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Abstract

In this paper the authors present a method which facilitates computationally
efficient parameter estimation of dynamical systems from a continuously
growing set of measurement data. It is shown that the proposed method,
which utilises Sequential Monte Carlo samplers, is guaranteed to be fully
parallelisable (in contrast to Markov chain Monte Carlo methods) and can
be applied to a wide variety of scenarios within structural dynamics. Its
ability to allow convergence of one’s parameter estimates, as more data is
analysed, sets it apart from other sequential methods (such as the particle
filter).
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identification, Sequential Monte Carlo sampler.

1. Introduction

This paper addresses the situation where one is attempting to infer the
parameters of a dynamical model from a large set of data which, because
of its size, cannot be processed using current methods. Here, zt denotes a
vector of measurements, obtained at time t, and θ is a vector of the model’s
parameters. The aim is to realise probabilistic estimates of θ, given the
available data, via Bayes’ theorem:

p(θ | z1:n) ∝ p(z1:n |θ)p(θ) (1)

where z1:n = {z1, ...,zn} represents the set of all measurements up to time
t = n. In [1, 2] it was suggested that, using Markov chain Monte Carlo
(MCMC) methods, one could generate samples from p(θ | z1:t) while t is
gradually increased. Such an approach facilitates a gradual transition from
prior to posterior, which aids MCMC convergence (in a similar manner to
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simulated annealing). It also allows one to analyse how one’s parameter
estimates converge as more data is analysed, thus helping to establish when
a sufficient amount of data has been utilised. The computational cost of
such an approach, however, increases dramatically as more data is anal-
ysed. This makes it poorly suited to the situation where large sets of new
(potentially important) measurements are expected to arrive in the future.
Other approaches such as [3] involve the selection of small subsets of ‘highly
informative’ training data from large data sets. While this reduces compu-
tational cost, it involves the deliberate omission of measurement data which,
in hindsight, may contain important information (and reduce uncertainty in
the posterior as a result).

In this paper, an algorithm based on Sequential Monte Carlo (SMC)
methods is proposed, which is able to address the aforementioned issues.
Fundamentally, the efficiency of the method proposed here lies in its ability
to exploit the inevitable redundancies that arise in large sets of measure-
ments, as well as its suitability for modern computing architectures. In the
interest of completeness, a brief introduction to SMC methods, as well as a
description of previous work relevant to the problem of interest, is given in
the following section.

2. Sequential Monte Carlo methods

2.1. Importance sampling

This section begins with a brief description of importance sampling. Here
π(θ) is defined as a target probability distribution, from which one wishes to
estimate the expected value of a function, f(θ). π∗(θ) is used to represent
an unnormalised target, such that:

π(θ) =
π∗(θ)

Z
, Z =

∫
π∗(θ)dθ (2)

(for generality it is assumed that Z is difficult to estimate here - a situation
which often arises in Bayesian inference problems). The expected value of
f(θ) can be written as

E[f(θ)] =

∫
f(θ)π∗(θ)dθ∫
π∗(θ)dθ

=

∫
f(θ)q(θ)w(θ)dθ∫
q(θ)w(θ)dθ

(3)

where w(θ) = π∗(θ)
q(θ) are ‘importance weights’ and q(θ) is a user-defined

‘proposal distribution’ - a probability distribution from which it is relatively
easy to generate samples. Equation (3) implies that
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E[f(θ)] ≈
N∑
i=1

f(θi)w̃i (4)

where {θ1, ...,θN} have been generated from q(θ) and, adopting the notation
wi ≡ w(θi),

w̃i =
wi∑
j w

j
, i = 1, ..., N (5)

are defined as ‘normalised importance weights’. This reweighting procedure
allows estimates of E[f(θ)] to be realised using samples from q(θ), which is
useful when it is difficult to generate samples from the target distribution,
π(θ), directly.

2.2. Resampling

By defining f(θj) = δ(θj −θ) where δ is the Dirac delta function, it
follows that

E[f(θj)] =

∫
δ(θj −θ)π(θ)dθ = π(θj). (6)

This implies that, if one has a set of samples (and accompanying normalised

weights) {θ1, w̃1}, ..., {θN , w̃N} while a new set of samples, {θ̄1
, ..., θ̄

N}, is
chosen such that

Pr(θ̄ = θi) = w̃i (7)

then {θ̄1
, ..., θ̄

N} will be approximate samples from the target. The weights
of these new samples will therefore be equal (for more information the tu-
torial [4] is recommended). Resampling is often used when it is found that
relatively few of the current samples have significant weight, as it helps to
remove those which are of little importance. It is often used to tackle the
‘degeneracy problem’ that is often encountered in the application of particle
filters. To indicate when resampling is required, the concept of ‘effective
sample size’ was introduced in [5, 6]. This involves defining

Neff =
1∑

i(w̃
i)2

(8)

and choosing to conduct resampling when Neff falls below some kind of
threshold (N/2, for example, is used throughout the current paper). It
should be noted that, while resampling helps to remove ‘unimportant’ sam-
ples, it doesn’t aid exploration of the parameter space - it can only produce
replicas of the existing samples.
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2.3. Previous work

As mentioned previously, one of the best-known SMC methods is the
particle filter, which can be used to ‘track’ the state of a system from a
continuous stream of ‘online’ measurements - this was used in [7] to mon-
itor the time changing parameters of dynamical structures and systems.
The application of a particle filter involves defining a prediction equation,
which specifies how a system’s state is expected to change (conditional on
its previous state). In the scenario of interest here, justifying one’s choice of
prediction equation would be rather difficult. Furthermore, when applying
a particle filter, the influence of the initial measurements on the parameter
estimates will decrease as more data is analysed [8]. This makes particle
filters poorly suited to the current application (where it is required that all
available measurements, with equal weighting, are used to infer parameter
estimates).

A different approach was proposed in [9] where, using the prior as a
proposal distribution, importance sampling was used to target the posterior
parameter distribution. At time t, this leads to the following expression for
the importance weights:

wt =
p(z1:t |θ)p(θ)

p(θ)
= p(z1:t |θ). (9)

Assuming that the probability of witnessing separate measurements is con-
ditionally independent, such that

p(z1:t |θ) =

t∏
i=1

p(zi |θ), (10)

equation (9) can be used to show that

wt = p(zt |θ)wt−1. (11)

This allows the update of the importance weights to be conducted recur-
sively, circumventing the need to repeatedly analyse the entire set of training
data. Unfortunately, this method suffers from the same degeneracy problem
as the particle filter where, after a time, only very few of the samples have
significant weight. As stated previously, resampling can only help to gener-
ate replicas of these samples, and does not aid a further exploration of the
parameter space. In [9] this was overcome with an ‘move step’ which was
facilitated using MCMC updates. This process, which involves analysis of
the entire data set up to time t, was repeated every time a new measurement
was obtained and, as a result, is computationally expensive to implement.

In this paper it is shown that this issue can be tackled efficiently and
simply using a Sequential Monte Carlo sampler. At this point it is important
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to note that, somewhat confusingly, SMC samplers are a specific member
of the family of SMC methods (to which particle filters also belong). A
general description of SMC samplers is given in the following section. A
more detailed theoretical explanation can be found in [10] while a descrip-
tion written within the applied context of automated navigation is given in
[11].

3. Sequential Monte Carlo samplers

3.1. General formulation

Here, θk is used to represent the state of a system at iteration k, πk(θk)
is defined as the kth target distribution and π(θ1:k) represents the joint
distribution over θ1:k. One begins by defining

π(θ1:k) = πk(θk)
k∏

k′=2

L(θk′−1 |θk′) (12)

where L(θk′−1 |θk′) - the ‘L-kernel’ - is a design parameter which is defined
such that ∫

π(θ1:k)dθ1:k−1 = πk(θk) (13)

(thus realising the property that
∫
f(θk)π(θ1:k)dθ1:k =

∫
f(θk)πk(θk)dθk).

Potential choices for the L-kernel are described subsequently. With proposal
distribution q(θ1:k), the importance weights are defined as

wik =
π(θi1:k)

q(θi1:k)
, θi1:k ∼ q(θ1:k). (14)

Choosing a proposal of the form q(θ1:k) = q(θk |θk−1)q(θ1:k−1) then allows
one to write

wik =
πk(θ

i
k)
∏k
k′=2 L(θik′−1 |θik′)

q(θik |θik−1)q(θi1:k−1)
. (15)

Dividing wik by wik−1, it is then possible to show that

wik = wik−1

πk(θ
i
k)

πk−1(θik−1)

L(θik−1 |θik)
q(θik |θik−1)

(16)

such that the importance weights can be sequentially updated as k increases.
At first glance one may consider replacing the index k with the index t and
applying the SMC sampler directly to the problem described in Section 1,
such that
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πt(θt) ≡ p(θ | z1:t). (17)

This will, however, involve analysis of the full data set every time new mea-
surements are analysed. The computational cost of this would make such
an approach impractical. It should be noted that, in the current work, SMC
samplers are actually used to facilitate the resampling step of the method
proposed in [9] (hence the disparity between the indexes k and t). Before
this process can be described fully, it is worth stating how SMC samplers
can be used to sample from a stationary target - one which doesn’t vary
with the index k.

3.2. Sampling from an invariant target

Consider the situation where one wishes to estimate the mean of an (un-
normalised) target distribution π∗(θ). Here, the index k is simply used to
denote the kth estimate of the mean. Having defined the proposal distri-
butions q(θ1) and q(θk |θk−1), algorithm 1 shows how this can be achieved
using a SMC sampler.

Algorithm 1 Targeting a stationary distribution using a SMC sampler.

k = 1
Sample {θ1

k, ...,θ
N
k } from q(θk)

Initial weights: wik =
π∗(θik)

q(θik)
, i = 1, ..., N

while do
Normalise weights: w̃i =

wi
k∑

j w
j
k

, i = 1, ..., N

Estimate quantities of interest
Neff = 1∑

i(w̃
i)2

if Neff < N/2 then
Resample to get {θ1

k, ...,θ
N
k }

Reset weights: wik = 1, i = 1, ..., N
end if
k = k + 1
Sample {θ1

k, ...,θ
N
k } from q(θk |θik−1)

New weights: wik = wik−1
π∗(θik)

π∗(θik−1)

L(θik−1 |θ
i
k)

q(θik |θ
i
k−1)

, i = 1, ..., N

end while

Note that choosing the L-kernel

L(θk−1 |θk) = q(θk−1 |θk) (18)

allows the weights to be updated according to
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wik = wik−1

π∗(θik)

π∗(θik−1)
. (19)

As an example, a SMC sampler will be used to estimate the mean of the
target distribution

π(θ) = N (θ;µ, σ2) (20)

where µ = 5 and σ = 0.5. For this example the proposal distributions and
L-kernel are defined as:

q(θ1) = N (θ1; 0, 1), q(θk|θk−1) = N (θk; θk−1, 1),

L(θk−1|θk) = N (θk−1; θk, 1). (21)

Using 100 samples, the resulting estimate of the mean, as a function of k, is
shown in Figure 1.
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Figure 1: Estimating the mean of a stationary distribution using a SMC sampler.

In the formulation shown in algorithm 1, all previous samples of θ are
‘saved’ as k increases. In the following applications this isn’t necessary -
algorithm 2 therefore shows an alternative form of algorithm 1, where this
notation has been dropped (this also establishes a clearer notation for the
algorithms described later in the paper).
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Algorithm 2 Targeting a stationary distribution using a SMC sampler
(without the index k).

Sample {θ1, ...,θN} from q(θ1)

Initial weights: wi = π∗(θi)

q(θi)
, i = 1, ..., N

while do
Normalise weights: w̃i = wi∑

j w
j , i = 1, ..., N

Estimate quantities of interest
Neff = 1∑

i(w̃
i)2

if Neff < N/2 then
Resample to get {θ1, ...,θN}
Reset weights: wi = 1, i = 1, ..., N

end if
Sample {θ̂1, ..., θ̂N} from q(θ̂|θi)
New weights: ŵi = wi π

∗(θ̂
i
)

π∗(θi)

L(θi |θ̂i)
q(θ̂

i|θi)
, i = 1, ..., N

Set wi = ŵi,θi = θ̂
i
, i = 1, ..., N

end while

4. Parameter estimation of static models

In this section it will be shown how, by using a SMC sampler to facilitate
resampling, it is possible to conduct the sequential parameter estimation of
static models from large sets of data. (Here the phrase ‘static models’ is
used to distinguish the current example from the dynamical, autoregressive
models investigated later in the paper).

4.1. Algorithm

Consider a model of the form

yt = f(xt,θ) (22)

where xt represents an input to the system (at time t) and, as before, θ is
a vector of the model’s parameters. It is assumed that measurements are
realised according to

zt = h(yt) + ε, ε ∼ N (ε; 0,Σε) (23)

(such that ε represents measurement noise) where the covariance matrix,
Σε, is assumed to be known. Finally, it is also assumed that the probability
of witnessing sequential measurements are conditionally independent (as
in equation (10)). Algorithm 3 shows how, using the proposed method,
sequential estimates of the model’s parameters can be realised. The method
proceeds in a similar way to that proposed in [9], until the effective sample
size drops below a predefined threshold. When this occurs, resampling is

8
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used to remove those samples with low weights, before a SMC sampler is used
to facilitate ‘movement’ - to explore the parameter space. It is important to
note that the SMC sampler must be allowed to run until the effective sample
size has recovered and that the quantities of interest are always estimated
after the SMC sampler has run (this prevents them from being based on
samples with a low effective sample size). While the SMC sampling step
will involve a ‘full analysis’ of all the existing data, algorithm 3 has the
following useful properties:

1. The SMC sampler will only be used if the effective sample size drops
below a predefined threshold.

2. The SMC sampler is well suited to parallel processing, thus allowing
the full exploitation of modern computing architectures.

Algorithm 3 Sequential parameter estimation of a static model using the
proposed methodology.

Sample {θ1, ...,θN} from p(θ)
Initial weights: wi1 = p(z1 |θi), i = 1, ..., N
t = 1
while do

Normalise weights: w̃i =
wi

t∑
j w

j
t

, i = 1, ..., N

Neff = 1∑
i(w̃

i)2

while Neff < N/2 do
Resample to get {θ1, ...,θN}
Reset weights: wit = 1, i = 1, ..., N

Sample {θ̂1
, ..., θ̂

N} from q(θ̂|θi)
New weights: ŵi = wit

p(z1:t |θ̂
i
)

p(z1:t |θi)
L(θi |θ̂i)
q(θ̂

i|θi)
, i = 1, ..., N

Set wit = ŵi, θi = θ̂
i

and yi1:t = ŷi1:t, i = 1, ..., N

Normalise weights: w̃i =
wi

t∑
j w

j
t

Neff = 1∑
i(w̃

i)2

end while
Estimate quantities of interest
t = t+ 1
New weights: wit = wit−1p(zt |θi)

end while

4.2. Choice of proposal density

The efficiency and repeatability of any algorithm which utilises impor-
tance sampling is heavily dependent on the choice of proposal distribution.
Consider, again, the situation where the aim is to estimate the quantity

9
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E[f(θ)] =
∫
f(θ)π(θ)dθ using importance sampling. Writing the resulting

estimate as

f̂ =

N∑
i=1

f(θi)w̃i (24)

(where {θ1, ...,θN} have been generated from the proposal distribution q(θ)),
then it is possible to show that f̂ is an unbiased estimator, such that

E[f̂ ] = E[f(θ)]. (25)

The variance of f̂ can also be shown to be

Var[f̂ ] =
c

N
E[f2(θ)] (26)

where c is a constant and it has been assumed that

π(θ)

q(θ)
< c (27)

for all values of θ [8]. Equations (26) and (27) illustrate that, to prevent
Var[f̂ ] from being large, one must choose a proposal distribution that is
heavier-tailed than the target. This fact is not unique to SMC samplers -
it is well established that the use of heavy-tailed proposal distributions in
the application of MCMC methods can aid performance (see [1], for exam-
ple, where a Cauchy distribution was used to aid MCMC convergence). To
avoid large numbers of ‘wasted samples’, however, the proposal should also
be designed such that majority of the samples generated will fall in the area
of interest.

In the examples described here, Gaussian proposals, scaled relative to
the variance of target, were utilised. Specifically, defining Σt as the current
estimate of the target distribution’s covariance matrix, proposals were made
according to

q(θ̂|θi) = N (θ̂;θi, 0.1Σt) and q(θ̂|θi) = N (θ̂;θi,Σt) (28)

with probabilities 0.9 and 0.1 respectively. Such a strategy is often referred
to as ‘defensive sampling’ [12] and increases the repeatability of the SMC
sampler. It should also be observed that, for all the examples in this paper,
the L-kernel was chosen such that L(θ |θ̂)/q(θ̂|θ) = 1.

4.3. Example - linear static system

As an example, a linear model will be considered:

10



Pr
ep
rin
t

yt = θxt, (29)

where measurements are made according to

zt = yt + ε, ε ∼ N (ε; 0, β−1
ε ), (30)

x is the system’s input and ε is noise with precision βε (which is assumed
known). After obtaining t measurements, the likelihood is

p(z1:t |θ) ∝ exp

(
−βε

2

t∑
t′=1

(zt′ − θxt′)2

)
. (31)

Choosing a Gaussian prior:

p(θ) ∝ exp

(
−β0

2
(θ − µ0)2

)
, (32)

it can be shown that the posterior distribution is

p(θ| z1:t) ∝ exp

(
−β

2
(θ − µ)2

)
(33)

where

β = βε

t∑
t′=1

x2
t′ + β0, µ =

1

β

(
βε

t∑
t′=1

xt′zt′ + β0µ0

)
. (34)

The goal here is to track the mean and variance of θ as t increases. This
example was chosen because, as an analytical expression for the posterior is
available, it allows one to judge the performance of the proposed sampling
algorithm. To create a set of training data, samples of xt were generated
from a uniform distribution (between 0 and 1) and an artificial set of ‘mea-
surements’ were created. The prior moments and noise precision were:

µ0 = 0, β0 = 1, βε = 100. (35)

A sample size of 100 was used throughout this example.

Figure 2 shows that the estimates realised using the proposed sampling
method closely match the true solution. The blue circles in Figure 2 indi-
cate where resampling occurred. It can be observed that, as one’s parameter
estimate converges, resampling is needed less frequently (as additional data
is only leading to very small changes in the geometry of the target distribu-
tion).

11
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Figure 2: Estimating the mean (a) and variance (b) of θ (the parameter of the model
shown in equation (29)). Red lines indicate the true solution, black lines indicate results
according to the proposed sampling method and blue circles indicate where resampling
occurred.

5. Parameter estimation of dynamical models

5.1. Algorithm

Consider a dynamical model, which makes predictions according to

yt = f(yt−1,xt−1,xt,θ) (36)

where θ are the model’s parameters and xt is the input to the system.
Defining x0 and y0 as initial conditions (which are assumed known) then,
in this notation, it follows that

y1:t = f(y0,x0,x1:t,θ). (37)

Again, measurements are related to the state of the system by

zt = h(yt) + ε, ε ∼ N (ε; 0,Σε). (38)

The likelihood of the parameters θ, given measurement zt, is therefore:

p(zt |θ) = N (zt;h(yt),Σε) (39)

where the independence property (equation (10)) has, once again, been as-
sumed. Algorithm 4 shows how, using the proposed methodology, it is pos-
sible to estimate the parameters of a dynamical model from a continuous
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stream of measurement data.

Algorithm 4 Sequential parameter estimation of a dynamical model using
the proposed methodology.

Set initial conditions (x0 and y0)
Sample {θ1, ...,θN} from p(θ)
Find yi1 = f(y0,x0,x1,θ

i), i = 1, ..., N
Initial weights: wi1 = p(z1 |θi), i = 1, ..., N
t = 1
while do

Normalise weights: w̃i =
wi

t∑
j w

j
t

, i = 1, ..., N

Neff = 1∑
i(w̃

i)2

while Neff < N/2 do
Resample to get {θ1, ...,θN}
Reset weights: wit = 1, i = 1, ..., N

Sample {θ̂1
, ..., θ̂

N} from q(θ̂|θi)
Find ŷi1:t = f(y0,x0,x1:t, θ̂), i = 1, ..., N

New weights: ŵi = wit
p(z1:t |θ̂

i
)

p(z1:t |θi)
L(θi |θ̂i)
q(θ̂

i|θi)
, i = 1, ..., N

Set wit = ŵi, θi = θ̂
i

and yi1:t = ŷi1:t, i = 1, ..., N

Normalise weights: w̃i =
wi

t∑
j w

j
t

Neff = 1∑
i(w̃

i)2

end while
Estimate quantities of interest
t = t+ 1
Find yit = f(yit−1,xt−1,xt,θ

i), i = 1, ..., N
New weights: wit = wit−1p(zt |θi), i = 1, ..., N

end while

5.2. Example - linear dynamical system

In this section the proposed methodology is used to identify (and track)
the parameters of a shear model of a two storey structure, subject to a base
acceleration ẍ. This initial case study is conducted using simulated training
data. The vector y is defined such that

yt ≡
{
y1(t)
y2(t)

}
(40)

where y1(t) is the relative displacement between the ground and floor 1 while
y2(t) is the relative displacement between the ground and floor 2 (at time
t). The structure’s equation of motion is
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M ÿ +C ẏ +K y = M ẍ (41)

where M = diag(m1,m2) and

K =

[
k1 + k2 −k2

−k2 k2

]
, C =

[
c1 + c2 −c2

−c2 c2

]
, ẍ =

(
ẍ
ẍ

)
. (42)

m’s represent the masses of the two floors, k’s represent the magnitudes
of the inter-storey stiffnesses and c’s represent the magnitude of the inter-
storey damping. It was assumed that the masses of the floors were known,
so the set of parameters to be estimated was θ = {k1, k2, c1, c2}. The masses
of the two floors were set equal to 10000 kg while the values of the other
model parameters were set as shown in Table 1. The hypothetical structure
had natural frequencies equal to 5 and 12.3 Hz, while the inter-storey modal
damping ratios were both between 1 and 5 %. Details of the priors used
for estimation of the parameters are given in Table 1. The base accelera-
tion of the structure was sampled from a Gaussian distribution while, to
create a synthetic set of ‘measurements’, the resulting time histories of the
displacements of the two stories were corrupted with Gaussian noise. As
stated perviously, throughout the following examples, L(θ |θ̂) was set equal
to q(θ̂|θ).

Parameter True value Prior

k1 30× 106 N (k1; 25× 106, 2.5× 1012)
k2 20× 106 N (k2; 25× 106, 2.5× 1012)
c1 30× 103 Γ(c1; 1, 5× 104)
c2 20× 103 Γ(c2; 1, 5× 104)

Table 1: True parameter values and their corresponding priors (all SI units).

The algorithm was applied to a scenario where Std[ẍ] = 0.01m/s2. Be-
cause of the relatively low excitation amplitude, the resulting measurements
were relatively close to the noise floor (the signal to noise ratio was approx-
imately equal to 7). Figure 3 shows how the parameter estimates converge
as the first 2000 data points area analysed. It can be see that, as more data
is analysed, resampling in needed less frequently. This indicates that rela-
tively little additional information is obtained from the measurement data.
Figure 3 also shows how the proposed method can help to establish when
a sufficient amount of training data has been analysed. Figure 4 shows his-
tograms of the samples when t = 2000.
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Figure 3: Identifying the parameters of the linear shear building.
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Figure 4: Histogram of samples taken at t = 2000, in Figure 3. Red lines represent true
parameter values.

At this point it should be observed that data does not necessarily have
to be introduced to algorithm 4 a single point at a time - some simple
alterations will also allow it to process data which arrives in separate ‘blocks’
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(from separate experiments, for example). Such a situation would lead to
one targeting the sequence of distributions

p(θ | z1:t∆T ), t = 1, 2, 3, ... (43)

where ∆T is an integer that is larger than unity1. To accommodate this,
the final line of algorithm 4 (where the ‘new weights’ are updated), simply
needs to be changed to

wt = p(z(t−1)∆T+1:t∆T |θ)wt−1. (44)

To demonstrate this, the data generated from the linear shear building model
was reanalysed, with ∆T set equal to 50. The results shown in Figure 5 were
realised.
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Figure 5: Identifying the parameters of the linear shear building, where data is delivered
in ‘blocks’ of 50 points.

5.3. Example - nonlinear dynamical system

In this section, the aforementioned structure was modified, such that it
had two cubic, softening nonlinear stiffness terms between the two floors.
The values of the nonlinear stiffnesses were chosen such that, under a rela-
tively large base acceleration (Std[ẍ] = 0.1m/s2), a drop in the structure’s

1Implementing this approach in the scenario where ∆T is allowed to vary can also be
accomplished relatively easily. A constant ∆T is investigated here as it helps to maintain
notational simplicity.
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natural frequencies would occur - a feature which can sometimes be observed
in tall buildings [13]. The system’s equation of motion was therefore

M ÿ +C ẏ +K y+η(y) = M ẍ (45)

where

η =

(
−k∗1y3

1 + k∗2(y2 − y1)3

−k∗2(y2 − y1)3

)
(46)

(such that k∗1 and k∗2 represented the nonlinear stiffness terms). The set
of parameters to be identified was therefore θ = {k1, k2, c1, c2, k

∗
1, k
∗
2}. The

true values and prior distributions of k∗1 and k∗2 are shown in Table 2 (all
other values are as shown in Table 1).

Parameter True value Prior

k∗1 1× 1013 U(k∗1; 0, 1× 1015)
k∗2 1× 1013 U(k∗2; 0, 1× 1015)

Table 2: True nonlinear stiffness parameter values and their corresponding priors (all SI
units).

A set of training data was created using a low amplitude excitation
(Std[ẍ] = 0.01m/s2) except for a high amplitude ‘event’ where, between
t = 500 and t = 1000, the system experiences a much larger base acceler-
ation (Std[ẍ] = 0.1m/s2). The resulting training data is shown in Figure
6. Here then, the ability of the algorithm to process data which features a
sudden influx of information is being analysed.
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Figure 6: Training data created using the nonlinear model, equation (45). A high ampli-
tude ‘event’ has deliberately been inserted between t = 500 and t = 1000.
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Figure 7 shows how, as one would expect, there is clearly very little infor-
mation in the low amplitude data which would allow estimation of the non-
linear stiffness terms. Furthermore, the algorithm is able to quickly respond
to the sudden influx of data introduced by the high amplitude excitation,
and converge to the true parameter values. Figure 8 shows histograms of
the samples obtained when t = 2000.
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Figure 7: Identifying the parameters of the nonlinear shear building model (equation (45)).
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Figure 8: Histogram of samples taken at t = 2000, in Figure 7. Red lines represent true
parameter values.

5.4. Example - experimental data

For the sake of completeness, the proposed algorithm was applied to the
same experimental data that was investigated in [2], using the Smooth Data
Annealing algorithm (an MCMC algorithm which was designed to address
the problem tackled in the current paper). A very brief description of the
experiment used to obtain this data is given here - further details can be
found in [14] while the resulting dataset is also available as part of the paper
[15] (both of these papers are available Open Access).

The experiment involved the shaker-table test of a rotational energy har-
vester, which was designed to convert the low frequency translational motion
of a ‘central mass’ into high frequency rotational motion. This translation
was achieved using a ball screw, which introduced a significant amount of
friction into the system. Following on from the work shown in [14], it was
hypothesised that the behaviour of the system could be approximated by
the SDOF equation of motion:

Mü+ bu̇+ ku+ Fc tanh(αu̇) = −ms̈ (47)

where

M = m+ J

(
2π

l

)2

, b =

(
2π

l

)
c, (48)

u is the relative displacement between the shaker table and the central mass,
s̈ is the acceleration of the shaker table, J is the system’s moment of inertia,
m represents the central mass and l is the ball screw lead. It should be
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noted that a hyperbolic tangent friction model has been included in equa-
tion (47). In the notation of the current paper, the system’s inputs, x1:t, are
time history measurements of the shaker table acceleration while z1:t is the
time history measurements of the relative acceleration, ü. The parameters
which required estimation were θ = {c, Fc, α} (it was possible to measure
the other parameters of the model directly, to a sufficient level of accuracy).

The first 2000 points of the training data used is shown in Figure 9 - it
can be seen that testing doesn’t begin until t ≈ 400 and, as a result, one
would expect a large influx of information to occur at this point. This is
reflected in Figure 10, which shows convergence of the parameter estimates
during an initial period (over the first 700 points of training data). The
fact that very little resampling was required as the first 400 points were
analysed highlights the ability of the proposed method to move efficiently
through redundant data. The remaining convergence, until the point where
t = 10000, is shown in Figure 11. As with the previous results, it is clear
that the method proposed here can be used to effectively establish when
enough training data has been utilised.
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Figure 9: Experimental training data.
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Figure 10: Parameter estimation of the experimental system described in [14] (focused on
initial convergence).
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Figure 11: Parameter estimation of the experimental system described in [14] (focused on
latter convergence).

Finally, using the parameter estimates realised when t = 10000, a Monte
Carlo simulation was then used to propagate the resulting parameter uncer-
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tainties into an ensemble of model predictions. Figure 12 shows the statistics
of the model predictions, alongside measurements of the system’s actual re-
sponse (which wasn’t used during training).
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Figure 12: Model predictions after propagation of parameter uncertainties (black) and
measured response of experimental system (red).

6. Discussion

6.1. Move kernels

In the current paper, when resamping was required, a SMC sampler was
used to facilitate ‘movement’ in the current set of parameter samples. It is
noted here that this can be achieved using various other methods, including
MCMC. One could, for example, choose to employ a ‘move kernel’ similar
to that utilised in the Transitional MCMC algorithm [16] which has been
successfully applied to a wide range of engineering applications. Briefly
stated, this would involve generating a set of Markov chains from the set
of existing samples, where the probability that each chain will ‘grow’ is
given by the normalised importance weight of the original sample. The
important point to note is that the ability of the TMCMC move kernel to
exploit parallel processing is dependent on the distribution of importance
weights. In an extreme example, where every particle has a weight of zero
except for one, the TMCMC move kernel would lead to the development
of a single Markov chain, which is impossible to parallelise. The approach
described here, however, will always be able to fully exploit the benefits of
parallel processing (see [17] for details on how this can be implemented on
fine-grained parallel architectures). Current studies by the authors show
that, in terms of convergence, the two move kernels are able to achieve very
similar performance - the power of the move kernel presented here lies in its
ability to guarantee parallelisation.
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6.2. Optimisation

There are several aspects of the proposed algorithm which require ‘tun-
ing’, and which influence its computational efficiency. Throughout this pa-
per, for example, the effective sample size was defined as N/2. A little
experimentation by the authors showed that this was actually rather con-
servative, and that by setting an effective sample size of N/4, similar results
could be achieved at a reduced computational cost. The size of the pro-
posal distribution, in addition, strongly influences the number of times that
resampling needs to occur. The optimal selection of these ‘settings’ is an
aspect which the authors intend to look into as part of future work - the pur-
pose of the current paper is to establish a fundamental methodology, whose
applicability to computationally expensive models will increase alongside
continued advancements in parallel computing technology.

7. Conclusions

In this paper the authors present a method which can be used to effi-
ciently ‘track’ how one’s estimates of a system’s parameters vary (and con-
verge) as an increasingly large set of training data is analysed. The method,
which utilises a Sequential Monte Carlo sampler, is able to efficiently ex-
ploit the inevitable redundancy in large sets of measurements and, by being
suitable for parallel processing, is suitable for modern computing architec-
tures. The ability of the method to aid the estimation of dynamical systems
from data which is noisy, data which arrives in ‘blocks’ or data where large
influxes of information can occur, was demonstrated using simulated and
experimental case studies.
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