
Resolution-independent superpixels based on1

convex constrained meshes without small angles2

Jeremy Forsythe1,2, Vitaliy Kurlin3, Andrew Fitzgibbon43

1Vienna University of Technology, Favoritenstr. 9-11 / E186, A-1040 Vienna, Austria4

2Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK5

3Computer Science department, University of Liverpool, Liverpool L69 3BX, UK6

4Microsoft Research, 21 Station Road, Cambridge CB1 2FB, UK7

Abstract. The over-segmentation problem for images is studied in the8

new resolution-independent formulation when a large image is approx-9

imated by a small number of convex polygons with straight edges at10

subpixel precision. These polygonal superpixels are obtained by refining11

and extending subpixel edge segments to a full mesh of convex polygons12

without small angles and with approximation guarantees. Another nov-13

elty is the objective error di↵erence between an original pixel-based image14

and the reconstructed image with a best constant color over each super-15

pixel, which does not need human segmentations. The experiments on16

images from the Berkeley Segmentation Database show that new meshes17

are smaller and provide better approximations than the state-of-the-art.18

1 Introduction: motivations, problem and contributions19

1.1 Spatially Continuous Model for Over-segmentation of Images20

Digital images are given by pixel values at discrete positions. Since images rep-21

resent a spatially continuous world, the reconstruction problem should be solved22

in terms of functions defined over a continuous image domain, not over a dis-23

cretization such as a regular grid. For example, grayscale values across a real24

image edge rarely drop from 255 (white) to 0 (black), but change gradually over25

2-3 pixels, see details in [1, Fig. 1]. Hence a real edge between objects is often26

not along pixel boundaries and should be considered in the infinite family of27

line segments with any slope and endpoints having real coordinates. The first28

algorithm to output subpixel edges with theoretical guarantees is LSD [2].29

The over-segmentation problem is to split an image into superpixels (larger30

than pixels and usually smaller than real objects) that have a nice shape and31

low variation of color. Traditional superpixels are formed by merging square-32

based pixels, e.g. by clustering. These superpixels often have irregular shapes33

with zigzag boundaries and holes inside. The resolution-independent approach34

[1] models a superpixel as a convex polygon with straight edges and vertices35

at subpixel resolution. Such a polygonal mesh can be rendered at any higher36

resolution by choosing a best color for each polygon in the reconstructed image.37

2 Jeremy Forsythe1,2, Vitaliy Kurlin3, Andrew Fitzgibbon4

A resulting mesh with constant colors over all polygons can be used to sub-38

stantially speed-up any higher level processing such as object detection or recog-39

nition. Fig. 1 shows that only 231 convex polygons are enough to approximate40

the original 512⇥512 image with a small reconstruction error from Definition 1.41

1.2 Energy Minimization for Resolution-Independent Superpixels42

A real image is modeled as a function I that is defined at any point of a con-43

tinuous image domain ⌦ ⇢ R2 and takes values in R (grayscale) or R3 (color44

images). We consider the function I(x) taking the same color value at any point45

x 2 ⌦ within every square pixel Bp considered as a continuous subset of ⌦. This46

function I(x) defines a piecewise constant surface over the image domain ⌦.47

Fig. 1. Left: 512 ⇥ 512 input. Middle: 275 Voronoi superpixels have nRMS⇡10.2%.
Right: 246 superpixels based on a Convex Constrained Mesh have nRMS⇡4.48%.

The reconstruction problem is to find a latent image represented by a48

function u(x) that minimizes the energy E =
RR

⌦

||I(x)� u(x)||dx+R, where R49

is a regularizer that penalizes degenerate solutions or reflects an image prior.50

The energy E will be the reconstruction error from Definition 1. Usually u(x)51

is simpler than I(x) in a certain sense. In our case u(x) will have constant values52

over geometric polygons (superpixels) that are much larger than original pixels.53

The regularizer will forbid small angles, because narrow triangles may not cover54

even one pixel, while large angles (even equal to 180�) cause no di�culties.55

So the reconstruction problem is to split a large image into a fixed number of56

polygons minimizing a di↵erence between the original image function I(x) over57

many pixels and the reconstructed image u(x) over fewer convex polygons.58

1.3 Contribution: Convex Constrained Mesh of Superpixels (CCM)59

Here are the stages of the algorithm for resolution-independent superpixels.60

1. The Line Segment Detector [2] finds line segments at subpixel resolution.61

Resolution-independent superpixels based on convex constrained meshes 3

2. The LSD output is refined to resolve line intersections and small angles.62

3. The resulting graph is extended to a triangulation without small angles.63

4. Triangles are merged in convex polygons that also have no small angles.64

5. The reconstructed image is obtained by finding the best constant color of any65

convex superpixel after minimizing the approximation error in Definition 1.66

The input of the LSD and CCM algorithms above is a grayscale image. The67

Convex Constrained Mesh (CCM) built at Stage 4 is introduced in Definition 268

and has guarantees in Theorem 5 in terms of the following parameters.69

• Min Angle is the minimum angle between adjacent edges in a final mesh.70

• Min Distance is an approximation tolerance of LSD segments by CCM edges.71

The default values are 3 pixels and 30� motivated by a similar angle bound72

in Shewchuk triangulations used at Stage 3. Here are the main contributions.73

• The new concepts of the reconstruction error (a new quality measure for74

resolution-independent superpixels not relying on ground truth segmentations)75

and a Convex Constrained Mesh (CCM) are introduced in Definitions 1–2.76

• The LSD refinement (Algorithm 3): disorganized line segments are converted77

into a planar graph well approximating the original LSD with guarantees.78

• Shewchuk’s Triangle extension (Algorithm 4): a triangulation is upgraded to a79

Convex Constrained Mesh without small angles as guaranteed by Theorem 5.80

• The experiments on BSD [3] in section 4 show that CCM have smaller sizes81

and reconstruction errors than other resolution-independent superpixels, also82

achieving similar benchmark results in comparison with traditional superpixels.83

2 Pixel-based and Resolution-Independent Superpixels84

A pixel-based image is represented by a lattice L whose nodes are in a 1–185

correspondence with all pixels, while all edges of L represent adjacency relations86

between pixels. Usually each pixel is connected to its closest 4 or 8 neighbors.87

The seminal Normalized Cuts algorithm by Shi and Malik [4] finds an optimal88

partition of L into connected components, which minimizes an energy taking into89

account all nodes of L. The algorithm by Felzenszwalb and Huttenlocher [5] was90

faster, but sometimes produced superpixels of irregular sizes and shapes as found91

by Levinstein at el. [6]. The Lattice Cut algorithm by Moore et al. [7] guarantees92

that the final mesh of superpixels is regular like the original grid of pixels. The93

best quality in this category is achieved by the Entropy Rate Superpixels (ERS)94

of Lie et al. [8] minimizing the entropy rate of a random walk on a graph.95

The Simple Linear Iterative Clustering (SLIC) algorithm by Achanta et al. [9]96

forms superpixels by k-means clustering in a 5-dimensional space using 3 colors97

and 2 coordinates per pixel. Because the search is restricted to a neighborhood98

of a given size, the complexity is O(kmn), where n and m are the numbers of99

pixels and iterations. This gives an average time of 0.2s per BSD500 image.100

4 Jeremy Forsythe1,2, Vitaliy Kurlin3, Andrew Fitzgibbon4

SEEDS (Superpixels Extracted via Energy-Driven Sampling) by Van den101

Bergh et al. [10] seems the first superpixel algorithm to use a coarse-to-fine102

optimization. The colors of all pixels within each fixed superpixel are put in bins,103

usually 5 bins for each color channel. Each superpixel has the associated sum104

of deviations of all bins from an average bin within the superpixel. This sum is105

maximal for a superpixel whose pixels have colors in one bin. SEEDS iteratively106

maximizes the sum of deviations by shrinking or expanding superpixels.107

Almost all past superpixels have no geometric or topological constraints, only108

in a soft form of a regularizer [11]. If a final cluster of pixels in SLIC is discon-109

nected or contains holes, post-processing is needed. TopoCut [12] by Chen et al.110

has a hard topological constraint in a related problem of image segmentation.111

The key limitation of pixel-based superpixels is the fixed resolution of an112

original pixel grid. Resolution-independent superpixels are the next step in ap-113

proximating images by polygons whose vertices have any subpixel precision.114

The only past resolution-independent superpixels by Duan and Lafarge [13]115

and new CCM superpixels use constrained edges from the LSD algorithm of116

Grompone von Gioi et al. [2], which outputs thin rectangles such that the color117

substantially changes at their long middle lines, see Fig. 3. The parameters are118

a tolerance ⌧ for angles between gradients and a threshold " for false alarms.119

Voronoi superpixels [13] are obtained by splitting an image into Voronoi faces120

whose centers are chosen along LSD edges. The natural input would be a set121

of centers, however the algorithm first runs LSD [2] and then chooses centers122

on both sides of LSD edges. So the edges were soft constraints without proved123

guarantees yet. By Theorem 5 all given edges are a hard constraint for CCMs.124

A Shewchuk triangulation is produced by the state-of-the-art Triangle soft-125

ware [14] that guarantees a lower bound (as large as 28�) for all angles. A Convex126

Constrained Mesh introduced in Definition 2 extends a Shewchuk triangulation127

to a mesh of convex polygons that also have no small angles by construction.128

3 A Convex Constrained Mesh (CCM) with Guarantees129

A superpixel in Definition 1 can be a union of square pixels or any polygon.130

Definition 1 Let an image I have n pixels, each pixel be the 1⇥1 square Bp and

have Intensity(p) 2 [0, 255]. Let I be split in superpixels Fj (polygons or unions

of pixels) with Color(Fj) 2 [0, 255], j = 1, . . . , s. The Reconstruction Error is

RE = min
X

pixels p

⇣
Intensity(p)�

sX

j=1

Area(Bp \ Fj)Color(Fj)
⌘2

, (1a)

where the minimum is over all Color(Fj), j = 1, . . . , s. The internal sum in RE
is small, because each square Bp non-trivially intersects only few superpixels Fj,

so the intersection Area(Bp \ Fj) is almost always 0 (when Bp is outside Fj)

Resolution-independent superpixels based on convex constrained meshes 5

or 1 (when Fj covers Bp). For a fixed splitting I = [s
j=1Fj, the function RE

quadratically depends on Color(Fj), which are found from a linear system.

The normalized Root Mean Square is nRMS =

r
RE

n
· 100%

255
. (1b)

The reconstructed image is the superpixel mesh with all optimal Color(Fj) min-131

imizing nRMS. This colored mesh can be rendered at any resolution, see Fig. 2.132

In Definition 1 if a superpixel Fj is a union of square pixels, then Area(Bp\Fj)133

is always 0 or 1, so the optimal Color(Fj) is the mean color of all pixels in Fj .134

Fig. 2. Left: 589 Voronoi superpixels (mesh and reconstruction) have nRMS ⇡ 9.22%.
Right: 416 CCM superpixels (red mesh and reconstruction) have nRMS ⇡ 6.32%

Another important motivation for the new CCM superpixels is in Fig. 2,135

where the reconstructed image from Definition 1 in the second picture is consid-136

ered as the input for any higher level processing. Since boundaries of a Voronoi137

mesh may not well approximate constrained edges, the reconstructed image may138

miss long thin structures, such as legs of a camera tripod in Fig. 2.139

Definition 2 Let G be a planar straight line graph with angles at least '  60�.140

A Convex Constrained Mesh CCM(G) is a piecewise linear complex such that141

(2a) CCM(G) has convex polygons with angles � Min Angle = arcsin

✓
1p
2
sin

'

2

◆
;142

143

(2b) the graph G is covered by the edges of the Convex Constrained Mesh CCM(G).144

Any Shewchuk triangulation is an example of a Convex Constrained Mesh.145

However, Definition 2 allows general meshes of any convex polygons without146

small angles. We build CCM by converting the LSD output in Algorithm 3 into147

a planar graph G without self-intersections and then by extending G into a148

polygonal mesh without small angles. All steps below are needed to satisfy main149

Theorem 5. Subsection 4.1 confirms that CCMs are smaller than past meshes.150

Algorithm 3 We convert disorganised line segments with self-intersections from151

the LSD output into a straight line graph as follows, see details in [15].152

6 Jeremy Forsythe1,2, Vitaliy Kurlin3, Andrew Fitzgibbon4

(3.1) When a segment almost meets another segment (within the o↵set parameter153

Min Distance = 3 pixels), we extend the first one to a proper intersection .154

(3.2) When two segments almost meet (endpoints within Min Distance), we ex-155

tend both to the intersection to avoid small angles/triangles in Algorithm 4.156

(3.3) When segments meet, we insert their intersection as a vertex in the graph.157

Algorithm 4 We extend a graph G from Algorithm 3, see details in [15].158

(4.1) The Triangle [14] extends the constrained edges of the graph G to a trian-159

gulation that has more edges, no angles smaller than Min Angle = 30�.160

(4.2) We merge adjacent faces along their common edge e if the resulting face is161

still convex. If two new angles at the endpoints of e are almost convex, we try to162

perturb them within Min Distance to guarantee convexity and no small angles.163

(4.3) We collapse unconstrained edges if all constrained edges remain fixed.164

The steps above guarantee no small angles in CCM. Theorem 5 is proved in [15].165

Theorem 5 Let line segments S1, . . . , Sk have m intersections. Algorithm 3166

builds a CCM in time O((k +m) log(k +m)) so that167

(5a) any internal angle in a CCM face is not smaller than Min Angle;168

(5b) the union [iSi is covered by the Min Distance-o↵set of the CCM’s edges.169

4 Experimental Comparisons and Conclusions170

The sizes and reconstruction errors of the CCM and Voronoi superpixels are171

compared in subsections 4.1 and 4.2. Then two more superpixel algorithms SLIC172

[9] and SEEDS [10] are also included into BSD benchmarks in subsection 4.3.173

4.1 Sizes of CCMs, Shewchuk’s Triangulations and Voronoi meshes174

The first picture in Fig. 3 is the original LSD output. The second picture shows175

the graph G obtained by the LSD refinement in Algorithm 3. The refined LSD176

output has more edges than the original LSD, because we include boundary177

edges of images and also intersection points, which become vertices of graphs.178

We use � = 30� for the LSD refinement, which leads to Min Angle ⇡ 10.5� in179

Shewchuk’s Triangle [14]. We compare Shewchuk triangulations on the original180

LSD output and CCM on the refined LSD output in Fig. 3, where the 3rd181

picture shows a zoomed-in green box with many tiny triangles. The final picture182

in Fig. 3 contains only few faces after merge operations in Algorithm 4. The183

ratio of Shewchuk triangles to the number of faces in CCMs across BSD is 7.6.184

The first step for Voronoi superpixels [13] is to post-process the LSD output185

when close and near parallel lines are removed, because the target application186

was satellite images of urban scenes with many straight edges of buildings. Then187

long thin structures such as legs of a camera tripod in Fig. 3 are represented188

only by one edge and may not be recognized in any further processing.189

Resolution-independent superpixels based on convex constrained meshes 7

Fig. 3. Top left: 259 LSD red middle segments in blue rectangles before the refinement
in Algorithm 3. Bottom left: the refined LSD output (a graph G) with 294 edges.
Top middle: Shewchuk triangulation T (G) with 2260 triangles. Bottom middle: the
Convex Constrained Mesh CCM(G) with 416 faces. Top right: zoomed in green box
with tiny triangles. Bottom right: zoomed in green box, all tiny triangles are merged.

That is why the LSD refinement in section 3 follows another approach and190

o↵ers guarantees leading to Theorem 5. Table 1 displays the average ratios of191

face numbers over BSD images. Even when the parameter Eps Radius of Voronoi192

superpixels is increased to 12, these ratios converge to a factor of about 3.25.193

4.2 Approximation Quality of the CCM and Past Superpixels194

Since the aim of superpixels is to approximate a large image by a reconstructed195

image based on a smaller superpixel mesh, the important quality is the standard196

statistical error nRMS over all pixels, which is introduced in Definition 1.197

Table 1. Ratios of the face numbers for CCM and Voronoi meshes on the same LSD
edges, averaged across BSD images [3]. The parameter Eps Radius is in pixels.

Eps Radius of a superpixel 4 5 6 7 8 9 10 11 12

Mean
Voronoi superpixels [13]
number of faces in CCM

8.91 6.21 4.86 4.03 3.96 3.43 3.27 3.27 3.26

8 Jeremy Forsythe1,2, Vitaliy Kurlin3, Andrew Fitzgibbon4

Fig. 4. The normalized Root Mean Squares in percents for Voronoi and CCM super-
pixels (on the left), SLIC and SEEDS (on the right) averaged over BSD500 images.

Fig. 5. Left: 791 Voronoi superpixels (mesh and reconstruction) with nRMS ⇡8.45%.
Right: 791 CCM superpixels (red mesh and reconstruction) with nRMS ⇡7.22%.

Fig. 4 shows that the reconstructed images of CCM superpixels better ap-198

proximate original images than Voronoi superpixels. Some convex polygons of199

CCMs are much larger than Voronoi superpixels, simply because the correspond-200

ing regions in images indeed have almost the same intensity, e.g. the sky. Hence201

taking the best constant color over each superpixel is reasonable.202

Voronoi superpixels have similar sizes, because extra centers are added to203

empty regions using other non-LSD edges. Despite CCMs being obtained from204

only LSD edges without using colors, the reconstructions have smaller errors in205

comparison with Voronoi meshes containing more superpixels in Fig. 5.206

Fig. 4 confirms smaller approximation errors of CCM superpixels across all207

BSD500 images, where we used the same LSD parameters for CCM and Voronoi208

superpixels. For all superpixels, we computed optimal colors minimizing the209

reconstruction error and measured nRMS in percents, see Definition 1.210

Each BSD experiment outputs 500 pairs (number of faces, nRMS). We aver-211

age each coordinate of these pairs and output a single dot per experiment. The212

first red dot at (377.1, 9.626%) in Fig. 4 means that CCMs have 377 faces and an213

Resolution-independent superpixels based on convex constrained meshes 9

approximation error of 9.6% on average. For a fixed image, the LSD algorithm214

outputs roughly the same number of edges for all reasonable parameters ⌧, ".215

So smaller CCMs seem impossible, because all LSD edges are hard con-216

straints, while all faces should be convex. To get larger CCMs, we stop merging217

faces in Algorithm 4 after getting a certain number of convex faces. The five218

experiments on Voronoi superpixels with Eps Radius = 7, 8, 9, 10, 11 produced 5219

dots along a decreasing curve. Fig. 4 implies that Voronoi meshes require more220

superpixels (507.3 on average) to achieve the similar nRMS = 9.696%.221

4.3 Standard Benchmarks for CCM and Past Superpixels222

The benchmarks BR and CUE are designed for pixel-based superpixels and use223

human segmentations from BSD [3], see details in [15]. We discretize CCM and224

Voronoi superpixels by drawing lines in OpenCV to detect boundary pixels. We225

put all pixels into one superpixel if their centers are in the same polygon.226

It is unfair to compare discretized resolution-independent superpixels and227

pixel-based superpixels on benchmarks designed for the latter superpixels. CCM228

achieves smaller undersegmentation errors than SEEDS/SLIC and most impor-229

tantly beats Voronoi superpixels on the objective nRMS as well as on BR.230

Fig. 6. Left: Boundary Recall (BR). Right: Corrected Undersegmentation Error.

Pixel-based superpixels SLIC and SEEDS achieve better results on nRMS231

and Boundary Recall (BR) in Fig. 6, because their superpixels can have irregular232

boundaries (of only horizontal and vertical edges). However, humans are more233

likely to sketch straight edges than boundaries consisting of short zigzags.234

So irregular pixel-based superpixels are often split by straight ground truth235

boundaries. Resolution-independent superpixels are convex polygons with straight236

edges and are expected to have smaller undersegmentation errors in Fig. 6.237

10 Jeremy Forsythe1,2, Vitaliy Kurlin3, Andrew Fitzgibbon4

Since only a Windows demo is available for Voronoi superpixels [13], we238

couldn’t directly compare the running times of resolution-independent superpix-239

els. We worked on a di↵erent platform and confirm that the running time for240

the CCM on a laptop with 8G RAM is about 0.15s across BSD500 images.241

The key contribution is the new concept of a Convex Constrained Mesh242

(CCM), which extends any constrained line segments to a mesh of convex poly-243

gons without small angles. The paper focused on the quality of CCM superpixels,244

which seem ideal for detecting long thin structures in urban scenes, see Fig. 2.245

• Theorem 5 guarantees the approximation quality and no small angles in CCMs,246

which also have smaller sizes on the same input in comparison with [14], [13].247

• The CCM outperforms the only past algorithm [13] for resolution-independent248

superpixels on BR (Boundary Recall) and the new error nRMS in Fig. 4, and249

even outperforms pixel-based superpixels on the CUE benchmark in Fig. 6.250

The first author was supported by the project FWF P24600-N23 at TU Wien.251

References252

1. Viola, F., Fitzgibbon, A., Cipolla, R.: A unifying resolution-independent formula-253

tion for early vision. In: Proceedings of CVPR. (2012) 494–501254

2. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a line255

segment detector. Image Processing On Line 2 (2012) 35–55256

3. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical257

image segmentation. Transactions PAMI 33 (2011) 898–916258

4. Shi, J., Malik, J.: Normalized cuts and image segmentation. Transactions PAMI259

22 (2000) 888–905260

5. Felzenszwalb, P., Huttenlocher, D.: E�cient graph-based image segmentation. Int261

J Computer Vision 59 (2004) 167–181262

6. Levinshtein, A., Stere, A., Kutulakos, K., Fleet, D., Siddiqi, K.: Turbopixels: fast263

superpixels using geometric flows. Transactions PAMI 31 (2009) 2290–2297264

7. Moore, A., Prince, S., Warrell, J.: Lattice cut – constructing superpixels using265

layer constraints. In: Proceedings of CVPR. (2010) 2117–2124266

8. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel267

segmentation. In: Proceedings of CVPR. (2011) 2097 – 2104268

9. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic super-269

pixels compared to state-of-the-art superpixel methods. T-PAMI 34 (2012)270

10. Van de Bergh, M., Boix, X., Roig, G., Van Gool, L.: Seeds: superpixels extracted271

via energy-driven sampling. Int J Computer Vision 111 (2015) 298–314272

11. Veksler, O., Boykov, Y., Mehrani, P.: Superpixels and supervoxels in an energy273

optimization framework. In: Proceedings of ECCV. (2010) 211–224274

12. Chen, C., Freedman, D., Lampert, C.: Enforcing topological constraints in random275

field image segmentation. In: Proceedings of CVPR. (2011) 2089–2096276

13. Duan, L., Lafarge, F.: Image partitioning into convex polygons. In: Proceedings277

of CVPR (Computer Vision and Pattern Recognition). (2015) 3119–3127278

14. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation.279

Computational Geometry: Theory and Applications 22 (2002) 21–74280

15. Forsythe, J., Kurlin, V., Fitzgibbon, A.: Resolution-independent superpixels based281

on convex constrained meshes (full version) (2016) http://kurlin.org.282

10

A Planar Graphs and Voronoi Meshes

To avoid any confusion, we continue numbering all definitions, figures and pages
as in the paper. Definition 6 introduces the convenient concept of a PL complex

that formally covers all essential cases including

• our input (a set of points and constrained line segments);

• any PSLG (a planar straight line graph) as defined in [1];

• Steiner Delaunay [2] and Shewchuk triangulations [1];

• our final output (a Convex Constrained Mesh CCM).

Definition 6 [2, Def 2.8] A piecewise linear (PL) complex C is a finite set of

vertices, edges and polygons (faces) such that

• if C contains an edge e, then C contains both endpoints of e;

• the boundary of any face is a union of edges from C;

• edges from C can meet only at their common endpoint;

• faces from C can share only common edges and vertices.

The domain |C| ⇢ R2
of the PL complex C is the area covered by all vertices,

edges and faces of C. If C has no faces, we call C a graph or a Planar Straight
Line Graph (PSLG) [1].

A PL complex C can consist of disconnected line segments. Definition 7
extends C using extra vertices (called Steiner points) to a full triangulation T .
All edges of C (possibly subdivided in T) will be called constrained, all other
edges of T are unconstrained.

Definition 7 [2, Def 2.15] A Steiner constrained Delaunay triangulation of a

complex C is a PL complex SDT(C) such that

(7a) SDT(C) has only triangular faces and covers |C| ⇢ R2
,

(7b) if all edges of C are opaque, for any triangle T , the open circumdisk of T
has no vertices of C visible from the interior of T .

Condition (7a) means that all faces of C are subdivided into triangles. An
edge of C can be subdivided into shorter edges and the domain of SDT(C)
may not be convex. Condition (7b) guarantees that SDT(C) contains only nice
triangles, e.g. a quadrilateral in Fig. 7 should be split by a shorter diagonal
rather than a longer one.

If a PL complex C is a finite set of points, then SDT(C) is a classical Delaunay
triangulation, which is dual to the Voronoi mesh below. Let d be the Euclidean
distance. For a set S ⇢ R2, let d(p, S) = inf{ d(p, q) : q 2 C } be the distance
from a point p to S.

Definition 8 For a set of points C = {p1, . . . , pn}, the Voronoi face V (p
i

) =
{q 2 R2 : d(q, p

i

)  d(q, C � p
i

)} is the closed neighborhood of p
i

consisting of

11

Fig. 7. Left: the yellow open circumdisk of the triangle T contains a vertex v. Middle:
the circumdisk of T contains no vertices, both triangles belong to SDT(C). Right: the
top and bottom Voronoi faces are adjacent, so their centers are connected by e.

points q 2 R2
that are non-strictly closer to the site p

i

than to other points of

C � p
i

. The splitting V (p1) [· · · [V (p
n

) is the Voronoi mesh, see Fig. 7.

Then a Delaunay triangulation DT(C) on the vertex set C has

• an edge between p
i

, p
j

if the faces V (p
i

) \ V (p
j

) 6= ;,
• a triangle on p

i

, p
j

, p
k

if V (p
i

), V (p
j

), V (p
k

) share a point.

B Refinement of the Line Segment Detector (LSD)

The input for the LSD algorithm [3] is a grayscale image. The output is an
unordered set of thin rectangles in the plane. We consider only the long middle
lines of these rectangles as the red constrained edges and also add the boundary
edges of the whole image, for example, see the top left picture in Fig. 3.

The resulting red segments may intersect each other, go outside the boundary
of the image or form small angles. Sections B.1–sub:split-segments describe how
to refine the LSD output and get a graph G without angles smaller than a given
bound '.

We define the strength of a line segment S as +1 if S is on the boundary of
the image, else the strength is the length of S. We apply each of the refinements
to line segments ordered by their strength. So the order of refinements is not
random and depends only on line segments that were detected by LSD.

In each of subsections B.1–B.3 all the listed steps below are performed in one
go for every pair of line segments from the original LSD output.

B.1 Extending Segments to Line-Segment Intersections

If an endpoint v of one segment is very close to another segment, then a Shewchuk
triangulation will have many tiny triangles at the vertex v to avoid small angles.
The steps below resolve this singular case by inserting a proper intersection.

Step (B.1a) For any straight segment S1, we take the infinite line L(S1) through
S1, see Fig. 8. We find all segments S2 intersecting the two rays L(S1)� S1.

12

Step (B.1b) Among all intersection points of S2 and L(S1) � S1, we choose
a point p closest to an endpoint of S1. This choice of p guarantees that if we
extend S1 to p, then no new intersections with other segments are created. The
steps below work similarly for the intersection closest to another endpoint of S1.

Fig. 8. Left: extend S1 to p = L(S1)\S2. Right: extend S1, S2 to p = L(S1)\L(S2).

Step (B.1c) If d(p, S1) > Min Distance, we stop considering p. Otherwise we
find the acute angle ✓ between L(S1) and S2. If ✓ � ', we extend S1 to the new
vertex p, which splits S2 into two new segments, see the left hand side picture
of Fig. 8. If any of these new segments within S2 is shorter than Min Distance,
we remove this segment together with its endpoint di↵erent from p.

Fig. 9. Left: shorten a segment S1 to the new endpoint q with d(q, S2) = Min Distance.
Right: shorten a segment S1 away from S2 to avoid a small angle ✓ < ' between S1, S2.

Step (B.1d) If ✓ < ', we find a point q 2 S1 with d(q, S2) = Min Distance. If
q exists, we shorten S1 to the new endpoint q, see Fig. 9. Otherwise we remove
the whole segment S1, because S1 is covered by the Min Distance-o↵set of S2.

B.2 Extending Segments to Line-Line Intersections

If two segments don’t intersect as in subsection B.1, but have very close end-
points, we again avoid tiny triangles later inserting a proper intersection.

Similarly to Step (B.1), we find intersection points within Min Distance. Now
we take the intersection of the infinite lines L(S1) and L(S2) outside S1, S2.

Step (B.2a) For a segment S1, we consider the infinite line L(S1) through S1,
and the lines L(S2) through all the other segments. Then we find all segments
S2 such that either of the rays L(S1)� S1 meets one of the rays L(S2)� S2.

Step (B.2b) Among all intersections of L(S1) � S1, L(S2) � S2, we choose a
point p closest to an endpoint of S1, do Step (B.2c) for both endpoints of S1.

Step (B.2c) If d(p, S1) < Min Distance and d(p, S2) < Min Distance, we find
the acute angle ✓ between L(S1) and L(S2). If the angle ✓ � ', we extend S1

13

and S2 to the new vertex p, see Fig. 8. If the angle ✓ < ', we move the endpoint
of the weaker segment to a point q such that d(q, S2) = Min Distance, see Fig. 9.

B.3 Splitting Line Segments at Intersection Points

Many segments in the LSD output may actually intersect, so the steps below
insert this intersection point to get a planar graph without self-intersections.

Step (B.3a) For each pair of segments S1, S2, we check if S1, S2 intersect at
a point p that is internal to both S1, S2. If a new segment is shorter than
Min Distance, we remove it together with its endpoint di↵erent from p, see
Fig. 10.

Fig. 10. Removing new segments and collapsing segments shorter than Min Distance.

Step (B.3b) Let ✓ be the smallest angle between the remaining segments (also
denoted by S1, S2) with the common endpoint p. If ✓ � ', we stop considering
the point p. The steps below similarly work for the symmetric angle ✓ at p.

Step (B.3c) If ✓ < ', we shorten the weaker segment S1 to make the distance
d(S1, S2) = Min Distance as in (B.1d), see the right hand side picture of Fig. 9.

Step (B.3d) We collapse any isolated edge shorter than Min Distance to its
mid-point and remove all non-isolated edges shorter than Min Distance, see
Fig. 10.

B.4 Approximation guarantees for the LSD refinement

We further justify all the steps in subsections B.1–B.3 by the following result.

Lemma 9 Let line segments S1, . . . , Sk

have m intersections. The LSD re-

finement described in Appendix B outputs a planar straight line graph G with

O(k +m) edges in time O((k +m) log k) such that

(9a) any angle in the graph G between adjacent edges is not smaller than ';

(9b) the union [
i

S
i

of segments is covered by the Min Distance-o↵set of G.

Proof. Due to subsection B.3, all final segments meet only at their endpoints. A
line segment may intersect any other segment only once. Any new intersection
may generate 2 extra segments, so G has at most O(k +m) edges.

There are m = O(k2) intersections of k segments in the worst case. In prac-
tice, any segment S detected by LSD meets at most two segments, only one near
each endpoint of S, so m = O(k). The output-sensitive swipe line algorithm [4,

14

chapter 2] finds all intersections between segments in time O((k+m) log k) and
can be extended to line-segment intersections in Step (B.1a).

Steps (B.1d), (B.3c) guarantee that all angles are not smaller than '. A
segment S1 can become longer by at most Min Distance in Step (B.1c) and
shorter in Steps (B.1d), (B.2c), (B.3c), (B.3d). The removed part of S1 is in the
Min Distance-o↵set of a stronger segment S2, which can’t be shortened later. ut

C A Convex Constrained Mesh Without Small Angles

C.1 Fast Shewchuk Triangulations Without Small Angles

Any planar straight line graph G ⇢ R2 can be the input for Shewchuk’s Trian-
gle code [1]. The output is a Steiner constrained Delaunay Triangulation T (G)
without small angles.

Theorem 10 [1, Theorem 12] For a planar straight line graph G having n ver-

tices and no angles smaller than '  60�, in time O(n log n) one can build a tri-

angulation T (G) without angles smaller than Min Angle = arcsin

✓
1p
2
sin

'

2

◆
.

If ' = 60�, then Min Angle = arcsin

✓
1p
2
sin

'

2

◆
⇡ 20.7�. If a graph G has

angles smaller than Min Angle, they are preserved in a Shewchuk triangulation.
So the LSD refinement in section B is needed to prove main Theorem ?? later.

The existing edges of G are constrained and drawn in red. The newly added
edges of T (G) are unconstrained and drawn in blue. We use OpenMesh [5] to
store T (G) and then merge triangles into convex faces as described below.

C.2 Simple and Advanced Merge Operations to Get Convex Faces

Here we process unconstrained edges of the mesh in the decreasing order of
length. The steps below are motivated by the aim to simplify the polygonal
mesh and get a smaller number of superpixels keeping them convex.

Fig. 11. Left: a simple merge by removing an unconstrained edge e between two faces if
the new larger face is convex. Right: an advanced merge by removing an unconstrained
edge e between two faces if each of its endpoints can be resolved by Step (C.2b)
or (C.2c).

15

Step (C.2a) For each unconstrained edge e, we find 4 angles ✓1, ✓2, ✓3, ✓4 along
the edge e at its endpoints, see Fig. 11. The four edges di↵erent from e in Fig. 11
are black, because they can have any type (constrained or unconstrained).

Step (C.2b) If ✓1 + ✓2  180� and ✓3 + ✓4  180�, the convexity is preserved
at both endpoints of e, so we remove e and the new larger face is convex.

If one of the angles ✓1 + ✓2, ✓3 + ✓4 in Step (C.2b) is greater than 180�, the
simple merge operation along the edge e leads to a non-convex face. Then we try
to make the triangular cut in Step (C.2c) without disturbing constrained edges.

Step (C.2c) Assume that ✓1 + ✓2 > 180� at the vertex v in Fig. 11, and
both edges e1, e2 are unconstrained. Then we try replacing e1 [e2 by the new
unconstrained edge connecting v1, v2 in the last picture of Fig. 11. If no angle
becomes smaller than Min Angle or larger than 180�, then this triangular cut is
successful.

Step (C.2d) If all angles are in [Min Angle, 180�] after removing the edge e in
Fig. 11, we finish Step (C.2c), else we reverse Step (C.2c) to avoid small angles.

After Step (C.2d) we check if any new edges can be removed by simple merge
operations, which further simplifies the mesh. Finally, at any degree 2 vertex with
the 180� angle, we replace two adjacent edges by one longer straight edge.

C.3 Collapsing unconstrained edges for a further simplification

We process unconstrained edges of the mesh in the increasing order of length.
Both endpoints of any constrained edge are called fixed vertices. We will perturb
only non-fixed vertices whose all incident edges are non-constrained.

Step (C.3a) If an endpoint v of an unconstrained edge e is not fixed, we try to
collapse the edge e from the endpoint v towards the opposite endpoint w.

Step (C.3b) If any of the faces around the vertex w is non-convex or has an
angle smaller than Min Angle, we cancel this collapse and consider the opposite
edge directed from w to v, or the next edge from the ordered list above.

If e belongs to a triangle, this triangle also collapses, which reduces the
number of faces without a↵ecting constrained edges. The average decrease of
the number of faces due to collapses above is 10% across BSD500 images.

C.4 Guarantees for a Convex Constrained Mesh CCM

The following result again justifies all the steps in subsections C.2–C.3.

Lemma 11 For any planar straight line graph G with n vertices and without

angles smaller than '  60�, in time O(n log n) one builds CCM(G) such that

(11a) CCM(G) has no angles ✓ < Min Angle = arcsin

✓
1p
2
sin

'

2

◆
;

(11b) the graph G is fully covered by the edges of CCM(G).

16

Proof. Theorem 10 guarantees no small angles in T (G) built in time O(n log n).
All steps in section C check that CCM(G) has no angles ✓ < Min Angle. All
edges of G are kept by the merge operations, so the edges of CCM cover G. ut

Proof of Theorem 3. Lemma 9 in time O((k+m) log k) builds a planar straight
line graph G with O(m) vertices and angles � ' = 2arcsin(

p
2 sinMin Angle).

Lemma 11 in time O(n log n) for n = O(k +m) builds CCM(G) without angles

smaller than arcsin

✓
1p
2
sin

'

2

◆
= Min Angle. Now conditions (9b) and (11b)

imply (3b). ut

D Benchmarks based on Ground Truth Segmentations

The Berkeley Segmentation Database BSD500 [6] has 500 images widely used
for evaluating segmentation algorithms due to human-sketched ground truth
boundaries. For an image I, let I = [G

j

be a segmentation into ground truth
regions and I = [k

i=1Si

be an oversegmentation into superpixels produced by
an algorithm. Each quality measure below compares the superpixels S1, . . . , Sk

with the best suitable ground truth for every image from BSD500.

Let G(I) = [G
j

be the union of ground truth boundary pixels and B(I) be
the set of boundary pixels produced by a superpixel algorithm. For a distance
" in pixels, the Boundary Recall BR(") is the ratio of ground truth boundary
pixels p 2 G(I) that are within 2 pixels from the superpixel boundary B(I).

The Undersegmentation Error UE =
1

n

X

j

X

Si\Gj 6=;

|S
i

�G
j

|

was often used in the past, where |S
i

�G
j

| is the number of pixels that are in S
i

,
but not in G

j

. However a superpixel is fully penalized when S
i

\ G
j

is 1 pixel,
which required ad hoc thresholds, e.g. the 5% threshold |S

i

�G
j

| � 0.05|S
i

| by
Achanta et al. [7], or ignoring boundary pixels of S

i

by Liu et al. [8].

Van den Bergh et al. [9] suggested the more accurate measure, namely

the Corrected Undersegmentation Error CUE =
1

n

X

i

|S
i

�G
max

(S
i

)|,

where G
max

(S
i

) is the ground truth region having the largest overlap with S
i

.
Neubert and Protzel [10] introduced the Undersegmentation Symmetric Error

USE =
1

n

X

j

X

Si\Gj 6=;

min{in(S
i

), out(S
i

)}, where

in(S
i

) is the area of S
i

inside G
j

, out(S
i

) is the area of S
i

outside G
j

.

The Achievable Segmentation Accuracy ASA =
1

n

X

i

max
j

|S
i

\G
j

|.

17

If a superpixel S
i

is covered by a ground truth region G
j

, then |S
i

\G
j

| = |S
i

|
is the maximum value. Otherwise max

j

|S
i

\ G
j

| is the maximum area of S
i

covered by the most overlapping region G
j

. If we use superpixels for the higher
level problem of a semantic segmentation, then ASA is the upper bound on the
number of pixels that are wrongly assigned to final semantic regions.

Fig. 12, 13, 14 show more details of buulding CCMs.

Fig. 12. Top left: the initial LSD output with 154 blue thin rectangles and red middle
line segments before the refinement in section 3. Bottom left: the refined LSD output
(a graph G) with 184 edges. Top middle: Shewchuk’s triangulation SDT(G) with 1645
triangles on the red graph G in the bottom left picture. Top right: zoomed in green
box with small triangles. Bottom middle: the Convex Constrained Mesh CCM(G)
with 275 faces. Bottom right: zoomed in green box, all small triangles are merged.

E Augmentation Problems for Planar Graphs

Building a constrained mesh can be considered as a new augmentation problem
for a planar graph [11]. Specifically, detected edges in an image are augmented
to a polygonal mesh under the new constraint that small angles are forbidden.

A typical augmentation problem is to extend a set of disjoint straight seg-
ments in R2 to a planar graph satisfying some properties as in [12]. One approach

18

Fig. 13. Top left: the initial LSD output with 524 blue thin rectangles and red middle
line segments before the refinement in section 3.Top middle: Shewchuk’s triangulation
SDT(G) with 3906 triangles on the red graph G in the bottom left picture. Top right:
zoomed in green box with small triangles. Bottom left: the refined LSD output (a
graph G) with 556 edges. Bottom middle: the Convex Constrained Mesh CCM(G)
with 791 faces. Bottom right: zoomed in green box, all small triangles are merged.

is to extend n disjoint straight segments (in any order) to infinite lines until they
first meet another segment or line, which produces at most n+1 convex polygons
[11]. In practice, endpoints of segments are not in general position. Moreover,
near parallel segments lead to small angles and very narrow faces. Hence our
augmentation problem becomes harder than previously studied cases [11]. That
is why we use Shewchuk triangulations and keep guarantees on small angles.

References

1. Shewchuk, J.R.: Delaunay refinement algorithms for triangular mesh generation.
Computational Geometry: Theory and Applications 22 (2002) 21–74

2. Cheng, S.W., Dey, T.K., Shewchuk, J.R.: Delaunay Mesh Generation. Chapman
and Hall/CRC Press (2012)

3. Grompone von Gioi, R., Jakubowicz, J., Morel, J.M., Randall, G.: Lsd: a line
segment detector. Image Processing On Line 2 (2012) 35–55

4. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry
: Algorithms and Applications. Springer (2010)

19

Fig. 14. Top left: the initial LSD output with 394 blue thin rectangles and red middle
line segments before the refinement in section 3.Top middle: Shewchuk’s triangulation
SDT(G) with 3083 triangles on the red graph G in the bottom left picture. Top right:
zoomed in green box with small triangles. Bottom left: the refined LSD output (a
graph G) with 416 edges. Bottom middle: the Convex Constrained Mesh CCM(G)
with 626 faces. Bottom right: zoomed in green box, all small triangles are merged.

5. Botsch, M., Steinberg, S., Bischo↵, S., Kobbelt, L.: Openmesh - a generic and
e�cient polygon mesh data structure (2002)

6. Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical
image segmentation. Transactions PAMI 33 (2011) 898–916

7. Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., Süsstrunk, S.: Slic super-
pixels compared to state-of-the-art superpixel methods. Transactions PAMI 34

(2012) 2274–2282
8. Liu, M.Y., Tuzel, O., Ramalingam, S., Chellappa, R.: Entropy rate superpixel

segmentation. In: Proceedings of CVPR. (2011) 2097 – 2104
9. Van de Bergh, M., Boix, X., Roig, G., Van Gool, L.: Seeds: superpixels extracted

via energy-driven sampling. Int J Computer Vision 111 (2015) 298–314
10. Neubert, P., Protzel, P.: Compact watershed and preemptive slic: On improving

trade-o↵s of superpixel segmentation algorithms. In: Proceedings of ICPR. (2014)
996–1001

11. Hurtado, F., Tóth, C.D.: Plane geometric graph augmentation: a generic perspec-
tive. In: Thirty Essays on Geometric Graph Theory. (2012) 327–354

12. Al-Jubeh, M., Ho↵mann, M., Ishaque, M., Souvaine, D.L., Tóth, C.: Convex parti-
tions with 2-edge connected dual graphs. J. Combinatorial Optimization 22 (2010)
409–425

