersection of the spaces attached above is the union over all J of the subspaces
(
UDJ (G−Nbhd(h), n− 1) ×̃ r

)
∪ (εJ ∪ τJ) ∪

(
UDJ (G−Nbhd(h), n− 1) ×̃ w

)
.

Each space above is homotopically a wedge of two copies of UDJ(G−Nbhd(h), n−
1). By Seifert–van Kampen Theorem 3.1, express the loops εJ(βJ{xn = r})ε−1

J and
τJ(βJ{xn = w})τ−1

J generating the fundamental group of the intersection in terms of
the loops fromUD(G− h, n) and (UDJ (G−Nbhd(h), n− 1) ×̃ h̄) ∪ (εJ ∪ τJ). In the
latter space these loops are conjugated by εJ(bJ ×̃ h)τ−1

J as required, i.e., homotopic
through the subspace UDJ (G−Nbhd(h), n− 1) ×̃ h̄.

If the vector β is empty, i.e., the groups π1(UDJ(G−Nbhd(h), n− 1)) are trivial,
then no new relations are added in Proposition 3.6.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 173

4. Computing graph braid groups

Step-by-step instructions of Algorithm 1.5 are based on the technical propositions
from Section 3 and the auxiliary algorithms from Subsection 4.1. Proposition 4.8
extends the result about 2-point braid groups of graphs with only disjoint cycles [6,
Theorem 5.6] to a wider class of graphs including all light planar graphs.

4.1. A motion planning algorithm in the unordered case
Proposition 3.2 requires a collision free motion connecting two configurations of n

robots. Take a connected graph G and number its vertices. Let us work with discrete
configuration spaces assuming that at every discrete time moment all robots are at
vertices of a graph G. So in one step any robot can move to an adjacent vertex if it
is not occupied. The output contains positions of all robots at every moment.

To describe planning Algorithm 4.3 introduce auxiliary definitions and searching
Algorithms 4.1 and 4.2. A robot xi ∈ G is called extreme in a given configuration
(x1, . . . , xn) ∈ OD(G,n) if the remaining robots are in one connected component of
G− {xi}. One configuration may have several extreme robots, e.g., on a segment
there are always two extreme robots, while on a circle every robot is extreme.

Algorithm 4.1. If a graph G has l edges, then there is an algorithm of complexity
O(nl) to find an extreme robot in a configuration (x1, . . . , xn) ∈ OD(G,n).

Proof. For a robot xi, visit all vertices from a connected component of G− {xi}
remembering the robots that were seen. If not all robots were seen, then xi is not
extreme, so choose a robot xj that was visited in a component of G− {xi}. If xj

is extreme among the robots in the closure of this component G− {xi}, then xj is
extreme in the given configuration (x1, . . . , xn) ∈ OD(G,n). Hence one inevitably
finds an extreme robot, which requires not more than l steps for any candidate.

A robot xj is a neighbour of a robot xi if a shortest path from xi to xj has the
minimal number of edges among all shortest paths from xi to robots xk for k ̸= i. For
n robots on a segment each of the two extreme robots has a unique neighbour, while
on a circle each robot has two neighbours. A shortest path to a neighbour does not
contain other robots, i.e., the corresponding motion is collision free.

Algorithm 4.2. If a connected graph G has l edges, then there is an algorithm of
complexity O(l) to find a shortest path from a robot xi to one of its neighbour xj in
a given configuration of unordered robots (x1, . . . , xn) ∈ UD(G,n).

Proof. One travels on G in a ‘spiral’ way starting from xi. So first visit all vertices
adjacent to xi and check if there is another robot xj at one of them, which can be
a neighbour of xi. If not, then repeat the same procedure recursively for all these
adjacent vertices. In total, one passes through not more than l edges of G.

Algorithm 4.3. If a connected graph G has l edges, then there is an algorithm of
complexity O(n2(l + n)) that, given any two configurations of n unordered robots in
G, finds a path in the space UD(G,n) between the given configurations.

Proof. Assume that all robots are at vertices of degree 2. Otherwise subdivide edges
of the graph G and move a robot to a closest vertex of degree 2. This subdivision

174 VITALIY KURLIN

increases the number l of edges by not more than n to l + n. The initial (and final)
configuration of robots is considered as an array of vertices where the n robots are
located. During each elementary move, only one robot goes to an adjacent vertex.
The resulting configuration is represented by a new array of positions.

Step 1. Using Algorithm 4.1 of complexity O(n(l + n)), find an extreme robot in
the collection of 2n given positions (initial and final together) ordered arbitrarily.

Step 2. Assume that the found extreme robot, say yn, is from the final configura-
tion, otherwise swap the roles of initial and final positions. Using Algorithm 4.2 of
complexity O(l + n), find a shortest path from yn to its neighbour, say xn, from the
initial configuration. Then safely move xn towards yn along the shortest path without
any collisions and keeping fixed all other robots from the initial configuration.

Step 3. In the graph G remove the robot yn located at a vertex of degree 2 and
all open edges attached to yn. This removal reduces the problem to a smaller graph
with n− 1 robots. The new graph remains connected since the robot yn was extreme.
Return to Step 1 and apply the recursion n− 1 times, which gives O(n2(l + n))
operations.

In Algorithm 4.3 the quadratic complexity in the number of robots seems to be
asymptotically optimal, because avoiding collisions between n robots should involve
some analysis of their pairwise positions. Another quadratic algorithm for checking
the non-trivial topological property of basic embeddability of any finite graphs into a
product of small graphs was designed in [10]. One more algorithm of linear complexity
was found to verify whether a combinatorial code (a Gauss paragraph of several
words) encodes a classical link in 3-space [11]. Finally, Algorithm 1.5 is deterministic
up to ordering edges of G and choosing an extreme robot at every stage.

Step-by-step instructions of Algorithm 1.5
Step 1. To write down a presentation of the group B(G,n) for an arbitrary con-

nected graph G, start from from n robots on a segment subdivided into n− 1 sub-
segments. Then the configuration space UD([0, 1], n) is a single point, so B([0, 1], n)
is trivial.

Step 2. Fix a plan to construct the given graph G by adding edges to [0, 1].
Step 3. If a hanging edge is added to a vertex of degree at least 2, then follow the

rules of Proposition 3.2 to update the presentation of the braid group of the already
constructed graph. If one needs a motion to connect two configurations of n robots,
then follow the steps of motion planning Algorithm 4.3.

Step 4. If a hanging edge is added to a vertex of degree 1, then follow the rules of
Proposition 3.4 to update the presentation of the current graph braid group.

Step 5. If one adds an edge that creates a new cycle, then apply Proposition 3.6.
Every generator in the resulting group presentation is encoded by a list of successive

configurations that show where the robots are located at every discrete moment.

4.2. Two-point braid groups of graphs in the unordered case
The first part of Lemma 4.4 without computing the rank was obtained by the

global approach of Abrams [1, Corollary 3.8]. The second part was claimed in [4,
Theorems 9, 10]. Both parts easily follow from our local step-by-step computations.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 175

Lemma 4.4. For any tree H, the braid group B(H, 2) is free and has the rank∑
(deg v − 1)(deg v − 2)/2, where the sum is over all vertices of degree at least 3.

Proof. Induction on the number of edges of H. The base H ≈ [0, 1] is trivial. In the
inductive step notice that trees are contractible. Hence their fundamental groups are
trivial and for n = 2 the vectors β,γ,λ,µ (with indices) are empty in Propositions 3.2
and 3.4. The vectors ρ are also empty, because they can only come from 2-point braid
groups of smaller trees. So the braid group B(H, 2) is free. In the case n = 2 the
multiple index J in Proposition 3.2 degenerates to a single index j = 1, . . . , deg v − 1.
Then the only generators of B(H, 2) are δ1δ

−1
j , j = 2, . . . ,deg v − 1. In total, one gets

1 + 2 + · · ·+ (deg v − 2) = (deg v − 1)(deg v − 2)/2

generators after attaching all edges to each vertex v of degree deg v.

The Kuratowski graphs K5,K3,3 in Figure 2 do not satisfy Lemma 4.5. Indeed,
the complement to the neighbourhood of any edge h ∈ K5 (h ∈ K3,3, respectively) is
the triangular (rectangular, respectively) cycle intersecting any cycle C ⊃ h.

Lemma 4.5. Any light planar graph can be constructed from a tree by adding edges
as follows: an open edge h added to the new graph G creates a cycle C not meeting
any cycle from G−Nbhd(h) having all its cycles in one connected component.

Proof. A planar connected graph G is light if any cycle C ⊂ G has an edge h such
that all cycles from G− h̄ (or, equivalently, G−Nbhd(h)) do not meet C. For a given
light planar graph G, take any cycle C and the corresponding edge h. The subgraph
G− h is light planar, because G− h has fewer cycles satisfying the same condition.

G-Nbhd(h)

h

C

Figure 10: Choosing an edge h and a cycle C ⊃ h in Lemma 4.5

One can assume that all cycles of the subgraph G−Nbhd(h) are in one connected
component. Otherwise, choose another cycle from a component of G−Nbhd(h) with
a smaller number of edges; see the left-hand side picture of Figure 10, and so on
until one finds a cycle with an edge h such that G−Nbhd(h) has all its cycles in
one component. Remove edges one-by-one until the graph becomes a tree. Then the
original graph G can be reconstructed by reversing the procedure above.

The construction from Lemma 4.5 is also applicable to some non-light planar
graphs. The right picture of Figure 10 shows three stages of such a construction,
where the closed edge h̄ is dashed and the corresponding subgraph G−Nbhd(h) has
thick edges. The biggest graph fails to be light planar because of the cycle bounding
the grey triangle. For the same graph and the dashed edge h, one can choose another
cycle C that does not meet the only (triangular) cycle from G−Nbhd(h). Lemma 4.5

176 VITALIY KURLIN

implies that Corollary 1.6 for unordered robots is a particular case of more technical
Proposition 4.8, which holds for all graphs constructed as described above.

Corollary 4.6. The A-graph in the left-hand side picture of Figure 11 below has the
braid group B(A, 2) ∼= F3, the free group with three generators.

Proof. Three proofs are given below to illustrate different approaches.

1. The A-graph is obtained from the graph G in the top left picture of Figure 9
in Example 3.5 by adding the hanging edge h1 to the vertex w of degree 2.
The complement A−Nbhd(h1) ≈ [0, 1] is connected. Hence one can skip the
multiple index J and apply Proposition 3.2 to the free group B(G, 2) ∼= F2. One
adds no relations and one generator δ1δ

−1
2 since degw = 3 in the A-graph, so

B(A, 2) ∼= F3.

2. The same A-graph can also be obtained by adding the open edge h2 to the graph
H in the top left picture of Figure 8; see Example 3.3. One of the endpoints of
h2 is the vertex u ∈ H of degree 2, and the other one is the hanging vertex v1.
Apply Proposition 3.6 to compute B(A, 2) from B(H, 2) ∼= Z. The complement
A−Nbhd(h2) is not connected and consists of the closed hanging edge ḡ and
the remaining hanging vertex v2 ∈ H. Then the multiple index J takes only two
values (1, 0) and (0, 1) in Proposition 3.6, i.e., one adds no relations and two
new generators of the form εJ (b ×̃ h)τ−1

J to B(H, 2) ∼= Z. Hence one gets the
free group B(A, 2) ∼= F3 as expected.

3. Finally the A-graph can be obtained from the segment [0, 1] with vertices 0,
1/4, 1/2, 3/4, 1 by adding an open edge h3 at 1/4, 3/4. Then the complement
A−Nbhd(h3) consists of three vertices 0, 1/2, 1 ∈ [0, 1]. Hence Proposition 3.6
adds three generators without relations to the groupB([0, 1], 2) = 1, i.e.,B(A, 2)
∼= F3.

Figure 11: Choosing different edges in the A-graph and θ-graph

Corollary 4.7. The θ-graph in the right-hand side picture of Figure 11 above has the
braid group B(θ, 2) ∼= F3, the free group with three generators.

Proof. Two proofs are given below to illustrate different approaches:

1. The θ-graph is obtained from the graph G in the top left-hand side picture of
Figure 9 in Example 3.5 by adding an open edge h1 connecting the vertices
u,w ∈ G. Compute B(θ, 2) from B(G, 2) ∼= F2 by using Proposition 3.6. Then
θ −Nbhd(h1) is a single edge. No relations and one generator are added, so one
gets B(θ, 2) ∼= F3.

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 177

2. The θ-graph can also be obtained from a circle S1 with two pairs of opposite
vertices by adding an open horizontal diameter h2 at one of these pairs. Then
the complement θ −Nbhd(h2) is the other pair of the opposite vertices. Hence
the multiple index J in Proposition 3.6 takes only two values (1, 0) and (0, 1).
This adds no relations and two generators to B(S1, 2) ∼= Z, i.e., B(θ, 2) ∼= F3 as
expected.

Corollaries 4.6 and 4.7 agree with [9, Example 2.1] and [6, Example 5.2], respec-
tively, based on the discrete Morse theory. The following result extends these com-
putations to a wider class of graphs including all light planar graphs:

Proposition 4.8. Let a graph G be constructed from a tree T as in Lemma 4.5 by
adding open edges h1, . . . , hm, i.e., G1 = T ∪ h1, G2 = G1 ∪ h2, . . . , G = Gm−1 ∪ hm.
Let kj be the number of connected components of Gj −Nbhd(hj), where Gm = G.

The braid group B(G, 2) has a presentation with
m∑

j=1

kj +
∑

(deg v − 1)(deg v − 2)/2

generators subject to commutator relations, where the second sum is over all vertices
v ∈ T of degree at least 3 in the tree T . A geometric description follows:

1. At each vertex v ∈ G fix an edge e0. For any unordered pair of other edges
ei, ej at the same vertex v, j = 1, . . . , deg v − 1, one generator of B(G, 2) swaps
two robots in the tripod e0 ∪ ei ∪ ej by using the collision free motion shown in
Figure 1.

2. The remaining
∑m

j=1 kj generators of B(G, 2) represent motions when one robot
remains in a connected component of Gj −Nbhd(hj), and the other robot moves

without collisions along a cycle ĥj containing the open edge hj chosen above.

3. Each relation says that motions of two robots along disjoint cycles commute.

Proof. Computing the 2-point braid group B(G, 2) by Subdivision Theorem 1.4,
assume that G has no loops and multiple edges after removing extra trivial ver-
tices of degree 2. Induction on the first Betti number m. Base m = 0 is Lemma 4.4,
where every generator δ1δ

−1
j coming from Proposition 3.2 is represented by a loop

that swaps two robots near a vertex of degree at least 3 as shown in Figure 1.
In the inductive step from m− 1 to m, for an open edge h ⊂ G from Lemma 4.5,

let us show how a presentation of B(G, 2) differs from a presentation of B(G− h, 2)
satisfying the conditions by the inductive hypothesis. Proposition 3.6 adds motions
such that one of the two robots moves along the newly added edge h, while the other
robot remains in a connected component of G−Nbhd(h), whose index is encoded by
the place of 1 in the km-tuple index J of the form (0, . . . , 0, 1, 0 . . . , 0).

The relations λJ are trivial since n = 2 and fundamental groups of graphs are free.
By Lemma 4.5 the complement G−Nbhd(h) has all its cycles in one connected com-
ponent. Hence the generators βJ of π1(UDJ(G−Nbhd(h), 1)) are non-trivial only
for one value of the multiple index J . As required by the formula, add km generators
εJ(bJ ×̃ h)τ−1

J that, for the single value of J , conjugate the loops εJ(βJ{x2 = r})ε−1
J

and τJ (βJ{x2 = w})τ−1
J . Geometrically, εJ (bJ ×̃ h)τ−1

J represents a motion when one

robot stays away from the other robot completing a cycle ĥ ⊃ h.

178 VITALIY KURLIN

It remains to show that the loops (βJ{x2 = r}) and (βJ{x2 = w}) are homotopic,
i.e., the new relator is a commutator. Take the cycle C ⊃ h from the construction
of Lemma 4.5. Since C does not meet all cycles from G−Nbhd(h), then one can
move one robot along C − h from r to w without collisions with the other robot is
moving along the loops βJ . These loops generate the fundamental group of the single
non-contractible component of G−Nbhd(h). One gets a free homotopy from

(βJ{x2 = r}) to (βJ{x2 = w}) = (bJ ×̃ (C − h)) · (βJ{x2 = r}) · (bJ ×̃ (C − h))−1.

During the motion (bJ ×̃ (C − h)), one robot is fixed at bJ ∈ G−Nbhd(h), while
the other moves along C − h avoiding all cycles of G−Nbhd(h). In Proposition 3.6
choose the path τJ from a to bJ ×̃ w inUD(G− h, 2) so that τJ = εJ · (bJ ×̃ (C − h)).
Then the loops εJ (β{x2 = r})ε−1

J and τJ(βJ{x2 = w})τ−1
J are homotopic with the

fixed base configuration a ∈ UD(G− h, 2).

The following result agrees with [6, Example 5.4]:

Corollary 4.9. The ⊕-graph in the left-hand side picture of Figure 12 below has the
braid group B(⊕, 2) ∼= F5, the free group with five generators.

Proof. The open edge h0 ⊂ ⊕ can not appear in the construction of Lemma 4.5 since
all cycles of ⊕ through h0 meet the triangle ⊕−Nbhd(h0) at the central vertex.

The vertical radius h1 is allowed by Lemma 4.5 since ⊕−Nbhd(h1) ≈ [0, 1] is
the lower half-circle. Then Proposition 3.6 implies that B(⊕, 2) is the free product
of Z and B(⊕− h1, 2). Applying Lemma 4.5 to the subgraph ⊕− h1, choose the
remaining vertical radius h2 such that (⊕− h1)−Nbhd(h2) ≈ [0, 1] is the upper half-
circle. By Proposition 3.6 the group B(⊕− h1, 2) is the free product of Z and the
group B(⊕− (h1 ∪ h2), 2) = B(θ, 2) ∼= F3 by Corollary 4.7, hence B(⊕, 2) ∼= F5.

h
hv

h
vb

c
p q

h

h

h v

h v

1
11

4
4

0

2

2
2

3
3

Figure 12: Choosing different edges in the ⊕-graph and tree with balloons

Corollary 4.10. The graph G in the right-hand side picture of Figure 12 has the
braid group B(G, 2) that has a presentation with 11 generators and six commutator
relations.

Proof. The graph G has four loops f1, f2, f3, f4 attached at the vertices v1, v2, v3, v4,
respectively. Computing B(G, 2) by Theorem 1.4, one can subdivide each simple loop
fj into three subedges. Denote by hj ⊂ fj the middle subedge not containing vj .
Then G−Nbhd(hj) is obtained from G by removing the simple loop fj , but keeping
vj . The group B(G, 2) will be computed by removing the open edges hj .

By Lemma 4.4 for T = G− (h1 ∪ h2 ∪ h2 ∪ h3), the group B(T, 2) is free and is
generated by the seven motions s(v) swapping two robots around the seven vertices

BRAID GROUPS OF GRAPHS AND MOTION PLANNING 179

of degree 3 in T . Let ε1 be the natural path from the base configuration b ×̃ c to
b ×̃ v1. Before applying Proposition 3.6, gradually move the endpoints of h1 to the
adjacent vertex v1, then the path τ1 coincides with ε1. Attaching the open edge h1

adds no relations and the generator e1 = ε1(b ×̃ f1)ε
−1
1 representing the motion when

one robot stays at b, while the other robot goes around f1. Attaching the next open
edge h2 adds the similar generator e2 = ε2(b ×̃ f2)ε

−1
2 and one relation saying that e2

commutes with ε2(f1{x2 = v2})ε−1
2 , where ε2 is the natural path from b ×̃ c to b ×̃ v2.

Geometrically, the last loop is conjugated to e1 by the motion s(c) swapping the robots
around c, i.e., the robots go around f1, f2 without collisions: [e2, s(c)e1s(c)−1] = 1.

Attaching h3, h4 similarly adds the generators e3, e4 and [e3, s(c)e1s(c)−1] = 1,
[e3, s(p)e2s(p)−1] = [e4, s(q)e1s(q)−1] = [e4, s(c)e2s(c)−1] = [e4, s(c)e3s(c)−1] = 1.

Corollaries 4.9 and 4.10 show that Proposition 4.8 and general Algorithm 1.5 effec-
tively compute braid groups of graphs by using known results without starting from
scratch. Generalising Sections 3 and 4 to the case of ordered robots is left to the
reader.

References

[1] A. Abrams, Configuration spaces and braid groups of graphs, Ph.D. the-
sis, 2000, UC Berkeley, available at http://www.math.uga.edu/∼abrams/
research.

[2] C. Adams and R. Franzosa, Introduction to topology: pure and applied, Pearson
Prentice Hall, Upper Saddle River, NJ, 2008.

[3] R. Crowell and R. Fox, Introduction to knot theory, Springer-Verlag, New York,
1963.

[4] M. Farber, Collision free motion planning on graphs, inAlgorithmic foundations
of robotics VI, Utrecht/Zeist, 2004, MPIM2004-87.

[5] D. Farley and L. Sabalka, Discrete Morse theory and graph braid groups, Alge-
braic and Geometric Topology 5 (2005), 1075–1109.

[6] D. Farley and L. Sabalka, Presentations of graph braid groups, arXiv:
0907.2730

[7] R. Forman, Morse theory for cell complexes, Adv. Math. 134 (1998), no. 1,
90–145.

[8] R. Ghrist, Configuration spaces and braid groups on graphs in robotics, in
Knots, braids, and mapping class groups—papers dedicated to Joan S. Birman
(New York, 1988), AMS/IP Stud. Adv. Math. 24 (2000) 29–40, AMS, Provi-
dence, RI, 29–40.

[9] J.H. Kim, K.H. Ko and H.W. Park, Graph braid groups and right-angled Artin
groups, Trans. Amer. Math. Soc. 364 (2012), no. 1, 309–360.

[10] V. Kurlin, Basic embeddings into a product of graphs, Topology Appl. 102
(2000), no. 2, 113–137.

[11] V. Kurlin, Gauss paragraphs of classical links and a characterization of virtual
link groups, Math. Proc. Cambridge Philos. Soc. 145 (2008), no. 1, 129–140.

180 VITALIY KURLIN

[12] P. Prue and T. Scrimshaw, Abrams’s stable equivalence for graph braid groups,
arXiv:0909.5511.

Vitaliy Kurlin vitaliy.kurlin@durham.ac.uk

Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK

