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Abstract: We present the results of a lattice study of the normalization constants and sec-

ond moments of the light-cone distribution amplitudes of longitudinally and transversely

polarized ρ mesons. The calculation is performed using two flavors of dynamical clover

fermions at lattice spacings between 0.060 fm and 0.081 fm, different lattice volumes up

to mπL = 6.7 and pion masses down to mπ = 150 MeV. Bare lattice results are renormal-

ized non-perturbatively using a variant of the RI′-MOM scheme and converted to the MS

scheme. The necessary conversion coefficients, which are not available in the literature,

are calculated. The chiral extrapolation for the relevant decay constants is worked out in

detail. We obtain for the ratio of the tensor and vector coupling constants fTρ /fρ = 0.629(8)
and the values of the second Gegenbauer moments a2 = 0.132(27) and a2 = 0.101(22) at the

scale µ = 2 GeV for the longitudinally and transversely polarized ρ mesons, respectively.

The errors include the statistical uncertainty and estimates of the systematics arising from

renormalization. Discretization errors cannot be estimated reliably and are not included.

In this calculation the possibility of ρ → ππ decay at the smaller pion masses is not taken

into account.
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1 Introduction

In recent years exclusive reactions with a large momentum transfer to a light vector meson

V = ρ,K∗, φ in the final state are attracting increasing attention. Prominent examples are

provided by B-meson weak decays, B → V π, B → V `ν`, B → V γ, B → V µ+µ−, etc. Their

study constitutes a considerable part of the experimental program of the LHCb collabo-

ration at CERN [1] and the future Belle II experiment at the upgraded KEK facility [2].

Among these processes, the decays B → K∗µ+µ− and Bs → φµ+µ− are of particular rele-

vance as the angular distributions of the decay products give access to a host of observables

that are sensitive to new physics, see, e.g., ref. [3] for a recent review. Another example

is deeply-virtual exclusive ρ-meson production (DVMP) in electron-nucleon collisions at
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high energy, eN → eρN , that, besides deeply-virtual Compton scattering (DVCS), allows

one to resolve the transverse distribution of partons inside the nucleon. The correspond-

ing cross sections were measured by the HERA collider experiments H1 and ZEUS and

the fixed target experiments HERMES (DESY), CLAS (JLAB), and Hall A (JLAB) at

small and moderate values of the Bjorken momentum fraction xBj, respectively. In the

future, exclusive vector meson production will be studied with unprecedented precision at

the electron-ion collider (EIC) [4].

The standard framework for the theoretical description of such processes is based on

collinear factorization. In this approach the vector mesons are described in terms of light-

cone distribution amplitudes (DAs) that specify the distribution of the longitudinal mo-

mentum amongst the quark and antiquark in the valence component of the wave function;

the transverse degrees of freedom are integrated out. In general, meson and baryon DAs

are scale-dependent non-perturbative functions and their moments (weighted integrals over

the momentum fractions) are given by matrix elements of local operators. From the phe-

nomenological point of view the normalization (representing the value of the wave function

at the origin) and the first non-trivial Gegenbauer moment that characterizes the width of

the DA are the most relevant quantities. For example, knowledge of the second moment

of the DA of the longitudinally polarized ρ meson is crucial for global fits of generalized

parton distributions from the DVMP and DVCS data [5].

The ρ-meson coupling to the vector current is known experimentally and the other

parameters were estimated in the past using QCD sum rules [6], see also ref. [7] for an

update. Lattice calculations of the tensor coupling have been reported in refs. [8–12] and

the second moments in ref. [13].

In this work we present new results using two flavors of dynamical clover fermions at

lattice spacings between 0.060 fm and 0.081 fm, different lattice volumes and pion masses

down to mπ = 150 MeV. Our approach is similar to the strategy used in our paper on the

pion DA [14]. In addition to a much larger set of lattices as compared to the previous

studies, a new element of our analysis is a consistent use of non-perturbative renormaliza-

tion including mixing with the operators containing total derivatives. As the coefficients

for the conversion between our non-perturbative renormalization scheme on the lattice and

the MS scheme are not available in the literature for tensor operators, we have performed

the necessary calculations in continuum perturbation theory to two loop accuracy. The

chiral extrapolation for the relevant quantities is worked out in detail.

Although our calculation presents a considerable improvement as compared to earlier

studies, there are still several issues that we do not address in this work. First and fore-

most, we only consider ρ mesons and leave the effects of the SU(3) flavor breaking for a

future study. Likewise, we do not consider ω mesons that would require the calculation

of disconnected diagrams and different techniques. We also do not attempt to take into

account effects due to the ρ → ππ decay that becomes possible at the smaller pion masses

used in our simulations, although from our data it seems unlikely that such effects are of

principal importance. Last but not least, discretization errors cannot be estimated reliably

using the set of lattices at our disposal, which may be an important problem in such calcu-

lations. We expect to be able to improve on some of these issues using new Nf = 2+1 lattice
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configurations that are being generated in the framework of the CLS initiative [15]. This

work, aiming in the long run at smaller lattice spacings with the help of open boundary

conditions, is in progress.

The presentation is organized as follows. Section 2 is introductory, we collect the nec-

essary definitions and specify the quantities that will be considered in this work. Section 3

contains a list of the correlation functions that we compute on the lattice. The lattice

ensembles at our disposal and the procedure used to extract the signal are described in

section 4. A non-perturbative calculation of the necessary renormalization factors is de-

scribed in section 5, supplemented by appendix A, where we consider the renormalization

of the same operators in the continuum and sketch a two loop calculation of the corre-

sponding conversion factors. Complete results needed for the evaluation of the matching

coefficients between our RI′-SMOM scheme (defined as in ref. [14]) and the MS scheme are

presented in the auxiliary file attached to the electronic version of this paper. Section 6 is

devoted to the data analysis and the extrapolation to the physical pion mass using, where

available, chiral effective field theory expressions derived in appendix B. The final section 7

contains a summary of our results and a discussion.

2 General formalism

2.1 Continuum formulation

The ρ meson has two independent leading twist (twist two) DAs, φρ and φρ [16], cor-

responding to longitudinal and transverse polarization, respectively. Neglecting isospin

breaking and electromagnetic effects, the DAs of charged ρ± and neutral ρ0 mesons are re-

lated so that it is sufficient to consider one of them, for example, ρ+. The DAs are defined

as meson-to-vacuum matrix elements of renormalized non-local quark-antiquark light-ray

operators,

⟨0∣d̄(z1n)/n[z1n, z2n]u(z2n)∣ρ+(p, λ)⟩

=mρfρ(e(λ) ·n)∫
1

0
dxe−ip ·n(z1(1−x)+z2x)φρ(x,µ) , (2.1a)

e
(λ′)
,µ nν⟨0∣d̄(z1n)σµν[z1n,z2n]u(z2n)∣ρ+(p, λ)⟩

= ifTρ (e(λ
′) · e(λ))(p ·n)∫

1

0
dxe−ip ·n(z1(1−x)+z2x)φρ(x,µ) , (2.1b)

where σµν = i
2[γµ, γν], z1,2 are real numbers, nµ is an auxiliary light-like vector (n2 = 0), and

∣ρ+(p, λ)⟩ is the state of the ρ+ meson with on-shell momentum p2 = m2
ρ and polarization

λ. The straight-line path-ordered Wilson line connecting the quark fields, [z1n, z2n], is

inserted to ensure gauge invariance. The ρ-meson polarization vector e
(λ)
µ has the following

properties:

e(λ) ·p = 0 , ∑
λ

e(λ)µ e(λ)∗ν = −ηµν +
pµpν

m2
ρ

, (2.2)

and we use the notation

e
(λ)
,µ = e

(λ)
µ − e

(λ) ·n
p ·n

(pµ −
m2
ρ

p ·n
nµ) . (2.3)
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The variable x has the meaning of the fraction of the ρ meson’s light-cone momentum p ·n
which is carried by the u-quark, whereas 1 − x is the momentum fraction carried by the

antiquark d̄, and µ is the renormalization scale (we assume the MS scheme). The scale

dependence will often be suppressed in what follows.

The couplings fρ and fTρ appearing in (2.1) are defined as matrix elements of local

operators:

⟨0∣d̄(0)γµu(0)∣ρ+(p, λ)⟩ = fρmρe
(λ)
µ , (2.4a)

⟨0∣d̄(0)σµνu(0)∣ρ+(p, λ)⟩ = ifTρ (e(λ)µ pν − e(λ)ν pµ) . (2.4b)

In the following, we will refer to them as vector and tensor couplings, respectively. The vec-

tor coupling fρ is scale independent and can be extracted from experiment, see appendix C

in ref. [17] for a detailed discussion. One obtains [17]

fρ+ = (210 ± 4) MeV , f
(u)
ρ0

= (221.5 ± 3) MeV , f
(d)
ρ0

= (209.7 ± 3) MeV , (2.5)

where for the neutral ρ meson we quote separate values for the ūu and d̄d currents. The dif-

ference in the given three values is due to isospin breaking and electromagnetic corrections,

which will be neglected throughout this study.

The tensor coupling fTρ is scale dependent and is not directly accessible from experi-

ment. To leading order one obtains

fTρ (µ) = fTρ (µ0)(
αs(µ)
αs(µ0)

)
CF /β0

, (2.6)

where CF = (N2
c − 1)/(2Nc), β0 = (11Nc − 2Nf)/3, Nc = 3 is the number of colors and Nf

the number of active flavors.

The DAs are normalized to unity,

∫
1

0
dxφ ,ρ (x) = 1 , (2.7)

and, neglecting isospin breaking effects, are symmetric under the interchange of the mo-

mentum fractions of the quark and the antiquark,

φ ,ρ (x) = φ ,ρ (1 − x) . (2.8)

For convenience we introduce a generic notation ⟨⋯⟩ , for the moments of the DAs defined

as weighted integrals of the type

⟨xk(1 − x)l⟩ , = ∫
1

0
dxxk(1 − x)l φ ,ρ (x) . (2.9)

The symmetry property (2.8) implies

⟨(1 − x)kxl⟩ , = ⟨(1 − x)lxk⟩ , , (2.10)

and in addition we have the (momentum conservation) constraint

⟨(1 − x)kxl⟩ , = ⟨(1 − x)k+1xl⟩ , + ⟨(1 − x)kxl+1⟩ , . (2.11)
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Hence the set of moments (2.9) for positive integers k, l is overcomplete. We introduce the

variable

ξ = 2x − 1 , (2.12)

corresponding to the difference of the momentum fraction between the quark and the

antiquark and consider ξ moments

⟨ξn⟩ , = ⟨(2x − 1)n⟩ , , n = 2,4,6, . . . , (2.13)

or, alternatively, Gegenbauer moments

a ,n = 2(2n + 3)
3(n + 1)(n + 2)

⟨C3/2
n (2x − 1) ⟩ , (2.14)

as independent non-perturbative parameters. The two sets are related by simple algebraic

relations, e.g.,

a ,2 = 7

12
(5⟨ξ2⟩ , − 1) . (2.15)

The rationale for using Gegenbauer moments is that they have autonomous scale depen-

dence at the one loop level

an(µ) = an(µ0)(
αs(µ)
αs(µ0)

)
γ
(0)
n /(2β0)

, (2.16a)

an(µ) = an(µ0)(
αs(µ)
αs(µ0)

)
(γ (0)n −γ (0)0 )/(2β0)

. (2.16b)

The anomalous dimensions are given by

γ (0)
n = 8CF(

n+1

∑
k=1

1

k
− 3

4
− 1

2(n + 1)(n + 2)
) , γ (0)

n = 8CF(
n+1

∑
k=1

1

k
− 3

4
) . (2.17)

As Gegenbauer polynomials form a complete set of functions, the DAs can be written as

an expansion

φ ,ρ (x,µ) = 6x(1 − x)[1 +
∞
∑

n=2,4,...

a ,n (µ)C3/2
n (2x − 1)] . (2.18)

Typical integrals that one encounters in applications can also be expressed in terms of the

Gegenbauer coefficients, e.g.,

∫
1

0

dx

1 − x
φ ,ρ (x,µ) = 3 [1 +

∞
∑

n=2,4,...

a ,n (µ)] . (2.19)

Since the anomalous dimensions increase with n, the higher-order contributions in the

Gegenbauer expansion are suppressed at large scales so that asymptotically only the leading

term survives, usually referred to as the asymptotic DA:

φ ,ρ (x,µ→∞) = φas(x) = 6x(1 − x) . (2.20)
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Beyond the leading order, higher Gegenbauer coefficients an mix with the lower ones,

ak, k < n [18, 19]. This implies, in particular, that Gegenbauer coefficients with higher

values of n are generated by the evolution even if they vanish at a low reference scale.

This effect is numerically small, however, so that it is usually reasonable to employ the

Gegenbauer expansion to some fixed order.

2.2 Lattice formulation

From now on we work in Euclidean space, using the same conventions as in ref. [14].

The renormalized light-ray operators entering the definition of the DAs are defined as the

generating functions for the corresponding renormalized local operators, cf. ref. [20]. This

means that moments of the DAs, by construction, are given by matrix elements of local

operators and can be evaluated on the lattice using the Euclidean version of QCD.

Our aim in this work is to calculate the couplings fρ, f
T
ρ and the second DA moments.

To this end we define bare operators

Vµ(x) = d̄(x)γµu(x) , (2.21a)

Tµν(x) = d̄(x)σµνu(x) (2.21b)

and

V ±
µνρ(x) = d̄(x)γµ ( ⃗Dν

⃗Dρ + D⃗νD⃗ρ ± 2 ⃗DνD⃗ρ)u(x) , (2.22a)

T±µνρσ(x) = d̄(x)σµν ( ⃗Dρ
⃗Dσ + D⃗ρD⃗σ ± 2 ⃗DρD⃗σ)u(x) . (2.22b)

On the lattice the covariant derivatives will be replaced by their discretized versions.

Projection onto the leading twist corresponds to symmetrization over the maximal

possible set of Lorentz indices and subtraction of traces. The operation of symmetrization

and trace subtraction will be indicated by enclosing the involved Lorentz indices in paren-

theses, for instance, O(µν) = 1
2(Oµν +Oνµ)−

1
4δµνOλλ. Note that for the operators involving

the σµν-matrix also those traces have to be subtracted which correspond to index pairs

where one of the indices equals µ or ν.

Using the shorthand ⃗D⃗Dµ = D⃗µ − ⃗Dµ, the operator V −
(µνρ)(x) can be rewritten as

V −
(µνρ)(x) = d̄(x)γ(µ ⃗D⃗Dν

⃗D⃗Dρ)u(x) (2.23)

and its matrix element between the vacuum and the ρ state is proportional to the bare

value of the second moment ⟨ξ2⟩ :

⟨0∣V −
(µνρ)∣ρ

+(p, λ)⟩ = N(µνρ)⟨ξ2⟩bare , (2.24)

where N(µνρ) is a kinematical prefactor. The operator V +
(µνρ)(x) in the continuum reduces

to the second derivative of the vector current,

V +
(µνρ)(x) = ∂(µ∂ν d̄(x)γρ)u(x) , (2.25)

so that

⟨0∣V +
(µνρ)∣ρ

+(p, λ)⟩ = N(µνρ)⟨12⟩bare (2.26)
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Γ 1 γj γ4 γjγ5 γ4γ5 γ5 γjγk γjγ4

σ 1 1 −1 −1 1 −1 1 −1

Table 1. Sign factors σ for the different Dirac matrices Γ. Here j, k ∈ {1,2,3} and j ≠ k.

with the same prefactor. While in the continuum ⟨12⟩bare = 1 by construction, this is no

longer true on the lattice because the Leibniz rule holds for discretized derivatives only

up to lattice artefacts and hence (2.25) is violated. As we will see below, the deviation

from unity for the renormalized ⟨12⟩ is small. Nevertheless, it still has to be taken into

account and affects the relation between ⟨ξ2⟩ and the Gegenbauer moment at finite lattice

spacing [14]:

a2 =
7

12
(5⟨ξ2⟩ − ⟨12⟩ ) . (2.27)

The situation with the tensor operators T±µ(νρσ) and the corresponding matrix elements

⟨⋯⟩ is similar.

The operators V −
(µνρ) and V +

(µνρ) mix under renormalization even in the continuum, as

do T−µ(νρσ) and T+µ(νρσ). Additional mixing could result from the fact that the continuous

O(4) symmetry of Euclidean space is reduced to the discrete H(4) symmetry of the hyper-

cubic lattice. This is particularly worrisome if operators of lower dimension are involved.

Fortunately, in the case at hand it is possible to avoid additional mixing by using suitably

chosen operators, which will be detailed below.

3 Lattice correlation functions

The basic objects from which moments of the ρ DAs can be extracted on the lattice are

2-point correlation functions. In order to “create” the ρ meson we use the interpolating

current Vν(x), which is defined as Vν(x) with smeared quark fields. For details of our

smearing algorithm see section 4. Let O be a local (unsmeared) operator, e.g., one of the

operators defined in eq. (2.22) above. One then obtains for the 2-point function in the

region where the ground state dominates

a3∑
x

e−ip ·x⟨O(t,x)V †
ν (0)⟩ = 1

2E
A(O,Vν ∣ p)(e−Et + σ σO (−1)nte−E(T−t)) (3.1)

with

A(O,Vν ∣ p) =∑
λ

⟨0∣O(0)∣ρ+(p, λ)⟩⟨ρ+(p, λ)∣V †
ν (0)∣0⟩ . (3.2)

Here T is the time extent of the lattice, a is the lattice spacing, and E denotes the energy

of the ρ state. The sign factors σ are determined by the Dirac matrices in the creation

operator (which is in our case always γν), while σO are the analogous factors for O (see

table 1), and nt is the number of time derivatives in O.

– 7 –



For the decay constants and the second DA moments of the ρmeson we have to evaluate

the following set of correlation functions:

Cµ1ν(t,p) = a3∑
x

e−ip ·x⟨Vµ1(t,x)V
†
ν (0)⟩ , (3.3a)

Cµ1ν(t,p) = a3∑
x

e−ip ·x⟨Vµ1(t,x)V
†
ν (0)⟩ , (3.3b)

Cµ0µ1ν(t,p) = a3∑
x

e−ip ·x⟨Tµ0µ1(t,x)V
†
ν (0)⟩ , (3.3c)

C±
µ1µ2µ3ν(t,p) = a3∑

x

e−ip ·x⟨V ±
µ1µ2µ3(t,x)V

†
ν (0)⟩ , (3.3d)

C±
µ0µ1µ2µ3ν(t,p) = a3∑

x

e−ip ·x⟨T±µ0µ1µ2µ3(t,x)V
†
ν (0)⟩ . (3.3e)

3.1 Decay constants

In order to determine the leading twist ρ-meson couplings we use the correlation functions

Cjj(t,0) = Zρ
1

2mρ
(e−mρt + e−mρ(T−t)) +⋯ , (3.4a)

Cjj(t,0) =mρfρ
√
Zρ

1

2mρ
(e−mρt + e−mρ(T−t)) +⋯ , (3.4b)

C4jj(t,0) = −imρf
T
ρ

√
Zρ

1

2mρ
(e−mρt − e−mρ(T−t)) +⋯ , (3.4c)

with j = 1,2,3, assuming the dominance of the lowest one-particle state.

In the actual fits we average over the forward and backward running states. Since in

our simulations the signal disappears in the noise in the region around t = T /2 due to the

relatively large mass of the ρ meson we work with simple exponential fits,

1

3

3

∑
j=1

t̂+Cjj(t,0) =
Zρ

2mρ
e−mρt , (3.5a)

1

3

3

∑
j=1

t̂+Cjj(t,0) = fρ

√
Zρ

2
e−mρt , (3.5b)

1

3

3

∑
j=1

t̂−C4jj(t,0) = −ifTρ

√
Zρ

2
e−mρt , (3.5c)

where the averaging operator t̂± is defined as

t̂±C(t,p) = 1
2
(C(t,p) ±C(T − t,p)) . (3.6)

The decay constants fρ and fTρ can be obtained by simultaneously fitting the cor-

relation functions (3.5a)–(3.5c). The result for the mass is then dominated by the two

correlation functions (3.5b) and (3.5c) that contain an unsmeared operator at the sink, be-

cause they have much smaller statistical errors. However, they exhibit larger contributions

from excited states so that the isolation of the ground state is less reliable. Therefore we

first fit the correlator with a smeared operator at the sink, (3.5a), to extract Zρ and mρ.

– 8 –



These values are then inserted in eqs. (3.5b) and (3.5c) in order to obtain fρ and fTρ as well

as fTρ /fρ from a second fit. This procedure is repeated on every bootstrap sample allowing

an estimation of the statistical error.

3.2 Second moments — the longitudinal case

Multiplets of twist-2 operators suitable for the evaluation of the second longitudinal mo-

ments consist of the operators

O±1 = V ±
{234} , (3.7a)

O±2 = V ±
{134} , (3.7b)

O±3 = V ±
{124} , (3.7c)

O±4 = V ±
{123} . (3.7d)

Here and in the following {⋯} denotes symmetrization of the enclosed n indices with an

overall factor 1/n! included. The two multiplets O+1 , . . . ,O+4 and O−1 , . . . ,O−4 both transform

according to the irreducible representation τ
(4)
2 of the hypercubic group H(4) [21]. Their

symmetry properties ensure that under renormalization they can only mix with each other,

but mixing with additional operators of the same or lower dimension is forbidden. The

amplitudes (3.2) of the 2-point functions (3.1) where O is one member of these multiplets

are related to the amplitudes where O is a component of the vector current Vµ by

A(O±1 ,Vν ∣ p) = −1
3R±(p2p3A(V4,Vν ∣ p) + ip2EA(V3,Vν ∣ p) + ip3EA(V2,Vν ∣ p)) , (3.8a)

A(O±2 ,Vν ∣ p) = −1
3R±(p1p3A(V4,Vν ∣ p) + ip1EA(V3,Vν ∣ p) + ip3EA(V1,Vν ∣ p)) , (3.8b)

A(O±3 ,Vν ∣ p) = −1
3R±(p1p2A(V4,Vν ∣ p) + ip2EA(V1,Vν ∣ p) + ip1EA(V2,Vν ∣ p)) , (3.8c)

A(O±4 ,Vν ∣ p) = −1
3R±(p1p2A(V3,Vν ∣ p) + p1p3A(V2,Vν ∣ p) + p2p3A(V1,Vν ∣ p)) . (3.8d)

In order to be able to write these and some of the following formulae in a compact form

we have introduced the notation R±, where R+ (R−) is the bare value of ⟨12⟩ (⟨ξ2⟩ ).

We will try to increase the signal-to-noise ratio by considering only correlation functions

with the smallest non-zero momentum in one spatial direction, which is equal to 2π/L on a

lattice of spatial extent L. Therefore we exclude O±4 from our calculation. After averaging

over all suitable combinations as well as over forward and backward running states, the

second longitudinal moments can be obtained from the ratio

1

6

3

∑
j=1

3

∑
k=1
k≠j

p̂−t̂−C
±
{4jk}k(t,

2π
L ej)

p̂+t̂+Ckk(t, 2π
L ej)

= −2π

L
E

1

3
iR± , (3.9)

where momentum averaging is accounted for by the operator p̂±:

p̂±C(t,p) = 1
2
(C(t,p) ±C(t,−p)) . (3.10)
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3.3 Second moments — the transverse case

In the transverse case we consider the following multiplets:

O±1,T = T±13{32} + T
±
23{31} − T

±
14{42} − T

±
24{41} , (3.11a)

O±2,T = T±12{23} + T
±
32{21} − T

±
14{43} − T

±
34{41} , (3.11b)

O±3,T = T±12{24} + T
±
42{21} − T

±
13{34} − T

±
43{31} , (3.11c)

O±4,T = T±21{13} + T
±
31{12} − T

±
24{43} − T

±
34{42} , (3.11d)

O±5,T = T±21{14} + T
±
41{12} − T

±
23{34} − T

±
43{32} , (3.11e)

O±6,T = T±31{14} + T
±
41{13} − T

±
32{24} − T

±
42{23} . (3.11f)

The two multiplets O+1,T , . . . ,O+6,T and O−1,T , . . . ,O−6,T both transform according to the irre-

ducible representation τ
(6)
2 of the hypercubic group H(4). As in the case of the multiplets

(3.7), mixing with additional operators of the same or lower dimension is forbidden by

symmetry. The amplitudes (3.2) of the 2-point functions (3.1) where O is one member of

the multiplets (3.11) are related to the amplitudes where O is a component of the tensor

current Tµν by

A(O±1,T ,Vν ∣ p) = −R±(p2p3A(T13,Vν ∣ p) + p1p3A(T23,Vν ∣ p)
+ ip2EA(T41,Vν ∣ p) + ip1EA(T42,Vν ∣ p)) , (3.12a)

A(O±2,T ,Vν ∣ p) = −R±(p2p3A(T12,Vν ∣ p) + p1p2A(T32,Vν ∣ p)
+ ip3EA(T41,Vν ∣ p) + ip1EA(T43,Vν ∣ p)) , (3.12b)

A(O±3,T ,Vν ∣ p) = −R±(p1p2A(T42,Vν ∣ p) − p1p3A(T43,Vν ∣ p)
+ ip2EA(T12,Vν ∣ p) + ip3EA(T31,Vν ∣ p)) , (3.12c)

A(O±4,T ,Vν ∣ p) = −R±(p1p3A(T21,Vν ∣ p) + p1p2A(T31,Vν ∣ p)
+ ip3EA(T42,Vν ∣ p) + ip2EA(T43,Vν ∣ p)) , (3.12d)

A(O±5,T ,Vν ∣ p) = −R±(p1p2A(T41,Vν ∣ p) − p2p3A(T43,Vν ∣ p)
+ ip1EA(T21,Vν ∣ p) + ip3EA(T32,Vν ∣ p)) , (3.12e)

A(O±6,T ,Vν ∣ p) = −R±(p1p3A(T41,Vν ∣ p) − p2p3A(T42,Vν ∣ p)
+ ip1EA(T31,Vν ∣ p) + ip2EA(T23,Vν ∣ p)) . (3.12f)

Here R+ (R−) is the bare value of ⟨12⟩ (⟨ξ2⟩ ).

As in the longitudinal case, we only consider correlation functions with the smallest

non-zero momentum in one spatial direction and perform averages similar to those in

eq. (3.9). This leads to the following ratio for the second transverse moments:

1

6

3

∑
j=1

3

∑
l=1
l≠j

3

∑
k=1
k≠j
k≠l

(
p̂−t̂+(C±

4{4jl}l(t,
2π
L ej) −C±

k{kjl}l(t,
2π
L ej))

p̂+t̂−C4ll(t, 2π
L ej)

+
p̂+t̂−(C±

j{j4l}l(t,
2π
L ej) −C±

k{k4l}l(t,
2π
L ej))

p̂−t̂+Cjll(t, 2π
L ej)

) = −2π

L
E

2

3
iR± . (3.13)
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κ mπ[MeV] m∞
π [MeV] Size mπL Nconf(×Nsrc)

β = 5.20, a = 0.081 fm, a−1 = 2400 MeV

0.13596† 280 278 323 × 64 3.7 1999(×4)

β = 5.29, a = 0.071 fm, a−1 = 2800 MeV

0.13620† 422 422 323 × 64 4.8 1998(×2)
0.13632 295 290 323 × 64 3.4 1999(×1)
0.13632 289 290 403 × 64 4.2 2028(×2)
0.13632† 290 290 643 × 64 6.7 1237(×2)
0.13640† 150 150 643 × 64 3.5 1599(×3)

β = 5.40, a = 0.060 fm, a−1 = 3300 MeV

0.13640 490 488 323 × 64 4.8 982(×2)
0.13647† 426 424 323 × 64 4.2 1999(×2)
0.13660 260 259 483 × 64 3.8 2178(×2)

Table 2. Ensembles used for this work. For each ensemble we give the inverse coupling β, the

hopping parameter κ, the pion mass mπ, the finite volume corrected pion mass m∞

π determined

in ref. [22], the lattice size, the value of mπL, where L is the spatial lattice extent, the number of

configurations Nconf and the number of sources Nsrc used on each configuration. Note that the pion

masses have been slightly updated compared to the numbers in ref. [14]. The ensembles marked

with † were generated on the QPACE systems of the SFB/TRR 55, while the others were generated

earlier within the QCDSF collaboration.

4 Details of the lattice simulations

For this work we used gauge configurations which have been generated using the Wilson

gauge action with Nf = 2 flavors of non-perturbatively order a improved Wilson (clover)

fermions. A list of the ensembles used is shown in table 2. We used lattices with three

different inverse couplings β = 5.20, 5.29, 5.40, which correspond to lattice spacings between

0.06 fm and 0.081 fm. The pion masses vary between 150 MeV and 500 MeV, with spatial

volumes between (1.9 fm)3 and (4.5 fm)3.

In order to increase the overall statistics we performed multiple measurements per con-

figuration. The source positions of these measurements were selected randomly to reduce

the autocorrelations. To obtain a better overlap with the ground state we applied Wup-

pertal smearing [23] in the interpolating current Vν using APE smeared gauge links [24].

For the statistical analysis we generate 1000 bootstrap samples per ensemble using

a binsize of 4 to further eliminate autocorrelations. For the purpose of maximizing the

statistics of the second moments, we average for each bootstrap sample over all suitable

combinations of 2-point functions, all possible momentum directions as well as over forward

and backward running states as pointed out in eqs. (3.9) and (3.13). In order to reduce

contributions from excited states the choice of the starting point of the fit range is impor-

tant. As an example, figure 1 demonstrates that, with increasing source-sink distance, the
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Figure 1. The data points in these plots show R
±

calculated from the time- and momentum-

averaged correlation functions according to eq. (3.9) on the β = 5.29, κ = 0.13632, L = 32a ensemble.

The cyan-colored bar indicates the fitted value of R
±
, the error and the fitting range.

excited states fall below the noise and plateaus of the correlation functions for R± emerge.

The starting time tstart is then chosen in such a way that fits with even larger starting

times no longer show any systematic trend in the fitted values.

5 Renormalization

Having computed the bare values of the second DA moments, we are left with the task

of renormalizing these bare quantities to obtain results in the standard continuum MS

scheme, which is used in the perturbative calculations of the exclusive reactions discussed

in the introduction. As already mentioned above, our bare operators are chosen such that

there is only mixing between the respective + and − operator multiplets, so we have to

determine 2 × 2 mixing matrices such that

O−
MS

= Z11O− +Z12O+ , (5.1a)

O+
MS

= Z22O+ . (5.1b)

One then obtains for the second moments of the DAs in the MS scheme

a ,
2,MS

= 7
12

[5ζ ,11R
,
− + (5ζ ,12 − ζ

,
22 )R

,
+ ] , (5.2)

⟨ξ2⟩ ,
MS

= ζ ,11R
,
− + ζ ,12R

,
+ , (5.3)

⟨12⟩ ,
MS

= ζ ,22R
,
+ , (5.4)

where

ζij =
Zij

ZV
, ζij =

Zij

ZT
(5.5)

with the renormalization factors ZV and ZT of the vector and the tensor currents, respec-

tively. Note that one cannot expect ζ ,22 to be equal to one, since the Leibniz rule holds on

the lattice only up to discretization artefacts.
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Fit Fit interval nloops Lattice r0 r0ΛMS

number (in GeV2) artefacts (in fm)

1 4 < µ2 < 100 2 A3 ≠ 0 0.50 0.789

2 2 < µ2 < 30 2 A3 ≠ 0 0.50 0.789

3 4 < µ2 < 100 1 A3 ≠ 0 0.50 0.789

4 4 < µ2 < 100 2 A3 = 0 0.50 0.789

5 4 < µ2 < 100 2 A3 ≠ 0 0.49 0.789

6 4 < µ2 < 100 2 A3 ≠ 0 0.50 0.737

Table 3. Choices for the fits of the renormalization and mixing coefficients.

We want to evaluate the renormalization and mixing coefficients non-perturbatively

on the lattice employing a variant of the RI′-MOM scheme, because lattice perturbation

theory is not sufficiently reliable. Since forward matrix elements of the + operators vanish

in the continuum limit, we cannot work with the momentum geometry of the original

RI′-MOM scheme but must use a kind of RI′-SMOM scheme [25]. We follow exactly the

same renormalization procedure as in our investigation of the pion DA [14]. Thus, we need

the MS vertex functions of our operators in order to convert the results from our SMOM

scheme to the MS scheme. While these are known to two loops in the longitudinal case,

i.e., for the operators (2.22a), see ref. [26], as well as for the currents (2.21), see ref. [27],

the corresponding results for operators with derivatives involving the matrix σµν , e.g., the

operators (2.22b), are not yet available in the literature. Therefore we discuss the latter

case, the so-called transversity operators, in appendix A.

In the end, we determine the matrix Z(a,µ0) (and analogously ζ(a,µ0)) at the refer-

ence scale µ0 = 2 GeV by fitting the chirally extrapolated Monte Carlo results Z(a,µ)MC

with the expression

Z(a,µ)MC =W (µ,µ0)Z(a,µ0) +A1a
2µ2 +A2(a2µ2)2 +A3(a2µ2)3 , (5.6)

where the three matrices Ai parametrize the lattice artefacts and W (µ,µ0) describes the

running of Z in the three loop approximation of continuum perturbation theory.

Ignoring the very small statistical errors, we estimate the much more important sys-

tematic uncertainties of Z(a,µ0) by performing a number of fits, where exactly one element

of the analysis is varied at a time. More precisely, we choose as representative examples for

fit intervals 4 GeV2 < µ2 < 100 GeV2 and 2 GeV2 < µ2 < 30 GeV2, and we use the expres-

sions for the conversion functions with nloops = 1,2. For the parametrization of the lattice

artefacts we either take the complete expression in eq. (5.6) or we set A3 = 0. Finally, we

consider values for r0 and r0ΛMS corresponding to the results given in ref. [28]. The various

fit possibilities are compiled in table 3.

As in the case of the pion DA, the largest effect comes from the variation of nloops. In

order to obtain our final numbers for the second moments of the DAs we extract them from

the bare data R ,
± using each of these sets of values for ζ11, ζ12 and ζ22. So we have six

– 13 –



results for each of our gauge field ensembles. As our central values we take the results from

Fit 1. Defining δi as the difference between the result obtained with the ζs from Fit i and

the result determined with the ζs from Fit 1, we estimate the systematic uncertainties due

to the renormalization factors as
√
δ2

2 + (0.5 · δ3)2 + δ2
4 + δ2

5 + δ2
6 . Here we have multiplied δ3

by 1/2, because going from two loops to three or more loops in the perturbative conversion

functions is expected to lead to a smaller change than going from one loop to two loops.

This should amount to a rather conservative error estimate. The renormalization factors

ZV and ZT needed for the evaluation of fρ and fTρ , respectively, are calculated in the same

way.

6 Data analysis

From the bare values of fρ etc. we obtain renormalized results in the MS scheme with the

help of our renormalization (and mixing) coefficients on each of our gauge field ensembles.

With the range of ensembles available (see table 2) we are able to study volume and pion

mass dependence and, to only a limited extent, discretization effects. Considering volume

effects first, for β = 5.29, κ = 0.13632 we have ensembles with three different volumes at

our disposal (mπL = 3.4 – 6.7). While there is some tendency towards smaller values on

larger volumes for fρ and fTρ , the results for the ratio fTρ /fρ do not show a clear volume

dependence (see figure 2). The figure also shows there is no significant dependence on

the lattice spacing, but we do not attempt a continuum extrapolation due to the limited

variation of a. However, the dependence on m2
π can be studied because quite a large range

of pion masses is covered with the smallest mass being very close to the physical point.

We expect that a fit including the larger pion masses will yield more reliable numbers than

simply taking the values at mπ = 150 MeV as our final results because, in particular, the

lattice used at this pion mass is relatively small.

For the decay constants we make use of Chiral Perturbation Theory (ChPT) for vector

mesons [29–31] to obtain the one loop extrapolation formulae

Re fρ = f (0)
ρ (1 − m2

π

16π2F 2
π

log(m
2
π

µ2
χ

)) + f (2)
ρ m2

π + f (3)
ρ m3

π +O(m4
π) , (6.1a)

Re fTρ = fT (0)
ρ (1 − m2

π

32π2F 2
π

log(m
2
π

µ2
χ

)) + fT (2)
ρ m2

π + fT (3)
ρ m3

π +O(m4
π) , (6.1b)

Re
fTρ

fρ
= δf (0)

ρ (1 + m2
π

32π2F 2
π

log(m
2
π

µ2
χ

)) + δf (2)
ρ m2

π + δf (3)
ρ m3

π +O(m4
π) . (6.1c)

Details on the ChPT calculation are given in appendix B. For 2mπ < mρ, i.e., below the

decay threshold this infinite-volume calculation yields complex numbers. However, as we

neglect instability effects in our lattice computation, which is necessarily done on finite

volumes, we use only the real part to fit the mass dependence of our data. The pion decay

constant Fπ is kept fixed at its physical value 92.4 MeV, and the chiral renormalization

scale µχ is chosen to be 775 MeV.

Estimates within ChPT suggest that the third-order term ∝ m3
π is not negligible for

most of our masses (see appendix B). Our data confirm this expectation — the third order
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Figure 2. ChPT fits using eqs. (6.1) for the decay constants fρ, f
T
ρ and their ratio, including

(left) and excluding (right) the data point at mπ = 150 MeV. The violet dashed line indicates the

position of the physical pion mass. The band indicates the one sigma statistical error.

term is required in order to fit over the full range of pion masses. Consistent fits are obtained

including only second order terms for mπ < 300 MeV, however, we have, essentially, only

two pion masses in this range. Alternatively, one can ignore the information from ChPT

and perform polynomial fits, i.e., drop the logarithmic term in the fit functions (6.1). This

yields very similar results.

As our lattice spacings do not vary that much and the impact of the finite lattice size

on matrix elements of possibly unstable states is not straightforward we take into account

results from all lattice spacings and volumes for our final numbers. However, in order to get

at least some idea of the influence of the instability of the ρ we perform two kinds of fits,
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Figure 3. Linear fits for the second Gegenbauer moments a
2,MS

, a
2,MS

of the linearly and the

transversely polarized leading twist distribution amplitudes, including (left) and excluding (right)

the data point at mπ = 150 MeV. The violet dashed line indicates the position of the physical pion

mass. The band indicates the one sigma statistical error.
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Figure 4. The left and the right plot show ⟨12⟩
MS

and ⟨12⟩
MS

, respectively. The violet dashed line

indicates the position of the physical pion mass.

including all masses or excluding the results at mπ = 150 MeV, which should suffer most

from the decay. The resulting ChPT extrapolations for the normalization constants are

shown in figure 2. Note that the extrapolated values at the physical point are reasonably
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fρ[MeV] fTρ [MeV] fTρ /fρ a2 a2

analysis 1 199(4)(1) 124(4)(1) 0.629(7)(4) 0.132(13)(24) 0.101(18)(12)
analysis 2 194(7)(1) 123(5)(1) 0.642(10)(4) 0.117(16)(24) 0.093(20)(11)

Table 4. Results in the MS scheme at µ = 2 GeV from the two analysis methods explained in

the main text. The numbers in parentheses denote the statistical error and our estimate of the

uncertainty introduced by the renormalization procedure.

consistent with the data at the lowest pion mass.

For the second moments of vector meson distribution amplitudes (see figure 3) no ChPT

calculations are available. Therefore we stick to simple linear fits in m2
π depicted in figure 3.

One can see that the second moments increase with the spatial volume, however, less

significantly than for the normalization constants. There is no discernible dependence on

the lattice spacing. Errors stemming from the renormalization constants are not included

in figures 2 – 3. We perform an extrapolation for every choice given in table 3 and compute

the error of the extrapolated result at the physical point caused by the uncertainties of the

renormalization factors from the differences of the extrapolated numbers as indicated at

the end of section 5.

Finally we have a look at the quantities ⟨12⟩
MS

and ⟨12⟩
MS

, which indicate the violation

of the Leibniz rule at finite lattice spacing. In the continuum limit they should equal one

for all pion masses. Results for all ensembles are plotted in figure 4. Again only statistical

errors are shown, the uncertainties resulting from the renormalization coefficients are much

smaller. While ⟨12⟩
MS

equals one within the statistical errors with a maximal deviation

of about 1%, we observe deviations from one of up to 2% for ⟨12⟩
MS

. Note that these

deviations are noticeably smaller than what we found in the case of the pion [14].

7 Results and conclusion

In table 4 we compare the results of the two kinds of final fits that we have performed.

The values in the row labelled “analysis 1” have been obtained by fits to all data points,

while the row labelled “analysis 2” contains the results from fits where the data with the

smallest pion mass have been excluded. In the case of fρ, f
T
ρ , and fTρ /fρ we have used the

fit functions (6.1), whereas the second Gegenbauer moments have been fitted with linear

functions of m2
π. One sees that the results of the two fits are in very good agreement,

which may be an indication that ρ-meson decay, ρ → ππ, is not of major importance for

the short-distance quantities that we are considering here. Discretization errors might be

more important, but, unfortunately, cannot be estimated reliably using the set of lattices

at our disposal. We expect to be able to quantify the discretization errors using the new

Nf = 2 + 1 lattice configurations that are generated currently in the framework of the CLS

initiative [15].

Comparing to the pion case we observe that for the ρ meson we are able to access

the second Gegenbauer moments using momenta with a single non-zero component (see
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fρ[MeV] fTρ [MeV] fTρ /fρ a2 a2

this work 199(4) 124(4) 0.629(8) 0.132(27) 0.101(22)
sum rules [6, 7] 206(7) 155(8) 0.74(5) 0.11(5) 0.11(5)
lattice [9] — — 0.72(3) — —

lattice [10] — — 0.742(14) — —

lattice [12] — — 0.687(27) — —

lattice [13] — — — 0.20(6) —

experiment [17] 210(4) — — — —

Table 5. Final results together with QCD sum rule estimates and older lattice QCD data. The

renormalization scale is µ = 2 GeV.

eqs. (3.8) and (3.12)), while we have to consider momenta with two non-vanishing compo-

nents in order to compute a2 in the pion. This helps to reduce the statistical noise and the

corresponding error.

As our final results we adopt the numbers from analysis 1. Adding the errors in

quadrature we compare these results in table 5 with QCD sum rule estimates, older lattice

data and the experimental value of fρ. Note that the latter number refers to ρ+ (see

eq. (2.5)). Given that no continuum extrapolation has been performed, the agreement

between our result for fρ and the experimental value seems reasonable. The sum rule

results at the renormalization scale µ = 2 GeV have been obtained from the numbers given

in ref. [7] at µ = 1 GeV by leading order evolution with Nf = 2.

We can also compare with some previous lattice investigations. The BGR collabora-

tion [10] has evaluated the ratio fTρ /fρ in the quenched approximation with chirally im-

proved fermions at a lattice spacing a = 0.10 fm and found fTρ /fρ = 0.742(14) at µ = 2 GeV.

Further related results have been reported in refs. [8, 9, 11]. The RBC and UKQCD col-

laborations [12] have used Nf = 2+1 domain-wall fermions at a lattice spacing a = 0.114 fm

and masses down to mπ = 330 MeV to obtain fTρ /fρ = 0.687(27) at µ = 2 GeV. In ref. [13]

they found ⟨ξ2⟩ = 0.27(1)(2) at the same scale. Adding the two errors in quadrature and

utilizing the relation (2.15) yields a2 = 0.20(6).
All existing results are, generally, in good agreement, apart from the ratio of decay

constants fTρ /fρ, which in our case is somewhat smaller than the values obtained in other

investigations. This ratio depends strongly on the pion mass, cf. figure 2, and the extrapo-

lation could be affected by the ρ→ ππ decay at this level of accuracy. Clarification of this

issue by doing a Lüscher-type analysis including four-quark interpolators would be highly

desirable since the tensor coupling enters the QCD calculations of the B-decay form factors

at large recoil (see, e.g., ref. [17]), where, in some cases, there is a tension with predictions

of the Standard Model. Our value for the second Gegenbauer coefficient a2 is significantly

more precise compared to previous results. At this level of accuracy, we start to be sensi-

tive to the difference between the longitudinally and transversely polarized mesons. Our

results suggest that a2 may be slightly larger than a2, although the difference is not yet

statistically significant. The 20% accuracy for a2 achieved in our work is interesting for
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studies of deeply-virtual vector meson production in electron nucleon scattering using the

GPD formalism [5]. Such processes will be investigated with high priority at the JLAB

12 GeV upgrade and, in the future, at the EIC.

The work reported here will be continued using CLS Nf = 2 + 1 lattice configura-

tions [15]. Apart from the study of discretization errors our goal is to consider DAs of

the whole SU(3)f meson octet, with emphasis on properties of the K∗ meson, which is of

prime importance for flavor physics. This work is in progress.
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Appendices

A Transversity operators in the continuum

In this section we review our construction of the continuum Green’s functions which will be

used for connecting the MS scheme to the RI′-SMOM scheme employed on the lattice. The

procedure we follow has already been applied to several similar quark bilinear operators

[26, 27, 37] and we will highlight the salient differences for the transversity operators

considered here. The notation of this section very much runs parallel to, for instance,

ref. [37], to which we refer the interested reader for more background. First, the two

classes of operators we are interested in are the flavor non-singlet operators,

OT2µνσ = Sψ̄ςµνDσψ , O∂T2µνσ = S∂σ (ψ̄ςµνψ)
OT3µνσρ = Sψ̄ςµνDσDρψ , O∂T3µνσρ = S∂σ (ψ̄ςµνDρψ) , O∂∂T3µνσρ = S∂σ∂ρ (ψ̄ςµνψ) ,

(A.1)

where the operators with a single derivative have been included for completeness. We

define ςµν = 1
2[γ

µ, γν] which is related to σµν by

σµν = iςµν . (A.2)

Our use of ςµν is to retain the same conventions with earlier renormalization of similar

operators [26, 27, 37] and our use of generalized γ-matrices which we discuss later. To

define the action of the symbol S, which imposes certain symmetrization and tracelessness

conditions, it is best to consider the generalized transversity operators OTµν1...νi...νn from

which we will focus on the values of n = 2 and 3. Specifically, [38],

ηµνiOTµν1...νi...νn = 0 (i ≥ 1) , ηνiνjOTµν1...νi...νj ...νn = 0 (A.3)

where the label T includes all possible total derivative operators. When n = 2, for example,

then

Sψ̄ςµνDσψ = ψ̄ςµνDσψ + ψ̄ςµσDνψ − 2

(d − 1)
ηνσψ̄ςµλDλψ

+ 1

(d − 1)
(ηµνψ̄ςσλDλψ + ηµσψ̄ςνλDλψ) (A.4)

for the first operator of the T2 sector with again a parallel definition for the total derivative

operator [39]. In our construction for the T3 operators we have taken the convention to

include an extra factor of 1/6 in the definition of S. We will use T2 and T3 to refer to a sector

as well as for the non-total derivative operator of each set. It will be clear from the context

which is meant. The labelling for each derivative of a total derivative operator is one ∂

symbol applied to the sector label. In defining the operators we have omitted the explicit

flavor indices and note that our perturbative renormalization will be for massless quarks;

in other words we are in the chiral limit. The total derivative operators are required since

there is operator mixing within each separate sector. It would not usually be necessary to
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include these but since the Green’s functions they are needed for are non-forward matrix

elements, then a momentum will flow through the operator insertion and the mixing will

be activated. Part of the evaluation of these matrix elements requires the renormalization

of the operators. Again our basis choice is partly driven by the need to simplify this aspect.

Operators with the same quantum numbers and dimension will mix under renormalization.

However, for our choice the mixing matrix will be upper triangular. For instance, we have

OTlio = ZTlij O
Tl
j (A.5)

for l = 2 and 3 where the subscript o denotes the bare operator. Then

ZT2ij = (Z
T2
11 Z

T2
12

0 ZT222

) , ZT3ij =
⎛
⎜⎜
⎝

ZT311 Z
T3
12 Z

T3
13

0 ZT322 Z
T3
23

0 0 ZT333

⎞
⎟⎟
⎠
. (A.6)

We use 1 and 2 to label the elements of the T2 matrix where 1 is the operator T2. Similarly

1, 2 and 3 label the T3 matrix elements which respectively correspond to T3, ∂T3 and ∂∂T3.

The explicit mixing matrix for the T2 system has been determined in ref. [39] to three loops

in the MS scheme. Prior to the results we present here, the T3 matrix was known only

partially to the same order. Entry (ij) = (11) is the renormalization constant for the

operator T3 itself and the remaining two diagonal entries are the same as the operator T2

and the tensor current [39–41]. In other words the operators of the T2 system without

the total derivatives. In addition the off-diagonal element (ij) = (23) is known purely

because the non-zero entries of the final two rows of ZT3ij are the non-zero entries of the ZT2ij
matrix. We have determined the final two off-diagonal elements of ZT3ij by renormalizing

the operators in a quark 2-point function where the momentum of one of the external quark

legs is nullified. In other words there is a non-zero momentum flowing through the inserted

operator. This was the method used to determine a similar mixing matrix for the third

moment of the usual twist-2 Wilson operators in deep inelastic scattering [26]. However,

in ref. [26] it was noted that such a computational setup was not sufficient to determine

each of the (ij) = (12) and (ij) = (13) elements separately. To disentangle them an extra

piece of information was required. This is achieved here for T3 by the identity

ZT312 = ZT322 − ZT311 (A.7)

which is straightforward to establish by integration by parts. Thus to deduce these re-

maining two off-diagonal elements we have applied the Mincer algorithm [42] to the three

loop renormalization of the operator T3. As the resulting anomalous dimensions for T2 are

given in ref. [39], we record the first row of the three loop anomalous dimension mixing

matrix for T3 which is

γT311 (a) = 13

3
CFa + CF [1195CA − 311CF − 452NfTF ]

a2

54

+ CF [10368ζ3C
2
A + 126557C2

A − 31104ζ3CACF − 30197CACF − 67392ζ3CANfTF

− 38900CANfTF + 20736ζ3C
2
F − 17434C2

F + 67392ζ3CFNfTF
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− 50552CFNfTF − 4816N2
f T

2
F ]

a3

972
+ O(a4) ,

γT312 (a) = − 4

3
CFa + CF [−125CA + 34CF + 64NfTF ]

a2

27

+ CF [−5184ζ3C
2
A − 6790C2

A + 15552ζ3CACF − 18557CACF + 10368ζ3CANfTF

+ 694CANfTF − 10368ζ3C
2
F + 16736C2

F − 10368ζ3CFNfTF + 10696CFNfTF

+ 752N2
f T

2
F ]

a3

486
+ O(a4) ,

γT313 (a) = − 1

3
CFa + CF [11CA − 109CF + 20NfTF ]

a2

54

+ CF [−47952ζ3C
2
A + 32969C2

A + 132192ζ3CACF − 138749CACF

+ 25920ζ3CANfTF − 3200CANfTF − 72576ζ3C
2
F + 27332C2

F

− 25920ζ3CFNfTF + 39040CFNfTF + 2000N2
f T

2
F ]

a3

4860
+ O(a4) , (A.8)

as the remaining rows are given in ref. [39] where a = g2/(16π2). Here ζn is the Riemann

zeta function. We note that our anomalous dimensions pass all the usual consistency

checks. In particular we derived (A.8) in an arbitrary linear covariant gauge and checked

that the gauge parameter cancels as it ought to for gauge invariant operators in the MS

scheme.

Having summarized the renormalization of the operators of interest the next stage

is to provide the perturbative corrections to the Green’s function where the operator is

inserted in a quark 2-point function. As we are considering non-forward matrix elements

there is a momentum flowing through the operator. More specifically we consider the

Green’s function ⟨ψ(p)OTlµ1...µl+1(−p − q)ψ̄(q)⟩ for the two cases l = 2 and 3. There are two

independent external momenta p and q and we will evaluate the Green’s function at the

fully symmetric point given by

p2 = q2 = (p + q)2 = − µ2 , (A.9)

from which we have

p · q = 1

2
µ2 , (A.10)

where µ is a mass scale. For this section we will take this scale to be the same mass scale

that is used in dimensional regularization in d = 4 − 2ε dimensions to ensure the coupling

constant is dimensionless in d-dimensions. Therefore, our results for the Green’s function

will not have any logarithms of mass parameter ratios. As each Green’s function has free

Lorentz indices we choose to decompose them into a basis of Lorentz tensors denoted by

PT2(k)µνσ(p, q) and PT3(k)µνσρ(p, q). Here T2 and T3 indicate the sector as the basis will be

the same for the Green’s function with the total derivative operators of each sector too.

The choice of tensors in each basis is not unique. However, each basis is large due to the

number of objects available to build the tensors. These include the momenta pµ and qµ as

well as ηµν . In addition there are Lorentz tensors built from the γ-matrices. As in previous

perturbative evaluations [26, 37] we use the generalized γ-matrices of [43–45] denoted by
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Γµ1...µn(n) and defined by

Γµ1...µn(n) = γ[µ1 . . . γµn] , (A.11)

for integers n ≥ 0. In the definition an overall factor of 1/n! is understood. These matrices

span the spinor space when dimensional regularization is used. As an aside we note that

it is in this context that our choice of ςµν in the operator definition fits naturally. The

algebra and properties of these matrices is well-established [46, 47]. We note one specific

property which is important here which is

tr (Γµ1...µm(m) Γν1...νn(n) ) ∝ δmnI
µ1...µmν1...νn , (A.12)

where there is no sum over repeated m or n and Iµ1...µmν1...νn is the generalized unit matrix.

The key point is that this trace partitions the space spanned by the tensors in the basis

into distinct sectors. As we consider the operators in massless QCD, only Γ(0), Γµν(2) and

Γµνσρ(4) will be needed. For T3 it might be expected that Γµ1...µ6(6) would be required but

the symmetrization conditions exclude this γ-matrix from the basis. Finally with these

objects we have constructed the tensor basis for each sector. For T2 that involves 30

tensors consistent with the symmetry properties of the inserted operator. A sample set is

presented below. For T3 there are 42 tensors and for space reasons these as well as the full

T2 set are given in the attached data file.

The next step is to compute the coefficients in the decomposition of each Green’s func-

tion into their respective tensor basis. In other words we need the values of the amplitudes

ΣO
Tl

(k) (p, q) where we write

⟨ψ(p)OTlµ1...µl+1(−p − q)ψ̄(q)⟩∣p2=q2=−µ2 = Cl
Nl

∑
k=1

PTl(k)µ1...µl+1
(p, q) ΣO

Tl

(k) (p, q)∣
p2=q2=−µ2

,

(A.13)

with N2 = 30 and N3 = 42. The factor Cl is a sector specific normalization to account

for the differing dimensionalities of the tensor basis and Green’s functions for each sector.

Thus we have C2 = −i and C3 = µ2. The algorithm to determine these coefficients has been

given in refs. [26, 37] for instance. Briefly, to apply the multiloop perturbative integration

techniques to find these amplitudes we have to extract scalar Feynman integrals which is

achieved by a projection method. The projection matrix, MTl
ij , required for each sector is

constructed from the respective tensor basis [26, 37] as it is the inverse of the matrix

N Tl
ij = tr(PTl(i)µ1...µl+1

(p, q)PTl µ1...µl+1(j) (p, q)∣
p2=q2=−µ2

) . (A.14)

Due to the size of the matrices, their explicit form is given in the auxiliary data file provided.

Nevertheless, the partitioning due to the generalized γ-matrices provides a computational

shortcut. Hence we have

ΣO
Tl

(i) (p, q) = C−1
l

Nl

∑
j=1

MTl
ij tr (PTl µ1...µl+1(j) (p, q) ⟨ψ(p)OTlµ1...µl+1(−p − q)ψ̄(q)⟩∣p2=q2=−µ2) .

(A.15)
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Next we briefly note the practical details of actually carrying out the two loop evalua-

tion of the Green’s function which proceeds in an automatic way. The Feynman diagrams

are generated using the Qgraf package [48]. These have to be converted to Form [49, 50]

notation after all the Lorentz and color indices have been included. There are 3 graphs at

one loop. At two loops there are 32 graphs for OT2µνσ and 37 for OT3µνσρ with fewer graphs

for total derivative operators. After this the Feynman rules for either operator together

with the propagators and vertices are substituted and the various amplitudes are projected

out to produce a large number of scalar Feynman integrals that need to be calculated. To

achieve this we have used the Laporta algorithm approach [51]. After projection the scalar

products of the momenta in the numerators of the integrals are written in terms of the

propagators. In addition there may be propagator forms which are not present which are

referred to as irreducible. In this format the Laporta algorithm [51] is then applied which

uses integration by parts to systematically construct all the algebraic relations between

reducible and irreducible scalar integrals for a specific momentum topology. The upshot

is that all the required scalar integrals are written in terms of a small basis of master

integrals whose ε expansion is known from direct computation [52–55]. Therefore, we are

able to reduce all the scalar amplitudes to known integrals and hence evaluate them ex-

actly at one and two loops. Whilst this is in essence the Laporta method [51] one has to

construct the relations in a practical way. We have chosen to use the Reduze package

[56]. Moreover, the output files from the database that Reduze builds is straightforward

to interface with the Form modules that constitute the automatic computation. For the

two loop calculation we perform here, it transpires that for the Reduze setup there is only

one momentum topology at one loop and two at two loops. The latter are the ladder and

non-planar topologies. All the Feynman diagrams that we have to compute can be mapped

into these three cases. The final stage is to carry out the overall renormalization. This is

achieved by computing all the graphs as a function of the bare parameters, such as the

coupling constant and gauge parameter, following the procedure introduced in ref. [57] for

automatic symbolic manipulation loop calculations. Then the renormalized parameters are

introduced via the usual renormalization constant definitions with the operator renormal-

ization constants being extracted at the end to leave the finite expressions for each scalar

amplitude.

To allow orientation to the full data available in the attached data file we give a selection

of the various amplitudes. We provide these in numerical form for one representative from

each Γ(n)-matrix partition for both operators of the T2 sector. For instance, we have

ΣT2
(2)(p, q)∣ = − 1.000000 + [0.271008α + 2.395659]a

+ [1.329626α2 + 2.430759α − 6.178403Nf + 55.151461]a2 + O(a3) ,

ΣT2
(23)(p, q)∣ =[0.472269α + 1.416806]a

+ [1.795895α2 + 3.195370α − 2.817413Nf + 36.018151]a2 + O(a3) ,

ΣT2
(29)(p, q)∣ =[−0.222222α − 0.666667]a

+ [−0.808446α2 − 4.040708α + 0.886539Nf − 14.783322]a2 + O(a3) ,
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Σ∂T2
(2) (p, q)∣ = − 1.000000 + [−0.062325α + 0.062325]a

+ [0.054445α2 + 0.640942α − 1.600114Nf + 17.009954]a2 + O(a3) ,

Σ∂T2
(23)(p, q)∣ =[0.347245α + 1.041736]a

+ [1.302171α2 + 3.618039α − 1.851976Nf + 25.400736]a2 + O(a3) ,

Σ∂T2
(29)(p, q)∣ =[−1.041737α − 3.125210]a

+ [−3.906512α2 − 10.854117α + 5.555928Nf − 76.202209]a2 + O(a3) ,
(A.16)

where α is the gauge parameter and the restriction ⋯ ∣ stands for evaluation at (A.9) and

(A.10). Although we are only interested in the values in the Landau gauge, defined by

α = 0, we have performed our computations for arbitrary α. This is mainly as a check on

the renormalization of the operators since their anomalous dimensions are independent of

α in the MS scheme.

Next we summarize some aspects of the tensor basis and projection matrix for the T2

sector. Indeed one purpose of this summary is to provide an aid to the understanding of

the full information given in the attached data file for both T2 and T3. Due to the size of

the bases and matrices we used, a useable electronic format is more appropriate for their

representation. First, we present a selection of tensors in the T2 basis choosing several

representatives from each Γ(n)-matrix partition. When one of the external momenta is

contracted with a Lorentz index then that momentum appears as an index. For example,

for T2 we have

PT2(2)µνσ(p, q) = ςµνqσ + ςµσqν + [2ςµqqνqσ − ςνqqµqσ − ςσqqµqν]
1

µ2
,

PT2(5)µνσ(p, q) = ςνpηµσ + ςσpηµν
+ [2ςµpqνqσ + dςνpqµqσ + ςνpqµqσ + dςνqpµqσ + 3ςνqpµqσ + dςνqpσqµ

+ ςνqpσqµ + dςνqqµqσ + 2ςνqqµqσ + dςσpqµqν + ςσpqµqν + dςσqpµqν

+ 3ςσqpµqν + dςσqpνqµ + ςσqpνqµ + dςσqqµqν + 2ςσqqµqν]
1

µ2
,

PT2(17)µνσ(p, q) = [ςµppνpσ − ςµpqνqσ − ςνqpµqσ −
1

2
ςνqqµqσ − ςσqpµqν −

1

2
ςσqqµqν]

1

µ2
,

PT2(23)µνσ(p, q) = ηνσpµΓ(0)

+ [dpµqνqσ −
2d

3
pνpσqµ +

2

3
pνpσqµ −

d

3
pνqµqσ +

4

3
pνqµqσ

− d

3
pσqµqν +

4

3
pσqµqν +

d

3
qµqνqσ +

2

3
qµqνqσ]

Γ(0)

µ2
,

PT2(27)µνσ(p, q) = [pµpνpσ − pµqνqσ − pνqµqσ − pσqµqν − qµqνqσ]
Γ(0)

µ2
,

PT2(29)µνσ(p, q) = [Γ(4)µνpqpσ + Γ(4)µσpqpν]
1

µ2
. (A.17)

We have only shown one tensor from the final partition as the other is given by replacing

the uncontracted vector p by q.
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For each of the bases we have explicitly constructed the projection matrix coefficients.

For T2 as there are 30 projectors this would correspond to a 30 × 30 matrix where the

entries are rational polynomials in d. However, as we are using the generalized basis of

γ-matrices in d-dimensions the projector matrix is block diagonal due to the property of

(A.12). In other words

MT2 =
⎛
⎜⎜⎜
⎝

MT2
(2) 0 0

0 MT2
(0) 0

0 0 MT2
(4)

⎞
⎟⎟⎟
⎠
, (A.18)

where the subscript on the block matrices corresponds to the label of the analogous Γ(n)-

matrix appearing in the projection tensor. Each of these partitions is of different size being

respectively 22, 6 and 2 dimensional. Given the size of the first two submatrices it is again

not feasible to display all entries. Instead we choose to give a few reference entries to

facilitate the extraction of the full matrices from the data file. We have

µ2MT2
(2) 6 20

= − 2

9(d − 2)(d − 3)d
, µ2MT2

(2) 15 10
= 8(d + 1)

27(d − 2)d
,

µ2MT2
(0) 3 6

= − 2

9(d − 2)
, µ2MT2

(0) 4 2
= − 1

3(d − 1)(d − 2)
, (A.19)

where indices of MT2
(0) i j range from 1 to 6 and these can be mapped to the labels of the

tensor basis by adding 22. Finally, the remaining sector is compact enough to record it

completely as

MT2
(4) = − 1

9(d − 2)(d − 3)
( 2 1

1 2
) . (A.20)

Overall the matrix MT2 is symmetric as is MT3 . Finally, this information should be

sufficient to connect with the full electronic representation for both sectors.

B Chiral extrapolation

B.1 Effective field theory framework

In the specific framework of Chiral Perturbation Theory (ChPT, see, e.g., refs. [58–60])

applied here, the generating functional of all QCD correlators is evaluated by means of a

path integral involving an effective low-energy Lagrangian Leff(U, v, a, s, p, . . .) (compare

with ref. [58], and eqs. (1) and (2) of ref. [30]),

eiZ[v,a,s,p,t̄] = ⟨0∣T exp(i∫ d4x q̄[γµ(vµ + γ5a
µ) − (s − ipγ5) + σµν t̄µν]q)∣0⟩

= ∫ [dU] exp(i∫ d4xLeff(U, v, a, s, p, t̄)) . (B.1)

Formally, all QCD Green’s functions can be obtained by taking functional derivatives of

the generating functional w.r.t. the external (Hermitian) scalar, pseudoscalar, vector, axial-

vector and antisymmetric tensor source fields s, p, vµ, aµ, t̄µν . It should be noted that the
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tensor structure with an additional γ5 is not independent due to the identity σµνγ5 =
i
2εµνρσσ

ρσ. The dots stand for other possible source fields (for example, the coupling to

symmetric tensor fields has been considered in ref. [61, 62]). The tensor source t̄µν has been

incorporated in ref. [63]. The matrix field U collects the pion (Goldstone boson) fields in a

convenient way (see below). The effective Lagrangian has to be invariant under local chiral

transformations of the Goldstone boson and source fields, and shares all other symmetries

of LQCD. A formal proof that low-energy QCD can indeed be analyzed in this way has

been given by Leutwyler [59]. Under chiral transformations (L,R) ∈ SU(2)L × SU(2)R,

the quark and external source fields transform as

qL ∶= 1
2(1 − γ5)q → LqL , qR ∶= 1

2(1 + γ5)q → RqR ,

lµ ∶= vµ − aµ → LlµL† + iL∂µL† , rµ ∶= vµ + aµ → RrµR† + iR∂µR† ,

s + ip → R(s + ip)L† , s − ip → L(s − ip)R† ,

tµν → RtµνL† ,

where

tµν ∶= PµνρσL t̄ρσ , t̄µν = PµνρσL tρσ + PµνρσR t†ρσ ,

PµνρσL = 1

4
(gµρgνσ − gνρgµσ − iεµνρσ) , PµνρσR = 1

4
(gµρgνσ − gνρgµσ + iεµνρσ) .

The effective Lagrangian and the perturbative series are ordered by a low-energy power

counting scheme, counting suppression powers of Goldstone boson momenta and masses

(or quark masses). For details and further references, we refer to refs. [58–60]. At leading

chiral order, the effective Lagrangian describing the interaction of the pseudo-Goldstone

bosons (pions) with the external source fields and each other is given by (see ref. [58])

L(2)
M = F

2

4
⟨∇µU †∇µU⟩ + F

2

4
⟨χU † +Uχ†⟩ , (B.2)

with χ = 2B(s+ ip), s =M+ δs, whereM is the quark mass matrix, and δs the remaining

part of s. The brackets ⟨⋯⟩ denote the flavor (or isospin) trace, F is the pion decay

constant in the chiral limit (F ≈ 86 MeV), and ∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) .

Here U = exp(i
√

2φ/F ) with φ = φj λ̄j , where j is a channel (particle species) index which

labels the specific pion, and λ̄ are the pertaining channel matrices. We write out φ as

φ = π0λ̄π
0

+π+λ̄π
+
+π−λ̄π

−
, λ̄π

+
= 1

2
(τ1 + iτ2) , λ̄π

−
= 1

2
(τ1 − iτ2) , λ̄π

0

= 1√
2
τ3 , (B.3)

where the τa are the Pauli matrices. The matrix field U transforms as U → RUL† under chi-

ral transformations. We also introduce u as the square root of U , u2 = U , which transforms

as u → RuK† = KuL†, thus defining the so-called compensator matrix K = K(L,R,U)
(which is also unitary). Below we shall set the external fields p, a to zero, s =M (the quark

mass matrix) and set vµ = vaµ τ
a

2 , tµν = taµν τ
a

2 . At fourth order, we have

L(4)
M = i`6

4
⟨F +

µν[uµ, uν]⟩ − i
Λ2

2
⟨T+µν[uµ, uν]⟩ +⋯ , (B.4)
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where we only show the terms needed for our present work (see refs. [58, 63, 64] for the

complete Lagrangian at that order, and eq. (B.7) for the definition of the operators uµ,

F±
µν and T±µν).

B.2 Chiral Lagrangians for resonances

Explicit vector meson degrees of freedom have been incorporated in the effective Lagrangian

of ChPT already in ref. [29, 30]. In the following, a “heavy vector meson” framework was

set up [31, 65–68] to deal with problems related to the modified power counting in the

extended effective theory, caused by introducing a new heavy mass scale (the vector meson

mass in the chiral limit). Today, it is better understood how to deal with such problems in

a manifestly Lorentz-invariant way, by employing the freedom of choice of the subtraction

scheme for the effective field theory [69–71]. Such methods have been applied to the case

of heavy meson resonances in refs. [72–79]. We refer to these references for details on the

vector meson effective field theory outlined below.

Keeping in mind the transformation behavior of the external source fields vµ, aµ and

tµν given above, we can write down the following terms describing the interaction of the

vector mesons with the external source fields and the pions (compare also the previous

references, and ref. [80]):

Lint
V = fV

2
√

2
⟨F+

µνV
µν⟩ + f�V ⟨T+µνV µν⟩ + igV

2
√

2
⟨[uµ, uν]V µν⟩

+ fπω

4
√

2
εµνρσ⟨V µ{uν , F ρσ+ }⟩ + f

�
πω√
2
εµνρσ⟨V µ{uν , T ρσ+ }⟩ +⋯ , (B.5)

Lint
V V =

gVA
2
εµνρσ⟨{DµV ν , V ρ}uσ⟩ +⋯ , (B.6)

where

V µν = DµV ν −DνV µ ∶= ∂µV ν − ∂νV µ + [Γµ, V ν] − [Γν , V µ] ,

Γµ = 1

2
(u†[∂µ − i(vµ + aµ)]u + u[∂µ − i(vµ − aµ)]u†) ,

F±
µν = uFLµνu† ± u†FRµνu , uµ = iu† (∇µU)u† ,

FR,Lµν = ∂µ(vν ± aν) − ∂ν(vµ ± aµ) − i[(vµ ± aµ), (vν ± aν)] ,
T±µν = u†tµνu

† ± ut†µνu ,

∇µU = ∂µU − i(vµ + aµ)U + iU(vµ − aµ) , u =
√
U ,

Vµ = ρ0
µλ̄

ρ0 + ρ+µλ̄ρ
+
+ ρ−µλ̄ρ

−
+
ωµ√

2
12×2 , λ̄ρ

0

= λ̄π
0

, λ̄ρ
±
= λ̄π

±
, (B.7)

see eq. (B.3) for the channel matrices λ̄. We have used a large-Nc argument here to cast

the ρ and ω fields in the matrix form of the last line in eq. (B.7), compare also with eq. (27)

of ref. [31]. The dots indicate terms of higher chiral order, terms involving external source

fields s, p (which are not needed here), or terms involving more derivatives, which result

in contributions of the same form as those resulting from the terms given above, when

using the equations of motion or field transformations [81]. The vector field propagator in
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momentum space is

Dµν(q) = (−i)
ηµν − qµqν

m2
V

q2 −m2
V

. (B.8)

B.3 Extrapolation formulae

For the sake of completeness, we first discuss the pion matrix elements

⟨0∣q̄ τ
a

2
γµq∣πb(p)πc(k − p)⟩ = iεabc(2p − k)µfvππ(k2) , (B.9)

⟨0∣q̄ τ
a

2
σµνq∣πb(p)πc(k − p)⟩ = εabc(kµpν − kνpµ)f tππ(k2) . (B.10)

The standard framework of ChPT yields

fvππ(k2) =1 − k2

6(4πF )2
(96π2`r6 +

1

3
+ log(M

2

µ2
χ

)) + 4M2 − k2

6F 2
Īππ(k2) +O(p4) , (B.11)

f tππ(k2) =Λ2

F 2
(1 − k

2 + 3M2

6(4πF )2
log(M

2

µ2
χ

) − k2

18(4πF )2
+ 4M2 − k2

6F 2
Īππ(k2))

+ λrmM2 + λrkk
2 +O(p4) , (B.12)

where the loop function Īππ(k2) is given at the end of this appendix, in eq. (B.24) (it

vanishes for k2 → 0, and is complex for k2 > 4m2
π), and `r6, λ

r
m, λ

r
k are renormalized low-

energy constants, which depend on the scale µχ. M is the leading term in the quark-mass

expansion of the pion mass mπ, derived from the Lagrangian (B.2) (at the order we are

working, it can be set equal to the pion mass). We note that, up to corrections of two

loop order, these expressions for the form factors are consistent with the constraints from

elastic unitarity,

Im fvππ(k2) = fvππ(k2)σ(k2)t1∗1 (k2) ,
Im f tππ(k2) = f tππ(k2)σ(k2)t1∗1 (k2) , 4m2

π < k2 < 16m2
π , (B.13)

where σ(s) ∶=
√

1 − 4m2
π

s , and t11(s) is the isospin I = 1, p -partial wave amplitude for ππ

scattering,

t11(s) =
e2iδ11(s) − 1

2iσ(s)
for 4m2

π < s < 16m2
π .

It easily follows that the form factors fv,tππ must have the phase δ1
1(s) in the elastic region.

B.4 Contributions to ρ matrix elements

Here we use the definitions

⟨0∣q̄ τ
a

2
γµq∣ρb(k, λ)⟩ = δabmρe

(λ)
µ fρ/

√
2 , (B.14)

⟨0∣q̄ τ
a

2
σµνq∣ρb(k, λ)⟩ = iδab(e(λ)µ kν − e(λ)ν kµ)fTρ /

√
2 , (B.15)
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and find at the one loop level up to O(p4)

mρfρ√
2

=
√
Zχρ (fV k2 (1 − Iπ

F 2
) + cV k2M2 + 4gV f

v
ππ(k2)
F 2

k2IAππ(k2) −
4fπωg

V
A

F 2
k2IAπω(k2)) ,

(B.16)

fTρ√
2
=
√
Zχρ

⎛
⎝
fTV√

2
(1 − Iπ

2F 2
) +

cTV√
2
M2 + 2gV f

t
ππ(k2)
F 2

k2IAππ(k2)

−
4(fTπω +

fTV√
2
) gVA

F 2
IAπω(k2)

⎞
⎠
. (B.17)

Here we have to set k2 ≡ s equal to the rho pole, k2 → spole = m2
ρ − imρΓρ [82]. The wave

function renormalization factor is derived from the ρ self-energy Πρ(s),

Zχρ = 1

1 − d
dsΠρ(s)

∣
spole

≈ 1 + d

ds
Πρ(s)∣spole , (B.18)

where the contribution of the one loop graphs to the self-energy is given by (compare

ref. [77])

Πloop
ρ (s) ∶= −

4s2g2
V

F 4
IAππ(s) −

8s(gVA)2

F 2
IAπω(s) + tadpoles . (B.19)

The “tadpole” terms can be taken to be energy independent at the order we are working

to. The integral IAππ can be deduced from eqs. (B.22)–(B.25) below, and IAπω is given

by eq. (B.28) (with mV → mω ≈ mρ). The local terms proportional to cV , cTV can be

associated with local operators ⟨F+
µνχ+V

µν⟩, ⟨T +µνχ+V µν⟩ etc., and can be used to absorb

(real) terms of O(M2) from the loop integrals. The loop functions are given at the end of

this appendix (IAπω = IAπV (mV → mω ≈ mρ)). In the one loop approximation, we evaluate

the loop integrals at k2 =m2
ρ (the imaginary part of the pole position is generated by loop

graphs). The leading non-analytic term in IAπω is given by

IAπω(m2
ρ ≈m2

ω) =
M3

48πmρ
+ . . . , (B.20)

and the terms of order M0 and M2 are absorbed in the corresponding LECs. The chiral

logarithm of this integral is of O(M4). One finds

Re
fTρ

fρ
≈

fTV√
2mρfV

(1 + M2

32π2F 2
log(M

2

µ2
χ

) + δcM2 −
gVA

12πF 2mρ
(1 +

√
2fTπω
fTV

− fπω
fV

)M3) ,

(B.21)

where δc is the following combination of (renormalized) LECs,

δc ∶=
cTV
fTV

− cV
fV

.

The coefficient of the leading chiral logarithm is in agreement with ref. [64]. With gVA ≈ 3
4

(see ref. [77], and references therein), the coefficient of the third-order term should be
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of order ∼ 3 GeV−3. Inserting this estimate, and µχ = 770 MeV, the third-order term

becomes comparable to the leading chiral logarithm for M ≳ 200 MeV, so it might give a

non-negligible contribution for most data points.

In eq. (B.21), we have written the result for the chiral expansion of Re fTρ /fρ, which

motivates the extrapolation formula (6.1c), while the formulae (6.1a) and (6.1b) result

from (B.16) and (B.17), respectively, upon inserting the explicit expressions for the loop

functions given below. The cusp effects and imaginary parts in the chiral behavior of the

couplings could only be extracted indirectly from the computed correlators, which are real

on Euclidean lattices with a finite volume. A more thorough analysis is needed to deal with

such complications. It is, however, important to note that the leading non-analytic terms

given above are not afflicted by this deficiency. This can be deduced from the fact that

they agree with the corresponding results in the heavy vector meson framework [64, 68],

where the unitarity effects due to the ππ loops are either dropped or derived from contact

terms of a non-Hermitean part of the effective Lagrangian (see, e.g., ref. [65]).

B.5 Loop functions

To render this appendix self-contained, we give the definitions of the loop integrals occuring

in the formulae above. The loop integral with two pion propagators is given by

Iππ(s) = ∫
ddl

(2π)d
i

((k − l)2 −M2)(l2 −M2)
, k2 =∶ s . (B.22)

It diverges when the space-time dimension d approaches 4,

Iππ(0) = 2λ̄ + 1

16π2
(1 + log(M

2

µ2
χ

)) +O(4 − d) ,

λ̄ =
µd−4
χ

16π2
( 1

d − 4
− 1

2
[log(4π) + Γ′(1) + 1]) ,

however the difference Īππ(s) ∶= Iππ(s) − Iππ(0) is finite,

Īππ(s) = −
s

16π2 ∫
∞

4M2
ds′

√
1 − 4M2

s′

s′(s′ − s)
, (B.23)

where it is understood that real values of s are approached from the upper complex plane

for s ∈ [4M2,∞). Explicitly,

Īππ(s) = −
1

8π2
(1 + σ0(s)artanh(− 1

σ0(s)
)) , σ0(s) ∶=

√
1 − 4M2

s
. (B.24)

In the chiral limit (M → 0),

Iππ(s)→ 2λ̄ − 1

16π2
(1 + log(−

µ2
χ

s
)) .

Note that this integral has an imaginary part Im Īππ(s) = −σ0(s)θ(s− 4M2)/(16π) for real

s > 4M2. We have also employed the abbreviation

IAππ ∶=
1

4(d − 1)
(2Iπ − (s − 4M2)Iππ) , (B.25)
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where

Iπ ∶= ∫
ddl

(2π)d
i

l2 −M2
= 2M2λ̄ + M2

16π2
log(M

2

µ2
χ

) , (B.26)

for d→ 4. The scalar integral including two different propagators can be written as

IπV (k2 ≡ s) = ∫
ddl

(2π)d
i

((k − l)2 −m2
V )(l2 −M2)

= IπV (m2
V ) −

(s −m2
V )

16π2
JπV (s) , (B.27)

and we refer to appendix B of ref. [77] for details on the chiral expansion. We also use

IAπV = 1

4s(d − 1)
((4sM2−(s+M2−m2

V )2)IπV +(s+M2−m2
V )Iπ+(s−M2+m2

V )IV ) , (B.28)

where IV is given by the formula for Iπ with M → mV . Here, the letter V stands for the

vector meson running in the loop (ρ,ω, . . .).
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[23] S. Güsken, A Study of smearing techniques for hadron correlation functions, Nucl. Phys. B

(Proc. Suppl.) 17 (1990) 361.

[24] M. Falcioni, M. L. Paciello, G. Parisi, and B. Taglienti, Again on SU(3) glueball mass, Nucl.

Phys. B251 (1985) 624.

[25] C. Sturm, Y. Aoki, N. H. Christ, T. Izubuchi, C. T. C. Sachrajda, and A. Soni,

Renormalization of quark bilinear operators in a momentum-subtraction scheme with a

nonexceptional subtraction point, Phys. Rev. D80 (2009) 014501, [arXiv:0901.2599].

[26] J. A. Gracey, Amplitudes for the n = 3 moment of the Wilson operator at two loops in the

RI′/SMOM scheme, Phys. Rev. D84 (2011) 016002, [arXiv:1105.2138].

[27] J. A. Gracey, RI′/SMOM scheme amplitudes for quark currents at two loops, Eur. Phys. J.

C71 (2011) 1567, [arXiv:1101.5266].

[28] P. Fritzsch, F. Knechtli, B. Leder, M. Marinkovic, S. Schaefer, R. Sommer, and F. Virotta,

The strange quark mass and Lambda parameter of two flavor QCD, Nucl. Phys. B865 (2012)

397, [arXiv:1205.5380].

[29] G. Ecker, J. Gasser, A. Pich, and E. de Rafael, The role of resonances in chiral perturbation

theory, Nucl. Phys. B321 (1989) 311.

[30] G. Ecker, J. Gasser, H. Leutwyler, A. Pich, and E. de Rafael, Chiral lagrangians for massive

spin-1 fields, Phys. Lett. B223 (1989) 425.

[31] E. E. Jenkins, A. V. Manohar, and M. B. Wise, Chiral Perturbation Theory for Vector

Mesons, Phys. Rev. Lett. 75 (1995) 2272, [hep-ph/9506356].
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