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Abstract 
Nitrogen constitutes a natural part of air and is a non-global warming gas. There have been 
recent attempts to use it as a working medium in high voltage circuit breakers to replace SF6, 
which is an excellent insulating and arc quenching gas but also a strong greenhouse gas with a 
Global Warming Potential (GWP) of 23,900 and a life time of 3,200 years. To employ the full 
potential of nitrogen for use in high voltage circuit breakers, the properties and radiation 
characteristics of its mixture with Polytetrafluoroethylene (PTFE) vapour, an electrical and 
thermal insulation material, need to be known, forming the objectives of the present work.  

This research has investigated the capability of nitrogen and SF6 on insulating and quenching 
an electric arc in a high voltage circuit breaker. Depending on the current of the electric arc 
range from 100 A to 330 A, the arc can be extinguished in 25-50 ms with nitrogen gas flow, 
while it takes 20-45 ms with SF6. The peak voltage of the electric arc with SF6 is 10% higher than 
it is with nitrogen. According to the preliminary data obtained in the experimental investigation, 
it seems possible that SF6 can be replaced by nitrogen as the operation gas in high voltage circuit 
breakers. Research on the properties and radiation characteristics of a gas mixture of nitrogen 
and PTFE is required to allow modelling of a nitrogen filled circuit breaker.   

Net Emission Coefficient (NEC) describes the radiation characteristics of the hottest area in an 
electric arc. The NEC of a nitrogen and PTFE mixture is computed by using the most advanced 
method considering both continuum and line radiation. The result shows that the influence of 
PTFE on the NEC cannot be neglected. The influence of uncertainty in atomic data on the 
calculated NEC is studied. A 50% adjustment in the uncertainty of the atomic data on high 
energy levels results in a 0.001% variation of the NEC because of the low population density of 
the particles with high energy levels involved. Due to the lack of experimental results of the 
mixture, the validity of the model is confirmed by a good agreement between the results 
calculated and those obtained by experiments or those predicted by the other research groups 
for pure nitrogen gas and pure PTFE vapour. Results show that influence of PTFE vapour on the 
NEC of the mixture is substantial. It has been determined that the NEC of the mixture cannot 
be estimated by NEC of the pure gases multiplied by their proportions in the mixture. 

Re-absorption has to be considered when the temperature is lower than 25,000 K. To solve the 
Radiation Transfer Equation (RTE), the P1 and Discrete Ordinate Method (DOM) have been used 
to calculate the radiation with re-absorption. The P1 approximation is computationally cheaper 
but it has poor accuracy. The accuracy of DOM is determined by the number of calculation 
bands. It is obvious that the more bands used, the higher the accuracy. A comparison of the 
DOM 8-5 and 5-3 methods indicates a balanced compromise between accuracy and cost of 
calculation with DOM 8-5.  

A two-temperature model was applied to solve the properties of the plasma in non-LTE 
condition when the temperature gradient is sufficiently high. A number of existing calculation 
methods are discussed. A modification of Godin’s method has been proposed to satisfy the 
two-temperature model. Results of a gas mixture composition, obtained by different methods, 
are analysed. The modified method leads to results that agree very well with those from the 
existing methods but with better convergence that when the Newton-Raphson algorithm is 
used to obtain the solution. Results with different molar percentages of PTFE vapour have been 
presented and discussed.  The results for pure nitrogen and pure PTFE vapour have been 
compared with existing data to verify the validity of the method.    
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Chapter 1 Introduction 

1.1 Circuit breakers 

Circuit breakers are designed to protect the electrical power transmission 

networks from damage when faults occur such as short circuits and overloads. 

In normal operation the contacts in circuit breaker are closed and it works as a 

good conductor. However, when a fault is detected, the contacts must be 

separated so it becomes an excellent insulator. Due to the high current (larger 

than 50 A) passing through the closed contacts, it generates an electrical arc by 

ionizing the gas between the contacts when they are separated. The electrical 

arc generates a sufficient high instant current that may damage the devices in 

the power network. The speed of interrupting the current flow determines the 

performance of the circuit breaker. Depending on the voltage of the circuit 

breaker used, it is divided into two classifications: low voltage (less than 1k V) 

circuit breaker and high voltage (greater than 1k V) circuit breaker.   

1.1.1 Research on circuit breakers 

The research on circuit breakers comprises two parts: modelling research and 

experimental investigation. The modelling research consists of simulating the 

progress of the circuit breaker operation, with the help of a computer, by 

mathematical and physical models. Experimental investigation is physically 

building a circuit breaker in a laboratory. Recording the sensor’s data, 

oscilloscope and other monitoring equipment, can investigate the processing 

of operating and the behaviour of the electric arc when it interrupts the current 

flow. The purpose of the circuit breaker is to extinguish the electric arc in a very 

short time (less than 50 ms).  
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1.1.2 Nitrogen in circuit breakers 

Currently, SF6 is an excellent insulating and arc quenching gas but also a strong 

greenhouse gas with a Global Warming Potential (GWP) of 23900 and a life time 

of 3200 years. Nitrogen makes a natural part of air and is a non-global warming 

gas. There has been recent attempt to use it as a working medium in high 

voltage circuit breakers to replace the SF6. To employ the full potential of 

nitrogen for use in high voltage circuit breakers, the properties and radiation 

characteristics need to be known.  

 

1.2 Plasma 

When a solid matter is heated adequately, its crystal lattices structure will be 

broken by the thermal motion of the atoms, which results in melting and a 

liquid is formed. When the liquid is heated sufficiently, the rate of atoms 

vaporising off the surface is higher than the rate of re-condensing, the matter 

transforms into gas. If the gas is heated enough, the atoms collide with each 

other and knock their outer shell electrons off, the matter is in a plasma state. 

Therefore, plasma can be regarded as the fourth state of matter. 

Plasma, makes 99% of the matter in the universe. It was discovered by Davy1 in 

1808. Plasma physics has evolved into an advanced interdisciplinary science 

over past 30 years2. The plasma in the universe is generated naturally. A plasma 

can be created by heating a gas or subjecting it to a strong electromagnetic field 

applied with a laser or microwave generator. In plasma, electrons are 

generated by ionisation of molecules, atoms or ions. They are completely free 

to move. The freely moving electrons make the plasma electrically conducting.  

After World War Two, there were rapid developments in the chemical and 

electrical industry. The technology of electrical arc and thermal plasma was 
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advanced owing to their unique characteristics of high temperature, energy 

density and flexibility in working gas. In the 1950s, plasma was widely used in 

material processing, such as for plasma cutting3, plasma welding4 and plasma 

painting5. In the 1960s great success was made in producing fine powders of 

refractory metal and cermet. It brought about immense success in material 

processing. Nowadays, there are more than 10 major research areas related to 

plasma, such as plasma diagnostics, plasma sheath phenomena and numerical 

plasmas and simulation.   

1.2.1 Plasma in circuit breakers 

Arc plasma in high voltage circuit breakers is generated by an electric discharge 

with a current above 50 A and a pressure greater than 0.1 bar. In a high voltage 

circuit breaker (HVCB), the electric arc is formed by separating the electric 

contacts. The current continues to pass through the arc even through the 

contacts have been separated. Due to Joule heating, the current results in a 

high temperature of greater than 20,000 K in the arc. The gas close to the arc is 

then ionized to become arc plasma. Theoretically, the arc plasma can exist in 

three states: Complete Thermal Equilibrium (CTE), Local Thermal 

Equilibrium(LTE) and non-LTE.  

Complete Thermal Equilibrium (CTE) 

For the arc plasma to be in the CTE state, it must satisfy the conditions below:  

1. The temperature in the arc is unique.  

2. The speed of particles in the plasma is according to the Maxwell-Boltzmann 

distribution and the population density of the excited states of particles 

follows the Boltzmann distribution.  

3. All particle densities can be described by Saha equations.  

4. The electromagnetic radiation field is that of blackbody radiation of intensity 

that can be described by the Planck function.  
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However, not only arc plasma but also an actual plasma and some natural 

plasmas cannot be in the CTE state. This is because most plasmas are optically 

thin and, the radiation temperature of the radiator is different from the kinetic 

temperature of the plasma.  

Local Thermal Equilibrium (LTE)    

In contrast to the CTE state, plasma in the LTE state does not require its 

radiation to correspond to the blackbody radiation intensity of the LTE 

temperature. The definition of LTE states that collision processes (not radiative 

processes) govern transitions and reactions in the plasma. The processes are 

micro reversible. LTE also requires local gradients of plasma properties such as 

temperature, number density and heat conductivity to be sufficiently small to 

allow the particles to arrive at equilibrium. The time required for the particles 

to reach equilibrium is much shorter than the diffusion time. As arc plasma has 

such a high temperature, especially in the arc core region, arc plasma can be 

considered to be in the LTE state. The plasma can be classified as thermal 

plasma if it meets all the requirements of LTE.  

Non Local Thermal Equilibrium (non-LTE) 

LTE is no longer valid when a large temperature gradient exists, such as in the 

region close to a cold wall or when the number density of electrons is not high 

enough to allow sufficient transfer of energy between the electrons and heavy-

particles. In such a situation, plasma is in a non-LTE state. 

Optical thin plasma 

Optical thin plasma is a plasma that emits radiation with a wavelength longer 

than2 200 nm while radiation of wavelength shorter than 200 nm is partially 

or totally absorbed by the plasma.  Many years ago, arc plasma was treated as 

optically thin, even at high temperature and high pressure. In the 1990s, 
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researchers have realised that the reabsorption of radiation from arc plasma is 

an important mechanism.  

Blackbody radiator 

A blackbody radiator in thermal plasma is an ideal emitter. The intensity of 

emitted blackbody radiation is independent of frequency, but is only 

determined by temperature. The radiation observed in plasma is usually much 

less than blackbody radiation, due to the influence of radiation absorption in 

optically thin and radiation reabsorption in optically thick.   

Debye length and electric shielding 

It is well known that due to Coulomb forces, on average, more than one 

electron surrounds a positive ion. The electrons act as shield for the positive 

ion, resulting in an electric field generated by a positively charged ion only 

existing within a sphere with diameter of Debye length; therefore, the Coulomb 

force on the electrons outside of the Debye sphere are significantly smaller on 

electrons within the sphere. The Debye length due to shielding effect then 

determines the ionization energy of atoms and ions. 

1.2.2 Nitrogen-polytetrafluoroethylene plasma in circuit breakers 

Polytetrafluoroethylene (PTFE) is one the most common materials used in high 

voltage circuit breakers. The arc plasma in the high voltage circuit breaker is 

ionized from the operation gas mixture with PTFE vapour. The presence of PTFE 

vapour in the arcing gas is a direct result of nozzle ablation induced by the 

strong radiative flux from the high current arc. The majority of a high current 

atmospheric pressure arc (instantaneous current >2 kA) at power frequency is 

in the LTE state. Only a small part near the arc edge where a strong temperature 

gradient exists deviates from LTE. However, this part of the arc contributes little 

to the conduction of a high current and the whole arc column can be modelled 

by an LTE arc model. In contrast, the low current arc during the current zero 
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period can deviate from LTE and a two-temperature model is often used to 

describe the different behaviours of electrons and heavy particles. Therefore, 

in present work, the nitrogen-PTFE plasma is considered to be under LTE and 

two-temperature non-LTE conditions. 

 

1.3 Introduction to determination of equilibrium 

composition, thermal properties, transport coefficient 

and radiation for thermal plasma 

Research work regarding radiation transfer in arc plasma is continuing because 

of the current interruption phenomenon in circuit breakers has not been 

elucidated clearly owing to the complex nature of this topic. Radiation 

dominates the mechanism of energy transport in arc plasma. It has been found 

that during the arc processing, the total radiation from an arc plasma is its 

energy loss, which determines the time required for the electric arc cooling 

down. Many papers have been published to introduce the different 

approximation methods that can be employed to approach the exact variation 

of radiation in an arc plasma. In this section, it is going to introduce the 

mechanism of radiation emission and absorption.  

1.3.1 Equilibrium composition  

The knowledge of the chemical equilibrium composition of a species is 

fundamental to the investigation of radiation transfer. The whole theoretical 

basis of equilibrium composition calculation is taken from Gibbs, who 

developed the formalism of statistical mechanics in 19026. Stuart R. improved 

the theory to apply it to a system containing many constituents7. This method 

makes use of equilibrium constants to express some certain species. The 

weaknesses of this method are that it is limited to some specific species and 
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reactions, and it is quite cumbersome. In 1958, White improved the theory8 and 

derived an equation that can be applied to all constituent species in a chemical 

reaction with no distinction between them. The Gibbs energy and number 

density of a specie can be related to the chemical potential, as represented 

below: 

dG =  ∑ 𝜇𝑎𝑑𝑁𝑎

𝑎

= 0 
(1.1) 

 

Where 𝜇𝑎 is the chemical potential and 𝑁𝑎 is the number density for species a. 

Researchers continued to improve the calculation method. The composition 

and transport properties of SF6 were calculated by Frost et al.9 by applying 

minimization of Gibbs free energy. The temperatures of results are from 

1,000 K to 45,000 K and pressures from 1 bar to 16 bar. In 2003, Godin and 

Trepanier10 developed a new robust method to simplify the computation of 

equilibrium composition. They introduced a chemical basis in the calculation, 

which leads to be regardless reactions individually. Cressault11  investigated 

thermal plasma properties for several kinds of mixtures of metal vapour. He 

calculated the plasma composition for metals with different molar proportions 

by applying Godin’s method. The results were in good agreement with existing 

theoretical and experimental work.       

The Saha equation, known as the Saha-Langmuir equation, was developed by 

Saha12 in 1920. It is another popular method related to the species number 

density, temperature and pressure. The following equations describe the 

ionization reaction and dissociation reaction, respectively.   

𝑛𝑎𝑛𝑏

𝑛𝑎𝑏
=

𝑄𝑎𝑄𝑏

𝑄𝑎𝑏
[
2𝜋𝑘𝑇 

ℎ2
]

3/2

[
𝑚𝑎𝑚𝑏

𝑚𝑎𝑏
]

3/2

exp [−
𝐸𝑑

𝑘𝑇 
] 

(1.2) 
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𝑛𝑒 [
𝑛𝑟+1

𝑛𝑟
] = 2 [

𝑄𝑟+1

𝑄𝑟
] [

2𝑚𝑒𝜋𝑘𝑇 

ℎ2
]

3/2

exp [−
𝐸𝐼,𝑟+1 − ∆𝐸𝐼,𝑟+1

𝑘𝑇 
] 

(1.3) 

 

In Eq.(1.2), 𝑛𝑎, 𝑛𝑏 and 𝑛𝑎𝑏 are the population of species ab and its products of 

dissociation reaction a and b, k is the Boltzmann constant, and h is the Planck 

constant. 𝐸𝑑 indicates the dissociation energy of the reaction 𝑎𝑏 
 

⇔ a + 𝑏. In 

Eq.(1.3) 𝑛𝑟+1 represent the population of species r that loses an electron and 

𝑛𝑒 indicates the population of electrons. 𝐸𝐼,𝑟+1 is the ionization energy for the 

reaction 𝑟 
 

⇔ [r + 1] + 𝑒− and ∆𝐸𝐼,𝑟+1 is the lowering of the ionization energy. 

The 𝑄 in both equations represents the internal partition functions.  

Saha equations are applied for LTE conditions. However, Van de Sanden 13 

proposed another form of equations that are suitable for non-LTE conditions.  

Potapov et al.14 derived other equations based on the Saha equations for non-

LTE but chemical equilibrium.   

1.3.2 Transport 

The transport coefficient calculation usually employed overcomes the various 

integral equations of Boltzmann, explaining the development of application in 

the Chapman–Enskog (CE) approach 15 . A study by Hirschfelder et al. 16 

completed in-depth examinations in this regard. Despite the fact that it was 

presented in mind of weakly ionised gases, such a technique has been regarded 

as valid in relation to thermal plasmas 17 . The transport coefficients are 

estimated by using Sonine polynomials. Knowledge of the equilibrium 

composition of the particles is necessary before calculating the transport 

coefficient, as well as the integrals of collision Ω𝑚,𝑛
(𝑙,𝑠)

, which are known to be 

dependent on the ability to characterise the interaction between two particles 

m and n. Following16 Hirschfelder’s research, these integrals can be expressed 

as: 
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Ω𝑚,𝑛
(𝑙,𝑠)

= (
𝑘𝐵𝑇

2𝜋𝜇𝑚,𝑛
)

1/2

∫ exp (−𝛾𝑚,𝑛
2 )𝛾𝑚,𝑛

2𝑠+3𝑄𝑚,𝑛
(𝑙)

(휀𝑟)𝑑𝛾𝑚,𝑛

∞

0

 (1.4) 

 

Where 𝑘𝐵 is the Boltzmann constant, 𝛾𝑚,𝑛
 = (

𝜀𝑟

𝑘𝐵𝑇
)

1/2
 , 휀𝑟 is the kinetic energy, 

𝜇𝑚,𝑛  is the reduced mass, and 
1

𝜇𝑚,𝑛
=

1

𝑚𝑚
+

1

𝑚𝑛
  and 𝑄𝑚,𝑛

(𝑙)
(휀𝑟)  are the total 

transport cross section, which can be carried out by the interaction potential of 

different species and will be described in Chapter 4. Chapman15 summarised a 

method to calculate diffusion coefficients, viscosity and electrical conductivity.  

There are four important terms in calculating thermal conductivity. They are 

the translational thermal conductivity of heavy-particles, electrons, internal 

and reaction respectively 18 . The fundamental term is due to the different 

chemical reactions, and is representative of the energy transportation by 

dissociation and the species’ and molecules’ ionisation and recombination.  

The complete diffusion coefficient, taking into consideration temperature and 

pressure gradients, and ambipolar diffusion, has been suggested by Devoto19. 

Murphy published a paper20 that states the importance of diffusion coefficients 

to mixture gas modelling. Weizong21  computed the thermal properties and 

transport coefficient of pure nitrogen gas. However, there is lack of calculation 

relating to nitrogen mixtures such as with PTFE.  

 

1.3.3 Radiation 

Radiative transfer, is an important energy transport process within thermal 

plasmas. It plays a significant role in determining the temperature in high 

current electrical arcs. Moreover, it also affects the electrical and other 

transport properties of the plasma. Due to the importance of radiation transfer 
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in energy balance, it is necessary to clearly understand the mechanisms of 

radiation emission.  

Generally, the direction of radiation transfer within an arc plasma starts from 

the arc core (hot regions). The energy is emitted from the arc core to the cold 

regions, such as the edge of the plasma. Energy can be absorbed completely in 

hot regions. However, it has to be absorbed partially in relatively cool regions. 

When the radiation reaches the cold region, the remaining energy will be 

absorbed. 

The absorption coefficient indicates the probability of a photon being absorbed 

along the path. This absorption effect leads to a reduction of radiation intensity. 

It can be expressed according to the equation below: 

𝑑𝐼𝑣

𝑑𝑟
= 𝐾𝑣

 𝐵𝑣 − 𝐾𝑣
 𝐼𝑣 (1.5) 

 

Where 𝐼𝑣  is the radiation intensity at the point of interest r with frequency v, 

which can be defined as radiation power per unit solid angle and per unit 

apparent surface. 𝑟 is the distance from the point of interest to the arc core. 𝐵𝑣 

is the blackbody intensity, which expresses the radiation intensity emitted from 

the arc core.  𝐾𝑣
  is the absorption coefficient. The term 𝐾𝑣

 𝐵𝑣  is defined as 

power emitted from the arc core through a unit volume of the plasma per unit 

solid angle at frequency v.   

휀𝑣

𝐾𝑣
= 𝐵𝑣 =

2ℎ𝑣3

𝑐2[exp (
ℎ𝑣
𝑘𝑇

) − 1]
 (1.6) 

The absorption coefficient is the key parameter to investigate radiation transfer 

within an arc plasma. It can be contributed by atoms, molecules and ions. 

According to the radiation mechanism, it can be classified such four 
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contributions: atomic continuum, atomic line, molecular continuum and 

molecular line radiation.  

In 1971, Lowke and Liebermann22 computed the atomic continuum and line 

radiation for SF6 arc plasma. A detailed method was derived for the calculation 

of the absorption coefficient contributed by the atomic continuum and line 

radiation. Gongassian and Schluter23 developed a more elaborate theory for 

the calculation of atomic continuum radiation. A deduction effect of the 

contribution of radiative recombination to the total continuum radiation was 

found by applying a new calculation method of photoionization cross sections. 

The photoionization cross section of an atom and a molecule dominate the 

magnitude of continuum radiation that can be observed from experimental 

investigation. Lee24 reported cross sections for 10 kinds of species including 

nitrogen from experiment. However, estimation of the cross section from 

theoretical investigation is an efficient way to obtain the cross section for 

thousands of species in nature. Hudson25 reviewed the photoabsorption cross 

section for molecules of some popular species with wavelengths of less than 

300 nm. Fennelly 26  tabulated the cross section for nitrogen atoms and 

molecules taking into account the dense structure and autoionization structure 

in the cross section. Robinson27 developed a method of estimating the cross 

section for negative ions. Itikawa28 complied the table of the cross sections for 

molecular nitrogen in 1984. 

Radiation due to transition between electronic excitation energy levels results 

in spectral lines. The broadening of spectral lines can be caused by different 

mechanisms. Lowke described the methods to calculate line spectral 

broadening due to different mechanisms. The line profile is a function 

describing the spectral line shape with a given broadening from all mechanisms. 

Gleizes 29  and Drawin 30  introduced a two-line profile in their radiation 

calculations. In Gleizes’s case, he neglected the influence of line overlapping 



12 
 

and applied the Gaussian line profile for calculating line radiation. The radiation 

results matched existing theoretical and experimental work but were slightly 

higher. Darwin applied the Lorentzian line profile in his calculation. The 

Lorentzian line profile has been more popular in recent years: Franke 31 

calculated radiation in a free-burning arc employing the Lorentzian line profile 

for the line radiation. Liani32 computed the net emission coefficient (NEC) for a 

CH4 mixture with H2 by applying the Lorentzian line profile.  

In 1974, Lowke22 introduced the concept of the NEC, a novel theory to estimate 

radiation for isothermal plasma. He demonstrated the use of NEC to express 

the divergence of the radiative flux at the centre of the arc plasma. It is believed 

that the arc core is the hottest region of the arc plasma and can be treated as 

an isothermal plasma33. The calculation equation is expressed below: 

ε𝑁(𝑇, 𝑝, 𝑅𝑝) = ∫ 𝜅𝜈(𝑇, 𝑝)𝐵𝜈(𝑇) exp(−𝜅𝑣(𝑇, 𝑝)𝑅𝑝) 𝑑𝜈
∞

0

 (1.7) 

Where NEC ε𝑁  is a function related to temperature, pressure and thermal 

radius. The thermal radius indicates the radius of the isothermal plasma.  

Many researchers have investigated arc plasma radiation based on NEC theory: 

Gleizes calculated the NEC for pure nitrogen, SF6 and their mixture arc plasma 

that has good agreement with experimental results29. Cressault34 investigated 

the radiation properties of several metal vapours by employing the NEC as the 

indicator. The calculation results matched with published work. Billoux 35 

calculated the NEC for CO2 mixture with copper vapour. He found that the NEC 

cannot indicate radiation transfer at low temperature because species 

reabsorption is neglected. Some work has been done on the NECs for other 

pure gases or mixtures: air36, CH4-H2
32, H2O-air-MgCl2/CaCl2/NaCl37 and SF6

38.   

Arc plasma with real radiation transfer, however, is not an isothermal plasma. 

Plasma reabsorption dominates the radiation transfer in the cool region where 

NEC is no longer valid. The physical quantity that describes radiation transfer is 
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radiation flux. However, it is expensive in computation costs to resolve the 

actual radiation flux model. Therefore, some approximation methods have 

been developed to simplify the calculation model of radiation flux in an arc 

plasma. A partial characteristics method has been developed by Sevast’ 

Yanenko39, who identified two parameters, Som and ∆Sim , which describe the 

absorption and emission of radiation in a given direction. Those two values can 

be tabulated for a specific gas before starting the simulation work. It is complex 

as well, but the simulation is rapid. P1 approximation is the other effective 

method of calculating radiation flux for plasma modelling. P1 approximation 

was first developed by Jeans40 in 1917, but Kourganoff further described this 

method in 195241. The value of this method is the governing equation, which is 

a simple partial differential equation (PDE), which means that approximation 

can be solved in low order equations. The computation cost is much less than 

that required for solving radiation transfer equation (RTE), and it has good 

accuracy for media that is near-isotropic radiative intensity 42 . Gelbard 

improved the P1 method to high-order approximation to increase its accuracy; 

it is known as SPN. The discrete ordinate method (DOM) is another 

approximation method to simplify RTE. Details of DOM have been given by 

Charest43. 

1.3.4 Nitrogen-PTFE plasma under thermal and non-thermal 

equilibrium 

There has been much interest directed towards plasma devices that function 

with nitrogen due to the fact they function with common tungsten-based 

refractory electrodes, provide an environment that is radical non-oxidising with 

high temperature for a number of different plasma processing and plasma 

chemistry functions, and deliver higher plasma power when contrasted 

alongside argon via the higher voltage drop across the plasma44-
, 45 , 46 ,

47. Within 

these devices, there may be temperature variations spanning several thousand 
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degrees Kelvin, although ultimately this depends on the electrodes’ geometry 

and the operating conditions, where pressure could vary from a number of 

atmospheres to sub-atmospheres, and where there could be a significant 

variation of electron temperature from corresponding heavy species, although 

this is dependent on location48. The presence of gradients of temperature, 

species densities and pressure, as commonly experienced in these devices, 

makes it necessary to ensure good insight into the notably non-linear 

behaviours of associated transport and thermal properties. In recent times, 

numerical simulation of devices has been gaining much momentum as a cost- 

and time-saving method geared towards understanding the behaviours of 

devices within various operating parameters and device designs. Transport 

properties and thermodynamic data represent the most pressing prerequisites 

for such simulations.  

In the past, various theoretical and experimental efforts have been directed 

towards understanding the transport and thermodynamic properties of 

nitrogen plasma in direct consideration of thermal equilibrium49
50

-
515253545556575859

60. With the 

exception of very minor deviations from various collision integral sets applied 

in other works, the majority of these calculated properties display a generally 

sound consensus. Regarding LTE, the work carried out by Murphy and 

Arundell58 warrants specific consideration. An in-depth examination into the 

transport properties and thermodynamic data associated with atmospheric-

pressure nitrogen was carried out in the temperature range 300–30,000 K. The 

pressure dependence of the properties is further addressed in the work of 

Murphy59. Nonetheless, works surrounding the estimation of transport 

property and thermodynamic data of nitrogen plasma within conditions of non-

equilibrium is selective61. Colombo et al.61 completed the first work in this field 

and, together with argon and oxygen, various transport and thermodynamic 

properties associated with atmospheric pressure nitrogen were established in 
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relation to the thermal non-equilibrium parameter (h, ratio of electron 

temperature to heavy species temperature) up to 3. The data available in the 

literature, thus far, have not undergone in-depth comparison. Subsequent to 

the aforementioned work, Wang et al.21 completed a study that showed that 

within thermal non-equilibrium the calculated properties significantly depend 

on the definition of screening length, particularly at higher temperatures. The 

issue centred on whether only electrons or both ions and electrons should be 

recognised in the definition surrounding shielding length under screened 

Coulomb potential. Despite the fact that there was no reason to question 

whether the effect of ions should not be taken into account in the shielding 

when they can quite clearly impact the shielding mechanism, work besides that 

by Wang et al. demonstrated shielding by electrons only for the calculation of 

thermodynamic and transport properties.  

In a study conducted by Ghorui et al.62, selection of the most suitable shielding 

distance form in the prediction of collision integrals within screened Coulomb 

potential for two-temperature non-equilibrium plasma has been questioned. 

The shielding distance definition has been revised with an alternative suggested 

in close alignment with the experimentally observed62 results. This is centred 

on the view that greater electron mobility can achieve redistribution in any 

change in the potential at the rate of electron temperature (T𝑒 ), whilst the 

single temperature T𝑒 could be used whilst both ions and electrons are being 

incorporated and taken into account in the prediction of potential screening. 

The current work implements such a method and further establishes the 

complete set of transport properties and thermodynamic values for the 

nitrogen plasma within conditions of both thermal non-equilibrium and 

equilibrium62. In this particular calculation, the range of temperature amongst 

the electrons is 300–50,000 K, where the ratio (θ) of T𝑒 to the heavy particle 

temperature ( Tℎ ) ranges from 1–20, whilst the pressure range is 0.1–
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7 atmospheres. In the field of atmospheric pressure, the findings garnered for 

thermal equilibrium (T𝑒 = Tℎ) can be contrasted with a significant number of 

published results in comparable settings. Due to the fact that much discussion 

has been centred on the behaviours of various diffusion coefficients under 

thermal non-equilibrium63, thus far, this paper has not presented any data on 

diffusion coefficients.  

In the area of chemical non-equilibrium, various densities within the plasma can 

be affected through diffusive particle fluxes stemming from temperature 

gradients and species. 

1.4 Objectives of research and outline of thesis 

As discussed in the last section, the thermal plasma radiation, thermodynamic 

properties, transport coefficient are often fundamental for computer 

simulations for the investigation of arc behaviour. An experimental 

investigation to justify if nitrogen can be used in circuit breakers will be 

presented before the calculation work. After that, this thesis will focus on the 

calculation of fundamental data for thermal and non-thermal equilibrium 

conditions of plasma.  

The contents of this thesis are arranged into six chapters. The first chapter gives 

a brief introduction to the thesis, including background, importance and the 

calculation process.   

In chapter two, an experiment investigating arc behaviour with nitrogen gas 

flow will be introduced. The arc is sustained by a slowly decreasing, low 

magnitude direct current, which is supplied by a capacitor bank. The details of 

the experimental apparatus and calibration of the equipment will be described. 

Three sets of results with current levels of 100 A, 160 A and 333 A will be given. 

The experimental results will be compared with the results with SF6 as the 

operation gas obtained Weizong using the same experimental apparatus.   
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Chapter three is focused on the determination of NEC of nitrogen-PTFE plasma 

under LTE conditions. A modified Gibbs’s free energy minimisation method is 

employed to calculate the equilibrium composition of the gas mixture with 

different molar percentages of PTFE. A comparison of the NECs with different 

mole proportions of nitrogen and PTFE at different pressures will be made. The 

influence of uncertainty in atomic data on the calculated NECs will be studied. 

The objective of this chapter is to investigate how PTFE vapour affects the NEC 

of nitrogen arc plasma. Because there is no existing radiation data for nitrogen 

and PTFE gas mixtures, this work will give an introduction to determining the 

NEC for this arc plasma mixture.  

Chapter four will focus on describing the radiation balance within an arc plasma 

under LTE conditions. Two approximation methods, the discrete ordinate 

method (DOM) and P1 approximation, will be introduced in this chapter. The 

computation of directly solving RTE costs too much in terms of computer 

resources, so these two methods can reduce the computation cost significantly. 

However, the drawback of both methods is that it is not as accurate as RTE. The 

calculation of radiation transfer in the nitrogen arc plasma mixture with PTFE 

vapour will be done. The objective of this chapter is to find an effective way to 

obtain the divergence of radiative flux for the nitrogen arc plasma mixture with 

PTFE. As the radiation results for the nitrogen and PTFE gas mixture are not 

available in the literature, the results will give researchers an image of the 

radiation balance in nitrogen and PTFE gas mixture arc plasmas.  

Chapter five gives a two-temperature model for calculating species 

composition, thermodynamic properties and transport coefficients of the 

nitrogen-PTFE arc plasma under non-LTE conditions. This chapter will focus on 

an improved version of Godin’s method that can be applied under non-LTE 

conditions. Transport coefficient calculation will be based on the Chapman-

Enskog approach. Since the electron and heavy-particles temperature are 
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different in two-temperature model, the transport coefficients of both kinds of 

particles are calculated separately with different non-equilibrium degrees θ =

𝑇𝑒

𝑇ℎ
. The influence of the different mole proportions of the PTFE mixture with 

nitrogen on the thermodynamic properties and transport coefficient at a given 

pressure will be discussed. The objective of this chapter is to give an image of 

the different properties of nitrogen and PTFE gas mixtures under LTE and non-

LTE conditions. Non-LTE exists in some regions in circuit breakers, and the work 

on nitrogen arc plasmas in chapter three, four and five will help further the 

theoretical investigation of high voltage circuit breakers with nitrogen as the 

cooling gas.     

Finally, chapter six, appropriate conclusions are drawn and possible future work 

discussed.  
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Chapter 2 Introduction of experimental 

investigation of nozzle arc behaviour with 

super-fast nitrogen gas flow 

2.1 Introduction 

Current interruption is the main function of a high voltage circuit breaker. It is 

related to the physical phenomena of an electric arc. The separation of two 

electrodes leads to an electric arc discharging between them. The gas around 

the arc is ionized to plasma due to energy released by the arc discharging and 

then returning to the insulating gas. The energy transferring from the arc core 

to the surrounding area determines the performance of the electrical arc. The 

ability of the interrupting current in a short period is a sign of the capability of 

the circuit breaker. One of the most important theoretical aspects of 

investigating arc behaviour is to determine the radiation properties, 

thermodynamic properties and transport coefficients which will be introduced 

in subsequent chapters. However, experimental work for investigating arc 

behaviour cannot be neglected.  

Many experimental investigations have been published indicating methods of 

data measurement, such as arc voltage across the electrode, current through 

the arc and arc resistance. An experiment for investigating the dynamic 

characteristics of nitrogen arcs in a super-fast nozzle is presented in this chapter.  

2.2 Experimental apparatus 

The arcing chamber 

Fig. 2-1 shows the assembly of the experimental equipment, including the 

solenoid driving mechanism, movable contact, arcing chamber, observation 
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windows and connecting pipe. The arcing chamber is designed to measure 

physical properties, such as gas pressure, and electrical properties such as 

arcing voltage and current. Because the arcing chamber is airproofed, there are 

four watching windows installed. The connecting pipe connects the gas tank 

and the arcing chamber; it is a tube that transfers the gas flow from the gas 

tank to the nozzle. The diameter of the connecting pipe is 38 mm and its length 

is 150 mm. The solenoid driver is placed above the arcing chamber. The 

solenoid driving mechanism provides the power for the movable contact to 

separate from the static contact. Fig. 2-2 shows the structure of the system.  

 

Fig. 2-1: Top view of main experiment equipment 
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Fig. 2-2: Diagram showing the structure of a two-pressure gas flow system 

 

The electrodes are placed at the terminal of movable contact and static contact. 

The contact rod is made of zinc. The electrodes are composed of 80% copper 

and 20% tungsten in a cylinder shape with diameter of 10 mm and length of 

15 mm. During the arc processing, the movable contact is powered by the 

solenoid driving mechanism and the two electrodes are separated by 60 mm in 

60 ms after the movable contact starts to move. The anode is connected to the 
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static contact and is fed via a high voltage cable from the power bank. It should 

be noted that the connecting pipe feeds the chamber from a PTFE nozzle. The 

experimental earth is the reference. It is connected with the arcing chamber 

which has same electrical potential with moving contact. The fixed hollow 

contact is introduced in order to ensure that the arc has a fixed length in each 

experiment. The displacement sensor is used to monitor the movement of the 

movable contact versus time.  

The nozzle is made of PTFE (polytetrafluoroethylene, C2F4) whose vapour has 

good insulation compared to other materials. During the electric arc processing, 

the temperature of the nozzle surface is so high, that it generates PTFE vapour.  

Fig. 2-3 shows that the diameter of the nozzle throat is 12.5 mm with length of 

10 mm. As mentioned above, the diameter of the electrode is 10 mm and, there 

is a 1.25 mm thick space between the electrode and the nozzle.   

Power bank 

Fig. 2-4 shows the supplier of the electric arc, which consists of a series of 

capacitors, ignitrons, resistors and inductors. The control unit is used to 

synchronize activation of ignitrons to generate the current wave for the electric 

arc. The capacitance of the capacitor is 33 mF. There is an inductor with 184 μH 

inductance. The 0.9 m resistor is a shunt resistor.  

At the beginning of experiment, the capacitors will be charged. The energy 

stored in the capacitors can be adjusted by the control unit. Before the power 

bank discharges, all five ignitrons are disabled which keeps the circuit open. 

When ignitron one is fired and an electrode gap is generated by separating the 

two electrodes, it will produce a pseudo-DC arc across the electrode gap. 
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Fig. 2-3: Geometry of arc nozzle with dimension (unit: mm) 

 

Depending on the duration of the DC arc, it costs about 30-50% of the total 

energy stored in the capacitor. Following the configuration of control unit, the 

second step is to activate ignitrons two and three. Once those two are fired, the 

rest of the energy stored in the capacitors will be released immediately. It will 

generate a sinewave but with a 60% reduction from each previous half cycle. 

However, in this experiment, the arc is always extinguished in the first half cycle 

at the first current-zero position. Once the arc is extinguished, the third step is 

fire ignitrons four and five, which sends the energy remaining in the capacitor 

to ground so that the energy is safely disposed of.   
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Fig. 2-4: Schematic diagram of the power supply 

 

Gas supply equipment 

The 20 L gas tank of is placed below the connecting pipe with an SMC VXZ2360-

10F-5D1 valve to control the gas flows into the nozzle. The control circuit has 

been designed to control the valve opening time, which can be triggered by a 

signal from the control unit.   

Synchronisation of control unit 

The control unit generates the trigger signals for all the equipment. This trigger 

signal is a pulse signal emanated by the control unit with a magnitude of 200 

volts and duration of 1μs. As mentioned above, the sequence of each trigger 

signal is set up by the control unit in order to initiate an electric arc and activate 

the measurement equipment to record the experimental data at the 

appropriate proper time. There is a delay in the trigger signal emanated from 

the control unit, which is about 25 ms.    
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2.2.1 Calibration of equipment 

Current and voltage measurement probe 

It has been shown that the electrical characteristics of an arc determine the 

efficiency of arc extinguishing. The voltage measurement in this experiment is 

achieved using a Tektronix P6015A passive high voltage probe with a 

compensation box of 7-49 pF range. In order to safely measure using an 

oscilloscope, 1000 times attenuation of the probe results in the data input to 

the oscilloscope being 1/1000 of the real volts. The measurement data can be 

converted to its real value by setting up the oscilloscope.     

Pressure sensor 

The gas flow is always used in circuit breakers to help cool down the arc. The 

pressure change is usually an important characteristic that affects the 

behaviour of the arc and the properties of the arc plasma. The pressure sensor 

used in this experiment is a Kistler 601A. The sensor utilises the piezoelectric 

effect of a quartz crystal. The sensor generates a small current signal; when the 

pressure on the sensor changes, the current will change as well. Thus, a charge 

amplifier is used to convert this small current signal to a proportional voltage 

signal that can be monitored by oscilloscope. The type of charge amplifier used 

is a Kistler 5001 and the oscilloscope type is a Tektronix 2230.       

Displacement sensor 

The displacement sensor is used to record the position of the movable 

electrode during the experiment. Because the distance between the movable 

electrode and the static electrode determines the arc length, this is one of the 

most important factors that decides the arc behaviour.  

The sensor is a Honeywell linear displacement sensor, which can transform a 

mechanical linear displacement signal to an electrical signal. The principle of 

the sensor is a wiper attached to an operating shaft. The wiper is connected to 
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a conductive track and when the shaft is moved, the resistance will change as 

well. Moreover, the resistance is proportional to the displacement of the shaft.  

 

2.3 Experimental investigation results  

The upstream gas tank has an initial pressure of 10 bar at room temperature. It 

provides the nitrogen gas flow. The pressure of downstream exhaust space is 

fixed at 1 bar. The voltage changes across the electrodes and the position of 

rod electrode tip as a function of time is recoded for three capacitor bank 

charging voltages of 450 V (Case 1,Fig. 2-6), 720 V (Case 2,Fig. 2-7) and 1500 V 

(Case 3,Fig. 2-8). The measure of each case is taken for two scenarios, one with 

the valve shut and the other opened at a specified instant. Odd numbered 

curves (1 and 3) indicate arc with gas flow while even numbered curves indicate 

arc without gas flow.   

In Fig. 2-6, the current starts from 80 A for both scenarios. The rate of 

decreasing is at 0.64 A/ms. It is a result of power consumption in the circuit, 

especially in the resistor. At 93 ms and 100 ms, the electrode separation starts 

respectively. It can be found that in both scenarios, the sudden increase of 

voltage across the electrodes is from 2.69 V to 22.91 V for the arc with the valve 

opened later while the current has a drop of 4.39 A. The resistance can be 

calculated when the arc voltage is 2.69 V and arc current 71.65 A, which is 

37.54 m. It is dominated by the electrode contact resistance between the two 

electrode surfaces. The pressure in scenario one has a drop when the arc starts, 

the reason is the arc consume the gas in nozzle but gas flow hasn’t yet reach 

nozzle. Once the gas flow reach nozzle, the pressure is recovered. With the 

steady gas flow, the nozzle pressure can reach 2.6 bar.  While the pressure data 

of scenario two indicates the free-burning arc consume the gas in nozzle, after 

the arc extinguished, the pressure is recovered.  
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When an arc is struck between the two electrodes, this electrode contact 

resistance is replaced by the electrode sheath layers. Therefore, the value of 

22.91 V is the sum of the anode and cathode sheath drops at a current of 

71.65 A without externally forced gas flow because the valve only starts to open 

at 100 ms. The voltage of the arc column should therefore be derived by taking 

the initial voltage rise at electrode separation from the recorded voltage.  

In contrast with the measurement with the valve opened at 100 ms, the arc 

without forced gas flow continues to burn beyond 150 ms. Because the rod 

electrode in this scenario starts to move at 98 ms, its arc length is smaller 

(middle diagram of Fig. 2-6) and convection cooling is weaker in comparison to 

the scenario where the valve is opened. This gives a lower arc resistance, which 

explains the higher arc current and lower arc voltage for this scenario, as clearly 

shown in Fig. 2-6.  

The arc current starts to decrease rapidly at 134 ms with an instantaneous value 

of 37.87 A in the forced gas flow scenario and extinguishes at 135 ms, as a result 

of the capacitor bank being no longer able to sustain the arc at a current of 

37.87 A (curve 1 in Fig. 2-6). The arc takes 1 ms to extinct. The voltage across 

the electrodes increases rapidly and reaches the voltage of the capacitor bank 

(275 V) when the current ceases to flow.  

Case 2 follows a similar pattern to Case 1. The current starts at a value of 160 A. 

Electrode separation takes place at 95ms and 105 ms for the two scenarios.  

Because of the increased initial current, the sudden current drop corresponding 

to electrode separation is no longer apparent and the power consumption in 

the arc column is negligible. The voltages cross the electrodes at their 

separation are respectively 2.23 V and 2.18 V. The arc starts to extinguish at 

136 ms with a current of 69.53 A.  



34 
 

The starting current in Case 3 is much higher than the other two cases with a 

value of 330 A at 50 ms (Fig. 2-8). The increases in voltage across the electrodes 

corresponding to electrode separation are respectively from 2.5 V to 22.44 V 

and from 1.4 V to 17.2 V for the two scenarios with and without the valve 

opened. The arc current and voltage behave differently at the stage when gas 

flow is established.  There are two distinct voltage increases starting at 117 ms 

and 134 ms, respectively. The valve in this case is scheduled to open at 100 ms 

with a full opening time of 25 ms. The first voltage increase is expected to be 

the effect of arc confinement by gas flow from the tank following the opening 

of the valve. The effect is modest because the rod electrode still blocks the 

nozzle and gas can only exhaust into the downstream space through the gap 

between the rod electrode and the nozzle throat with a thickness of 1.25 mm. 

The second increase of nearly 100 V is a consequence of the rod electrode 

clearing the nozzle throat and the establishment of high speed gas flow. The 

flow leads to enhanced arc cooling and increases the arc resistance.  

Corresponding to the voltage climbing, there is an apparent drop in arc current. 

Despite the increased travel speed of the rod electrode, the arc voltage and 

current after 138 ms experiences a temporary change in the opposite direction. 

This is believed to be caused by the rapid change of flow field downstream the 

nozzle throat when the rod electrode continues to move away from the nozzle 

throat and causes the arc resistance to increase. It is highly likely that a shock 

is formed in the diverging section of the nozzle causing broadening of the arc 

column1.  

The arc current starts to decrease again from 141 ms with a rate of 1.54 A/ms 

until 149 ms when the current with an instantaneous value of 149.8 A begins a 

rapid drop at a rate of 37.63 A/ms leading to arc extinction at 152 ms. The 

corresponding rate of increase of voltage between 149 ms and 153 ms is 

approximately 217.9 V/ms. There are voltage fluctuations immediately before 
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arc extinction due to possible instability of the arc column. The electrode gap 

length varies from 26.17 mm to 37.62 mm over the period of 141 ms to 149 ms. 

The arc with no forced flow continues to burn beyond 160 ms. The arc voltage 

varies between 130.2 V at 141 ms and 134.7 V at 149ms. A more complete 

picture of the arcing process is given in Fig. 2-8 where the electrode movement 

is also given. 

 

 

Fig. 2-5: Electrode travel curve (top) and sequence of triggering pulses (bottom) for 
different parts of the system. Curve (top): 1-Pressure in throat. 2-displacement sensor. 

Curve (bottom): 1-Oscilloscope. 2-DC current. 3-Gas flow valve. 4-Main current 
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Fig. 2-6: Arc voltage and current with/without gas flow for a charging voltage of 450 V. Curves 1 and 3 
are arc current and voltage respectively with nitrogen gas flow. Curves 2 and 4 are arc current and 

voltage respectively without nitrogen gas flow (keys also apply to other figures). 

 

 

Fig. 2-7: Voltage and current records for a capacitor bank discharging voltage of 750 V 
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Fig. 2-8: Voltage and current records for a capacitor bank charging voltage of 1500 V. 

 

2.3.1 Influence of a different operational gas 

Experiment with SF6 as operational gas have been taken place to justify the 

capability of extinguishing electric arc by nitrogen. The experiment has been 

done at same experimental apparatus. Fig. 2-9 and Fig. 2-10 show the current 

interrupting capability by using three different gas: SF6, N2 and CO2. SF6 has the 

best performance on current interrupting in circuit breaker. By comparing with 

three different operation gas, the capability of interrupting current flow by N2 

and SF6 is closed to each other while CO2 is much poorer than those two gases. 

The voltage extinction peak of SF6 and N2 are higher than CO2 due to the fast 

rising arc resistance.  
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Fig. 2-9: Electric arc current with gas flow: SF6, CO2, N2 

 

 

Fig. 2-10: Electric arc voltage with gas flow: SF6, CO2, N2  
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2.4 Summary  

An experimental investigation of arc behaviour with nitrogen gas flow was 

carried out. The arc is sustained by a slowly decreasing low direct current from 

a capacitor bank. Two temperature system is designed to provide gas flow. The 

current and voltage cross electrodes were measured for the arc with three 

initial currents: 80 A, 130 A and 333 A. It was observed that with gas flow the 

arc is easier to extinguish while without gas it lasts for a longer time. Some 

improvements to the experiment can be made in the future, such as by adding 

more pressure monitors and using a higher initial current across the electrodes 

when starting the arc. By comparing the arcing behaviour with different gases, 

nitrogen shows good capability to interrupt the current flow.   

2.5 References

[1]. J. D. Yan, M. T. C. Fang, Electrical and aerodynamic behaviour of arcs under 
shock conditions, IEEE Trans. On Plas. Sci. 25, 840, (1997). 
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Chapter 3 Radiation transfer calculation 

based on net emission coefficient for N2-PTFE 

plasma  

3.1 Introduction  

Radiative transfer inside and around a high temperature thermal plasma is an 

important energy transfer mechanism. It heavily influences the arc behaviour 

in a high voltage circuit breaker1. However, the radiative flux does not obey 

blackbody laws based on complete thermal equilibrium (CTE). One of the 

reasons is that plasma temperature changes along with space, and the second 

reason is that this space is limited. Local thermal equilibrium (LTE) is usually 

assumed for atmospheric arc plasma. In LTE, particles are allowed to achieve 

thermal equilibrium due to the local gradients of plasma properties being small 

enough. In recent years, research on thermal plasmas has primarily been driven 

by potential industrial applications and by the ever-increasing demand for 

existing plasma technology.2,3,4,5,6,7,8  

To understand the processes involved in thermal plasmas that stem from arc 

discharge, numerical modelling of arc behaviour is commonly used. It requires 

the inclusion of radiation transfer in energy equations based on the radiation 

transfer equation (RTE). Due to the complexity of the absorption spectra of 

ionised gas, directly solving the RTE is computationally expensive9. The concept 

of net emission coefficient (NEC) was firstly introduced by Lowke.10,11 It greatly 

simplified radiation transfer calculation, thus making numerical modelling 

much more applicable to industrial applications12. An electric arc can be divided 

into three regions based on the typical temperature profile. Fig. 3-1 shows a 

typical temperature profile in an electric arc. Region one is the core region. In 
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this region, because the temperature is normally higher than 25,000 K and 

there is a low gradient within this region, plasma reabsorption can be neglected. 

Thus, radiation within this region can be treated as pure emission radiation.  

The net emission coefficient, which corresponds to the local radiative power, 

takes into account both the emission and the self-absorption in the plasma. This 

limits the application of NEC so that it can be only applied in the arc core region.  

 

Fig. 3-1: Typical temperature profile of electric arc 

 

In this chapter, a method of NEC calculation for N2-PTFE under LTE conditions 

will be introduced in detail. The calculation includes the following:  

1. Equilibrium composition of species in N2-PTFE plasma 

2. Line and continuum radiation due to different mechanisms of particle 

transition 

3. The absorption coefficient as a function of frequency at a specific 

temperature 

4. The NEC of N2-PTFE plasma 
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The calculation focuses on N2-PTFE gas mixtures with different initial molar 

proportions and pressures. The calculation is performed by an in-house 

program written in C++.   

There is no NEC data for N2-PTFE gas mixtures so a comparison of the NEC of 

pure nitrogen plasma obtained in the present work with published results will 

be carried out. A study on the influence analyse of basic atomic data on the NEC 

will be also conducted to analyse the reliability of the data.  

 

3.2 Methodology of NEC calculation for N2-PTFE plasma  

3.2.1  Method for the determination of plasma composition 

The radiation emission characteristics and transport properties of a thermal 

plasma depend on the species and their concentrations. Thus, the first step of 

calculation is to obtain the number density of each species. In this chapter, a 

robust and efficient method from Godin and Trepanier13 is used to calculate the 

equilibrium composition of the plasma. Certain previously developed equations 

can effectively describe the equilibrium composition that derived by Gibbs14. 

Under thermal equilibrium temperature and pressure are to be given to solve 

a system of nonlinear equations. Chemical equilibrium condition is achieved by 

the minimisation of a thermodynamic potential. Gibbs free energy ∆G is one of 

the thermodynamic potentials that describes enthalpy difference between a 

system or a reaction and product at a constant temperature and pressure. The 

minimised of Gibbs free energy is an indicator of system reaching chemical 

equilibrium.  The minimisation of Gibbs free energy can be expressed according 

to the Gibbs-Duhem relationship:  

∆G =  ∑ 𝜇𝑎𝑑𝑁𝑎

𝑎

= 0 
(3.1) 

where 𝜇𝑎 is chemical potential and 𝑁𝑎 is population of particle a.  
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For example, the dissociation of C2F4into C2F2 and the fluorine atom ( C2F4  
 

⇔ C2F2 + 2F ) in symbolisation. It can be presented as: 

∑ 𝑐𝑎𝐴𝑎

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑎

= 0 (3.2) 

 

where the parameter can be specified as:   

𝐴𝑎 = {C2F4, C2F2, F} 

𝑐𝑎 = {1, −1, −2} 

where 𝑐𝑎  is the coefficient of reactants and products in the dissociation 

reaction. 

Chemical potential 𝜇𝑎 can be derived from the partition function: 

𝜇𝑎 = −𝑘𝑇𝑙𝑛(
𝑄𝑎

𝑛𝑎
) (3.3) 

 

where Q and n are, respectively, the partition function per unit volume and the 

number density of specie a. T is the temperature in [K]. 

In terms of the equations associated with the mass action law, the primary 

equations are as follows: 

∏ 𝑛𝑎
𝑐𝑎

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑎

= ∏ 𝑄𝑎
𝑐𝑎

𝑠𝑝𝑒𝑐𝑖𝑒𝑠

𝑎

 (3.4) 

The calculations are represented in a wide pressure range (1 atmosphere to 

100 atmospheres) and temperature range (from 300 K to 30 000 K). A total of 

34 species are taken into account in the calculation of the plasma composition.  
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𝑒− , 𝑁+ , 𝐶𝑁 , 𝐶2𝐹2, 𝑁2 , 𝐶2 , 𝐹2 , 𝑁  ,𝑁2+ ,𝑁3+ ,𝐹  , 𝐹+  , 𝐹2+  , 𝐹3+  , 𝐹4+  , 𝐶  , 𝐶+  ,

 𝐶2+ ,  𝐶3+ ,𝐶2𝐹4 ,𝐶2𝐹6, 𝐶𝐹2 ,  𝐶𝐹3 ,𝐶2𝐹3𝑁 ,𝐶𝐹4  ,𝐶𝑁− ,  𝐶𝑁2(𝐶𝑁𝑁) ,  𝐶𝑁2(𝑁𝐶𝑁) , 

𝐶𝐹 , 𝐶3, 𝐶2𝑁2, 𝐹𝑁, 𝐶2𝑁, 𝐶4𝑁2. 

According to Godin’s method, a concept of chemical basis has been defined. It 

is denoted by z containing the M chemical basis and by z*, the subset of the 

other N-M species not belonging to it. In this calculation, there are 4 chemical 

bases and the remaining 30 species are listed below: 

z = {𝑒−, 𝑁+, 𝐶𝑁, 𝐶2𝐹2} 

z*={𝑁2, 𝐶2, 𝐹2, 𝑁  ,𝑁2+,𝑁3+,𝐹 , 𝐹+ , 𝐹2+ , 𝐹3+ , 𝐹4+ , 𝐶 , 𝐶+ , 𝐶2+ , 𝐶3+ , 𝐶2𝐹4 ,

𝐶2𝐹6, 𝐶𝐹2 ,  𝐶𝐹3 , 𝐶2𝐹3𝑁 , 𝐶𝐹4  , 𝐶𝑁− ,  𝐶𝑁2(𝐶𝑁𝑁), 𝐶𝑁2(𝑁𝐶𝑁), 𝐶𝐹 , 𝐶3 𝐶2𝑁2 ,

𝐹𝑁, 𝐶2𝑁, 𝐶4𝑁2} 

{n𝑧𝑗
∗ = Q𝑧𝑗

∗ ∏(
n𝑧𝑖

 

𝑄𝑧𝑖

)𝑐𝑗,𝑖

𝑀

𝑖=1

}

𝑗=1

𝑁−𝑀

 (3.5) 

Eq.(3.5) shows an expression that use number density of chemical basis and 

partition function to express number density of particle in z*. In the equation, 

Q is the partition function of species 𝑧 or 𝑧 
∗, c is the coefficient related to the 

chemical basis which is listed below: 

Species are set as the chemical basis in consideration of the number of chemical 

elements present in the plasma and the charge (N, C, F, and charge). Therefore, 

the remaining 22 species are set as chemical species and mass action law is 

applied. The principles of conservation of atomic nucleus, electrical neutrality 

and ideal gas law are used to obtain a system of plasma. A total of 26 equations 

are obtained, which include two equations for conservation of nuclei (ratio of 

C:F in PTFE + N:F between PTFE and N2), one equation for charge neutrality, one 

from the ideal gas law and another 22 equations describing the mass action law 

for the 22 chemical species. 
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Table 3-1: Coefficient c of each chemical species 

Coefficient c 

  
𝑧𝑖  

e- N+ CN C2F2 

𝒛𝒋
∗ 

N2 2 2 0 0 

C2 -2 -2 2 0 

F2 2 2 -2 1 

N 1 1 0 0 

N2+ -1 1 0 0 

N3+ -2 1 0 0 

F 1 1 -1 0.5 

F+ 0 1 -1 0.5 

F2+ -1 1 -1 0.5 

F3+ -2 1 -1 0.5 

F4+ -3 1 -1 0.5 

C -1 -1 1 0 

C+ -2 -1 1 0 

C2+ -3 -1 1 0 

C3+ -4 -1 1 0 

C2F4 2 2 -2 2 

CF2 1 1 -1 1 

CF3 2 2 -2 1.5 

C2F3N 2 2 -1 1.5 

CF4 3 3 -3 2 

C2N2 0 0 2 0 

FN 2 2 -1 0.5 

 

These equations are solved using the Newton-Raphson method to obtain the 

number density of all 26 species. Logarithm was taken on both sides of the 
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chemical species equations, which results in 22 linear equations and greatly 

simplifies the calculation. The linear equations are then substituted in the base 

equations to reduce the number of unknowns to only 4. This gives a smaller size 

of the Jacob matrix in the solution procedure using the Newton-Raphson 

Method, which substantially promotes the convergence of the calculation.   

3.2.2 Partition function   

Partition function in this thesis is related to a function of describing the 

distribution of electrons on different energy level.  A total partition function of 

a species i is written as  

Q𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑖

𝑡𝑟𝑎𝑛𝑠 × 𝑄𝑖
𝑖𝑛𝑡 × 𝑄𝑖

𝑟𝑒𝑎𝑐 (3.6) 

 

𝑄𝑖
𝑡𝑟𝑎𝑛𝑠 , 𝑄𝑖

𝑖𝑛𝑡 , 𝑄𝑖
𝑟𝑒𝑎𝑐  are translational, internal and reaction partition function 

respectively.  

The translational partition function of species i can be expressed below: 

Q𝑖
𝑡𝑟𝑎𝑛𝑠 = (

2𝜋𝑚𝑖𝑘𝑇𝑖

ℎ2
)

3/2

𝑉 (3.7) 

 

where V is the volume and 𝑇𝑖  is the temperature of particle i, k and h are 

Boltzmann constant and Planck constant respectively. 𝑚𝑖 is the mass of particle 

i. According to the element number, particles can be divided as: monatomic, 

diatomic and polyatomic species.   

Monatomic species 

Monatomic species usually dominate the plasma composition when the 

temperature is higher than 10,000 K. The partition function of a monatomic 

species consists of electronic energy that can be expressed as: 
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Q𝑖
𝑡𝑜𝑡𝑎𝑙

 
=

𝑉

ℎ3
(2𝜋𝑚𝑘𝑇)3/2 ∙ 𝑄𝑖𝑛𝑡 ∙ 𝑄𝑟𝑒𝑎𝑐 (3.8) 

The internal partition function of specie i can be expressed below: 

𝑄𝑖𝑛𝑡
 = 𝑄𝑒𝑙𝑒

 =  ∑ 𝑔𝑒,𝑗exp (−
휀𝑗

𝑘𝑇
)

𝜀𝐼

𝑗

 (3.9) 

Where 휀𝐼  is the ionization energy, 𝑔𝑒,𝑗  is the statistical weight. The internal 

partition function of monatomic specie is its electron partition function 𝑄𝑒𝑙𝑒
 . 

𝑄𝑟𝑒𝑎𝑐
 = exp (

−𝐸𝑟𝑒𝑎𝑐

𝑘𝑇
) (3.10) 

 

𝑄𝑟𝑒𝑎𝑐
  represents reaction partition function, 𝐸𝑟𝑒𝑎𝑐 is the energy which depends 

on the reaction for generating the specie.  

Two tables are shown in Table 3-2 describes all chemical reactions at 

equilibrium. There are 26 ionization and dissociation reactions are taken in 

account.  

Table 3-3 lists the reference energy of all species which is obtained by energy 

balance of reaction. The partition function of monatomic species is calculated 

by summation over all energy level is below the ionization limit. However, the 

number of energy levels is infinite as gap between the high energy levels 

becomes smaller and smaller, so the calculation involving high energy levels can 

be replaced by an integral. 
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Table 3-2: Chemical reactions in the calculation 

Chemical reactions in the calculation 

No. Chemical reaction No. Chemical reaction 

1 N2 ↔ N + N 12 F ↔ F+ + e− 

2 N ↔ N+ + e− 13 F+ ↔ F2+ + e− 

3 N+ ↔ N2+ + e− 14 F2+ ↔ F3+ + e− 

4 N2+ ↔ N3+ + e− 15 F3+ ↔ F4+ + e− 

5 C2F4 ↔ C2F2 + F2 16 C ↔ C+ + e− 

6 𝐶2F2 ↔ C2 + F2 17 C+ ↔ C2+ + e− 

7 F2 ↔ 𝐹 + 𝐹 18 C2+ ↔ C3+ + e− 

8 C2 ↔ 𝐶 + 𝐶 19 C3+ ↔ C4+ + e− 

9 C2𝐹3𝑁 ↔ 𝐶𝐹3 + 𝐶𝑁 20 𝐶𝐹2 ↔ 𝐶 + 𝐹 + 𝐹 

10 𝐶𝑁 ↔ 𝐶 + 𝑁 21 C𝐹4 ↔ 𝐶𝐹3 + 𝑁 

11 C𝐹3 ↔ 𝐶𝐹2 + 𝐹 22 𝐹𝑁 ↔ 𝐹 + 𝑁 

 

Table 3-3: Reference energy of species 

Reference energy of species 

Specie Reaction E Specie Reaction E Specie Reference E 

𝐞− 0 𝐍𝟐 0 𝐂𝟐 0 

𝐅𝟐 0 𝐍 4.88eV 𝐂 3.2eV 

𝐅 0.82 eV 𝐍+ 19.42 eV 𝐂+  14.460 eV 

𝐅+  18.242 eV 𝐍𝟐+ 49.025 eV 𝐂𝟐+ 38.845 eV 

𝐅𝟐+ 53.214 eV 𝐍𝟑+ 96.451 eV 𝐂𝟑+ 86.733 eV 

𝐅𝟑+ 115.922 eV 𝐂𝟒+ 151.226 eV 𝐅𝟒+ 203.097 eV 

𝑪𝟐𝐅𝟐 -9.118 eV 𝐂𝟐𝐅𝟒 -18.8 eV 𝑪𝑭𝟐 -5.81 eV 

𝐂𝑭𝟑 -10.657 eV 𝑪𝑵 0.307 eV 𝐂𝟐𝑭𝟑𝑵 -15.211 eV 

𝐂𝑭𝟒 -15.504 eV 𝐂𝟐𝑵𝟐 -5.314 eV 𝑭𝑵 2.083 eV 
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Diatomic and polyatomic species 

For a diatomic specie, the internal partition functions can be expressed by 

Q𝑖𝑛𝑡 = Q𝑒𝑙𝑒𝑄𝑣𝑖𝑏𝑄𝑟𝑜𝑡 = ∑ 𝑔𝑒,𝑗 exp (−
휀𝑗

𝑘𝑇
)

 

𝑗

∑ exp (−
휀𝑣𝑖𝑏(𝑣)

𝑘𝑇
)

 

𝑣

∗ 

∑(2𝐽 + 1)exp (−휀𝑟𝑜𝑡(𝑣)/𝑘𝑇)

 

𝐽

 

(3.11) 

 

where 𝑄𝑒𝑙𝑒 , 𝑄𝑣𝑖𝑏  and 𝑄𝑟𝑜𝑡  are electron, vibrational and rotational partition 

function separately. The expression for those partition functions are shown 

below: 

𝑄𝑒𝑙𝑒 =
1

𝜎
∑ 𝑔𝑒exp (−

𝑆𝑒

𝑘 𝑇
)

𝑇𝑒

 

(3.12) 
𝑄𝑣𝑖𝑏 = ∑ 𝑔𝑣exp (−

𝐺𝑣(𝑆𝑒)

𝑘 𝑇
)

𝑣=0

 

𝑄𝑟𝑜𝑡 = ∑ 𝑔𝐽exp (−
𝐹𝑣(𝐽)

𝑘 𝑇
)

𝐽=0

 

𝜎  is a constant, it is equal to 2 for homonuclear molecules and 1 for 

heteronuclear molecules. The electronic levels 𝑆𝑒 are limited to the number of 

states. 𝐺𝑣  corresponds to the vibrational energies and depend on the 

spectroscopic constants expressed in Eq.(3.13) 

𝐺𝑣 = (𝑣 +
1

2
) 𝜔𝑒 − (𝑣 +

1

2
)

2

𝜔𝑒𝑥𝑒 + (𝑣 +
1

2
)

3

𝜔𝑒𝑦𝑒 (3.13) 

 

𝐹𝑣(𝐽) corresponds to the rotational energies which is present below: 

𝐹𝑣(𝐽) = 𝐵𝑣𝐽(𝐽 + 1) − 𝐷𝑣𝐽2(𝐽 + 1)2+.. 

(3.14) 
𝐵𝑣 = 𝐵𝑒 − 𝛼𝑒 (𝑣 +

1

2
) +.. 

𝐷𝑣 = 𝐷𝑒 − 𝛽𝑒 (𝑣 +
1

2
) +.. 
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Those parameters: 𝜔𝑒 , 𝜔𝑒𝑥𝑒 ,  𝜔𝑒𝑦𝑒 ,  𝛼𝑒 ,  𝛽𝑒 ,  𝐵𝑒 ,  𝐷𝑒  are the spectroscopic 

constants which are available in Janaf table. 

If the vibration-rotation interactions can be neglected, the internal partition 

function for polyatomic species is same as diatomic species in Eq.(3.11).    

However, as the polyatomic species exist at low temperatures, the population 

of the fundamental level is important. The contribution of 𝑄𝑒𝑙𝑒  to the total 

internal partition function can be treated as the ground state quantum weight 

P𝑠. The vibrational partition function can be expressed as: 

𝑄𝑣𝑖𝑏 = ∏ [1 − exp (
−𝑣𝑖ℎ𝑐

𝑘 𝑇
)]

−𝑑𝑖
𝑁

𝑖=1

 (3.15) 

 

Where d is the degeneracy of the vibrational frequency v. It can be obtained 

from Janaf table. For contribution of the rotation part to total partition function, 

it is shown in Eq.(3.16) and Eq.(3.17). 

For linear molecules: 

𝑄𝑟𝑜𝑡 =
1

𝜎

𝑘 𝑇

ℎ𝑐𝐵0
 (3.16) 

 

For non-linear molecules: 

𝑄𝑟𝑜𝑡 =
1

𝜎
√

𝜋

𝐴𝐵𝐶
(
𝑘 𝑇

ℎ𝑐
)3 =

1

𝜎
6.9351057√𝑇3𝐼𝐴𝐼𝐵𝐼𝐶  (3.17) 

 

The constant of rotation A, B, C or the momenta of inertia 𝐼𝐴 , 𝐼𝐵 , 𝐼𝐶  can be 

found from Janaf Table.  
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3.2.3 Molar weight and mass density 

There are several thermodynamic properties in thermal plasma, such as molar 

weight, mass density, they can be calculated once the composition of a thermal 

plasma is determined at a temperature and pressure. Molar weight and mass 

density are expressed below: 

Molar weight 

ρ = ∑ 𝑚𝑖𝑛𝑖

 

𝑖

 (3.18) 

Where 𝑚𝑖 is the mass of species i, n is the number density.  

Mass density 

M = ∑ 𝑥𝑖𝑀𝑖

 

𝑖

 (3.19) 

𝑥𝑖 = 𝑛𝑖/ ∑ 𝑛𝑖

 𝑖

 
(3.20) 

Where 𝑥𝑖 and 𝑀𝑖 are the molar fraction and molar mass of species i. 

3.2.4 Radiation emission and absorption 

In the applications of thermal plasmas, the media involved are usually gases 

and metallic vapours. Radiation is an efficient energy transfer mechanism in 

high pressure arcs commonly encountered in high voltage circuit breakers. 

Radiation emission and absorption are the two main mechanisms. The emission 

of spectral lines is caused by electronic transitions of excited neutral particles 

(atoms and molecules) or ions from higher energy levels to lower15 . Thus, 

radiation by this mechanism is referred to as bound-bound. Theoretically, 

radiation in the form of line radiation is only a small fraction of the total 

radiation.  

When an electron is captured by an atom or ion into its orbit, the recombination 

process leads to the emission of free-bound radiation.  In general, this 
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mechanism can apply to all possible energy levels of a molecule, atom or ion. 

Therefore, all species can emit continuum spectra resulting from free-bound 

radiation.  

Bremsstrahlung (free-free transition) is another process that leads to 

continuum radiation. A free electron may lose part of its kinetic energy due to 

interaction with other charged particles through Coulomb field of the charged 

particles. Radiation in this case is converted from the lost kinetic energy of the 

charged particles.  

Recombination and Bremsstrahlung contribute most towards the continuum 

radiation. Sometimes a plasma contains molecular species (molecular species 

are usually present when plasma temperature is lower than 8,000 K at 1 atm) 

and the spectrum also contains bands of molecules.  The molecular bands 

consist of extinction of rotational and vibrational energy of molecules.   

The total radiation due to various emission mechanisms cannot completely 

leave the plasma without attenuation, unless it is considered optically thin. 

Some thermal plasmas can be treated as optically thin. However, strong 

absorption of line and band radiation may still occur and it will increase with 

the pressure.   

Eq.(3.21) describes the relationship between monochromatic intensity I𝑣 and 

I𝜈0, radiation intensity from the core over a thickness L in the medium.  

I𝜈 =  I𝜈0 exp (− ∫ 𝜅𝜈𝑑𝑥′
𝐿

0

) = I𝑣0exp (−τ𝜈) (3.21) 

 

where 𝜅𝜐 is the absorption coefficient at frequency ν, it is generally expressed 

in cm−1.  
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The absorption coefficient is applicable to line and continuum radiation. Due to 

the influence of line overlapping on radiative transfer, all overlapped spectral 

lines must be taken into account in the calculation of the absorption coefficient. 

It will be discussed in results section.  

The absorption coefficient for a spectral line ‘i’ in species ‘a’ can be denoted 

as10: 

  

κ𝑎,𝜈
𝑖 (𝑇, 𝑃) = 𝜋r0𝑐𝑓𝑚𝑛

𝑎,𝑖𝑁𝑛
𝑎(𝑇, 𝑃)𝐿𝑖(𝜈, 𝑇, 𝑃) (3.22) 

 

where r0 is the classical electron radius,  𝑓𝑚𝑛
𝑎,𝑖 indicates the absorption oscillator 

strength of spectral line i corresponding to an electronic transition from higher 

energy level m to lower energy level n of specie a. 𝑁𝑛
𝑎  represents the 

population density of lower energy level n of specie a. 𝐿𝑖  is the normalized line 

profile:  

 

2 ∫ 𝐿𝑖(𝜈, 𝑇, 𝑝)
∞

0

𝑑∆𝜈 = 1 (3.23) 

Where ∆𝜈 is the frequency difference between 𝜈 and the line centre.  𝐿𝑖  is the 

line shape which is assumed to be dispersion or Lorentz profile10. It can be 

expressed as: 

𝐿𝑖(𝜈, 𝑇, 𝑝) =
1

𝜋𝜔𝑖(𝑇, 𝑃)(𝑋2 + 1)
 (3.24) 

 

where  

X = (ν − ν𝑐
𝑖 )/ω𝑖(𝑇, 𝑃) (3.25) 
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ν𝑐
𝑖 = ν0

𝑖 + 𝑑𝑖(𝑇, 𝑃) (3.26) 

ν0
𝑖 =

𝐸𝑚 − 𝐸𝑛

ℎ
 (3.27) 

In the above expressions, ν𝑐
𝑖  is the centre frequency of spectral line i,  ω𝑖 is its 

half width corresponding to at the half peak value in the profile. However, due 

to perturbation on energy states of atoms or ions, the frequency of peak 

absorption is slightly shifted from the true line centre which is at ν0
𝑖 . Eq.(3.26) 

represents the relationship of shifted and true centre frequency of the spectral 

line. Both the line shift 𝑑𝑖(𝑇, 𝑃) and the half width ω𝑖(𝑇, 𝑃) will be described 

in the next section. The undisturbed line centre has a frequency as given in 

Eq.(3.27) 

The absorption oscillator strength 𝑓  is obtained from database which 

mentioned in last section and Wiese et al16.  

The absorption coefficient for continuum radiation associated with 

recombination and bremsstrahlung has to be treated as different cases. For the 

absorption associated with recombination, as it is collision dominated, the 

photon absorption cross section significantly affects the absorption coefficient.  

κ𝜈
𝑟𝑒𝑐 = ∑ 𝜎𝑖,𝜈

𝑎 𝑁𝑖
𝑎

 

𝑖

 (3.28) 

  

Eq.(3.28) describes the absorption coefficient due to free-band radiation of 

specie ‘a’ at energy state of E𝑖
𝑎. 𝜎𝑖,𝜈

𝑎  is the photon absorption cross section at 

frequency 𝜈 by a particle at tis energy level 𝑖. 𝑁𝑖
𝑎 is the population density of 

specie ‘a’ at E𝑖
𝑎.  
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3.2.5 Broadening of spectral lines 

Radiation due to transition between electronic excitation energy levels results 

in broadening of line spectrum. The broadening of spectral lines can be caused 

by different mechanisms. Broadening mechanisms due to different interactions 

contribute to different spectral line broadening will be discussed in this section.  

Stark broadening  

When the population of charged particles dominates the total population of 

particles in a thermal plasma will be generated and perturb the normal energy 

levels. It results in Stark broadening. Griem has developed a theory for both 

atomic spectral lines17 and ionic lines18. Eq.(3.29) and Eq.(3.30) describe the 

half width and spectral shift for ionic lines18. Considering a band-band transition 

from energy level m to n, the total angular momentum quantum numbers of m 

and n are respectively 𝐽′  and 𝐽 .  

 

ω𝑠𝑡𝑎𝑟𝑘
𝑖 = C(T, P)

∙ [∑
𝑆(𝐽′′, 𝐽)

2𝐽 + 1
𝑔𝑆𝑒(𝑋𝐽′′𝐽) + ∑

𝑆(𝐽′′, 𝐽′)

2𝐽′ + 1
𝑔𝑆𝑒(𝑋𝐽′′𝐽′)

𝐽′′𝐽′′

] 

 

and 

(3.29) 

d𝑠𝑡𝑎𝑟𝑘
𝑖 = C(T, P)

∙ [∑
∆𝐸𝐽′′,𝐽

|∆𝐸𝐽′′,𝐽|

𝑆(𝐽′′, 𝐽)

2𝐽 + 1
𝑔𝑆ℎ(𝑋𝐽′′𝐽)

𝐽′′

− ∑
∆𝐸𝐽′′,𝐽′

|∆𝐸𝐽′′,𝐽′|

𝑆(𝐽′′, 𝐽′)

2𝐽′ + 1
𝑔𝑆ℎ(𝑋𝐽′′𝐽′)

𝐽′′

] 

 

 (3.30) 

where  𝑆(𝐽′′, 𝐽) 𝑎𝑛𝑑  𝑆(𝐽′′, 𝐽′) indicate all transition to and from 𝐽   and 𝐽′ . 

Function C is related to the population of free electrons. 
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C(T, P) = 16 (
𝜋

3
)

2
3

𝑐𝑅∞𝑎0
3𝑁𝑒(

ℎ𝑐𝑅∞

𝑘𝑇
)1/2 (3.31) 

𝑅∞ is the Rydberg constant, 𝑎0
  is Bohr radius. S is the line strength which can 

be obtained by Eq.(3.32): 

𝑆(𝐽′, 𝐽) = 3(2𝐽 + 1)𝜆𝑅∞𝑓𝐽′𝐽 (3.32) 

 

Eq.(3.29) and Eq. (3.30) take into account all possible transitions to and from 

level m and n. X are empirical functions given by Griem18.  

Although the Stark broadening should be obtained by considering all transitions 

to and from the lower and upper energy levels, transitions between energy 

levels whose effective quantum numbers exceed 5 are normally ignored.  

Resonance broadening 

Resonance broadening can enhance the half width of a spectral line, if 

transition between the ground state and either of the lower or upper energy 

level of the line is allowed. The resonance broadening of the half width of a 

spectral line is given by Lowke10. 

  

ω𝑅𝑒𝑠
𝑖 =

3𝑟0𝑐2

4𝜋
[
𝐺1

𝐺𝐾
]1/2

𝑓𝐾1

𝜈𝑅𝑒𝑠
𝑁1

𝑎 (3.33) 

 

where K refers to the lower or upper energy level that is allowed to transit to 

ground level.  When K = 1, it refers ground state. 𝐺𝐾 = (2𝑆𝐾 + 1)(2𝐿𝐾 + 1), L 

is related to L-S coupling, and L is the total orbital angular momentum. 𝜈𝑅𝑒𝑠 =

(𝐸𝐾 − 𝐸1)/ℎ.  
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Van der Waals broadening 

Van der Waals force exists among particles in thermal plasma. It is a much 

weaker force than chemical bond. However, it still perturbs the emitting 

particles19. Eq.(3.34) describes the half width of a spectral line attributing to 

Van der Waals force. 

ω𝜈
𝑖 =

𝑎0
2

2
[
9𝜋𝛼𝑐

4
]

2
5[(�̅�𝑛

2)
2
5 + (�̅�𝑚

2 )
2
5] ∑(

𝑅∞

𝐸𝑝
)4/5𝑉𝑝

3/5
𝑁1

𝑃

 

𝑃≠𝑎

 (3.34) 

 

where  𝛼 is the fine structure constant, 𝑉𝑝
  is perturber relative velocity, 𝐸𝑝 the 

characteristic energy of the perturbing specie, �̅�𝑛
  and  �̅�𝑚

  the mean radial 

matrix elements. The relative velocity of perturbers can be calculated in 

Eq.(3.35). 

V𝑝 = [
8𝑘𝑇𝑁0

𝜋
(

𝑊𝑎 + 𝑊𝑝

𝑊𝑝 ∙ 𝑊𝑎
)]

1
2

 (3.35) 

where W is the atomic weight with the subscript a and p species ‘a’ or ‘p’.  The 

mean radial matrix element �̅�𝑋
  is expressed as17: 

�̅�𝑋
 2

= (
N𝑋

∗2

2Z𝑎
2

) [5N𝑋
∗2 + 1 − 3l𝑋(l𝑋 + 1)] (3.36) 

 

where Z𝑎
  present in both Eq.(3.36) and Eq.(3.37) is the net charge of the specie 

a. X here can be m or n in Eq.(3.34), l𝑋  is the orbital angular momentum 

quantum number and  N𝑋
∗  indicates the effective principal quantum number 

which is given below:  

N𝑋
∗2 =

Z𝑎
2𝐸𝐻

𝐸∞
𝑎 − 𝐸𝑋

𝑎 (3.37) 
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𝐸∞
𝑎  and 𝐸𝑋

𝑎  are, respectively, the ionisation energy and energy on level X of 

species a. Similarly, 𝐸𝐻 is the ionization energy of a hydrogen atom.   

3.2.6 Continuum absorption 

Atomic continuum 

Continuum radiation from a plasma is due to two mechanisms, free-bound 

electron recombination and free-free bremsstrahlung radiation. Lowke and 

Liebermann11, Gleizes and Gongassia20, Naghizadeh-Kashani and Cressault21, 

calculated the continuum radiation for SF6, SF6-N2 and Air. Under LTE condition, 

as the plasmas are collision dominated in terms of energy exchange and 

transition of electronic states, Kirchhoff’s law can then be applied to relate 

spectral absorptivity to emission coefficients. Thus, the spectral absorptivity 

can be related to photon absorption cross section σ𝑎.  

The main problem in the calculation of continuum absorption is to obtain the 

cross section data. There is a lack of experimental results about photon 

absorption cross section. Thus, in present work, the cross sections are 

estimated using theoretical methods.  

Quantum Defect Method21 and its variants22 is chosen to generate the photon 

absorption cross sections for atomic species. This method has been used by 

Lowke.10 An LS coupling scheme is required first: 

E𝑖
𝑎(𝑛𝑙𝑆𝐿) = ∑ 𝑔(𝐽)𝐸𝑎(𝑛𝑙𝑆𝐿𝐽)/𝑔(𝑛𝑙𝑆𝐿) (3.38) 

    

where 𝑔(𝐽) = 2𝐽 + 1 and 𝑔(𝑛𝑙𝑆𝐿) = (2S + 1)(2L + 1) . S and L are, 

correspondingly the spin angular momentum and orbital angular momentum 

in LS coupling. Eq.(3.38) defines the threshold energy for photon absorption. 

The frequency 𝜈𝑛𝑙
  of the energy level is then worked out. The cross section of 

photon absorption is then expressed as Eq.(3.39). 
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σ𝑛𝑙𝑆𝐿
𝑎 = 8.559 × 10−23(

E𝑖
𝑎(𝑛𝑙𝑆𝐿) + 𝑘2

E𝑖
𝑎(𝑛𝑙𝑆𝐿)2

) ∑ 𝐶𝑙′|𝑛𝑙; 𝑆𝑙|2

𝑙′=𝑙±1

 (3.39) 

 

where 𝑘2 = 𝑧𝑓
2𝑆 is the energy of the ejected electron in Rydberg unit. 𝑧𝑓

  here 

is the charge on the final ion. The unit of cross section from Eq.(3.39) is in m-2. 

According to the theory of free-bound transition, the frequency that the cross 

section in Eq.(3.39) corresponds to a threshold frequency. The cross section 

higher than the threshold frequency varies as 1/ν3 

σ𝜈,𝑖
𝑎 = σ𝜈𝑡ℎ,𝑖

𝑎 (ν𝑖/ν)3 (3.40) 

 

where σ𝜈𝑡ℎ,𝑖
𝑎  is the cross section obtained from Eq.(3.39). ν𝑖 corresponds to the 

frequency of the level with energy E𝑖
𝑎(𝑛𝑙𝑆𝐿). 

The photon absorption cross section for ions can be estimated using hydrogenic 

approximations. Combining with the estimation of frequency beyond threshold, 

Eq.(3.41) expresses the photon absorption cross section for ions: 

σ𝑣,𝑖
𝑎 = 𝛼𝑎0

24𝜋2
𝑁𝑖

∗

𝑍𝑎
2

(
𝜈𝑖

𝜈
)3 (3.41) 

 where 𝑁𝑖
∗ is the effective principal quantum number of ith energy state. 𝑍𝑎

  is 

the net charge of the atom or ion as seen by the valence electron. As the high 

energy levels tend to have small gaps, the absorption coefficient  ∑ 𝜎𝑖,𝜈
𝑎 𝑁𝑖

𝑎 
𝑖  can 

be treated as an integral. The Eq.(3.42) describes all high energy levels bound-

free and all free-free radiation 

κ𝜈
𝑏𝑓+𝑓𝑓(𝑇, 𝑃) =

𝑘𝑇𝛼3𝑐2

4ℎ𝜈3
∑

𝑁𝑎

𝑈𝑎
𝑍𝑎

2𝜂𝑎 ∑ 𝐺𝐾
 𝑒𝑥𝑝{−(𝐸∞

    𝑎,𝐾 − ∆𝐸∞
    𝑎 − ℎ𝜈′)/𝑘𝑇}

𝐾𝑎

 (3.42) 

 

where  𝜂𝑎 is a correction factor for species ‘a’, it usually is set as two10 , 𝐺𝐾
  is 

the statistical weight of the Kth parent term, 𝐸∞
    𝑎  is the ionisation energy of 
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species ‘a’, ∆𝐸∞
    𝑎  is the lower ionisation energy. 𝜈′  is defined as 𝜈′ = 𝑣𝑛 =

(𝐸∞
    𝑎,𝐾 − 𝐸𝑛

   𝑎,𝐾 )/ℎ if 𝜈  ≥ 𝑣𝑛 and if 𝜈  < 𝑣𝑛  then 𝜈′ = 𝑣 . 𝐸𝑛
   𝑎,𝐾  is the lowest 

smeared energy state of species ‘a’, it is usually picked up from a high energy 

level.  

Molecular continuum 

For molecular continuum radiation, the calculation method is similar to atomic 

species. The cross section of some of the species can be found from literature, 

such as for C2F4 
23, CF4

24,25,26, C2
27

 , F2 
28 and N2

29. The cross sections of the 

remaining species such as C2N2, CF3, CF3N, C2F2 and FN, are estimated by two 

empirical laws30. Fig. 3-2 is taken as an example to explain the estimation 

method. Three regions of molecular cross section with respect to wavelength 

can be assumed. The cross section in region 1 can be considered as constant of 

10-17 cm2 and 10-18 cm2 in region 3. In region 2, there is a parabolic relationship 

between the logarithm cross section axis and the wavelength, which is 

expressed in Eq.(3.43). It is required to determine the boundaries for each 

species that do not have experimental photon absorption cross section.   

According to the number of atoms contained in a molecule, the species can be 

divided into two groups. The first one is small molecules which include no more 

than three atoms, such as FN. The second group is formed by the molecules 

with more than three atoms such as: C2N2, CF3, CF3N, C2F2.  

Following method30, the boundaries used in molecular cross section estimation 

are listed in Table 3-4. 

3.2.7 Net emission coefficient (NEC) 

The Net Emission Coefficient (NEC) was proposed by Lowke10. The NEC 

corresponds to the effective radiation emitted from the axis of an infinitely long 

isothermal cylinder. Usually, the calculation of radiative transfer in the central 

region of a thermal plasma is based on the NEC. 
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Fig. 3-2: CO molecular photon absorption cross-section with respect to wavelength.30 

 

σ𝑟𝑒𝑔𝑖𝑜𝑛 2 = 10𝑎𝜆2+𝑏𝜆+𝑐 (3.43) 

 

It is defined as: 

ε𝑁(𝑇, 𝑝, 𝑅𝑝) = ∫ 𝜅𝜈(𝑇, 𝑝)𝐵𝜈(𝑇) exp(−𝜅(𝑇, 𝑝)𝑅𝑝) 𝑑𝜈
∞

0

 (3.44) 

 

where 𝜅𝜈(𝑇, 𝑝)  is the spectral absorption coefficient corresponding to 

Eq.(3.22). 𝐵𝜈(𝑇) represents the Planck function for blackbody radiation. As it is 

stated before, Kirchhoff’s law is applicable, the emission coefficient 휀𝜈 is 휀𝜈 =

𝜅𝜈(𝑇, 𝑝)𝐵𝜈(𝑇) . Eq.(3.44) considers the absorption of radiation in the 

isothermal cylinder. To reduce the calculation time, the integration operation 

is discrete as: 
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ε𝑁(𝑇, 𝑝, 𝑅𝑝) = ∑ 𝜅𝜈(𝑇, 𝑝)𝐵𝜈(𝑇) exp(−𝜅(𝑇, 𝑝)𝑅𝑝) 𝑑𝜈

 

𝜈𝐾=𝑣𝐾−1+𝑑𝜈 

 
(3.45) 

 

where 𝜈𝐾−1 is the frequency at position K-1 on the frequency axis and the next 

frequency point is equal to 𝜈𝐾−1 + 𝑑𝜈. Because of the narrow profile of line 

spectra, 𝑑𝜈 has to be very small. A value of 1011𝐻𝑧 is used in the calculation.  

Table 3-4: List of the values for region 1-2 and region 2-3 used in molecular cross-section 
estimation. 

Molecule Boundary of Region 1-2 Boundary of Region 2-3 

FN 115.3 135.3 

C2N2 122 163.4 

CF3 135.2 165 

CF3N 138.9 173.7 

C2F2 83.7 108.6 

 

3.2.8 Data source 

The energy level data of atoms that are employed in the calculation were 

gathered from the database of the National Institute of Standards and 

Technology (NIST)31.  The Atomic Spectra Database (ASD) includes observed 

transitions and energy levels of most known chemical elements. The 

wavelengths of spectral lines included in ASD are from 0.002 nm to 60 nm. The 

data of spectral lines in ASD includes radiative transition probabilities and the 

energies of ground states and ionization. For the data observed for the 

experiment, the accuracy is also included in the database. As the calculation 

results in this thesis are based on the ground data from the NIST, it is certainly 

affected by the accuracy of the ground data. A discussion of how the results are 

apportioned to inputs of different uncertainty will be mentioned in the later 

content.  
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Another database is compiled from Kurucz (University of Hannover)32. Similarly, 

University of Harvard includes the spectral lines and atomic data for most 

common chemical elements. 

3.2.9 Calculation program 

The calculation program was developed using C++ and the Armadillo library. 

The Armadillo library is a high-quality linear algebra library. The only feature of 

the Armadillo library employed in the program is to carrying out the matrix 

inverse in the Newton-Raphson method. The program runs on a personal 

computer with a Windows 10 operation system with Intel i5-2320 and 8 Gb 

RAM. 

 

3.3 Results 

3.3.1 Equilibrium composition 

Two sets of equilibrium composition of nitrogen and PTFE mixture have been 

figured below in Fig. 3-3(case 1) and Fig. 3-4(case 2). The percentage in the 

figure captions, indicates the molar percentage of nitrogen or PTFE at the 

temperature of 300 K. The temperature range is from 300 K to 35,000 K and at 

1 bar pressure. In both cases, due to the free particles recombination, CF4, C2N2, 

C2F3N are formed at around 800 K. However, the weak chemical bond of these 

three species result in a saturation of their number density. Starting from 

1,200K, the density of CF3 rapidly increased. Rapid dissociation of C2F4 starts at 

3,000 K, which results in a large amount of carbon and fluorine atoms in the 

plasma. That is the reason that number density of CF2, C2F2, CN are increased 

at the temperature from 2,800 K to 3,200 K. When the temperature is higher 

than 4,000 K, remaining molecule species starts dissociation. The number 

density of free electron is getting large. Almost complete ionization of all atoms 
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takes place at around 16,000 K. The molecule species number density is not 

only determined by the temperature of plasma, but also the initial composition. 

This is also happened to the number density of atomic species at the 

temperature higher than 20,000 K. For example, at temperature of 20,000 K, 

the number density of ions F+ and C+ are more than N+ in case 1, but they are 

less in case 2. Thus, the radiation transfer will be different due to the difference 

in number density.  

 

Fig. 3-3a 
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Fig. 3-3b 

Fig. 3-3: calculated composition of 50%N2-50%PTFE mixture gas plasma with 
temperature range from 300 K-35,000 K(a), 300 K-8,000 K(b) 

 

 

Fig. 3-4a 
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Fig. 3-4b 

Fig. 3-4: calculated composition of 90%N2-10%PTFE mixture gas plasma with 
temperature range from 300 K-35,000 K(a), 300 K-8,000 K(b) 

 

3.3.2 Thermodynamic properties and dominant factors 

Mass density and molar weight 

The composition is a function of pressure as well. Fig. 3-5 shows the 

temperature dependence of molar fraction of nitrogen atom and electrons in 

90% N2 – 10% PTFE gas mixture. As the continuous dissociation of nitrogen 

molecule, the molar fraction of nitrogen atom increases rapidly at low 

temperature and starts to decrease at high temperature due to high ionization 

potential. From Fig. 3-5a, it is obviously, that pressure increase suppresses the 

dissociation and ionization reactions. This is corresponding to Le Chatelier’s 

pressure principle. Due to ionization, the molar fraction of free electrons 

increases rapidly. Similarly, this increasing is also suppressed as pressure 

increase.   
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Fig. 3-5a 

 

Fig. 3-5b 

Fig. 3-5: molar fraction of nitrogen atoms (a) and electrons (b) in 90%N2-10%PTFE 
plasma with the pressure ranging from 1 bar(atmosphere) to 100 bar. 
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Fig. 3-6a 

 

Fig. 3-6b 

Fig. 3-6: molar fraction of nitrogen atoms (a) and electrons (b) in different ratio of N2 to 
PTFE mixture gas plasma with the pressure range of 1 bar (atmosphere). 
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The variation of mass density and molar weight as a function of temperature 

are presented in Fig. 3-7 and Fig. 3-8, respectively. The pressure range shown 

in the figure is from 1 bar to 100 bar.  In the absence of chemical reactions, such 

as dissociation or ionization, the mass density varies inversely with the 

temperature and the molar weight should keep constant for an ideal gas. 

However, dissociation and ionization reactions result in non-ideal variations as 

a function of temperature. The pressure increase brings the mass density and 

molar weight to higher value at same temperature. Also, the location of 

gradient of mass density curve moves to higher temperature as the pressure 

increase.    

 

Fig. 3-7: Mass density of 90%N2-10%PTFE mixture gas plasma in the pressure 
range from 1 bar (atmosphere) to 100 bar. 
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Fig. 3-8: Molar weight of 90%N2-10%PTFE mixture gas plasma in the pressure range 
from 1 bar (atmosphere) to 100 bar. 

 

3.3.3 Absorption coefficients  

Line spectral 

The total number of atomic lines considered in the calculation is 32644. The 

absorption oscillator strength is obtained from NIST database31. Stark 

broadening operates in most of the atomic lines. In addition, both Doppler 

broadening and Van der Waals broadening are taken into account. The 

calculation of radiation due to electronic transition between different energy 

levels is described in paper10.  

Continuum radiation 

Results from Kokoouline22 appears to show smaller photoionization cross 

section for CN-, C3N- and C5N- in comparison with other ions. It appears that 

radiative electron attachment is negligible compared to neutral particle 

induced attachment. Radiative recombination makes the most contribution to 

the continuum radiation. The calculation makes use of the Scaled Thomas-
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Fermi potential. The latest energy levels from NIST31 and the work of Kurucz32 

are used. The Bremsstrahlung coefficient, known as the Gaunt factor33, is used 

to correct the hydrogen-like approximation. The coefficient is calculated based 

on the method by Stewart33.  

Radiation emission and absorption  

Different frequency steps in different regions are used in the NEC calculation, 

due to the performance limitation of computer. The spectral frequency of 

radiation is swept from frequency range of 0.1 Hz to 10 PHz. When temperature 

increase to 5,000 K, the most of molecular species are dissociated. The number 

density of electrons dominates composition of plasma when temperature 

above 15,000 K. And the electric arc usually has a temperature of 30,000 K in 

its core area. Thus, the calculated radiation absorption coefficients for 

temperatures of 5,000 K, 15,000 K, 30,000 K with a pressure of 1 bar will be 

shown in Fig. 3-9 (a), (b), (c), respectively. Also the spectral absorption 

coefficient of room temperature (300 K) is shown on each figure as reference.  
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Fig. 3-9a 

 

Fig. 3-9b 
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Fig. 3-9c 

Fig. 3-9: Spectral line and continuum absorption coefficient for 90% N2- 10% PTFE at 
temperature of 5,000K (a), 15,000K (b), 30,000K (c) referenced with the result at 300K. 

 

A comparison of the absorption coefficient at different pressures but the same 

temperature is illustrated in Fig. 3-10. The main influence of increasing pressure 

is increasing of the amplitude of absorption coefficient. The higher pressure 

leads to larger absorption coefficient contributed by continuum radiation. The 

most important reason of this change is due to the number density of species 

increasing due to pressure rising. However, the rate of increase in absorption 

coefficient gets weaker as the temperature increases. 
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Fig. 3-10a 

 

Fig. 3-10b 
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Fig. 3-10c 

Fig. 3-10: Spectral line and continuum absorption coefficient for 90% N2- 10% PTFE with 
pressure of 1bar, 10bar and 100 bar, at temperature of 15,000K (a), 25,000K (b), 35,000K 

(c). 

 

3.3.4 NEC 

Fig. 3-11 shows the NEC for 90% nitrogen – 10% PTFE mixture with different 

plasma column radii. As the NEC is quite low at low temperature, results 

presented here are for temperature higher than 8,000 K. Initially the NEC 

increases rapidly with temperature. The rate of increase slows down when the 

temperature reaches 14,000 K. It is interesting to note that this pattern of rate 

of change of the NEC seems to be closely linked to the total number density of 

the ions. The rate of change of the NEC becomes higher again when the 

temperature exceeds 18,000 K, due to the increase in the population of the ions. 

In the gas mixture calculation, two cases with 10% nitrogen - 90% PTFE (Case 

1), and 90% nitrogen – 10% PTFE (Case 2) were selected as the initial 

composition. Fig. 3-12 shows the NEC of r=0 with different compositions. The 
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maximum difference in the NEC between the two cases below 15,000 K is about 

35%. The difference increases again when the temperature is higher than 

22,000 K. The NEC of Case 2 is 65% higher than that of the Case 1 at 34,000 K. 

This indicates that the influence of PTFE on the NEC can be significant, 

especially at high temperature (T > 22,000 K).  

Fig. 3-13 presents the comparison of NEC between high pressure (100 bar) and 

low pressure (1 bar). Results indicate that the value of NEC can be significantly 

affected by the gas pressure, but not in a linear relationship. 

  

Fig. 3-11: NEC of 90% N2 – 10% PTFE gas plasma with different R at 1bar. 

 



77 
 

 

Fig. 3-12: Comparison of NEC of 10% N2 – 90% PTFE and 90% N2 – 10% PTFE initial molar 
proportions at pressure of 1 bar. 

 

 

Fig. 3-13: Comparison of high pressure NEC 90% N2 – 10% PTFE 
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3.3.5 A sensitivity study on the results 

Sensitivity analysis is a common way to study how the uncertainty in the input 

data affects the results. This study is an important way to investigate the 

influences of different sources on the output, especially in the radiation 

transfer calculation for thermal plasma, as the accuracy of the basic data could 

be low. Although the data are obtained from NIST and Kurucz’s database, the 

energy of the excited or ground levels of atoms, spectral line data due to the 

transition of particles, molecular energy bands and other relative basic data are 

obtained by observation from experiment. The Table 3-5 lists atomic spectra 

level data of nitrogen atom.  

Table 3-5: Data accuracy of atomic spectral energy band. 

 Accuracy 
Number with 

certain accuracy 

Ratio to total level 

number 

Total level 

number: 

311 

A     ≤ 3% 31 10% 

B    ≤ 10% 165 53.1% 

C     ≤ 25% 47 17.1% 

D    ≤ 50% 42 13.5% 

E     > 50% 26 8.4% 

 

The accuracy of most spectral levels lies in category B, which within less than 

10% of its true value. Assume that there are two different spectral levels with 

the same accuracy, one contains a low energy level such as a ground level, while 

the other one is a high energy level. From Eq.(3.9), it can be found that the 

higher the energy level, the less the influence on partition function due to the 

uncertainty.  

Thus, both high and low spectral energy levels of atomic nitrogen are chosen, 

the energies are manually increased by 10%, and then substituted into the NEC 
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calculation. Table 3-6 and Table 3-7 list the original NEC results and the 

calculated NEC results, taking into account the shifting of the energy of both 

low and high levels. The composition and NEC calculation are based on initial 

molar proportions of 50% N2 -50% PTFE.  

Table 3-6: Influence of nitrogen atomic data with low energy level band to NEC 

Energy of band (cm-1) Energy of band with 10% increased (cm-1) 

19224 21146 

Temperature 5 000K 10 000K 12 000K 14 000K 16 000K 20 000K 

Original NEC 1.72E7 1.32E9 7.55E9 2.45E10 3.88E10 8.03E10 

Influenced 

NEC 
1.93E7 1.42E9 8.11E9 2.58E10 4.02E10 8.04E10 

Influence 

Rate 
12.4% 7.92% 7.41% 5.12% 3.50% 0.20% 

 

Table 3-7: Influence of nitrogen atomic data with high energy levels band to NEC 

Energy of band (cm-1) Energy of band with 10% increased (cm-1) 

116367 128003.7 

Temperature 5 000K 10 000K 12 000K 14 000K 16 000K 20 000K 

Original NEC 1.72E7 1.32E9 7.55E9 2.45E10 3.88E10 8.03E10 

Influenced 

NEC 
1.72E7 1.32E9 7.55E9 2.45E10 3.88E10 8.03E10 

Influence 

Rate 
< 0.001% < 0.001% < 0.001% < 0.001% < 0.001% < 0.001% 
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From the Table 3-6 and Table 3-7, it can be seen that the influence of 

uncertainty on the NEC at the high energy level is negligible, but the influence 

of the low energy level cannot be neglected. However, thanks to the stable low 

energy level, the results observed from the experiment are usually accurate34.     

3.3.6 Comparison with existing data and verification of 

methodology  

Fig. 3-14 shows the available experimental and theoretical results for NEC with 

a zero plasma radius at a pressure of 1 bar35,36,37,38. For a zero radius plasma 

(R = 0), by definition self-absorption is not accounted for in the calculation. The 

results from the present work are close to those of Gleizes35 for T > 13,000 K 

with a maximum percentage difference of 13.1%. The discrepancy of up to 29.5% 

below 13,000 K could be due to the difference between the atomic data used 

in35 and in the present work where the most up to date data are used. Fair 

agreement with the results of Allen36 and Hermann37 is achieved. The results of 

Ernst et al.38 were obtained experimentally. An increasing discrepancy is 

observed starting at 17,000 K and it is supposed that there was experimental 

error arising from the equipment. 

Fig. 3-15 shows the available NEC result for pure PTFE calculated by Jan30 at a 

pressure of 100 bar. For the NEC lower than 14,000 K, Jan’s results have been 

5% higher than the calculated results. This is caused by fundamental energy 

level data accuracy due to the influence of uncertainty on NEC being attenuated 

when the temperature is higher than 20,000 K. With an uncertainty level, it can 

be estimated that the number density of species exists in the plasma at 

temperatures from 10,000 K to 20,000 K. 
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Fig. 3-14: Comparison of calculated NEC results of pure nitrogen gas plasma 

 

 

Fig. 3-15: Comparison of calculated NEC results of pure PTFE gas plasma 
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3.3.7 Line overlapping  

In some absorption coefficient calculation case, the overlapping influence is 

neglected39, so each line can be treated by means of an escape factor. The 

escape factor is defined as the ratio of the radiation escaping the plasma to the 

radiation of an optically thin plasma 40 . In Gleizes35 calculation, the line 

overlapping influence is neglected in order to minimise computation costs. To 

be able to determine the influence of overlapping, a table is introduced below 

to compare the NEC of a 40%N2 - 60%PTFE gas mixture both when considering 

and ignoring the overlapping.  

From Table 3-8, it follows that ignoring line overlapping leads to a higher NEC 

by 21.4% at 8,000 K and 99.1% at 20,000 K. Considering that the influence is not 

negligible, the NEC results shown in the last section take into account the 

influence of line overlapping.    

Table 3-8: Influence of line overlapping on the NEC of 40% N2-60% PTFE at different temperature 
with R = 0 at pressure of 1 bar. 

Temperature 

 8000 K 15 000K 20 000K 25 000K 30 000K 35 000K 

NEC with 

overlapping 
8.77E7 9.96E9 2.14E10 6.08E10 1.13E11 2.12E11 

NEC without 

overlapping 
1.06E8 1.77E10 4.27E10 1.3E11 2.87E11 6.13E11 

Increasing 

ratio 
21.4% 77.5% 99.1% 121.3% 155.2% 189.7% 

 

3.4 Summary 

In this chapter, considerable effort is devoted to the calculation of the 

composition, absorption coefficient and NEC of nitrogen and PTFE gas mixtures 
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with different initial molar proportions under local thermal equilibrium. The 

temperature ranges from 300 to 30,000 K and pressure ranges from 1 bar to 

100 bar. The calculation model has been checked against the existing results for 

pure nitrogen gas.  

The results of the molar fraction of nitrogen atoms in the 90% N2 – 10% PTFE 

gas mixture show that the pressure increase suppresses the dissociation and 

ionization reactions. It is reasonable as it follows the principle of Le Chatelier’s 

pressure. Due to ionization, the molar fraction of free electrons increases 

rapidly. Therefore, this increase is suppressed as the pressure increases.   

The spectral absorption coefficient was first obtained. At a temperature of 

5,000 K, the absorption coefficient is contributed by molecular species, while 

when the temperature is higher than 15,000 K, atoms and ions dominate the 

plasma radiation. The spectral line radiation becomes more violent as the 

temperature increases. Both line and continuum radiation are affected by the 

pressure; however, at higher temperature the influence of pressure becomes 

less significant.   

The base energy level data of species will affect the NEC results as well. 

However, by manually changing the data, it shows that a notable influence on 

NEC is only caused by the low energy level data. The influence of the high 

energy level to NEC is negligible.  

In some cases, in order to reduce the computation cost, the line overlapping 

influence is not taken into account. Results considering and not considering the 

overlapping influence are listed.  
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Chapter 4 Radiation transfer calculation for 

LTE nitrogen-PTFE mixture gas plasma  

 

4.1 Introduction of radiation transfer in arc plasma 

Radiation plays important roles that can affect the behaviour of plasma in an 

electric arc or a thermal plasma. During arc processing, the total radiation of an 

arc plasma is its energy loss, which can cause the electric arc to cool. The aim 

of a circuit breaker is to rapidly extinguish an electric arc through separating 

electric contacts. The total radiation, therefore, plays a determining role in a 

circuit breaker’s performance. Furthermore, radiation transfer research can be 

used for applications like particles heating1 or plasma torches, but those are not 

the purpose of this research.   

Generally, the direction of radiation transfer within an arc plasma starts from 

the arc core (hot regions). The energy is emitted from the arc core to the cold 

regions such as the edge of the plasma. Energy can be transferred completely 

in hot regions. However, it has to be absorbed partially in relatively cool regions. 

When the radiation reaches the cold region, the remaining energy will be 

absorbed. The energy transfer will determine the temperature distribution in 

an arc plasma. In most cases, an electric arc is generated in the throat of the 

PTFE nozzle. The throat surface is called the wall. If the dimension of the throat 

is small enough (less than the edge of the cool region), material ablation will 

occur due to the high temperature. The PTFE ablation will influence the arc 

behaviour as well, which is why it is necessary to consider radiation transport 

in arc plasma modelling.   
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The physical quantity described in radiation transfer is radiation flux. Simulation 

of arc plasma modelling is based on the energy balance equation2, in which 

radiation flux is one of the most important terms. Chapter three introduced the 

theory of net emission coefficient (NEC). This is the simplest way to replace 

radiation flux as a term in the energy balance equation. It can be tabulated as 

a function of temperature. However, it can only be applied in the hot regions in 

which reabsorption is usually neglected. Fig. 4-1 shows the typical temperature 

profile of an electric arc. In the cool region, which is region two in Fig. 4-1, the 

radiation transfer equation (RTE) must be solved to obtain the radiation flux.  

Radiation transfer is complicated to compute because it is not only a space-

dependent variable (related to plasma temperature or its number density), but 

also a spectral-dependent variable (related to the absorption coefficient of 

plasma). This results in a prohibitive computation time being needed to solve 

the RTE. Therefore, a simpler solution is necessary. The number density of 

plasma can be determined once the temperature is given. If an efficient way of 

determining the absorption coefficient can be identified, it will save 

computation time for solving RTE. Some authors came up with the idea of an 

effective absorption coefficient as a function of a space variable, such as 

pressure, temperature or plasma composition. However, the accuracy is 

doubtful3,4,5,6. Another suggestion is averaging the absorption coefficient in 

frequency bands, which is called the mean absorption coefficient (MAC).  

Besides solving the RTE directly, many approximate methods have been 

developed. A partial characteristics method was developed by Sevast’ yanenko7, 

who identified two parameters, Som and ∆Sim , which describe the absorption 

and emission of radiation in a given direction. Those two values can be 

tabulated for a specific gas before starting the simulation work. It is complex as 

well, but the simulation is rapid. P1 approximation is another effective method 

of calculating radiation flux for plasma modelling. P1 approximation was first 
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developed by Jeans8 in 1917, but Kourganoff further described this method in 

19529. The value of this method is the governing equation, which is a simple 

partial differential equation (PDE), which means that this approximation can be 

solved in low order equations. The computation cost is much less than that 

required for solving the RTE and it has good accuracy for media near-isotropic 

radiative intensity 10 . Gelbard improved the P1 method to high-order 

approximation to increase its accuracy; it is known as SPN. The discrete ordinate 

method (DOM) is another approximation method used to simplify RTE. Details 

of DOM have been given by Charest11.  

In this chapter, the radiation transfer flux in an arc plasma will be calculated. 

Results obtained by P1, DOM and exact solution of the RTE will be compared. 

In accordance with the aim of this project, a nitrogen-PTFE mixture plasma will 

be used as the medium. The results will be plotted with different N2-PTFE molar 

proportions at different pressures under LTE conditions. To further discuss the 

application of the calculation results, simulation of arc modelling will be 

introduced that corresponds to an existing experimental environment. The 

results of radiation transfer flux will be applied in the simulation work. The arc 

behaviour of the simulation will be compared with the experimental results 

from different methods of radiation transfer. Further introduction to the 

simulation and the experiment will be provided in a later section.    

4.2 Methods of radiation transfer calculation 

In general, thermal radiative energy consists of electromagnetic waves because 

the particles absorb energy. Thus, it is easy to predict the radiation of liquids 

and solids by applying electromagnetic wave theory, while the radiation of 

gases can be obtained from quantum mechanics. 
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Fig. 4-1: Typical temperature profile of electrical arc: this chapter will focus on the region 2 

 

4.2.1 Radiation intensity 

Radiation transfer in plasma can be emitted, absorbed and scattered by the 

medium. Once radiation is emitted from the source, it is transferred via a path 

straight to cold regions of plasma. During this process, radiation will be 

attenuated by absorption and scattering. The amount of radiation absorption 

is proportional to the magnitude of incident radiation and the distance of 

radiation has travelled from the source.  

𝑑𝐼𝑣,𝑎𝑏𝑠 = −𝜅𝑣𝐼𝑣𝑑𝑙 (4.1) 

 

where the 𝐼𝑣 is the radiation intensity and 𝜅𝑣 is the absorption coefficient at 

frequency v. The negative sign indicates that the radiation is reduced. Assuming 

the radiation travelled over path 𝑙, the radiation intensity takes into account 

emitting and absorption only. This can be expressed as Eq.(4.2): 

I𝑣(𝑙) = I𝑣(0)exp (− ∫ 𝜅𝑣
𝑙

0
𝑑𝑙)= I𝑣(0)exp (−τ𝑣) (4.2) 
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τ𝑣 = ∫ 𝜅𝑣𝑑𝑙
𝑙

0

 (4.3) 

 

τ𝑣 is the optical thickness of absorption through the radiation travelling path 𝑙.  

The I𝑣(0) indicates the intensity emitted from the source, which is 𝑙 = 0. With 

LTE condition, the intensity of the source is equal to the blackbody intensity42  

B𝑣
 , which is a function of the magnetic wave frequency: 

B𝑣 =
2ℎ𝑣3

𝑐2

1

exp (
ℎ𝑣
𝑘𝑇

) − 1
 

(4.4) 

 

where ℎ is the Planck constant, c is the speed of light, and k is the Boltzmann 

constant.  

When the radiation wave meets the particle on its route, it will be partially 

absorbed by the particle. The radiation intensity is a parameter that describes 

the radiative flux per unit solid angle. Assume the radiation energy is passing a 

cross-section, the area of which is dS.  

Eq.(4.5) describes the radiation intensity.  

𝑑𝐼𝑣

𝑑𝑙
= −𝜅𝑣(𝐵𝑣 − 𝐼𝑣) (4.5) 

Solution of the radiation transfer equation  

The radiation transfer equation (RTE) can be written as Eq. (4.6).  

ŝ ∙ ∇𝐼𝑣(𝑅, ŝ) = 𝜅𝑣(𝐵𝑣 − 𝐼𝑣) (4.6) 
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where 𝐼𝑣  is the spectral radiative intensity that was introduced in the last 

section.  𝐼𝑣(𝑅, ŝ)  indicates the intensity at point R, and it goes along with 

direction ŝ, while frequency is 𝑣.  

However, when discussing radiation flux or divergence of radiation flux, it is 

necessary to describe the quantity of radiation transfer. Radiation flux is also 

called radiative heat flux, shown below:  

𝐅𝑣(𝒓) = ∫ 𝑑�̂��̂�𝐼𝑣(𝒓, �̂�)
 

4𝜋

 (4.7) 

 

Furthermore, to diverge the radiative heat flux, it is important to determine the 

interaction of radiation and the species in plasma: 

∇ ∙ F𝑣 = −𝜅𝑣 ∫ 𝑑�̂�
 

4𝜋

∫ 𝑑𝑙
∞

0

𝑑𝐵𝑣

𝑑𝑙
𝑒− ∫ 𝑑𝑙′𝜅𝑣(𝑙′)

𝑙
0  (4.8) 

4.2.2 Approximate solution of RTE 

There is a schematic presentation of the domain cross section in Fig. 4-2. The 

round shape with the centre at S indicates the cross section of the arc. Along 

with line SR, point R is where the divergence of radiation flux will be evaluated 

at. The divergence of radiation flux can be influenced by any point on plane S. 

Along with the point on line AB, point X is one of the points that contributes 

radiation on R. Due to difficulty is obtaining the distance between the arc core 

to X which is r shown in diagram.  A reference plane perpendicular to plane S 

intersects with line AB to explain the calculation of r. The angle φ and , which 

is the length between X and R along with AB, is known. Assume lines YS and SR 

are perpendicular to the plane YSR. It is then possible to find the relationship 

between r and φ, θ, .  During the calculation process, the range of θ is from  

−π to π, which can cover all the points on line AB. Once r is obtained, the 

temperature on point X is obtained according to the temperature profile.  
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Fig. 4-2: Schematic representation of computational domain cross section.  

P1 approximation  

P1 approximation actually simplifies the RTE into an elliptic partial differential 

equation of lower order.  The unknown in this PDE is the incident radiation 

intensity G. 

∇ ∙ (−
1

3𝜅𝑣(𝑇)
∇G𝑣) + 𝜅𝑣(𝑇)𝐺𝑣 = 𝜅𝑣(𝑇)𝐺𝑣

0(𝑇) (4.9) 

where 𝐺𝑣
0(𝑇) can be obtained by  

𝐺𝑣
0 = 4𝜋𝐼𝑣

0(𝑇) (4.10) 

Once 𝐺𝑣
0(𝑇)  is solved from this equation, G𝑣  can be used to calculate 

divergence of radiation flux ∇𝐹.  

DOM approximation 

DOM is the method that replaces integrals over all directions by numerical 

quadrature. It follows the equation: 
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∇F𝑣 = 𝜅𝑣 ∑ 𝜔𝑗 [𝐵𝑣(0)𝑒− ∫ 𝑘𝑣(𝑥𝑗)𝑑𝑥𝑗

𝑥𝑤𝑎𝑙𝑙,𝑗
0

𝑛

𝑗

− ∫ (𝐵𝑣(𝑥𝑗) − 𝐵𝑣(0)) 𝜅𝑣(𝑥𝑗)𝑒
− ∫ 𝜅𝑣(𝑗)𝑑𝑗

𝑥𝑗
0 𝑑𝑥𝑗

𝑥𝑤𝑎𝑙𝑙,𝑗

0

] 

(4.11) 

where 𝜔𝑗 is the weight associated with the direction, the number of which is 

reported in Michael’s book42. It can be summarized with the equation below: 

𝜔𝑗 = 𝑑𝜑 ∗ (sin (𝜃𝑗 +
1

2
𝑑𝜃) − sin (𝜃𝑗 −

1

2
𝑑𝜃)) (4.12) 

 

𝑑𝜑 𝑎𝑛𝑑 𝑑𝜃 are determined by the resolution of DOM bands.  As described in 

the last section, the Discrete Ordinates Method (DOM) chooses several 

different φ ,  θ . The choice can, however, influence the accuracy of results. 

During the calculation of Nordborg12 and Randrianandraina13, no more than 40 

directions are chosen, but the results retain accuracy well. In this case, eight 

unique directions of angles of  φ from 0 to π and five unique directions of 

angles of θ from 0 to 
π

2
  are chosen. Thus, 112 unique directions need to be 

computed over the whole computational domain. Notably, this is the work for 

one interesting point, which is R, shown in Fig. 4-2. There are 100 interesting 

points along the arc core to the edge of plasma.  

4.2.3 Mean absorption coefficient (MAC) 

The NEC cannot be used to estimate the absorption of radiation in cool and cold 

regions, leading to huge computation cost if the found spectral absorption 

coefficient is employed to obtain radiative absorption in the regions in which 

the temperature is lower than the arc core. It is necessary to find an 

approximate method to describe absorption coefficient for each temperature. 

With the MAC method, the integration of absorption coefficient of each 

frequency can be replaced by integration of the MAC of each band. Calculation 

of radiation flux requires integration calculation of absorption coefficient with 
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the same frequency but different temperature, which then integrates results 

over all frequencies. Without MAC, it costs too much to calculate the 

absorption coefficient even if it is stored in memory. Thus, the primary step is 

to split the spectrum into several intervals. Fig. 4-3 shows the absorption 

coefficient for 90% nitrogen -10% PTFE molar proportion mixture plasma with 

temperature of 8000K and pressure of 1 bar. The boundary of 9 spectral bands 

is also plotted. The boundary is given by considering the jumping of the 

absorption coefficient. The full range of the absorption coefficient is 1X1014 Hz 

to 1X1016 Hz. The frequency of the first band is higher than the second band, 

and so on. The first band is contributed by most atom ionization such as 

nitrogen, fluorine and carbon atom. The second band is contributed by 

dissociation of molecules CF2 and C2F3N. Band six is due to the dissociation of 

CN. The frequency of the electromagnetic wave because of species dissociation 

or ionization is the property independent of temperature and pressure. This 

interval can be applied on a spectrum of different temperatures and pressures.     

 

Fig. 4-3: Evolutions of the continuum absorption coefficient for 90% nitrogen -10% PTFE 
molar proportion at the temperature of 8,000 K and pressure of 1 bar. The 10 intervals are 

plotted in the vertical full red lines. The numbering of the intervals is indicated in the 
figure.  
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Randrianandrain13 summarized three methods of MAC: normal14, Roasseland15, 

and Planck 16  MAC. Normal MAC is defined by the MAC definition that is 

expressed in Eq. (4.13). Opaque medium usually causes a high absorption 

coefficient. Rosseland MAC was derived to resolve this problem. It has better 

approximation at high pressure. The Planck MAC actually is a ‘modified Planck’ 

because an exponential term has been introduced into the original Planck MAC. 

Randrianandraina reported that the original Planck MAC method yields poor 

results with high absorption coefficients, making it inappropriate for absorption 

coefficient due to ionization of most atom species. The exponential term can 

reduce the atomic lines of the first band. However, calculation of Planck MAC 

has to be linked to thermal radius 𝑅𝑝 in NEC expression.    

κ𝑁𝑜𝑟,𝐵𝑎𝑛𝑑𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

1

∆𝑣
∫ 𝜅𝑣𝑑𝑣

𝑣𝑢𝑝,𝐵𝑎𝑛𝑑𝑖

𝑣𝑑𝑜𝑤𝑛,𝐵𝑎𝑛𝑑𝑖

 (4.13) 

 

Eq.(4.13) presents the normal MAC expression. 𝑣𝑢𝑝,𝐵𝑎𝑛𝑑𝑖
 and 𝑣𝑑𝑜𝑤𝑛,𝐵𝑎𝑛𝑑𝑖

 

indicate the two boundary frequencies for band i. 𝜅𝑣  is the absorption 

coefficient of fine spectrum at frequency 𝑣. 𝑑𝑣 is the frequency resolution of 

fine spectrum.  ∆𝑣 is the frequency difference between two boundaries.   

κ𝑅𝑜𝑠𝑠𝑒𝑙𝑎𝑛𝑑,𝐵𝑎𝑛𝑑𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ =

∫
𝑑𝐵𝑣

0

𝑑𝑇
𝜅𝑣𝑑𝑣

𝑣𝑢𝑝,𝐵𝑎𝑛𝑑𝑖
𝑣𝑑𝑜𝑤𝑛,𝐵𝑎𝑛𝑑𝑖

∫
𝑑𝐵𝑣

0

𝑑𝑇
𝑑𝑣

𝑣𝑢𝑝,𝐵𝑎𝑛𝑑𝑖
𝑣𝑑𝑜𝑤𝑛,𝐵𝑎𝑛𝑑𝑖

 (4.14) 

 

Eq.(4.14) shows the Rosseland MAC method. The only difference from Eq.(4.13) 

is the term 𝐵𝑣
0, which is the black body radiation intensity that was expressed 

in Eq.(4.4). In Rosseland MAC, the black body radiation intensity can be 

obtained according to the frequency 𝑣.  
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κ𝑃𝑙𝑎𝑛𝑐𝑘,𝐵𝑎𝑛𝑑𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ =

∫ 𝐵𝑣
0𝜅𝑣𝑒−𝜅𝑣𝑅𝑝𝑑𝑣

𝑣𝑢𝑝,𝐵𝑎𝑛𝑑𝑖
𝑣𝑑𝑜𝑤𝑛,𝐵𝑎𝑛𝑑𝑖

∫ 𝐵𝑣
0𝑑𝑣

𝑣𝑢𝑝,𝐵𝑎𝑛𝑑𝑖
𝑣𝑑𝑜𝑤𝑛,𝐵𝑎𝑛𝑑𝑖

 (4.15) 

 

Eq.(4.15) shows the Planck method. As mentioned, an exponential term is 

multiplied with the original term. 𝑅𝑝 is the thermal radius.  

 

Fig. 4-4: Temperature profiles used in the calculations of the divergence of the radiative 
flux 

 

4.2.4 Calculation program 

The calculation program is developed in C++. Amazon Elastic Compute Cloud 

(EC2) provides the calculation resources to complete the calculation. It has 

36 cores of Intel Xeon E5-2666 v3 processors. The parallel calculation can 

increase efficiency sufficiently. Each interested point can be calculated 

individually. The 100 points are separated into 34 files; 3 points are included in 

33 files, and one point is in the last file. Thirty-four mirrors of the program were 
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created, and each of them read one of the files. This produces 34 threads to do 

calculation in 34 CPU cores with full performance at the same time.  

4.3 Results and discussion  

4.3.1 Approximation of different MAC 

Fig. 4-5 and Fig. 4-6 show the calculated fine spectrum of absorption coefficient 

for 90% nitrogen and 10% PTFE at 1 bar at 8,000 K and 25,000 K, respectively. 

The results are compared with normal MAC, Rosseland, Planck and MMP.   

Fig. 4-7 shows the NEC results calculated by fine spectra, Normal, Rosseland, 

Plank, and Mixed Mean Planck method. The results obtained by MAC methods 

are agree with results by fine spectrum. The Normal MAC leads the radiation 

taken in account higher than rest of three MAC methods. That results NEC by 

Normal method slightly higher when temperature is below than 20,000 K. It 

enlarges the difference when temperature is higher than 20,000 K, due to the 

Normal MAC is more sensitive at high temperature. The NEC calculated by 

Rosseland MAC has better agreement when temperature is lower than 

25,000 K, while the Mixed Mean Planck MAC has more accurate when 

temperature higher than that. 

4.3.2 Radiation flux by different approximation methods 

Different approximations to solve RTE have been discussed. A few selected 

calculation results for divergence of radiative flux are represented in Fig. 4-8 to 

Fig. 4-13. Considering that the frequency resolution of the absorption 

coefficient determines the accuracy of results and calculation time, 10 GHz has 

been chosen as the frequency step. It has 98% agreement with results obtained 

by 1 GHz under the same conditions but only costs 8% of calculation time. 

Corresponding to the temperature profile, the temperature of the arc core is 

25,000 K, while the temperature of the wall is 3,000 K. The distance of the arc 
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core to the wall is 0.01 m. There are 100 interested points distributed over the 

axis, and the accuracy of points is 1X10-4 m. The divergence of radiative flux is 

carried out by DOM 8-5 (8 of φ and 5 of θ), DOM 5-3, P1 approximation, exact 

angular.  

 

Fig. 4-5: Fine absorption spectrum for 90% nitrogen -10% PTFE molar proportion at 
temperature of 8000 K and pressure of 1 bar. Normal, Rosseland, Planck and Mixed Mean 

Planck (MMP) are also presented. 

 

Fig. 4-6: Fine absorption spectrum for 90% nitrogen -10% PTFE molar proportion at 
temperature of 25000 K and pressure of 1 bar. Normal, Rosseland, Planck and Mixed Mean 

Planck(MMP) are also presented. 
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Fig. 4-7: Comparison of NEC calculated by fine spectra and different MAC method from 
normal, Rosseland, Planck and MMP. 

 

In Fig. 4-8, the influence of different nitrogen and PTFE molar proportions on 

divergence of radiation flux is represented. The P1 approximation has 

overestimated the radiation flux on the arc core and wall region. With higher 

nitrogen molar proportion, P1 results show worse estimation. However, P1 is 

still the first choice in many arc model simulations because of its much smaller 

computation cost. The results of radiation flux by DOM with 8-5 bands show 

better performance than 5-3 DOM on different molar proportions cases. It is 

reasonable because it considers more directions in 8-5 DOM.   
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(a) 

 

(b) 

Fig. 4-8: Calculated divergence of the radiation flux for different molar proportions of 
nitrogen and PTFE based on temperature profile 1 at 1 bar.   
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Fig. 4-9 and Fig. 4-10 show different divergences of radiation flux with 8 bar and 

32 bar pressures. It results in 402.3% and 2296.7% higher divergence of 

radiation flux for 10% N2-90% PTFE at 1 bar. However, the increasing rate drops 

down to 375% and 2205.3% with 50% nitrogen molar proportion. The 

overestimation rate of P1 approximation has a tendency to get smaller in higher 

pressure situations. The computation time for different approximation 

methods varies. The P1 approximation costs 10 minutes in one interested point. 

One case of divergence of radiation flux takes 30 minutes (34 threads parallel 

calculation). Calculation of 5-3 DOM costs about 4 hours total, while 8-5 bands 

take 7.5 hours for one case. The exact angular yields the most accurate results, 

but it costs 23 hours to obtain the result for one calculation. This is why P1 

approximation is still the most popular method in arc simulation.  

 

 

(a) 
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(b) 

Fig. 4-9: Calculated divergence of the radiation flux for different molar proportions of 
nitrogen and PTFE based on temperature profile 1 at 8 bars.   

 

 

(a) 
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(b) 

Fig. 4-10: Calculated divergence of the radiation flux for different molar proportions of 
nitrogen and PTFE based on temperature profile 1 at 32 bars.   

 

Fig. 4-11 shows that, because the temperature profile has been changed, the 

divergence of radiation flux remains high until the temperature drops. Like the 

results for profile 1, P1 approximation overestimated the results, especially in 

regions close to the arc wall. The best fit approximation method is 8-5 DOM. 

Fig. 4-12 and Fig. 4-13 represent the divergence of radiation flux in high 

pressures.   
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(a) 

 

(b) 
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(c) 

Fig. 4-11: Calculated divergence of the radiation flux for different molar proportions of 
nitrogen and PTFE based on temperature profile 2 at 1 bar.   

 

 

(a) 
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(b) 

 

(c) 

Fig. 4-12: Calculated divergence of the radiation flux for different molar proportions of 
nitrogen and PTFE based on temperature profile 2 at 8 bars.   
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(a) 

 

(b) 
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(c) 

Fig. 4-13: Calculated divergence of the radiation flux for different molar proportions of 
nitrogen and PTFE based on temperature profile 2 at 32 bars.   

 

4.3.3 Discussion of NEC and divergence of radiative flux 

NEC is an approximation method to describe radiation transfer in an isothermal 

cylinder. In arc simulation, there is a term related to radiation flux in plasma. 

Researchers usually replace this term with NEC. It can estimate divergence of 

radiation to some degree. In the centre of the arc plasma region, the 

relationship of NEC to divergence of radiation flux can be expressed as: 

4πε𝑁 = ∇𝐹 (4.16) 

 

Fig. 4-14 shows the results of 4π ∗ NEC compared with divergence of radiative 

flux for two temperature profiles. The red line indicates the temperature profile. 

In the region of near-constant temperature, the radiation calculated by NEC 

model has good agreement with the divergence of radiative flux in both 



111 
 

temperature profiles. Once the temperature starts to drop, the NEC model can 

hardly estimate the real situation of radiation transferring in the arc plasma. 

This corresponds to the primary assumption of NEC, which describes radiation 

in an isothermal cylinder.   

 

 

Fig. 4-14: Calculated 4π ∗ NEC compared with divergence of radiative flux for two 
temperature profiles 
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4.4 Summary 

The calculation methods for radiation transfer in nitrogen-PTFE arc plasma have 

been introduced. The methods include P1 approximation and two DOM 

approaches. The results yielded by those approximation methods show good 

performance. P1 approximation requires much less computation resources 

than the other two methods. However, 8-5 DOM gives the best agreement with 

the exact value. It is a trade-off between calculation time and accuracy of 

results. 

Comparing these results with the NEC results obtained in the last chapter 

indicates that 4π ∙NEC can only be used to replace the divergence of radiative 

flux in the arc core region. In the cool region and the arc wall, due to the re-

absorption of particles, NEC is no long valid.  

MAC is another way of saving computation costs for radiation flux calculation. 

The division of frequency bands and choice of methods determines the 

accuracy of results. Rosseland MAC has good performance on high pressure.  
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Chapter 5 Calculation of thermodynamic 

and transport properties of two-temperature 

model 

5.1 Introduction  

SF6 is widely used in high voltage gas-blast circuit breakers because of its 

excellent dielectric performance and arc quenching ability. It is however a 

strong greenhouse gas. SF6 will need to be replaced. There has been research 

on SF6 replacement1. PTFE, which is used to make the nozzle in high voltage 

circuit breakers, is an excellent solid insulation material. Ablation of PTFE takes 

place in the interruption process of a high voltage circuit breaker as a result of 

strong arc radiation. Both theoretical and experimental investigations2-3 have 

been carried out and have shown that ablated PTFE vapour has a significant 

influence on the performance of circuit breakers. There is better agreement 

between the predicted and measured values if the influence of PTFE vapour2 is 

taken into account.  In previous calculations, the main assumption is local 

thermal equilibrium (LTE). However, LTE is no longer valid when a large 

temperature gradient exists, such as in the region close to the cold wall or when 

the number density of electrons is not high enough to allow sufficient transfer 

of energy between the electrons and heavy-particles. A non-LTE assumption 

has to be applied to the region with such conditions. Region three in Fig. 5-1 

shows such a region in the typical temperature profile of an electric arc.  

The purpose of a circuit breaker is to interrupt a high current in a short time 

(less than 100 ms) when needed. The current-zero period is critical to the 

interruption performance. During this period convection and turbulent cooling 

play a dominant role in reducing the arc temperature. As a result of this 
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phenomenon, the electron number density is not high enough to support the 

transfer of energy between electrons and heavy particles. In this situation, 

although the electron energy distribution function still follows Maxwellian, the 

mean kinetic energies of electrons and heavy-particles are different.  

The species in a plasma can be divided into two groups, electrons and heavy 

particles, because of the large difference in their mass. Depending on the 

discharge conditions, the plasma could be in local chemical equilibrium (LCE) 

but the two species have different temperatures. In this case a two-

temperature model needs to be used to solve this non-thermal equilibrium 

problem. There are two temperatures, the electron temperature (Te) and 

heavy-particles temperature (Th). The mass difference between heavy particles 

is much smaller than that between heavy particles and electrons. Thermal 

relaxation among heavy particles is thus very efficient and all heavy particles 

have a common temperature. The composition, thermodynamic properties and 

transport coefficients of non-thermal equilibrium plasma are therefore needed 

to model and optimize a two-temperature plasma system.  

Work related to two-temperature plasma has been reported on pure SF6
4,5,6,7, 

its mixtures, such as SF6-copper8 and SF6-nitrogen9 and other gas mixtures Ar-

O2
10  and Ar-H2

11 . Two-temperature modelling of pure nitrogen has been 

reported as well12,13. However, there are no existing publications on nitrogen-

PTFE mixture under non-thermal equilibrium conditions.  

The determination of plasma composition based on a two-temperature model 

usually requires the use of Saha and Guldberg-Waage Laws, Dalton’s Law and 

the Species Conservation Law. The methods were derived by Van de Sanden14, 

Potapov et al. 15  and Godin’s method 16 , as mentioned in Chapter three. 

However, in Godin’s work, LTE was assumed. In this chapter, how to apply 

Godin’s method to a non-LTE plasma is explained with two-temperatures. The 
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results obtained using Godin’s method will be compared with those from Van 

de Sanden’s method and Potapov’s method. 

In this chapter, the plasma composition, thermodynamic properties and 

transport coefficient of a non-equilibrium N2-PTFE gas mixture are calculated. 

Boltzmann distribution can still be used to describe the population density 

distribution as a function of energy, including discrete energy levels; however, 

the temperature as a parameter has to be chosen carefully. The plasma 

pressure ranges from 1 bar to 100 bar and the electron temperature ranges 

from 300 K to 40,000 K. The composition is calculated using Godin’s method. 

The thermodynamic properties and transport coefficients are then obtained 

based on the composition of the species. There will be a discussion on the 

results from different methods to help understand the underlying physical 

mechanisms responsible for the difference.   

 

Fig. 5-1:Typical temperature profile of electric arc 
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5.2 Fundamental principles 

5.2.1 Plasma composition 

There are mainly four models for computing plasma composition have been 

derived in literatures by researchers: Potapov15, Van de Sanden14, minimization 

of Gibbs free energy method17,18 and Godin16 method. The basic principle of 

Gibbs free energy minimization method is the same as Godin’s method that was 

employed to calculate the plasma composition under LTE conditions in Chapter 

three. Chen and Han argued that Gibbs or Godin’s method cannot be used to 

calculate the composition under non-LTE condition19. However, Andre agreed 

that the method based on minimization of Gibbs free energy can be employed 

for two-temperature or multi-temperature models for non-LTE plasma20,21. 

Andre further pointed out that Chen and Han’s point from statistical 

mechanics22.  

Conservation of Stoichiometric equilibrium  

∑ 𝑐𝑠,𝑖𝑛𝑠,𝑖

𝑤 

𝑖

= 𝐶  (5.1) 

 

Eq. (5.1) represents the conservation of element mass where 𝑛𝑠,𝑖 is the number 

density of element s in species i, 𝑐𝑠,𝑖 the stoichiometric coefficient of element s, C a 

constant and w the number of species in a plasma. 

Dalton’s law 

P + ∆P =  ∑ 𝑛𝑖𝑘𝑇ℎ + 𝑛𝑒𝑘𝑇𝑒

𝑤

𝑖≠𝑒

 
(5.2) 

 
∆P =

1

24휀0𝜋𝜆𝑑
3 ∑ 𝑍𝑖

2𝑛𝑖

𝑤

𝑖=1
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λ𝑒
−2 =

𝑒2

휀0𝑘
[
𝑛𝑒

𝑇𝑒
+ ∑

𝑧𝑡
2𝑛𝑡

𝑇ℎ

𝑤

𝑡=1,𝑡≠𝑒

] 

 

Eq.(5.2) expresses Dalton’ Law with Coulomb field modification23, where 𝑇ℎ 

and 𝑇𝑒  are the heavy particle and electron temperatures, respectively. P and 

∆P are the gas pressure and pressure correction due to interactions among 

charged particles. 𝜆𝑑
  is the Debye length with ion shielding. In the present 

calculation, a comparison of Debye length due to ion and electron shielding and 

only due to electrons will be presented. w is the number of species in the 

plasma, k the Boltzmann’s constant, 휀0 the vacuum permittivity, 𝑍𝑖
  and 𝑛𝑖 are 

the charge number and number density of species i and 𝑛𝑒  is the number 

density of electron.  

Electrically quasi-neutrality 

∑ 𝑍𝑡𝑛𝑡 − 𝑛𝑒

𝑡

= 0 (5.3) 

 

Eq.(5.3) presents electrical quasi-neutrality in the plasma and 𝑍𝑡 and 𝑛𝑡 are the 

charge number and number density of the charged species t, respectively.  

Law of mass action 

∏ 𝑛𝑖
𝑐𝑖

𝑤

𝑖

= ∏ 𝑄𝑖
𝑐𝑖

𝑤

𝑖

 (5.4) 

 

In Eq.(5.4), 𝑐𝑖 presents the coefficient related to the chemical basis in Eq.(3.5). 

These equations are used in different method of calculation. The difference lies 

with the equations of describing dissociation and ionization reactions. The 

advantages of Godin’s method are uniting form for both reactions, it allows a 
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reaction’s equations be re-generated dynamically during the calculation 

process.  

Potapov’s method and Van de Sanden’s method will be first introduced below, 

a comparison of results between different methods will be discussed later as 

well.  

Potapov’s method 

The dissociation reaction ab ↔ a + b  describes a chemical reaction in 

equilibrium under the control of the heavy species temperature  Tℎ . The 

ionization a𝑟+ ↔ a(𝑟+1)+ + e−  reaches equilibrium with T𝑒𝑥 is the excitation 

temperature. 

 

𝑛𝑎𝑛𝑏

𝑛𝑎𝑏
=

𝑄𝑎𝑄𝑏

𝑄𝑎𝑏
[
2𝜋𝑘𝑇ℎ

ℎ2
]

3/2

[
𝑚𝑎𝑚𝑏

𝑚𝑎𝑏
]

3/2

exp [−
𝐸𝑑

𝑘𝑇ℎ
] 

 (5.5) 

 

 

𝑛𝑒 [
𝑛𝑟+1

𝑛𝑟
]

1/𝜃

= 2 [
𝑄𝑟+1

𝑄𝑟
]

1/𝜃

[
2𝑚𝑒𝜋𝑘𝑇𝑒

ℎ2
]

3/2

exp [−
𝐸𝐼,𝑟+1 − ∆𝐸𝐼,𝑟+1

𝑘𝑇𝑒𝑥
] 

 
(5.6) 

 

 

where 𝜃  is the non-LTE degree which is given by 𝜃 =
𝑇𝑒

𝑇ℎ
 , 𝑄  is the internal 

partition function, 𝐸𝐼,𝑟+1  the ionization energy while subscript r indicates r-

times ionized species and 𝐸𝑑 the dissociation energy. ∆𝐸𝐼,𝑟+1 is the lowering of 

the ionization energy due to the interactions between plasma particles. 𝑎𝑏, 𝑎 

and 𝑏 denote the reactant and the products of the dissociation reactions. 𝑇𝑒𝑥 is 

the excitation temperature of the species a𝑟+. The lowering of the ionization 

energy can be expressed as: 
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∆E𝐼,𝑟+1 = (𝑟 + 1)
𝑒2

4𝜋휀0

1

𝜆𝑑
 (5.7) 

 

 

where 𝜆𝑑 is the Debye length due to the shielding effect of charged particles. It 

is known that the ionization potential lowering is inversely proportional to the 

Debye length. A comparison24 of the Debye length with and without considering 

the contribution of heavy species is made. It can be shown that ions play an 

equally or more important role in the lowering of the ionization potential in a 

two-temperature plasma.  

Van de Sande et al.’s method 

Guldberg-Waage’s equation is based on Saha’s law, it can be written as below: 

𝑛𝑎𝑛𝑏

𝑛𝑎𝑏
=

𝑄𝑎𝑄𝑏

𝑄𝑎𝑏
[
2𝜋𝑘𝑇ℎ

ℎ2
]

3/2

[
𝑚𝑎𝑚𝑏

𝑚𝑎𝑏
]

3/2

exp [−
𝐸𝑑

𝑘𝑇𝑒𝑥
] 

 (5.8) 

 

 

𝑛𝑒 [
𝑛𝑟+1

𝑛𝑟
] = 2 [

𝑄𝑟+1

𝑄𝑟
] [

2𝑚𝑒𝜋𝑘𝑇𝑒

ℎ2
]

3/2

exp [−
𝐸𝐼,𝑟+1 − ∆𝐸𝐼,𝑟+1

𝑘𝑇𝑒𝑥
] 

 
(5.9) 

 

 

The kinetic temperature of heavy species 𝑇ℎ  in the exponential term of 

Potapov’s method Eq. (5.5) is replaced by an effective excitation temperature 

𝑇𝑒𝑥 as shown in Eq. (5.8) and Eq.(5.9). 𝑇𝑒𝑥 can be either 𝑇ℎ or 𝑇𝑒, the choice of 

reaction excitation temperature follows the rule in Table 5-1.   

 Table 5-1 

 

Reaction 

Dissociation 

reaction 

Molecular ionization 

reaction 

Atomic ionization 

reaction 
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𝑻𝒆𝒙 𝑇ℎ 𝑇ℎ 𝑇𝑒 

 

Minimization Gibbs free energy 

In Chapter three, Godin’s method has been shown to be valid for the calculation 

of the composition of thermal equilibrium plasma. It can also be employed 

under non-thermal equilibrium conditions as well.  

In this chapter, the composition of a total of 34 species contained in nitrogen 

and PTFE gas mixture is to be calculated. Actually, both methods can be derived 

from the other and give exactly the same results. It just needs to solve 4 

equations based on Godin’s method but requires to solve 34 equations with 

Van de Sande’s method. Thus, Godin’s method will be used to calculate the 

composition of nitrogen and PTFE gas mixture plasma. 

According to Godin’s method, a concept of chemical basis has to be defined. It 

is denoted by z for the M species of the chemical basis and by z* for the subset 

of the other N-M species not belonging to it. In this calculation, there are 4 

chemical bases and the remaining 30 bases are listed below: 

z = {𝑒−, 𝑁+, 𝐶𝑁, 𝐶2𝐹2} 

z*={𝑁2, 𝐶2, 𝐹2, 𝑁  ,𝑁2+,𝑁3+,𝐹 , 𝐹+ , 𝐹2+ , 𝐹3+ , 𝐹4+ , 𝐶 , 𝐶+ , 𝐶2+ , 𝐶3+ , 𝐶2𝐹4 ,

𝐶2𝐹6, 𝐶𝐹2 ,  𝐶𝐹3 , 𝐶2𝐹3𝑁 , 𝐶𝐹4  , 𝐶𝑁− ,  𝐶𝑁2(𝐶𝑁𝑁), 𝐶𝑁2(𝑁𝐶𝑁), 𝐶𝐹 , 𝐶3 𝐶2𝑁2 ,

𝐹𝑁, 𝐶2𝑁, 𝐶4𝑁2} 

{n𝑧𝑗
∗ = Q𝑧𝑗

∗ ∏(
n𝑧𝑖

 

𝑄𝑧𝑖

)𝑐𝑗,𝑖

𝑀

𝑖=1

}

𝑗=1

𝑁−𝑀

 
 (5.10) 

 

 

Where Q is the partition function of species 𝑧 or 𝑧 
∗, c is the coefficient related 

to the chemical basis. 
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For species are set as the chemical bases in consideration of the number of 

chemical elements present in the plasma and the charge (N, C, F, and charge). 

Therefore, the remaining 30 species are set as chemical species and mass action 

law is applied. The principles of conservation of atomic nucleus, electrical 

neutrality and ideal gas law are used to obtain a system of plasma. A total of 34 

equations are obtained, which include two equations for conservation of nuclei 

(ratio of C:F in PTFE + N:F between PTFE and N2), one equation for charge 

neutrality, one from the ideal gas law and another 30 equations describing the 

mass action law for the 30 chemical species. These equations are solved using 

the Newton-Raphson method to obtain the number density of all 34 species. 

Logarithm was taken on both sides of the chemical species equations, which 

results in 30 linear equations and thus greatly simplifies the calculation. The 

linear equations are then substituted in the base equations to reduce the 

number of unknowns to only 4. This gives a smaller size of the Jacob matrix in 

the solution procedure using the Newton-Raphson method, and significantly 

promotes the convergence of the calculation.   

5.2.2 Partition function 

The total partition function of a species i is written as  

Q𝑖
𝑡𝑜𝑡𝑎𝑙 = 𝑄𝑖

𝑡𝑟𝑎𝑛𝑠 × 𝑄𝑖
𝑖𝑛𝑡 × 𝑄𝑖

𝑟𝑒𝑎𝑐 (5.11) 

 

According to Gleize’s23 work, 𝑇ℎ  dominates the translational, rotational and 

vibrational activities of heavy species and electronic excitation and translational 

motion of electrons are governed by 𝑇𝑒.   

The translational partition function of species i can be expressed as: 

Q𝑖
𝑡𝑟𝑎𝑛𝑠 = (

2𝜋𝑚𝑖𝑘𝑇𝑖

ℎ2
)

3/2

𝑉 
 (5.12) 
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where V is the volume and 𝑇𝑖 the temperature of species i. In this case, only 

when i is an electron, 𝑇𝑖 = 𝑇𝑒, otherwise 𝑇𝑖 =  𝑇ℎ. 

Monatomic species 

Monatomic species usually dominate the plasma composition when the 

temperature is higher than 10,000 K. The internal partition function of 

monatomic species consisting of electronic energy can be expressed as:  

𝑄𝑖𝑛𝑡
 = 𝑄𝑒𝑙 =  ∑ 𝑔𝑒,𝑗exp (−

휀𝑗

𝑘𝑇𝑒
)

𝜀𝐼

𝑗

 (5.13) 

where 휀𝐼 is the ionization energy and 𝑔𝑒,𝑗 the statistical weight. 

𝑄𝑟𝑒𝑎𝑐
 = exp [− (

𝐸𝑟𝑒𝑎𝑐,1

𝑘𝑇ℎ
+

𝐸𝑟𝑒𝑎𝑐,2

𝑘𝑇𝑒
)] (5.14) 

 

𝑄𝑟𝑒𝑎𝑐
  represents a reaction energy for the formation of the specie. Reaction 

energy 1 𝐸𝑟𝑒𝑎𝑐,1  is due to molecular dissociation reaction, reaction energy 2 

𝐸𝑟𝑒𝑎𝑐,2 is a result of atom ionisation. For example, the reaction energy of 𝑁2+ 

is formed by the following process: 

N2 ↔ 2𝑁 + E𝑟𝑒𝑎𝑐,1 

𝑁 ↔ N+ + 𝑒− + E𝑟𝑒𝑎𝑐,2𝑎 

N+ ↔ 𝑁2+ + 𝑒− + E𝑟𝑒𝑎𝑐,2𝑏 

𝐸𝑟𝑒𝑎𝑐,2 = E𝑟𝑒𝑎𝑐,2𝑎 + E𝑟𝑒𝑎𝑐,2𝑏 

 

Diatomic and polyatomic species 

Eq.(5.15) expresses the internal partition function for diatomic species. 
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Q𝑖𝑛𝑡 = 𝑄𝑒𝑙𝑒 ∙ 𝑄𝑣𝑖𝑏 ∙ 𝑄𝑟𝑜𝑡 
(5.15) 

 

where 𝑄𝑒𝑙𝑒 , 𝑄𝑣𝑖𝑏  and 𝑄𝑟𝑜𝑡  are electrical, vibrational and rotational partition 

functions respectively. The expressions for those partition functions are shown 

below: 

𝑄𝑒𝑙𝑒 =
1

𝜎
∑ 𝑔𝑒exp (−

𝑆𝑒

𝑘 𝑇𝑒
)

𝑇𝑒

 

(5.16) 𝑄𝑣𝑖𝑏 = ∑ 𝑔𝑣exp (−
𝐺𝑣(𝑆𝑒)

𝑘 𝑇ℎ
)

𝑣=0

 

𝑄𝑟𝑜𝑡 = ∑ 𝑔𝐽exp (−
𝐹𝑣(𝐽)

𝑘 𝑇ℎ
)

𝐽=0

 

 

where 𝜎 is a constant, it is equal to 2 for homonuclear molecules and 1 for 

heteronuclear molecules. The electronic levels 𝑆𝑒 are limited to the number of 

states. 𝐺𝑣  corresponds to the vibrational energies and depend on the 

spectroscopic constants expressed in Eq.(5.17) 

𝐺𝑣 = (𝑣 +
1

2
) 𝜔𝑒 − (𝑣 +

1

2
)

2

𝜔𝑒𝑥𝑒 + (𝑣 +
1

2
)

3

𝜔𝑒𝑦𝑒 (5.17) 

 

𝐹𝑣(𝐽) corresponds to the rotational energies which is: 

𝐹𝑣(𝐽) = 𝐵𝑣𝐽(𝐽 + 1) − 𝐷𝑣𝐽2(𝐽 + 1)2 

(5.18) 
𝐵𝑣 = 𝐵𝑒 − 𝛼𝑒 (𝑣 +

1

2
) 

𝐷𝑣 = 𝐷𝑒 − 𝛽𝑒 (𝑣 +
1

2
) 

 

Parameters 𝜔𝑒 ,𝜔𝑒𝑥𝑒 , 𝜔𝑒𝑦𝑒 , 𝛼𝑒 , 𝛽𝑒 , 𝐵𝑒 , 𝐷𝑒  are spectroscopic constants which 

are available from the Janaf table25. 
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When the vibration-rotation interactions is weak, the internal partition function 

for polyatomic species is the same as diatomic species given in Eq.(5.15).   

Polyatomic species exist at low temperatures. The population of the 

fundamental level is important. The contribution of 𝑄𝑒𝑙𝑒 to the total internal 

partition function can be treated as the ground state quantum weight P𝑠 which 

can be obtained from the Janaf table.  

The vibrational partition function can be expressed as: 

𝑄𝑣𝑖𝑏 = ∏ [1 − exp (
−𝑣𝑖ℎ𝑐

𝑘 𝑇
)]

−𝑑𝑖
𝑁

𝑖=1

 (5.19) 

 

Where 𝑑𝑖 is the degeneracy of the vibrational frequency 𝑣𝑖 of species ‘i’. It can 

be obtained from the Janaf table. The contribution of the rotation part to the 

total partition function, is shown below: 

For linear molecules: 

𝑄𝑟𝑜𝑡 =
1

𝜎

𝑘 𝑇

ℎ𝑐𝐵0
 (5.20) 

 

For non-linear molecules such as C2F3N, C2F4, F2F6: 

𝑄𝑟𝑜𝑡 =
1

𝜎
√

𝜋

𝐴𝐵𝐶
(
𝑘 𝑇

ℎ𝑐
)3 =

1

𝜎
6.9351057√𝑇3𝐼𝐴𝐼𝐵𝐼𝐶  (5.21) 

 

where the constant of rotation A, B, C or the momenta of inertia 𝐼𝐴, 𝐼𝐵, 𝐼𝐶  can 

be found from the Janaf Table. All the levels need to be considered for each 

species can be obtained from the Janaf Table as well.   
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5.2.3 Calculation of thermodynamic properties 

Following the calculation of each species’ partition function, the 

thermodynamic properties can then be obtained. The expression for standard 

thermodynamic properties is reported by Weizong12. Moverover, a species’ 

macroscopic temperature was applied in the work of Colombo13 in the 

derivation of the internal partition function. It has been accepted that the 

electronic excitation of a species is governed by the electron temperature while 

molecular vibration and rotation is governed by the heavy-particles 

temperature. These mechanisms have to be reflected correctly by following the 

most appropriate temperature in Eq.(5.5)-(5.9). 

 

Mass density 

ρ = ∑ 𝑚𝑖𝑛𝑖

𝑤

𝑖=1

 
(5.22) 

 

 

where 𝑚𝑖 is the mass of species i.  

Molar weight 

M = ∑ 𝑥𝑖𝑛𝑖

𝑤

𝑖=1

 
 (5.23) 

 

 

where 𝑥𝑖 is the molar fraction expressed in Eq.(3.13). 

Specific enthalpy  

For electrons, specific enthalpy is only determined by the electron temperature 

and the mass density: 
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H𝑒 =
5

2

𝑘

𝜌
𝑛𝑒𝑇𝑒 (5.24) 

 

For monatomic species i, the specific enthalpy can be carried out by the 

equation below:  

h𝑖 =
5

2

𝑘

𝜌
𝑛𝑖𝑇ℎ +

1

𝜌
𝑛𝑖𝐸𝑖 +

𝑘

𝜌
𝑛𝑖 (𝑇𝑒

2 𝜕𝑙𝑛𝑄𝑖
𝑒𝑙𝑒

𝜕𝑇𝑒
)  (5.25) 

 

For molecular species, the specific enthalpy is more complicated than 

monatomic species.  

h𝑖 =
5

2

𝑘

𝜌
𝑛𝑖𝑇ℎ +

1

𝜌
𝑛𝑖𝐸𝑖 +

𝑘

𝜌
𝑛𝑖 [𝑇𝑒

2 𝜕𝑙𝑛𝑄𝑖
𝑒𝑙𝑒

𝜕𝑇𝑒
+ 𝑇ℎ

2 𝜕ln (𝑄𝑖
𝑟𝑜𝑡𝑄𝑖

𝑣𝑖𝑏)

𝜕𝑇ℎ
] (5.26) 

 

Colombo13 has proposed the definition that with constant pressure 𝑝  and 

constant non-thermal equilibrium degree  𝜃 , the specific heat can be 

determined by the differentiation of the specific enthalpy with respect to 

electron temperature T𝑒 which is expressed below: 

C𝑝,𝜃 =
𝜕ℎ

𝜕𝑇𝑒
|

𝑝,𝜃

 (5.27) 

 

For a strong 2-T plasma, the specific heat of electrons and heavy particles must 

be treated separately in purposed calculation model of plasma flow. Thus, two 

specific heat capacities at certain pressure, one for electrons and another one 

for heavy particles are needed. For each of them, it can be obtained by 

differentiation of the specific enthalpy with respect to the corresponding 

temperature.26.   
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5.2.4 Determination of transport coefficients  

The classical Chapman-Enskog method is used to calculate the transport 

coefficients of the plasma in a two-temperature state 27 .  Devoto 28  and 

GBonnefoi29 further simplified the method by neglecting the coupling between 

the electrons and heavy-particles. Rat11 has developed a method which 

considers the coupling between electrons and heavy-particles. Compared with 

Devoto and Gbonnefoi’s methods, this method produces coupling terms in the 

calculation. However, in a recent study of transport coefficients, Colombo has 

shown that the influence of the coupling between electrons and heavy-particles 

on the transport coefficients of non-LTE plasma in two-temperature state is 

limited. There is no significant difference in the viscosity, total thermal 

conductivity and the electrical conductivity but the method considering 

coupling is computationally much more expensive. Thus, Devoto’s method is 

used in the present work to obtain the transport coefficients for N2-PTFE 

plasma in two-temperature state.    

Diffusion coefficients 

To obtain the binary diffusion coefficient is the initial step to determine the 

thermal conductivity. Based on Ramshaw’s reports30,31, it can be evaluated as  

D𝑖𝑗
𝑏 =

3𝑘2𝑇𝑖𝑇𝑗

16𝑃𝜇𝑖𝑗𝑇𝑖𝑗
∗ 𝑞𝑖𝑗

(1,1)
 (5.28) 

 

where D𝑖𝑗
𝑏  is the binary diffusion coefficient of specie i and j. 𝜇𝑖𝑗  and 𝑇𝑖𝑗

∗  are the 

reduced mass Eq.(5.29) and temperature Eq.(5.30) of species i and j, 

respectively.    𝑞𝑖𝑗
(1,1)

 is a collision integral, the superscript will be explained.  

1

𝜇𝑖𝑗
=

1

𝑚𝑖
+

1

𝑚𝑗
 (5.29) 
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𝑇𝑖𝑗
∗ =

(𝑚𝑖𝑇𝑗 + 𝑚𝑗𝑇𝑖)

𝑚𝑖 + 𝑚𝑗
 (5.30) 

 

The ordinary diffusion coefficient can be obtained by Eq.(5.31), following 

Hirschfelder’s work32 

D𝑖𝑗
𝑚 =

𝐹𝑗𝑖 − 𝐹𝑖𝑖

𝑚𝑗|𝐹|
 (5.31) 

 

where 𝐹𝑗𝑖  is the cofactors of 𝐹𝑗𝑖, which can be expressed in terms of the binary 

diffusion coefficient: 

F𝑖𝑗 =
1

𝜌
[

𝑛𝑖

𝐷𝑖𝑗
𝑏 + ∑

𝑛𝑙𝑚𝑗

𝑚𝑖𝐷𝑖𝑙
𝑏

𝑙≠𝑖

] (1 − 𝛿𝑖𝑗) (5.32) 

 

Ambipolar diffusion coefficients are present below by Eq.(5.33) 

 

𝐷𝑖𝑗
𝑎 = 𝐷𝑖𝑗

𝑚 +
𝛼𝑖

𝛽
∑ 𝑍𝑠𝐷𝑠𝑗

𝑚

𝑠

 
(5.33) 

where coefficient α𝑖  and β  are given in Eq.(5.34) where 𝑍𝑠  is the charges’ 

number for specie s.  

α𝑖 = ∑
𝑚𝑗𝑛𝑗𝑍𝑗𝐷𝑖𝑗

𝑚

𝑇𝑗
𝑗

 

(5.34) 

β = ∑ 𝑍𝑖

𝑖

∑
𝑚𝑗𝑛𝑗𝑍𝑗𝐷𝑖𝑗

𝑚

𝑇𝑗
𝑗

 

 

Eq.(5.35) and (5.36) express the thermal diffusion coefficients for electrons and 

heavy-particles:   
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D𝑒
𝑇 =

15𝑛𝑒
2√2𝜋𝑘𝑇𝑒

4
|
𝑞01 𝑞02

𝑞21 𝑞22| (|

𝑞00 𝑞01 𝑞02

𝑞10 𝑞11 𝑞12

𝑞20 𝑞21 𝑞22

|)

−1

 (5.35) 

 

D𝑖
𝑇 =

15𝑛𝑖
2√2𝜋𝑚𝑖𝑘𝑇ℎ

4
(|

𝑞𝑖𝑗
00 𝑞𝑖𝑗

01

𝑞𝑖𝑗
10 𝑞𝑖𝑗

11|)

−1

|

𝑞𝑖𝑗
00 𝑞𝑖𝑗

01 𝑞𝑖𝑗
02

𝑞𝑖𝑗
10 𝑞𝑖𝑗

11 𝑞𝑖𝑗
12

𝑞𝑖𝑗
20 𝑞𝑖𝑗

21 𝑞𝑖𝑗
22

| (5.36) 

 

where the q terms are collision integrals.  

Viscosity  

Due to the fact that heavy-particles are much heavier than electrons, thus, the 

viscosity of a plasma can be treated as the viscosity of heavy-particles. If an 

electron temperature is given, the heavy-particle temperature will become 

lower when the non-LTE degree increases. This results in a drop in the 

momentum transport and viscosity as well.  

η(ξ) = ηℎ + η𝑒 ≅ ηℎ (5.37) 

 

ηℎ(ξ) =
𝑘𝑇ℎ

2
∑ 𝑏𝑗0

′ (ξ)

𝑗,𝑗≠𝑒

 
(5.38) 

 

where 𝑏𝑗0
′ (ξ) is a coefficient which can be obtained by solution of the following 

equation:  

∑ ∑ �̃�𝑖𝑗
𝑚𝑚′

𝑏𝑗𝑚′
′ (ζ)

𝜁−1

𝑚′=0𝑗,𝑗≠𝑒

= −5𝑛𝑖𝛿𝑚0 (5.39) 

 



132 
 

Thermal conductivity  

The contribution to the thermal conductivity can be divided into two parts: 

electron’s and heavy-particle’s. Following by Ghorui the definition can be 

expressed as    

 

λ𝑒 = λ𝑡𝑟𝑒 + λ𝑟𝑒 
(5.40) 

λℎ = λ𝑡𝑟ℎ + λ𝑟ℎ + 𝜆𝑖𝑛𝑡 

 

λ𝑡𝑟𝑒  and λ𝑡𝑟ℎ  in Eq.(5.40) are the translational thermal conductivity for 

electrons and heavy-particles, respectively. λ𝑟𝑒  and λ𝑟ℎ  are the reactive 

thermal conductivity. 𝜆𝑖𝑛𝑡  is the internal thermal conductivity of the heavy-

particles.  

The electron translational thermal conductivity can be expressed as: 

λ𝑡𝑟𝑒 =
75𝑛𝑒

2𝑘

8
√

2𝜋𝑘𝑇𝑒

𝑚𝑒
(𝑞11 −

(𝑞12)2

𝑞22
)

−1

 (5.41) 

 

The translational thermal conductivity contributed of heavy-particles can be 

obtained by Eq.(5.42):  

λ𝑡𝑟ℎ = −
75𝑘

8

√2𝜋𝑘𝑇ℎ

|𝑞|
|

𝑞𝑖𝑗
00 𝑞𝑖𝑗

01 0

𝑞𝑖𝑗
10 𝑞𝑖𝑗

11 𝑛𝑖

0 𝑛𝑗/√𝑚𝑗 0

| (5.42) 

 

𝜆𝑖𝑛𝑡 = ∑ 𝑥𝑖𝐷𝑖𝑖
𝑏𝑘 (

𝐶𝑝𝑖

𝑅
− 2.5) (∑

𝑥𝑗

𝑥𝑖

𝐷𝑖𝑖
𝑏

𝐷𝑖𝑗
𝑏

𝑤

𝑗≠𝑒

)

−1
𝑤

𝑖≠𝑒

 (5.43) 
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λ𝑟𝑒 = [∑ ∆ℎ𝑟

𝑛

𝑝𝑘𝑇ℎ
∑

𝑇ℎ

𝑇𝑗
𝑚𝑗𝐷𝑟𝑗

𝑎
𝜕𝑝𝑗

𝜕𝑇𝑒

𝑤

𝑗=1

𝑣

𝑟=1

] (5.44) 

 

λ𝑟ℎ = [∑ ∆ℎ𝑟

𝑛

𝑝𝑘𝑇ℎ
∑

𝑇ℎ

𝑇𝑗
𝑚𝑗𝐷𝑟𝑗

𝑎
𝜕𝑝𝑗

𝜕𝑇ℎ

𝑤

𝑗=1

𝑣

𝑟=1

] (5.45) 

 

where, 𝑣  and 𝑤  are total number of species and chemical reactions, 

respectively.  Eq.(5.43) describes the internal thermal conductivity of the heavy 

particles.  Eq.(5.44) and Eq.(5.45) describe the reactive thermal conductivity 

contributed by electrons and heavy-particles. ∆ℎ𝑟 is the reaction enthalpy due 

to the reactive r. 𝐷𝑟𝑗
𝑎  is the ambipolar diffusion coefficient which can be 

obtained from Eq.(5.33).  

Electrical conductivity  

The electrical conductivity of a two temperature plasma is determined by the 

electrons. The following equation relates the electrical conductivity of the gas 

mixture in a two temperature state to the electron number density and 

temperature and also the relevant collision integrals. 

Eq.(5.46) shows the way to compute the electrical conductivity: 

σ =
3𝑒2𝑛𝑒

2

2𝑘𝑇𝑒

√
2𝜋𝑘𝑇𝑒

𝑚𝑒
|
𝑞11 𝑞12

𝑞21 𝑞22| (|

𝑞00 𝑞01 𝑞02

𝑞10 𝑞11 𝑞12

𝑞20 𝑞21 𝑞22

|)

−1

 
(5.46) 

 

5.2.5 Calculation program 

The calculation program is developed by C++. There are two parts in calculation 

program: composition calculation and properties calculation. In the first part, 

program employs armadillo library to carry out the matrix inverse in Newton-
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Raphson method. The program runs on a personal computer of windows 10 

operation system with Intel i5-2320 and 8G RAM. 

 

5.3 Results 

5.3.1 Species composition 

The chemical equilibrium composition of pure nitrogen, PTFE vapour and their 

mixture were calculated. In a thermal equilibrium plasma, species composition 

is a function of temperature and pressure only. However, in a non-thermal 

equilibrium plasma in two-temperature state, the species composition is 

determined by two independent temperatures, the heavy-particle temperature 

and electron temperature at a given pressure. Since the system of equations 

required the Newton-Raphson algorithm to solve, solution of equations system 

lies on convergence of equations system. It is necessary to change the form of 

equations in different temperatures or pressures in order to achieve 

convergence. Another reason of using Godin’s method is that it is possible to 

reduce order of equations system so that it will save the calculation cost which 

has been explained in chapter three. In this chapter, the default temperature 

axis in all diagrams is the electron temperature. 

Fig. 5-2 shows the composition of pure PTFE vapour in the electron 

temperature range of 300 K to 40 000 K with the non-equilibrium degree θ =

 T𝑒/𝑇ℎ being 1 and 5 and the pressure being at 1 atmosphere. When θ = 1, it 

is a thermal equilibrium case. It is shown that the number density of C2F4 is 

quite low at room temperature. Its number density starts to increase rapidly 

over the temperature in the range of 330 K to 850 K, then it is reduced when 

C2F4 starts to decompose.   
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With a non-thermal equilibrium degree of 5, the composition of heavy particles 

such as C2, C3 molecules and F atoms are quite different from the case of 

thermal equilibrium. Since the electron temperature is much higher than that 

of the heavy particles, the number density of free electron is much higher than 

that in the equilibrium. For example, ionization of atoms starts at an electron 

temperature of 16 000 K while the heavy particle temperature is only 3,200 K.     

Fig. 5-3 shows the composition of pure nitrogen plasma under thermal and non-

thermal equilibrium conditions. There are several features coming out from the 

comparison. Firstly, the peak number density of nitrogen atom in the non-

thermal equilibrium case is two orders of magnitude lower. The maximum 

number density of N is reached in the LTE case (θ = 1) at T𝑒 = 𝑇ℎ = 8,000 𝐾  

while in the non-LTE case at T𝑒 = 20,000 𝐾 and Tℎ = 4,000 𝐾. The reason is 

that in the latter case when N2 starts to dissociate, energetic electrons are 

already able to ionise the N atoms. As a result, the majority of the N atoms 

resulting from dissociation are quickly ionised, leading to a situation where N+ 

density is substantially higher than the N atoms in the non-LTE case. Secondly, 

the composition of pure nitrogen at T𝑒  ≥ 30,000 K  is controlled by the 

electron activities, not sensitive to the heavy particle temperature. The gas is 

already fully ionised with an ionisation degree of ≥ 104.  

The composition of nitrogen and PTFE mixture under thermal and non-thermal 

equilibrium conditions are given Fig. 5-4. The temperature ranges of Fig. 

5-4(a)(b)(c) are from 300 K to 5,000 K, 5,000 K to 15,000 K and 15,000 K to 

40,000 K at θ = 1 , Fig. 5-4(d)(e) present the plasma composition at θ = 5, the 

temperature ranges are from 300 K to 25,000 K and 300 K to 40,000 K, 

separately. Fig. 5-4(a) and (d) are plotted for comparison because they have the 

same heavy-particles temperature range. The composition for θ = 1  is 

presented in three diagrams. The molar fraction ratio of nitrogen and PTFE is 

1:1. It can be observed that when θ = 1 large number density of C3 are present 
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in pure PTFE as shown in Fig. 5-2, it attains a much lower number density in the 

mixture at the temperature below 2,000 K. This molecule is replaced by C4N2 in 

the mixture. FCN is generated rapidly above 1,000 K due to the existence of free 

atoms of these three elements but it is not a steady species. It starts to 

dissociate at temperatures higher than 2,200 K. Free carbon and fluorine atoms 

are combined to form CF2. It is dissociated when the temperature is higher than 

3,000 K. The number density of molecules can be neglected when the 

temperature is higher than 10,000 K.  

When θ = 5, due to the electron temperature is different from heavy-particles, 

there are more electrons at the same heavy-particles temperature, thus speeds 

up the dissociation of molecules at lower heavy-particle temperature. It can be 

found out that, in this non-LTE case, the number density of molecular species 

can be neglected when heavy-particles temperature is 4,200 K in Fig. 5-4(d).   

 

Fig. 5-2 (a) 
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Fig. 5-2 (b) 

 

 

Fig. 5-2 (c) 

Fig. 5-2: Temperature dependence of the number density of PTFE vapor under non-
equilibrium degree of 1 (a), (b) and 5 (c) at atmospheric pressure. 
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Fig. 5-3 (a) 

 

Fig. 5-3 (b) 

Fig. 5-3: Temperature dependence of the number density of pure nitrogen gas plasma 
under non-equilibrium degree of 1 (a) and 5 (b) at atmospheric pressure 
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Fig. 5-4 (a) 

 

Fig. 5-4 (b) 
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Fig. 5-4 (c) 

 

Fig. 5-4 (d) 
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Fig. 5-4 (e) 

Fig. 5-4: Temperature dependence of the number density of 50% nitrogen - 50% PTFE initial 
volume ratio gas plasma under non-equilibrium degree of 1 (a)(b)(c) and 5 (d)(e) at 

atmospheric pressure 

 

A numbers of diagrams are shown in Fig. 5-5 comparing the number density of 

different species under different non-thermal equilibrium degree. Some 

important features can be described.  

The number density of electrons indicates the severity of the ionization 

processing. It can found that the ionization process is governed by both 

electron and heavy-particle temperatures. It is noticed that for θ = 1, 2 and 3, 

ionization starts from 7,500 K, 8,500 K and 10,000 K respectively. The higher 

degree shifts the ionization of heavy particles towards higher electron 

temperature. This phenomenon is manifested clearly when θ  is larger than 

5(Fig. 5-5(d)).  

The main species of PTFE vapour are C2F6 and CF2, their dissociation is only 

governed by heavy-particles temperature. However, C2F6 is dissociated rapidly 

once the heavy-particles temperature rises above room temperature. CF2 is 
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much more stable than C2F6. It is clear that CF2 remains at high density at high 

electron temperatures with a high θ. It is due to the low dissociation excitation 

temperature. The number density of ions is higher than their atoms at large θ . 

The reason is that the ionization of atoms takes place immediately when 

electrons contain high energy and dissociation reactions occur, at high θ.  

The influence of Debye length cannot be neglected. The influence of the Debye 

length due to all charged species and that due to electrons only are both given 

in Fig. 5-5. For heavy-particles, the influence of Debye length considering all 

charged species and considering electrons only is small when θ is lower than 10. 

It is evident that, when θ is 20, there is significant difference in the heavy-

particles number density with the Debye length calculated based on electrons 

and ions increased rapidly at high temperate. It drops eventually at about 

temperature of 50,000-60,000 K that will not be present.  

 

Fig. 5-5(a): electrons 



143 
 

 

Fig. 5-5(b): CF2 

 

Fig. 5-5(c): C2F6 
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Fig. 5-5(d): N 

 

Fig. 5-5(e): N+ 
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Fig. 5-5(f): F 

 

Fig. 5-5(g): F+ 
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Fig. 5-5(h): C 

 

Fig. 5-5(i): C+ 

Fig. 5-5: Temperature dependence of the number density of different species (a) free 
electron (b)CF2 (c) C2F6 (d)nitrogen atom (e) N+ (f) F atom (g) F+ (h) C atom (i) C+ of 50% 
nitrogen - 50% PTFE initial volume ratio gas plasma with different non-equilibrium degree 
at atmospheric pressure: The solid line indicates the Debye length including only electrons 

while dashed line indicates the Debye length including electrons and ions.  
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The molecule dissociation temperature is shifted higher when non-LTE degree 

is getting higher. It results in larger mass density in higher θ . Due to the 

shielding effect, the number density of some species increased rapidly at θ =

20, it leads to the increase in mass density increased at high temperature with 

θ = 20. 

 

Fig. 5-6: Temperature dependence of mass density of nitrogen plasmas under different 
degrees of 50% nitrogen - 50% PTFE initial volume ratio gas plasma with different non-

equilibrium degree at atmospheric pressure 
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Fig. 5-7: Temperature dependence of enthalpy of 50% nitrogen - 50% PTFE initial volume 
ratio gas plasma with different non-equilibrium degree at atmospheric pressure 

 

The enthalpy and total specific heat are present in Fig. 5-7 and Fig. 5-8 for 50% 

nitrogen and 50% PTFE molar concentration with different non-LTE degrees.  

Due to the heavy-particles dissociation is shifted to higher electron 

temperature by non-LTE degree getting larger, the peak of total specific heat is 

shifted to higher electron temperature as well.  
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Fig. 5-8: Temperature dependence of total specific heat of 50% nitrogen - 50% PTFE initial 
volume ratio gas plasma with different non-equilibrium degree at atmospheric pressure 

 

5.3.2 Transport coefficients 

 

Fig. 5-9: Temperature dependence of viscosity of 50% nitrogen - 50% PTFE initial volume 
ratio gas plasma with different non-equilibrium degree at atmospheric pressure 
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Heavy particles are only considered in the calculation of the viscosity. It reaches 

its first peak around 10,000 K in the LTE case. The electron temperature 

corresponding to the first peak increases with an increasing non-LTE degree. It 

has been stated that the viscosity of the mixture is determined by the heavy-

particles. Thus, 𝑇𝑒 should not affect the viscosity. However, Tℎ is linked to 𝑇𝑒 

through θ =
T𝑒

𝑇ℎ
. Taking θ = 10 as an example. In this case Tℎ = 1,600 𝐾 at the 

peak of the viscosity. When 𝑇𝑒 = 16,000 𝐾, the peak value is equal to the LTE 

value at Tℎ = 1,600 𝐾. The other peaks can be explained in a similar way.  

Thermal conductivity  

 

Fig. 5-10: Temperature dependence of diffusion coefficient of 50% nitrogen - 50% PTFE 
initial volume ratio gas plasma with different non-equilibrium degree at atmospheric 

pressure 

The electron and heavy species translational thermal conductivities of a N2-

PTFE 50%-50% mixture plasma are shown below in Fig. 5-11 and Fig. 5-12. The 

translational thermal conductivity of the heavy-particles peaks at 11,000 K at 

θ = 1, very close to the temperature corresponding to the viscosity peak of θ =

1. Deviation from LTE tends to broaden envelop. The peak value drops from 

0.5 W(m*K) to 0.06 for a change of θ from 1 to 10. This variation is a reflection 
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of the change in the gas composition. The pattern of variation is strikingly 

similar to the change in electron diffusion coefficient (Fig. 5-10). The variation 

as a function of temperature (Te) tends to be more nonlinear when   θ =
T𝑒

𝑇ℎ
 

increases. There is an initial exponential increase which is followed by a slower 

and smoother increase. Comparing Fig. 5-11 and Fig. 5-12, it is immediately 

evident that electrons play a much more important role in conducting heat in a 

plasma when 𝑇𝑒 > 15,000 𝐾. The electron translational thermal conductivity 

on the other hands depends on its number density and temperature.  

 

 

Fig. 5-11: Heavy species translational thermal conductivity for 50%-50% N2-PTFE mixture 
plasma with different non-LTE degree at the pressure of 1 bar.  
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Fig. 5-12: Electron translational thermal conductivity for 50%-50% N2-PTFE mixture plasma 
with different non-LTE degree at the pressure of 1 bar. 

 

Electrical conductivity 

 

Fig. 5-13: Temperature dependence of electrical conductivity of 50% N2- 50% PTFE mixture 
gas plasma with different non-LTE degree at atmospheric pressure (p = 1 bar) 
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The electrical conductivity is shown in Fig. 5-13 with different non-LTE degrees. 

To produce free electrons, the molecules have to be first dissociated into atoms. 

Collisions between heavy-particle are most efficient for dissociation. Therefore, 

for θ =
T𝑒

𝑇ℎ
> 1, significant dissociation takes place at a higher 𝑇𝑒 and this shifts 

the rapid increase in electrical conductivity to higher 𝑇𝑒. The higher electrical 

conductivity of the non-LTE plasma when 𝑇𝑒 > 13,000 𝐾 for θ = 2 is a result 

of the higher electron number density in comparison with the LTE case, as 

shown in Fig. 5-5(a). In fact, n𝑒  of θ = 2  is already higher than n𝑒  of θ = 1 

at 𝑇𝑒 = 12,000 𝐾. However, in explaining the electrical conductivity charge, it 

must take into account the fact that electrical conductivity is not purely 

determined by the electron number density, the heavy-particle number density 

will also affect it through the mean free path of the electrons.   

5.3.3 Influence of different molar proportions of N2 and PTFE to 

transport coefficients 

Fig. 5-14 shows the mass density for different molar fraction of Nitrogen and 

PTFE. It is clear that the total mass density decreases and become lower as 

higher PTFE molar concentration when 𝑇𝑒 < 15,000 𝐾. It is interesting to note 

that the density curves reverse their order over the temperature range of 

14,500 K to 21,500 K. At these two temperature all curves overlap.  

Fig. 5-15 displays the enthalpy of the two temperature plasma as a function of 

electron temperature with the PTFE concentration as a parameter. The curves 

can be divided into three parts, 𝑇𝑒 <14,500 K, 14,500 K ~ 21,500 K, >21,500 K. 

When temperature is at 18,000 K, the total specific heat of pure PTFE gas 

increases rapidly due to dissociation reaction of CF4, C3 and ionization of 

fluorine. The second peak at 28,500 K is a result of F+ being ionized to F2+ and 

C+ ionized to C2+. The total specific heat of pure nitrogen plasma starts to 

increase rapidly around 15,000 K, this is caused by the dissociation of nitrogen 
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molecules. When the temperature is higher than 22,000 K, the total specific 

heat of pure nitrogen plasma increases again smoothly as the nitrogen atoms 

start to be ionised. Pure PTFE vapour has the highest specific heat. With the 

presence of 20% N2, the peak value reduces to half of that of pure PTFE.   

 

Fig. 5-14: Temperature dependence of mass density of N2-PTFE mixture gas plasma with 
different molar proportions at non-LTE degree 𝜃 = 5 at atmospheric pressure (p = 1 bar)   
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Fig. 5-15: Temperature dependence of enthalpy of N2-PTFE mixture gas plasma with 
different molar proportions at non-LTE degree 𝜃 = 5 at atmospheric pressure (p = 1 bar)   

 

 

Fig. 5-16: Temperature dependence of total specific heat of N2-PTFE mixture gas plasma 
with different molar proportions at non-LTE degree 𝜃 = 5 at atmospheric pressure (p = 1 

bar)   

Fig. 5-17 and Fig. 5-18 show the heavy species and electron translational 

thermal conductivity with different PTFE concentration for a non-LTE plasma. 
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The heavy species translational thermal conductivity curves change their order 

at 𝑇𝑒 = 12,500 𝐾  and 16,500 𝐾 . The electron translational thermal 

conductivity depends on the number density of electrons and electron 

temperature. Its value at higher PTFE molar concentration tends to be higher, 

which agrees with what is shown in Fig. 5-2 and Fig. 5-3. 

 

 

Fig. 5-17: Temperature dependence of Heavy species translational thermal conductivity of 
N2-PTFE mixture with different molar concentration at non-LTE degree of 𝜃 = 5 at 

atmospheric pressure (p = 1 bar) 
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Fig. 5-18: Temperature dependence of electron translational thermal conductivity of N2-
PTFE mixture gas plasma with different molar proportions at non-LTE degree 𝜃 = 5 at 

atmospheric pressure (p = 1 bar) 

 

The viscosity results in Fig. 5-19 show that higher collision integrals of nitrogen 

molecules and atoms results in lower viscosity when N2 molar concentration 

increases. The peak of viscosity also shifts towards higher 𝑇𝑒  when the PTFE 

concentration increases, which is due to the higher ionisation energy of 

nitrogen atoms.  
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Fig. 5-19: Temperature dependence of viscosity of N2-PTFE mixture gas plasma with 
different molar proportions at non-LTE degree 𝜃 = 5 at atmospheric pressure (p = 1 bar) 

 

 

Fig. 5-20: Temperature dependence of electrical conductivity of N2-PTFE mixture gas 
plasma with different molar proportions at non-LTE degree 𝜃 = 5 at atmospheric pressure 

(p = 1 bar) 
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The electrical conductivity of pure PTFE vapour and N2 gas are very different 

below 20,000 K due to the different ionisation potentials of their constituting 

atoms. The presence of PTFE vapour even at a low concentration, significantly 

affects the electrical conductivity of the mixture. For example, at 𝑇𝑒 =

10,000 𝐾 , the number density of electron in pure N2 is still low and the 

electrical conductivity is only 0.1 S/m. With only 20% of PTFE, the electrical 

conductivity of the mixture increases by three orders of magnitude, reaching 

100 S/m. The influence of PTFE on the electrical conductivity of the mixture 

weakens when the PTFE concentration is about 40%. Above 20,000 K, both 

gases have nearly the same conductivity and the PTFE concentration has very 

limited influence on the conductivity.  

5.3.4 Discussion on the different methods used to calculate the 

plasma composition  

As mentioned early in this chapter, there are four existing methods to calculate 

the plasma composition. Godin’s method is based on the same principle as that 

Gibbs’s free energy minimisation method, but uses different expressions. These 

two methods are similar with Van de Sanden’s method. The fourth method is 

Potapov’s method. It would be informative to select a case to compare the 

differences in the results. Fig. 5-21 contains the results of electron number 

density from three methods with non-LTE degree of 1,2 and 5 and 50% PTFE 

concentration. With 𝜃 = 1, all three methods produce the same composition. 

However, Potapov’s method behaves very differently in the non-LTE cases (𝜃 =

2 𝑎𝑛𝑑 5 ). Assume 𝑇𝑝  is the electron temperature when the number density 

reaches highest value, when  𝑇𝑒 < 𝑇𝑝 the results produced by Godin and Van 

de Sanden et al. methods are matched each other. Beyond 𝑇𝑝 , all three 

methods produce very similar results.  
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Fig. 5-21: Comparison of equilibrium number density for electrons in 50% N2- 50% PTFE 
plasma from Godin’s method (our calculation), Van de Sanden et al.’s method and 

Potapov’s method with different non-LTE degree.   

 

 

Fig. 5-22: Comparison of equilibrium number density for fluorine in 50% N2- 50% PTFE 
plasma from Godin’s method (our calculation), Van de Sanden et al.’s method and 

Potapov’s method with different non-LTE degree.   
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Fig. 5-23: Comparison of equilibrium number density for C2F6 in 50% N2- 50% PTFE plasma 
from Godin’s method (our calculation), Van de Sanden et al.’s method and Potapov’s 

method with different non-LTE degree.   

 

5.4 Comparison with existing data 

In order to verify the model, a comparison with existing data has been made 

and presented in Fig. 5-24 and Fig. 5-25. Since there are no results for nitrogen-

PTFE mixture, the results for pure PTFE vapour are compared with those of 

Wang33. The electron number densities in a pure PTFE plasma with different 

non-LTE degrees are given in Fig. 5-24 and the mass density in Fig. 5-25. There 

is good agreement between the two sets of data. There is slight difference in 

electron number density, which might be caused by the difference in 

fundamental energy data used in the calculation. 
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Fig. 5-24: Comparison with existing results of molar fraction for pure PTFE with different 
non-LTE degree at 1 bar 

 

 

Fig. 5-25: Comparison with existing results of mass density for pure PTFE with different 
non-LTE degree at 1 bar 
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5.5 Summary 

The composition, thermodynamic properties and transport coefficients of N2-

PTFE mixture with different molar concentration of PTFE have been calculated 

under LTE and non-LTE conditions assume chemical equilibrium.  

The calculation was carried out for electron temperature range from 300 K to 

40,000 K with PTFE concentration of 0%, 20%, 40%, 60%, 100%. For the non-

LTE plasma cases, the ratio of electron temperature to heavy particle 

temperature has been set to 1, 2, 5, 10 and 20. The main features present in 

the results are analysed. A comparison of the results calculated using three 

methods was made, showing that Godin’s method produces results very close 

to those of Van de Sanden’s method. The composition results from the present 

work were compared with existing results, showing good agreement for pure 

PTFE vapour. A comparison for N2-PTFE mixture has not been possible since no 

existing results are available.  
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Chapter 6 Conclusions and future work 

6.1 Conclusions 

To investigate the full potential of nitrogen for use in high voltage circuit 

breakers, knowledge of how to calculate the properties and radiation 

characteristics for nitrogen is necessary. PTFE vapour in high voltage circuit 

breakers due to nozzle ablation which affects radiation characteristics 

significantly when mixture with gas such as SF6. Therefore, the calculation of 

radiation properties in this thesis considers the plasma of a nitrogen mixture 

with PTFE.    

The species composition of the nitrogen-PTFE gas mixture was computed firstly 

in chapter three. The chemical equilibrium composition is determined by a 

modified Gibbs’s free energy minimisation method under LTE conditions. The 

results were presented as a function of temperature and pressure at given 

molar proportions of nitrogen and PTFE. The net emission coefficient (NEC) for 

the gas mixture was then computed. The absorption coefficient was obtained 

by considering both continuum and line radiation contributed by atoms, ions 

and molecules. The Lorentz profile was employed to describe the sharp of the 

spectral line. The NEC calculation is followed by Lowke’s method. The influence 

of uncertainty in atomic data on the calculated NEC was discussed. Although 

the accuracy of the high energy level is poor, the influence of uncertainty in the 

high energy level to NEC is negligible. Due to finding a significant influence of 

line overlapping on the NEC, line overlapping influence is considered in the 

calculation. The validity of the model was confirmed by good agreement 

between the results calculated in the present work and those obtained by 

experiment or predicted by other research groups for pure nitrogen gas and 
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pure PTFE vapour. The results indicate that the influence of PTFE vapour on the 

radiation is substantial.    

In contrast with NEC in isothermal plasma, the real radiation model was 

introduced in chapter four. Since it is computationally expensive to solve the 

radiation transfer equation (RTE) to obtain the exact radiation flux, two 

approximation methods, the discrete ordinate method (DOM) and the P1 

approximation method, were used to calculate radiative flux. P1 is 

computationally cheaper than DOM but it has poor accuracy. The accuracy of 

DOM is determined by the number of calculation bands. Two DOM bands were 

calculated and compared with a given temperature profile. The comparison of 

DOM 8-5 and 5-3 indicates a balanced compromise between accuracy and cost 

of calculation with DOM 8-5. As an approximation method for spectral radiation, 

the mean absorption coefficient (MAC) method saves the computation cost 

when it is calculating radiative flux. The influence of the MAC method on 

radiative flux was analysed. The comparison of 4π ∗ NEC and divergence of 

radiative flux for both temperature profiles was taken to understand the 

regions in arc plasma that are suitable to employ NEC for describing radiative 

transfer. 

The calculations in chapter three and four are based on LTE assumption. 

However, LTE is no longer valid when a large temperature gradient exists such 

as the region close to the cold wall or when the number density of electrons is 

not high enough to allow sufficient transfer of energy between the electrons 

and heavy-particles. Thus, a two-temperature calculation model was 

introduced in chapter five. Different plasma composition calculation methods 

were discussed. A modified Godin’s method was developed to fulfil the 

requirement of the two-temperature model. Composition results obtained by 

different calculation methods were taken to verify the validity of the modified 

Godin’s method. Thermodynamic properties and transport coefficients of N2 
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mixtures with different molar concentrations of PTFE were calculated under 

LTE and non-LTE conditions assuming chemical equilibrium. The calculation was 

carried out for electron temperatures ranging from 300 K to 40,000 K with PTFE 

concentrations of 0%, 20%, 40%, 60% and 100%. For the non-LTE plasma cases, 

the ratio of electron temperature to heavy particle temperature was set to 1, 

2, 5, 10 and 20. The main features present in the results are analysed. A 

comparison of the results calculated using three methods was made, showing 

that Godin’s method produces results very close to those of Van de Sanden’s 

method. The composition results from the present work were compared with 

existing results, showing good agreement for pure PTFE vapour. A comparison 

for N2-PTFE mixtures was not possible since no existing results are available.  

Finally, in chapter two, with a nozzle, the nitrogen arc was experimentally 

investigated using various diagnostic actions, such as voltage and current 

waveforms, a pressure sensor and a displacement sensor. A detailed 

introduction to the experimental apparatus and calibration of equipment was 

provided. The arc is sustained by a slowly decreasing, low magnitude direct 

current, which is supplied by a capacitor bank. The gas flow is directed to a 

converging-diverging nozzle from a gas tank of 10 bar upstream stagnation 

pressure in a two pressure system. Three current levels are used, which are 100 

A, 160 A and 333 A. The dynamic behaviour of the arcs was analysed.  

6.2 Future work 

The research on radiation property calculation of arc plasmas aims to provide 

accurate theoretical investigation of arc modelling. However, the calculations 

are based on many approximation methods, which can be improved in the 

future. Further work needs more effort on improvement of the calculation 

model to make it approach the real arc plasma. Firstly, the radiative flux 

calculation in chapter four is based on a given temperature profile. However, 

depending on the structure of the circuit breaker being used, the temperature 
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profile of arc plasma is variance. A prediction of the temperature profile from 

the radiation transport within an arc plasma can be done by equation. Coupling 

MAC with DOM or P1 can produce a more accurate temperature profile and the 

radiative flux of such a temperature profile. Secondly, only the two-dimensional 

radiation model is considered in this thesis. However, the real arc exists in a 

three-dimensional geometry, so a three-dimensional calculation of radiation 

flux can better describe the radiation characteristics in a real arc. The radiation 

flux of non-LTE arc plasma is the third area that requires further investigation 

in the future. Non-LTE plasma exists in some regions of a high voltage circuit 

breaker so the radiation contributed by different particles must be considered.  

 

 


