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Abstract
The transfermium nucleus 254No (Z = 102, N = 152) has been studied in a recoil-

decay tagging experiment using the SAGE in-beam spectrometer, RITU gas-filled

separator and GREAT focal-plane spectrometer at the Accelerator Laboratory of the

University of Jyväskylä (JYFL).

Both γ rays and conversion electrons from the ground-state band of 254No have

been observed with SAGE. Coincidences between them can be seen and it is possible

to measure internal conversion coefficients for some transitions in the band. This

shows that they have E2 multipolarity, as expected for a rotational band built on a

Kπ = 0+ state.

The two previously identified K isomers in 254No have also been seen. In the

prompt data tagged on the slow isomer’s decay the prominent 605 keV transition

from previous decay spectroscopy experiments is not seen with the expected intensity.

This allows one of the previously proposed level schemes to be ruled out. It is possible

that this transition is not seen in the in-beam data at all and the peak at this energy

is entirely from inelastic neutron scattering reactions within the SAGE germanium

detectors. If this is the case the 605 keV transition could directly depopulate the

fast isomer into a band built on the slow isomer without any intermediate structure.

There is not enough data to measure γ-ray branching ratios in the band built on

the slow isomer so a new method has been developed to determine the single-particle

structure of the isomer by comparing the in-beam conversion-electron spectrum above

it with Geant4 simulations of the same level scheme with a varying single-particle

g factor. This suggests that the structure of the slow isomer is the 72
+

[624]ν ⊗
9
2

−
[734]ν two-neutron state.





‘Die Deutung dieses Spektrums bot
große Schwierigkeiten.’

Lise Meitner
Z. Phys. 9 (1922) 131
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Chapter 1

Introduction

A simple model of an atomic nucleus predicts that if it contains more than about

110 protons the repulsive electrostatic force between them makes it impossible for

the nucleus to remain bound together. The existence of the heaviest nuclei depends

on gaining extra stability from quantum shell effects. Nuclei with certain magic

numbers of protons and neutrons in closed shells are seen experimentally to be more

tightly bound and more stable. The values of these magic numbers are known up to

Z = 82, N = 126. The existence of the superheavy nuclei is due to the next closed

shell gap beyond these, but identifying its location is still not possible experimentally.

Most elements lighter than uranium (Z = 92) have isotopes which are either stable

or have half-lives long enough that they occur naturally on Earth, but the elements

beyond this must be produced in nuclear reactions. The first synthetic elements

beyond uranium were produced by neutron capture followed by β decay [1], but for Z >

100 heavy-ion fusion-evaporation reactions must be used [2]. The heaviest nucleus

to be experimentally synthesised so far is 294118 at the Flerov Laboratory of Nuclear

Reactions (FLNR) in Dubna, Russia [3]. The heaviest nuclei are made in reactions

with extremely low cross sections and production rates are less than one atom/week.

This means detailed spectroscopy of their nuclear properties is not possible, although

a small number of α-photon coincidences have been seen on the decay chain from

288115 in an experiment at the Gesellschaft für Schwerionenforschung (GSI) in

Darmstadt, Germany [4].
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1 Introduction

The available combinations of stable beams and stable or long-lived targets also

mean it is not possible to produce the more neutron-rich superheavy isotopes, closer

to the predicted closed neutron shell, in fusion-evaporation reactions. High-intensity

radioactive ion beams or multi-nucleon transfer in deep inelastic scattering reactions

might make the synthesis of these isotopes possible, but the location of the next

neutron shell gap is not currently accessible for experimental investigation.

An alternative approach to testing models predicting the location of the island

of stability is to study the heavy actinide nuclei around fermium (Z = 100) and

nobelium (Z = 102). These nuclei are not spherical and the variation of the nuclear

energy levels with the shape of the nucleus means that some levels predicted to lie

either side of the next spherical shell gap bend down towards their Fermi surfaces.

Higher production cross sections make it possible to use in-beam spectroscopy to

investigate the structure of the nuclei [5].

The 208Pb(48Ca,2n)254No fusion-evaporation reaction has one of the largest cross

sections (≈ 2 µb) for producing a transfermium nucleus. Previous experiments have

identified two isomeric states in 254No, which are discussed in more detail in chapter 4.

This work describes the use of the SAGE combined γ-ray and conversion-electron

spectrometer with the RITU gas-filled recoil separator and the GREAT focal-plane

spectrometer at the Accelerator Laboratory of the University of Jyväskylä (JYFL) to

study the structure of the isomers in 254No.
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Chapter 2

Nuclear models

The atomic nucleus is made up of neutrons and protons. The attractive strong

nuclear force acts between both protons and neutrons and holds them together, but

the repulsive electrostatic force between the positive electric charge of the protons

acts to force them apart. The strong force has a short range and acts only between

neighbouring nucleons, but the electrostatic force has an infinite range and acts

between all the protons in the nucleus. As the number of protons in the nucleus

increases the electrostatic force becomes increasingly important and a simple model of

the nucleus suggests that when there are more than about 110 protons the repulsion

between them is enough for the nucleus to become unbound. The development of

the nuclear shell model uses quantum mechanics to explain the existence of heavier

nuclei.

Models of the nucleus can also describe its excited states, either excitations of

single nucleons in the shell model or collective excitations with all the nucleons

vibrating or rotating together, and the transitions between these states.

2.1 Liquid drop model and semi-empirical mass formula

The liquid drop model ignores the protons and neutrons within the nucleus and

treats the entire nucleus as a droplet of fluid with a binding energy described by a

volume term, a surface tension term and an electrostatic repulsion term. Weizsäcker

developed the semi-empirical mass formula [7] by adding corrections to this for

3



2 Nuclear models
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Figure 2.1: Nuclear chart with the predicted binding energy per nucleon from the
liquid drop model overlaid. Lines of constant fissility, Z2/A, are also shown. Based
on figure 1 from Herzberg (2013) [6].

symmetry between the numbers of protons and neutrons and for the pairing between

nucleons. The mass of a nucleus with Z protons and A− Z neutrons is

m(A,Z) = mpZ +mn(A− Z)− EB

c2
(2.1)

where mp is the mass of a proton, mn is the mass of a neutron and EB is the nuclear

binding energy [8],

EB = avA− asA2/3 − ac
Z(Z − 1)

A1/3
− asym

(A− 2Z)2

A
+ δ (2.2)

The first three terms are from the liquid drop model:

• avA is proportional to the nuclear volume and describes the attractive strong
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2.2 Spherical shell model

nuclear force between all nucleons, increasing as the number of nucleons

increases

• asA
2/3 is proportional to the surface area and describes the effects of surface

tension.

• ac
Z(Z − 1)

A1/3
depends on the number of protons and describes the repulsive

electrostatic force between them.

The other two terms are Weizsäcker’s semi-empirical corrections:

• asym
(A− 2Z)2

A
is the symmetry energy term and is related to the difference

between the number of protons and the number of neutrons. Nuclei are more

stable with the same number of protons as neutrons, but this is less important

in heavier nuclei.

• δ is the pairing term and can be positive, negative or zero depending whether

the nucleus has even numbers of protons, neutrons or both. The nucleus is

more tightly bound with even numbers of protons and neutrons because they

can form pairs with opposite spins.

Figure 2.1 shows the binding energy per nucleon predicted by the liquid drop model

plotted over the nuclear chart. The edge of the region of known nuclei is close to

the Z2/A = 40 line up to around Z ≈ 90, N ≈ 140 but above this the liquid drop

model is no longer a good description of the nucleus.

2.2 Spherical shell model
The liquid drop model describes the general trend of nuclear binding energies well,

but around certain magic numbers of protons or neutrons there are large differences

between the liquid drop model’s predictions and experimental data [9]. This can be

explained by a microscopic approach, in which all nucleons are considered individually

and put into discrete energy levels, or shells. There are separate sets of shells for

5



2 Nuclear models
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Figure 2.2: Some of the forms of the potential energy used in the spherical shell
model.

protons and neutrons and each shell has a fixed maximum number of either protons

or neutrons that it can hold. Nucleons start by filling the lowest-energy shell and

when this is full they start filling the next higher-energy shell. The magic numbers of

protons and neutrons occur at large energy gaps between shells, where nuclei are

more tightly bound and stable against decay.

The spacing of the nuclear energy levels is found by solving Schrödinger’s equation

with a potential of the form

V = V (r) + V~̀·~s (2.3)

where V (r) is a spherically symmetric term and the V~̀·~s term is from the coupling of

the nucleon’s intrinsic, ~s, and orbital, ~̀, angular momentum [10,11].

Figure 2.2 shows some of the choices of the spherically symmetric potential, V (r).
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2.2 Spherical shell model

One of these is the Woods–Saxon potential [12],

V (r) =
−V0

1 + e(r−R)/a
(2.4)

where r is the radius and V0, R and a control the depth, width and shape of the

potential well. Also plotted is a spherically symmetric harmonic oscillator potential,

V (r) = −V0
(

1−
( r
R

)2)
(2.5)

where, again, r is the radius and V0 and R control the depth and width of the

potential well.

The Woods–Saxon potential is a more realistic model of the nucleus but it is easier

to solve Schrödinger’s equation with the harmonic oscillator potential. The harmonic

oscillator can be made more realistic if the bottom of the potential well is flattened

by adding an extra term proportional to `2,

V (r) = −V0
(

1−
( r
R

)2)
+K`2 (2.6)

The spin-orbit coupling term depends on the nuclear radius and the magnitude of

the orbital angular momentum,

V~̀·~s = V`s(r)~̀ · ~s (2.7)

The spin-orbit force shifts levels with j = ` + 1
2 to lower energies and levels with

j = ` − 12 to higher energies, where ~j = ~̀+ ~s is the total angular momentum of

the nucleon. This splits energy levels with the spin and orbital angular momentum

coupled parallel or anti-parallel, with the size of the splitting increasing as ` increases,

and reproduces better the experimental magic numbers. The effect of the spin-orbit

splitting can be seen in figure 2.3 where it forces down the 1i13/2 orbital and splits

the 2f7/2 and 2f5/2, opening up a spherical shell gap at Z = 114. If the strength of

7



2 Nuclear models

the spin-orbit interaction was less then the these orbitals would stay closer together

and this shell gap would be smaller.

For each nuclear shell there are 2j + 1 possible projections of the total angular

momentum, ~j , onto the symmetry axis of the nucleus, varying from +j to −j in
integer steps. From the Pauli exclusion principle there can only be one nucleon with

each angular momentum projection and the total degeneracy of each level in the

shell model is 2j + 1.

Excited states of nuclei can be formed by moving one or more nucleons into higher

energy orbitals, leaving holes in the lower orbitals.

2.3 Nuclear deformation and the Nilsson model

Around the magic numbers of protons and neutrons nuclei are generally spherical,

but away from these areas the shapes of many nuclei are deformed. The simplest

deformation is an axially symmetric quadrupole deformation, in which the nuclear

shape can be either prolate (like a rugby ball) or oblate (like a Smartie), but triaxial

(like a kiwi fruit) or higher-order deformations are also possible.

The Nilsson model [14] assumes that the potential for the deformed nucleus is an

anisotropic harmonic oscillator,

V (~r) =
m

2

(
ω2xx

2 + ω2yy
2 + ω2z z

2
)

(2.8)

For a deformation which is symmetric about the z-axis, ωx = ωy . The deformation

parameter, δ, relates ωx to ωz and describes the shape of the nucleus,

ω2x = ω2y = ω20

(
1 +

2

3
δ

)
(2.9)

ω2z = ω20

(
1− 4

3
δ

)
(2.10)

For spherical nuclei δ = 0, for prolate deformations δ > 0 and for oblate deformations
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2.3 Nuclear deformation and the Nilsson model

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4 0.5 0.6
Deformation, ε2

6.0

6.2

6.4

6.6

6.8

7.0

7.2
S

in
g

le
-p

ar
ti

cl
e

en
er

g
y

/
h̄
ω

Figure 2.3: Nilsson diagram for protons in nuclei with Z > 82, showing the change
in energy of different Nilsson levels with the deformation of the nucleus. Solid lines
are levels with positive parity and dashed lines are levels with negative parity. The
shaded area shows the region around the Fermi surface in 254No. Based on Firestone
(1996) [13].
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Figure 2.4: Nilsson diagram for neutrons in nuclei with N > 126, showing the change
in energy of different Nilsson levels with the deformation of the nucleus. Solid lines
are levels with positive parity and dashed lines are levels with negative parity. The
shaded area shows the region around the Fermi surface in 254No. Based on Firestone
(1996) [13].
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2.3 Nuclear deformation and the Nilsson model

x

z

~̀

~s
~j

Λ
Ω

Figure 2.5: Quantum numbers used to label energy levels in the Nilsson model for a
nucleon with intrinsic spin ~s and orbital spin ~̀. The z-axis is along the symmetry
axis of the nucleus.

δ < 0. The complete Hamiltonian for the Nilsson model is

Ĥ = − h̄
2

2m
∇2 +

m

2

(
ω2x
(
x2 + y2

)
+ ω2z z

2
)

+ C~̀ · ~s +D`2 (2.11)

with extra terms C~̀ · ~s to account for spin-orbit coupling and D`2 to flatten the

bottom of the potential well. Values of C and D are chosen so the model matches

experimental results for spherical nuclei.

Solving Schrödinger’s equation with this Hamiltonian gives a set of energy levels

similar to those for the spherical shell model, but the energies of the different shells

vary with the deformation of the nucleus. The Nilsson diagrams in figures 2.3 and 2.4

show the calculated change in energy of different shells as the nuclear deformation

changes for protons and neutrons. These show how some levels above the proposed

spherical shell gap bend down towards the Fermi surface in the nuclei around 254No.

Energy levels in the Nilsson model are labelled with the asymptotic quantum

numbers

Ωπ
[
NnzΛ

]
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2 Nuclear models

x

z

~R
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Figure 2.6: Angular momentum in a prolate-deformed nucleus with a single unpaired
nucleon orbiting a rotating core. The collective rotation is around the x-axis and the
symmetry axis of the nucleus is along the z-axis.

where Ω is the projection of the total angular momentum, π is the parity, N is

the principal quantum number (the major oscillator shell from which the orbital

originates), nz is the number of nodes in the wave function in the z-direction and Λ

is the projection of the orbital angular momentum. These are shown in figure 2.5.

There are only two possible projections of the intrinsic spin (±12) so levels always

have Ω = Λ± 12 . The parity is given by π = (−1)N .

The deformed shape of the nucleus means that orientation of a single-particle

wave function relative to the nuclear core now affects its energy and states with the

same total angular momentum, j , but different projections of this onto the symmetry

axis of the nucleus now have different energies. This lifts the 2j + 1 degeneracy of

the shell model and each energy level in the Nilsson model can hold two nucleons in

time-reversed orbits with total spin projections ±Ω.

2.4 Nuclear rotation

Nuclear rotation is a collective excitation involving all the nucleons in the nucleus.

Quantum mechanically it is not possible for a sphere to rotate, but for deformed

12



2.4 Nuclear rotation

nuclei rotation is possible. The spin of the nucleus is split into components ~J from

the single-particle structure and ~R from the collective rotation, shown in figure 2.6.

These couple together to give a total angular momentum

~I = ~R + ~J (2.12)

which has a projection K on the symmetry axis of the nucleus.

If there is more than one unpaired nucleon their single-particle angular momenta

are summed before adding them to the angular momentum from collective rotation,

~J =
∑
i

~ji (2.13)

The total projection is also the sum of the projections for the individual particles,

K =
∑
i

Ωi (2.14)

A set of nuclear states from collective rotation are seen with rotational energies

given by

Erot =
h̄2

2I ×
[
I(I + 1)−K2

]
(2.15)

where I is the moment of inertia of the nucleus [15]. The energies of the levels

increase as the square of the spin so the energies of transitions between them are

equally spaced. The set of equally spaced peaks in a γ-ray spectrum is a characteristic

sign of a rotational band.

If the single-particle spin is zero then K = 0 and the symmetry of the nucleus

means that rotating it by 180° is equivalent to a reflection and only even integer

values of ~R are possible. If K 6= 0 then this symmetry is broken and any integer value

of ~R is allowed.
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2 Nuclear models

2.5 Magnetic moments and nuclear g factors

Just like a current flowing round a loop, the rotation of the charged nucleus creates

a magnetic dipole moment. Magnetic moments of nuclei are measured in units of

nuclear magnetons,

µN =
eh̄

2mp
(2.16)

where e is the charge of an electron andmp is the mass of a proton. The gyromagnetic

ratio or g factor, g, is the ratio of the magnetic moment, ~µ, to the angular momentum,

~̀,

~µ = g~̀µN (2.17)

Nuclei can have magnetic moments from the collective rotation of the entire

nucleus or from individual nucleons orbiting the core, and there are different g factors

associated with each.

Rotational g factors

For a uniformly-rotating nucleus with a uniform charge distribution the collective

g factor is expected to be

gR =
Z

A
(2.18)

Figure 2.7 shows experimentally measured g factors in some rare-earth nuclei. These

are mostly less than Z/A [15] and a quenching factor, q = 0.7, is used to give a

better estimate of the g factor,

gR = q × Z
A

(2.19)

There are not enough experimentally measured magnetic moments in actinide nuclei

to find a quenching factor so q = 0.7 is also used.
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2.5 Magnetic moments and nuclear g factors
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Figure 2.7: Experimentally measured rotational g factors for first excited 2+

states in even-even rare-earth nuclei. The black lines roughly mark gR = Z/A and
gR = 0.7× Z/A. Data is taken from Grodzins (1968) [16]. See also figure 4-6 of
Bohr and Mottelson (1975) [15].

Single-particle g factors

Pairs of protons or neutrons in the same Nilsson level occupy time-reversed orbits

with no overall magnetic moment, but for any unpaired nucleons there is a magnetic

moment from the single particle orbiting the nucleus. The single-particle g factor,

gK, depends on the Nilsson level occupied by the unpaired nucleon,

gK =
1

Ω
〈Ω | g``+ gss |Ω〉 (2.20)
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2 Nuclear models
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Figure 2.8: Mixing of two states in the Nilsson model.

where ` and s are the orbital and spin angular momentum and g` and gs the orbital

and spin g factors of the nucleon. If there are two unpaired nucleons, with g factors

g1 and g2 and spins ~j1 and ~j2, the effective g factor can be calculated with the

generalised Landé formula [17],

gK = g1
J(J + 1) + j1(j1 + 1)− j2(j2 + 1)

2J(J + 1)

+ g2
J(J + 1)− j1(j1 + 1) + j2(j2 + 1)

2J(J + 1)
(2.21)

where ~J =~j1 +~j2.

2.6 Mixing of states
The models considered so far describe pure nuclear states, either entirely collective

nuclear motion or pure single-particle states, but it is possible for quantum mechanical

mixing to occur between states with the same quantum numbers.

If there are two nuclear states, |ψA〉 and |ψB〉, with no interactions between them

16



2.6 Mixing of states

Schrödinger’s equation in matrix form is

 ĤA 0

0 ĤB

 ψA

ψB

 = Ei

 ψA

ψB

 (2.22)

which can be split into two separate equations, one for each state, with no coupling

between them. If there are interactions between the states the off-diagonal terms of

the matrix are no longer zero,

 ĤA V

V ĤB

 ψA

ψB

 = E′j

 ψA

ψB

 (2.23)

and the equations for the two states can’t be separated. The interaction between

the states is V = 〈ψA | V |ψB〉. Newton’s third law means that the interaction on

ψA from ψB must be the same as the interaction on ψB from ψA so the matrix is

symmetric [8]. As well as mixing the configurations of the states, the interactions

between them also shift their energies apart. The new energies and wave functions

of the states are the eigenvalues and eigenvectors of this matrix equation.

The energies of the mixed states are given by

E′1,2 =
E1 + E2 ±

√
(E1 − E2)2 + 4V 2

2
(2.24)

where E1,2 are the energies of the pure states. The energy shift is greater for states

with a smaller initial energy spacing and for states which interact more strongly

(when the wave functions of the two states are more similar).

The mixed states’ wave functions are

|φa〉 = α |ψA〉+ β |ψB〉 (2.25)

|φb〉 = −β |ψA〉+ α |ψB〉 (2.26)
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2 Nuclear models

where

α =
1√

1 + V 2

(E′j−Ej )2
(2.27)

and

β =
√

1− α2 (2.28)

Figure 2.8 shows an example of mixing between two states. As the two energy

levels approach each other their wave functions become more mixed, until at the

point where they are closest the wave functions are φa = 1√
2
|ψA〉 + 1√

2
|ψB〉 and

φb = − 1√
2
|ψA〉+ 1√

2
|ψB〉. The main component of the wave function of each level

then swaps over, but the energy shift means that the levels never cross. This is also

seen in figures 2.3 and 2.4, where two levels with the same spin and parity never

cross.

2.7 Calculations and theoretical predictions

Nuclear models can be used to calculate theoretical properties of different nuclei,

including predictions of the next magic numbers. Except in certain simple cases it

is not possible to solve Schrödinger’s equation analytically and numerical methods

must be used to find approximate solutions. The many-body forces in the nucleus,

with every nucleon affecting the potential for every other nucleon, mean that for

heavier nuclei a simplified form of the potential is also necessary. Calculations

predicting the location of the next magic numbers of the spherical shell model, and

of nuclear properties in the deformed transfermium nuclei, use two main approaches:

macroscopic-microscopic methods and self-consistent mean-field methods.

Macroscopic-microscopic methods

Strutinsky [18, 19] proposed that the energies of nuclear states could be calcu-

lated by taking the macroscopic liquid drop model and adding a correction for the
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2.7 Calculations and theoretical predictions
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Figure 2.9: Smooth liquid-drop term, ELDM, and Strutinsky shell correction term,
Esh, for macroscopic-microscopic calculations.

microscopic shell structure of the nucleus. The energy of a nuclear state is given by

E = ELDM + Esh (2.29)

where ELDM is a macroscopic component based on the liquid drop model, describing

the behaviour of all nucleons, and Esh is a microscopic component (the Strutinsky

shell correction) which corrects for the shell structure of nucleons near the Fermi

surface. This is shown in figure 2.9.

The shell correction term depends on the density of single-particle states and

is found from the difference between a sum over the discrete energy states and a

smeared average of this sum,

Esh =
∑
i

εi − Ẽ (2.30)

where εi are the eigenvalues of the individual Nilsson energy levels and the average
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2 Nuclear models

energy term, Ẽ, is found by blurring the single-particle energies over an energy range

of roughly h̄ω0. Around shell gaps the level density is low so the discrete sum is

less than the average and the shell correction term is negative, but where the level

density is high the shell correction term is positive.

Examples of using this method to calculate single-particle excitation energies in

transfermium nuclei can be found in the work of Parkhomenko and Sobiczewski [20,

21].

Self-consistent methods

Self-consistent methods use a purely microscopic approach and consider the

forces on each individual nucleon. This problem is too complicated to solve so

several simplifications are made. Instead of treating every nucleon separately and

calculating the force on it from every other nucleon, an estimated average potential

on any one nucleon within the nucleus due to all the other nucleons (the mean-field

potential) is used. Even with this simplified potential Schrödinger’s equation can’t

be solved analytically so an approximate solution for the nuclear wave function is

calculated numerically. Using this wave function a new, more accurate, estimate

for the mean-field potential is calculated and the process is repeated iteratively

until it finds self-consistent solutions for the mean-field potential and the nuclear

wave function [23]. The Hartree-Fock-Bogoliubov (HFB) method extends this to

also take into account the pairing forces between nucleons [24]. For low-energy

nuclear structure calculations it is possible to use non-relativistic kinematics, but

some self-consistent calculations use relativistic models instead [24].

Different choices can be made for the form of the potential used in self-consistent

methods. One possible choice is the Skyrme potential [25] which has a two-nucleon

term and a three-nucleon term,

V =
∑
i<j

V (i , j) +
∑
i<j<k

V (i , j, k) (2.31)
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2 Nuclear models

To simplify the calculations a short-range force is used for the two-nucleon term and

a zero-range force is used for the three-nucleon term. The Gogny force modifies

the Skyrme force by using a finite range for the three-body term [26]. For either

of these potentials there are parameters which can be adjusted so the results from

calculations match better with experimental data for particular areas of the nuclear

chart.

For the superheavy nuclei different choices of the form for the potential or its

parameters give slightly different locations of the island of stability, as shown in

figure 2.10. Predicted locations of the next magic numbers include Z = 114,

120 [27, 28], 126 [29] and N = 172 [27], 182 [28], 184 [29], or suggest that instead

of a single number there is a wider region of more stable nuclei [22]. Without

experimental data in this region it is not possible to tell which of these choices is the

most accurate model.
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Chapter 3

Radioactive decay

Radioactive decay is the process through which an unstable nuclear state changes

to a lower energy state [30]. This can either be a lower-energy state in the same

nucleus or a state in a different nucleus. A particle is emitted to carry away the

energy lost by the nucleus and it is also possible for this particle to carry away some

angular momentum. Observing the particles emitted by a nucleus as it decays can

give information about the initial and final states of the nucleus and its structure.

Radioactive decay is a random process and the probability of a particular decay

occurring in a given time is called the decay probability, λ. If there are initially N0

nuclei then the number, N, left without decaying after time t decreases exponentially,

N(t) = N0e
−λt (3.1)

The time at which on average half of the original nuclei remain is called the half-life

and is found from equation 3.1 by letting N(t) = N0/2,

t 1
2

=
loge(2)

λ
(3.2)

For a nuclear state which can decay in more than one way the half-life for the state

is found from the total decay probability which is the sum of the decay probabilities

for each decay path.
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3 Radioactive decay

3.1 α decay
α decay is the process through which an unstable nucleus decays to a lighter

nucleus by emitting an α particle, made up of two protons and two neutrons:

A
ZX → A−4

Z−2Y + 4
2α (3.3)

For many of the heaviest nuclei (Z > 82) this is the most common type of decay

from the ground state.

The energy released in an α decay, called its Q value, is equal to the change in

the binding energy between the mother and the daughter and α particle. It can be

calculated from their masses,

Q = (mX −mY −mα) c2 (3.4)

This energy is shared between the kinetic energies of the daughter nucleus and the

α particle, but the α particle is much lighter so conservation of momentum means

that its kinetic energy, Tα, is much greater than that of the daughter nucleus,

Tα =
Q

1 +mα/mY
(3.5)

With only two particles after the decay conservation of energy and momentum means

the total kinetic energy can only can only be split between them in one way and

α particles from the same decay always have the same energy. This characteristic

energy (for transfermium nuclei typically in the range 7–9 MeV) and the decay’s

half-life can be used to identify the decaying nucleus.

The decay probability of an α decay (and therefore also its half-life) depends

strongly on the Q value. Geiger and Nuttall [31] noticed that there was a rough

logarithmic relationship between them, called the Geiger–Nuttall rule,

log (λ) = C1 log (Q) + C2 (3.6)
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3.1 α decay

where C1 and C2 are constants. Higher-energy α particles tend to have bigger decay

probabilities and shorter half-lives.

The process of α decay can be modelled as an α particle forming inside the nucleus

and then tunnelling out of the nucleus through a potential barrier. The probability

for α particle emission, Pα, depends on the probability for each of these steps,

Pα = PPreformation × PTunnel (3.7)

The probability of the α particle preforming inside the nucleus depends on the

nuclear structure. The probability of tunnelling depends on the α particle Q value,

the barrier height, B, and width. The potential barrier can have two components,

the Coulomb barrier and the centrifugal barrier,

B = BCoul + BCent (3.8)

There is always a Coulomb barrier from the electrostatic force between protons,

BCoul =
ZYZαe

2

4πε0r
(3.9)

and for α decay between states with different spins there is also a centrifugal barrier,

BCent =
`α (`α + 1) h̄2

2mr2
(3.10)

where `α is the angular momentum carried away by the α particle. For α decay of

the ground states of even-even nuclei (Jπ = 0+) it is possible to populate higher-

spin members of the ground-state rotational band in the daughter nucleus, but

the probability is less than for the ground-state to ground state decay because the

centrifugal term increases the barrier height and the Q value for the decay decreases.

This means even-even nuclei have a single characteristic α decay.

In odd-mass or odd-odd nuclei the ground states of the mother and daughter do
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3 Radioactive decay

not always have the same spin and α decay to excited states in the daughter nucleus

with the same spin as the mother is more likely. Several different α decays are seen

between different pairs of states with the same spin. The energy of each different

α decay depends on the excitation energies of the states it links in the mother and

daughter.

The α particle has no intrinsic angular momentum because the two protons and

two neutrons in it form two spin-zero pairs. All the angular momentum it carries

away from the nucleus is in the form of its orbital angular momentum, `α, which

depends on the spin of the mother and daughter nuclei,

|JX − JY| ≤ `α ≤ JX + JY (3.11)

The parity of the α particle is related to the mother and daughter nuclei by

πα = πXπY (3.12)

but the decay is only allowed if the selection rule

πα = (−1)`α (3.13)

is followed.

3.2 Electromagnetic decay

Electromagnetic decay does not involve a change in either N or Z for a nucleus.

Instead, an excited state in a nucleus decays to a lower-energy state in the same

nucleus. The energy is carried away by an emitted particle which is most commonly

a photon (γ decay), but can also be an atomic electron (internal conversion).
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3.2 Electromagnetic decay

γ decay

The energy, Eγ , of the photon emitted in γ decay is equal to the difference between

the energies of the initial and final nuclear states, Ei and Ef ,

Eγ = Ei − Ef (3.14)

The angular momentum, L, carried by the emitted photon and its parity, π, depend

on the spins and parities of the initial and final nuclear states,

|Ji − Jf | ≤ L ≤ Ji + Jf (3.15)

πγ = πiπf (3.16)

Transitions can be either electric or magnetic and selection rules for spin and parity

mean only certain transitions are allowed:

πγ = +1 : M1,E2,M3,E4, . . .

πγ = −1 : E1,M2,E3,M4, . . . (3.17)

Transitions between two states will occur with all allowed multipolarities, but the

intensity is usually dominated by the lowest multipolarity transition, with L = |Ji−Jf |.

Internal conversion

Internal conversion competes with γ decay but results in the emission of an atomic

electron instead of a photon [32]. The energy of the emitted electron, Ee, depends

on the energy of the initial and final nuclear states, Ei and Ef , and the binding energy,

EB, of the atomic shell from which the electron is emitted,

Ee = (Ei − Ef)− EB

= Eγ − EB (3.18)
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3 Radioactive decay

Table 3.1: Atomic electron binding energies for the inner electron sub-shells in
nobelium [13].

Electron shell Binding energy /keV
K 149.2
LI 29.2
LII 28.3
LIII 21.9
MI 7.7
MII 7.2
MIII 5.7
MIV 5.0
MV 4.8

For an electron to be emitted from a particular shell the transition energy must be

greater than that shell’s binding energy. Table 3.1 lists the binding energies for the

inner electron shells in nobelium. After internal conversion the remaining electrons

move to fill the vacancy and X-rays or Auger electrons are emitted in coincidence

with the conversion electron.

The ratio of the decay probabilities for γ decay and internal conversion is called

the internal conversion coefficient,

α =
λe
λγ

(3.19)

Conversion coefficients can also be defined separately for each atomic electron shell

using the decay probability of electrons from that shell only,

α = αK + αL + αM + . . .

=
λK

λγ
+
λL

λγ
+
λM

λγ
+ . . . (3.20)

Conversion coefficients can be calculated approximately, assuming a point-like
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Figure 3.1: Internal conversion coefficients for different multipolarity transitions in
nobelium. Arrows mark the binding energies for K- and L-shell electrons.

nucleus and ignoring relativistic effects [17],

α(EL) ≈ Z3

n3

(
L

L+ 1

)(
e2

4πε0h̄c

)4(
2mec

2

E

)L+ 5
2

(3.21)

α(ML) ≈ Z3

n3

(
e2

4πε0h̄c

)4(
2mec

2

E

)L+ 3
2

(3.22)

for electric or magnetic transitions respectively with multipolarity L. From these

equations it can be seen that:

• The conversion coefficient is bigger for nuclei with higher Z, because of the

greater spatial overlap between the wave functions of the nucleus and the

atomic electrons.

• The conversion coefficient decreases for electrons from atomic shells which

are further from the nucleus, because the overlap of their wave functions with
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3 Radioactive decay

the nucleus is less.

• The conversion coefficient increases as the transition energy decreases.

• The conversion coefficient varies with the transition multipolarity, and measuring

it can allow the multipolarity of a transition to be determined.

More accurate calculations include relativistic effects and take into account the

finite size of the nucleus. This work uses the BrIcc software [33] to calculate all

theoretical conversion coefficients.

Conversion coefficients from BrIcc are plotted in figure 3.1 for E1, M1, E2 and M2

multipolarity transitions in nobelium. This shows the increase in α as the transition

energy decreases or the multipolarity increases. When the transition energy reaches

the binding energy of an atomic electron shell there is a jump in the conversion

coefficient as it becomes possible for the nucleus to emit conversion electrons from

this shell. In most cases electrons from the inner-most electron shell dominate the

conversion coefficient as soon as the transition energy is greater than their binding

energy, but for E2 transitions there is no jump in α at the K-shell binding energy

and most conversion electrons are still emitted from the L-shell even for transitions

above 149 keV.

Weisskopf estimates

Weisskopf estimates are a method to roughly calculate the transition probability for

a particular γ decay [34]. The transition probability for a transition of multipolarity

L and energy Eγ is given by

λ(σL) =
2(L+ 1)

h̄ε0L[(2L+ 1)!!]2

(
Eγ
h̄c

)2L+1
B(σL) (3.23)
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3.2 Electromagnetic decay

The quantity B(σL) is the reduced transition probability and is defined for electric

and magnetic transitions respectively as

B(EL) =
1

2Ji + 1

∣∣∣〈f
∥∥∥ Q̂L ∥∥∥ i

〉∣∣∣2 (3.24)

B(ML) =
1

2Ji + 1

∣∣∣〈f
∥∥∥ M̂L

∥∥∥ i
〉∣∣∣2 (3.25)

where Q̂L and M̂L are the electric and magnetic multipole operators and |i〉 and |f〉
are the wave functions of the initial and final nuclear states. The Weisskopf estimate

calculates B(σL) by making some simplifying assumptions about the decay:

• the transition involves only a single particle, which is assumed to be a proton.

• the wave functions of the initial and final states are those of independent

particles in a spherically symmetric square well.

• the final state has no orbital angular momentum (~̀= ~0).

In cases where the assumptions involved in calculating the Weisskopf transition

probability are not valid it will not provide a good estimate. For example, in a

rotational band the collective nuclear motion means the assumption that only a single

particle is involved in the transition is not correct and the estimate is a factor of

∼ 100 less than the experimental E2 transition probability.

Transition probabilities in collective motion

Electromagnetic decay occurs between levels in a rotational band with ∆I = 1

or ∆I = 2. The decay between levels with ∆I = 2 occurs only via stretched E2

transitions, but decay between levels with ∆I = 1 can occur via either stretched M1

transitions or folded E2 transitions. The transition probabilities, B(M1) and B(E2),
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3 Radioactive decay

for each of these can be calculated in the rotational model [15],

B(M1; I → I − 1) =
3

4π

(
eh̄

2mc

)2
(gK − gR)2K2| 〈IK10 | (I − 1)K〉 |2 (3.26)

B(E2; I → I − 1) =
5

16π
e2Q0

2| 〈IK10 | (I − 1)K〉 |2 (3.27)

B(E2; I → I − 2) =
5

16π
e2Q0

2| 〈IK20 | (I − 2)K〉 |2 (3.28)

where gK is the single-particle g factor, gR is the collective rotational g factor and

Q0 is the electric quadrupole moment of the nucleus.

For the ∆I = 1 decays the relative intensities of the M1 and E2 transitions is

described by the mixing ratio,

δ =
0.93EQ0

|gK − gR|
√
I2 − 1

(3.29)

where the transition, E, is in MeV and the intrinsic quadrupole moment of the

nucleus, Q0, is in eb. Through the rest of this work the ∆I = 1 transitions within a

rotational band are referred to as M1 transitions (and the ∆I = 2 transitions as E2

transitions), but in all calculations the mixed M1/E2 nature is taken into account.

The M1 transition probability depends on (gK − gR)2 so if the ratio of E2 and

M1 transition intensities in a band can be measured it can be combined with the

known gR value to find two possible values of gK. This helps to deduce the underlying

single-particle structure of the band.

3.3 Isomers

Some excited states in nuclei are unusually stable against decay [36] and when their

half-life is greater than about one nanosecond they are known as nuclear isomers.

These excited states have longer half-lives because their decay is hindered by a

significant change in the nuclear wave function. Isomers can be split into three types,

each shown in figure 3.2, depending on what this change is [35,37]:

32



3.3 Isomers

Figure 3.2: Nuclear excitation energy plotted against different nuclear properties to
illustrate the three types of isomers: shape isomers, spin traps and K-traps. The
shape of the nucleus and the angular momentum vectors are also shown. Taken from
Walker and Dracoulis (1999) [35]

• Shape isomers, in which the change in shape between initial and final states

hinders the decay.

• Spin-trap isomers, in which the change in spin between the initial and final

states hinders the decay.

• K isomers, in which the change in direction of the nuclear spin (and therefore

also its projection, K, onto the symmetry axis) between initial and final states

hinders the decay.

K isomers are the most important of these three for the deformed nuclei around

254No. Along with the area around hafnium this is one of the most important regions

of the nuclear chart for the study of K isomers [38,39].
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3 Radioactive decay

K hindrance
For a transition of multipolarity L between two states with different K values a

degree of K-forbiddenness is defined as

ν = |∆K| − L (3.30)

If K was a good quantum number and the projection of the angular momentum

was always a conserved quantity then any transition with ν > 0 would be forbidden.

Mixing of states with different K values means transitions between them can happen,

but they are hindered [40,41]. For these transitions the ratio of the experimentally

measured partial half-life, texp1
2

for the transition, and the half-life found from the

Weisskopf estimate for the transition probability, tW
1
2

, is called the hindrance factor,

FW =
texp1
2

tW
1
2

(3.31)

There is a trend of log(FW) increasing roughly linearly with ∆K for each different

transition multipolarity [40, 42]. The reduced hindrance factor,

fν = FW

1
ν =

texp12
tW
1
2

 1
ν

(3.32)

is roughly constant and values of fν in the range between 30 and 300 are typical for

K-hindered decays [35].
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Chapter 4

Previous knowledge
and regional systematics

The synthesis of an element with atomic number Z = 102 was first reported in

1957 by a group of scientists bombarding 244Cm with 13C at the Nobel Institute in

Stockholm [43]. The new element was named nobelium, in recognition of Alfred Nobel

and the institute where the experimental work was carried out. Later experiments at

Lawrence Berkeley National Laboratory (LBNL) and the FLNR in Dubna failed to

replicate the original results, but 254102 was identified by its α decay to 250Fm at

LBNL in 1958 [44]. With no further evidence to support the Nobel Institute results

this is now recognised as the first synthesis of an isotope of element 102.

Early experiments to synthesise nobelium used fusion reactions of carbon beams on

actinide targets, but production of transfermium nuclei now usually uses cold-fusion

reactions of 48Ca on lighter targets [45]. The cross section, σxn, for a fusion-

evaporation reaction depends on the cross section, σCN, for fusion between the beam

and target nuclei to produce the compound nucleus and also the probability, Pxn, of

the compound nucleus surviving against fission and instead de-exciting by evaporation

of light particles [46],

σxn = σCN × Pxn (4.1)

The cross-section for fusion decreases as the Coulomb barrier between the beam and

target nuclei increases, giving very small cross sections to produce the heaviest nuclei.

35



4 Previous knowledge and regional systematics

In the reaction 208Pb(48Ca,2n)254No both the target and beam are doubly magic,

with closed shells of protons and neutrons and high binding energies. The compound

nucleus is less tightly bound and much of the excitation energy from the fusion

reaction goes into this change in binding energy. This leaves a colder compound

nucleus than many other fusion-evaporation reactions with similar mass beams and

targets and increases the probability of the compound nucleus decaying by particle

evaporation not fission. This means the production of 254No has a relatively high

cross section (≈ 2 µb [47,48]) compared to the production of other transfermium

nuclei.

Figure 4.1 shows two proposed level schemes for 254No. This chapter discusses

previous work on different parts of the level scheme and the difference between the

two proposals.

4.1 α decay

The ground state of 254No has a 90(1) % branching ratio for α decay. The

accepted values for the α decay energy and the half-life are Eα = 8.10(1) MeV and

t 1
2

= 51.2(4) s [51, 52].

4.2 Ground-state rotational band

The ground-state band of 254No was the first rotational band to be identified in a

transfermium nucleus, using in-beam γ-ray spectroscopy at both Argonne National

Laboratory [53] and JYFL [54]. Later experiments have observed levels in the band

up to a spin of 24h̄ [55, 56]. Below the 4+ state the transitions are too highly

converted for any γ rays to be seen, but the transition energies can be extrapolated

from a Harris fit [57] to the rest of the band.

Conversion electrons from the ground-state band transitions have also been seen at

JYFL using the SACRED conversion electron spectrometer [58, 59]. L- and M-shell

electron peaks were identified for the lower-energy transitions in the ground-state
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4.2 Ground-state rotational band
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4 Previous knowledge and regional systematics

band, including those from the 4+ → 2+ transition. There was also a large conversion

electron background, which was suggested to be due to the existence of a high-K

band with a cascade of highly converted M1 transitions which could not be individually

resolved.

4.3 Kπ = 3+ band

The first non-yrast structure observed in 254No was the 3+ band [55, 60]. The

prominent γ rays from the state’s decay to the 2+ and 4+ levels in the ground-state

band indicate that it has K = 3. The only possible two-quasiparticle structure giving

the correct spin is the two-proton state,

{
1
2

−
[521]π ⊗ 72

−
[514]π

}3+

The 3+ state is not isomeric so recoil-decay tagging can’t be used to identify

prompt radiation above it, but it is populated by the decay of the slow isomer. γ rays

in coincidence with the isomeric decay can be seen and placed in a rotational band

built on the 3+ state.

4.4 263 ms isomer

Ghiorso et al. [61] first suggested the presence of an isomeric state, with a half-life

of 0.28(4) s, in 254No in the 1970s, but it was not until about 30 years later that

decay spectroscopy experiments [62, 63] confirmed its existence and determined its

decay path.

The 53 keV decay to the 7+ level in the 3+ band is assumed from its intensity to

have E1 multipolarity, meaning that the isomer has spin and parity Kπ = 8−. The

three most likely possible structures are the two-proton state,

{
7
2

−
[514]π ⊗ 92

+
[624]π

}8−
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4.5 183 µs isomer

or one of the two-neutron states,

{
7
2

+
[624]ν ⊗ 92

−
[734]ν

}8−
{
7
2

+
[613]ν ⊗ 92

−
[734]ν

}8−
In the rest of this work this isomer is referred to as the slow isomer.

4.5 183 µs isomer

254No also has a second isomeric state with a shorter half-life of 183 µs [62,63],

referred to from now on as the fast isomer. The decay of this isomer feeds the

levels built on the slow isomer. The excitation energy can be estimated from the

total energy measured when the isomer decays and is higher than expected for any

two-quasiparticle state. This suggests a four-quasiparticle structure, which could

be formed by coupling together two of the 8− two-quasiparticle excitations to give

an isomer with Kπ = 16+ [62], or a spin/parity assignment of Kπ = 14+ has been

proposed [63].

Decay spectroscopy experiments at LBNL [49] and GSI [50] have both observed

γ rays of the same energies in coincidence with the decay of the fast isomer. Many

of these have also been seen in recoil-isomer tagged spectroscopy of the slow isomer

at JYFL. The 605 keV transition in the decay path of the fast isomer has also

been seen in the in-beam spectra from JYFL [56]. If the transition is seen in the

prompt spectra it can’t directly depopulate the fast isomer and there must be some

intermediate structure. Figure 4.1 shows the proposed level schemes from LBNL and

GSI. The proposed level scheme from LBNL (figure 4.1a) has an extra 10+ state

below the fast isomer which then decays by a 605 keV transition into a band built on

the slow isomer [49]. The level scheme proposed from GSI (figure 4.1b) places all

the observed γ rays into a single rotational band fed by the 605 keV transition from

an unknown structure below the fast isomer [50].
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4 Previous knowledge and regional systematics

Table 4.1: Two-quasiparticle isomers in even-even nuclei around Z = 102, N = 152.
Nucleus Kπ Energy /keV Half-life Configuration

N
=

1
4

8 244Cm 6+ 1040 34 ms 5
2

+
[622]ν ⊗ 72

+
[624]ν [64, 65]

248Fm 10.1 ms [66]
250No (6+) 43 µs 5

2

+
[622]ν ⊗ 72

+
[624]ν [67]

N
=

1
5

0

246Cm 8− 1180 1.1 s 7
2

+
[624]ν ⊗ 92

−
[734]ν [68]

248Cf 8− 1261 7
2

+
[624]ν ⊗ 92

−
[734]ν [69]

250Fm 8− 1200 1.8 s 7
2

+
[624]ν ⊗ 92

−
[734]ν [70]

252No 8− 1250 110 ms 7
2

+
[624]ν ⊗ 92

−
[734]ν [71]

254Rf 8− ≥ 1350 4.7 µs 7
2

+
[624]ν ⊗ 92

−
[734]ν [72]

N
=

1
5

2

248Cm 8− 1460 146 µs [73]
254No 8− 1300 263 ms
256Rf 1120 25(2) µs [74]
256Rf 1400 17(2) µs [74]

4.6 Other K isomers around 254No
K isomers are common in the region around 254No, and table 4.1 lists details of

some other known two-quasiparticle isomers in nearby even-even nuclei.

For the N = 152 isotones none of the isomers have had single-particle structures

firmly assigned. For the 8− isomer in 248Cm the B(M1)/B(E2) ratios from the

data are not enough to give a structural assignment, but do not rule out the

7
2

+
[624]ν ⊗ 92

−
[734]ν two-neutron state [73]. In 256Rf one experiment has identified

three isomeric states [74] but these have not been confirmed in a later experiment [75]

and none of the isomers have spin/parity assignments. 252Fm is difficult to produce

experimentally and no isomeric states are known.

The data for the N = 150 isotones is more complete and 8− states with a

two-neutron 72
+

[613]ν ⊗ 92
−

[734]ν structure have been assigned in 246Cm, 250Fm,

252No and (more tentatively) in 254Rf. In 248Cf a state has been assigned the same

configuration from single-nucleon transfer reaction data, but the half-life has not

been measured. The reason for the much shorter half-life of the isomer in 254Rf is

not known.

Apart from 254No the only known four-quasiparticle isomer in a transfermium
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4.6 Other K isomers around 254No

nucleus is in 254Rf. It has a 16+ spin/parity assignment and the structure is thought

to be made from coupling an 8− two quasi-proton state with an 8− two quasi-neutron

state [72], like the fast isomer in 254No. The half-life of this isomer in 254Rf is

247(73) µs, which is similar to the 183 µs half-life of the fast isomer in 254No. An

isomeric state in 256Rf has been suggested to have a four-quasiparticle structure [75],

but this is only based on its lower population ratio compared to that expected for a

two-quasiparticle state.

K isomers are also common in the deformed nuclei around hafnium (Z = 72).

The neutron numbers of these nuclei (N ≈ 104) are similar to the proton numbers of

the heavy actinides so some of the proton Nilsson levels are near the Fermi surface

in nobelium are the same as the neutron Nilsson levels that are near the Fermi

surface in the hafnium isotopes. There are 8− isomers in 176Hf [76] and 178Hf [77].

In both these isotopes there are two possible 8− configurations which are both

seen experimentally, but only one is isomeric. In 178Hf the two 8− configurations

couple together to form a 16+ isomeric state and both 176Hf and 178Hf have 14−

four-quasiparticle isomers. Both the higher-lying isomers feed the 8− levels and the

situation for 254No could be analogous to either.
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Chapter 5

Experimental details

The experiment took place at the University of Jyväskylä Accelerator Laboratory

(JYFL), using the SAGE/RITU/GREAT setup for recoil-tagged in-beam spectroscopy

and decay spectroscopy. There were two separate beam times, the first in September

2013 and the second in January 2016, and table 5.1 gives some details for them

both.

Production of 254No used the fusion-evaporation reaction

208Pb(48Ca, 2n)254No

with a beam of 48Ca10+ ions produced in the ECR ion source and accelerated by the

K130 cyclotron [78] to a nominal energy of Elab = 220 MeV. The maximum cross

section for the two-neutron evaporation channel in this reaction is at a beam energy

of Elab = 219 MeV [47, 48], but the energy loss of the beam as it passes through

Table 5.1: Details of experimental conditions for the two beam times. The total
numbers of recoil-tagged and recoil-isomer tagged events are also shown.
Run HV barrier Run time Average beam Recoil-tagged Recoil-isomer

voltage /kV /hours current /pnA events tagged events
2013 38 200 8 71000 5600
2016 Not working 31 10 7800 830
2016 28 7 5 1900 200
2016 32 66 10 18000 1900
Total 304 98700 8530
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5.1 Targets

Figure 5.1: Target wheel for the second beam time. The target positions are
numbered from zero to five moving clockwise from the top left position.

the target is roughly 2 MeV. With an initial energy of 220 MeV the beam energy at

the centre of the target should be 219 MeV.

5.1 Targets

The SAGE target chamber contains a wheel which can hold up to six targets,

shown in figure 5.1. The wheel rotates to move different targets into the beam line.

The cyclotron operators use a viewer (position zero in figure 5.1) when they tune

the beam and the empty frame (position one) can be used to check that the beam

will not hit the frame of any of the other targets. The targets shown in figure 5.1

are two 520 µg/cm2 208PbS foils (at positions two and three) and two 446 µg/cm2

208Pb foils (at positions four and five). All four of these have a 50 µg/cm2 carbon

backing.

The target used for the second beam time was one of the 446 µg/cm2 208Pb foils
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Clover germanium detectors

Phase One

germanium detectors

Target

Silicon

detector

Solenoid magnet

Solenoid

magnets

High-voltage barrier

Beam

Recoils

Figure 5.2: Cut-through diagram of half the SAGE spectrometer, showing the
relative positions of the target, the silicon detector, the three rings of germanium
detectors and the solenoids for electron transport.

(in position five). For the first beam time a 445 µg/cm2 208Pb foil, without any

carbon backing, was used.

5.2 SAGE – in-beam spectroscopy

The SAGE (Silicon And GErmanium) spectrometer [79, 80] measures prompt

radiation emitted at the target position. It consists of both germanium detectors

for measuring γ rays and a silicon detector to measure conversion electrons. A

diagram of the parts of SAGE is shown in figure 5.2. Figure 5.3 shows photos of the

spectrometer with the frame holding the germanium detectors in open and closed

positions.
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5.2 SAGE – in-beam spectroscopy

(a) With the germanium array open the SAGE target chamber and solenoid
coils can be seen.

(b) With the germanium array frame closed the detectors are packed
tightly around the target chamber and the solenoid coils.

Figure 5.3: Photos of the SAGE spectrometer with the frame holding the germanium
detector array in open and closed positions.
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5 Experimental details

Germanium detectors

For detection of γ rays SAGE uses high-purity germanium detectors from the

Jurogam II array. There are two rings of clover detectors [81] at angles of 104.5°

and 75.5° to the beam direction, with twelve detectors in each ring. Upstream of

these, at 133.57° to the beam direction, is a ring of ten detectors of either GASP or

Eurogam Phase One type [82]. Jurogam II normally has another ring of five Phase

One detectors at the upstream end, but these must be taken out to make space for

the SAGE solenoid coils. All the germanium detectors are cooled with liquid nitrogen

to a temperature of around 80 K to reduce thermal noise.

The Phase One detectors contain a single germanium crystal, with a tapered shape

so they can be packed together more closely. The clover detectors each contain four

germanium crystals in the same cryostat. These can be used either as four individual

detectors or in add-back mode where energy signals in adjacent crystals within a

short time of each other are summed. If a γ ray scatters in one crystal and is then

absorbed in a neighbouring crystal the add-back will reconstruct its full energy. This

improves the efficiency of the detector for high-energy photons. All clover detectors

at the target position used add-back for this experiment.

Each germanium detector is fitted with a bismuth germanate (BGO) escape

suppression shield [83, 84]. This surrounds the sides and back end of the germanium

crystal. Photons which scatter out of the germanium will also be detected in the

BGO. The signal from the BGO vetoes hits from photons which do not deposit all

their energy in the germanium detector and improves the peak-to-total ratio for the

detector.

Silicon detector

For electron detection SAGE has a circular silicon detector with a diameter of

48 mm and a thickness of 0.3 mm. This is divided into 90 pixels in the arrangement

shown in figure 5.4. The inner rings are 1 mm wide and the outer rings are 2 mm

wide. The flux of incident electrons is higher closer to the centre of the detector so
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5.2 SAGE – in-beam spectroscopy

48 mm

2 mm

1 mm

Figure 5.4: Arrangement of pixels on the SAGE silicon detector.
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Figure 5.5: Calculated count rate distribution for the SAGE silicon detector. Count
rates are normalised to the central pixels. Based on figure 3.32 of Papadakis
(2010) [79].
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the pixels here are smaller to try to even out the count rates between all pixels and

maximise the total count rate. The count rate distribution in figure 5.5 shows how

the rate is fairly even across the middle part of the detector.

The detector is mounted directly on a PCB which the pre-amplifiers are also at-

tached to. The detector PCB is cooled to around −20°C with an ethanol-filled cooling

circuit. This reduces thermal noise and reduces the detector leakage current [85].

Atomic interactions between the beam and the target produce a lot of low energy

δ electrons. These are emitted mainly in the forward direction so the silicon detector

is behind the target, at an angle of 177° to the beam direction, to reduce the number

of δ electrons reaching it.

Magnetic field

Three solenoid coils create a magnetic field inside SAGE to transport electrons

from the target position to the silicon detector. One of the coils is downstream of

the target and acts like a mirror to reflect electrons back towards the silicon detector.

The other two coils are upstream of the target and create the magnetic field to

transport electrons from the target position to the detector [79].

High-voltage barrier

The δ-electron background in SAGE is mainly at low energies so to reduce the

amount of it reaching the silicon detector there is a high-voltage barrier (shown in

figure 5.6) inside the solenoid coil between the target and the detector chamber [80].

The potential difference between the barrier electrode and the grounded outer sleeve

creates an electric field which prevents low-energy electrons reaching the silicon

detector. For the first beam time the barrier voltage was −38 kV. During the second

beam time there were problems with the barrier discharging and for the first part of

the experiment it was not used and the silicon detector also had to be turned off.

The barrier was then replaced with a new one and operated at −28 kV or −32 kV

for different parts of the remaining beam time.
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5.2 SAGE – in-beam spectroscopy

Figure 5.6: High-voltage barrier from SAGE. The stainless steel
electrode is the central cylinder. It is surrounded by a Noryl resin
insulator and an aluminium grounding sleeve. This is the barrier
that had to be replaced in the second beam time and the black
mark on the insulator (circled at top of picture) is probably from the
barrier discharging by sparking. The outer diameter of the barrier is
146 mm.
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Carbon foils

The high-voltage barrier and the silicon detector are in the same high-vacuum

volume (≈ 10−6 mbar) as the accelerator beam line, but the target position is

connected to RITU (section 5.3) which is filled with helium gas at a pressure of

0.5 mbar. To separate these volumes there are two 50 µg/cm2 carbon foils upstream

of the target chamber with the volume between the foils pumped to an intermediate

pressure. A single foil of this thickness is not enough to maintain the pressure

difference and thicker foils reduce the transmission efficiency for electrons from the

target to the detector. If the carbon foils were downstream of the target they would

reduce the transmission efficiency for recoiling ions entering RITU. The location of

the foils also means that the targets are in the helium gas which fills RITU which

helps to cool them so they can withstand higher-intensity beams.

5.3 RITU – recoil separation

The small cross sections for production of superheavy nuclei mean it is necessary

to separate recoiling 254No nuclei from unreacted beam particles and nucleon-transfer

reaction products. At JYFL this is done using the RITU (Recoil Ion Transfer Unit)

gas-filled recoil separator [86,87].

Recoil separators use different combinations of electric and magnetic fields to

separate charged particles based on their mass, velocity or momentum. Gas-filled

separators use a dipole magnet to separate particles with different momentum.

Charged particles passing through the magnetic field of the dipole are deflected with

a bending radius

r =
mv

qB
(5.1)

where m is the particle’s mass, v is its velocity, q is its charge and B is the magnetic

field strength. conservation of momentum in the fusion-evaporation reaction means

beam particles and 254No recoils have similar momenta, but the beam particles are

lighter and have a higher velocity. The separator is filled with low-pressure (0.5 mbar)
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5.3 RITU – recoil separation

Q

D Q Q

RITU GREAT

Be
am

Beam

Reco
ils

SAGE

Figure 5.7: Diagram of the RITU gas-filled recoil separator, seen from above. The
magnets in RITU are labelled (with D for the dipole magnet and Q for the quadrupole
magnets) and the positions of SAGE and GREAT are shown.

helium gas and when recoiling ions and helium atoms collide electrons are exchanged

between. Over time the average charge state of ions travelling through the gas is [88]

qave =
v

vB
eZ1/3 (5.2)

where v is the ion’s velocity and vB = c/137 is the Bohr velocity. The faster-moving

beam particles have a higher average charge state than the 254No recoils and, from

equation 5.1, their paths are bent more in the separator. Instead of passing through

to the focal plane they hit a beam dump in the dipole magnet chamber.

Collisions with the gas in the separator also mean all recoiling 254No ions have the

same time-averaged charge and the bending radius of their paths does not depend

on their charge state when they enter the separator. This increases the transmission

efficiency of the separator compared to vacuum-mode separators, which only focus a

single charge state to the focal plane. For transfermium nuclei RITU has an estimated

transmission efficiency to the GREAT MWPC of 47(4) % [89].

The most common arrangement of magnetic fields in a gas-filled separator is DQQ,

51



5 Experimental details
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Figure 5.8: Arrangement of the main parts of GREAT. For clarity two of the clover
detectors and half the PIN diodes are not shown.

with the main bending dipole magnet, D, followed by two quadrupole magnets, Q, for

focusing the recoils horizontally and vertically onto the focal plane of the separator.

RITU uses a QDQQ arrangement (shown in figure 5.7) with an extra quadrupole

magnet at the upstream end to improve the angular acceptance of the separator

when it is used with an array of detectors around the target position.

5.4 GREAT – decay spectroscopy

After travelling through RITU the recoiling nuclei enter the GREAT (Gamma

Recoil Electron Alpha Tagging) spectrometer [90]. They pass through a multi-wire

proportional counter and are implanted into a double-sided silicon strip detector.

When the nuclei decay the energy of any emitted α particles, γ rays or conversion

electrons can be measured in the silicon detector or the PIN diodes and germanium

detectors positioned around it. Figure 5.8 shows the main parts of GREAT.
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5.4 GREAT – decay spectroscopy

Double-sided silicon strip detector

The double-sided silicon strip detector (DSSD) records the energy of implanting

recoils and their subsequent decays. It consists of two 60 mm × 40 mm, 300 µm

thick silicon detectors with a 4 mm gap between them. The front of each detector

(the side facing into RITU) is divided into 1 mm wide vertical strips and the back

is divided into 1 mm horizontal strips. The x and y co-ordinates from these strips

gives the location of any implantation or decay in one of a total of 4800 pixels.

The high granularity of the detectors reduces the probability of random correlations

between implantations and decays of different nuclei in the same pixel when recoil-

decay tagging (section 6.1) is used. The amplifier gains for the DSSD are set for

observation of isomeric electron decays (E < 1 MeV) on the front side (DSSD-X)

and α decays and recoils (E ≈ 5–20 MeV) on the back (DSSD-Y).

The shape and size of the DSSD mean it only covers 85 % of the distribution of

recoils reaching the focal plane [90]. Combining this with the transmission efficiency

of RITU the total efficiency for detection of recoiling ions is about 40 %. When a

nucleus in the DSSD decays particles can be emitted in any direction. In α decay the

half of the α particles are emitted back towards RITU and escape from the DSSD

without giving any signal in it so the detection efficiency is only around 50 %. For

detection of a conversion electron cascade from an isomeric decay (for recoil-isomer

tagging, section 6.1) the detection efficiency is higher because not all electrons

are emitted in the same direction and even if some escape others will be detected.

Simulations give a detection efficiency of 85 % for the decay of the 8− isomer in

254No with the DSSD-X energy thresholds set at 50 keV [91].

Multi-wire proportional counter

To discriminate between recoil implantation events and their subsequent decays

there is a 131 mm× 50 mm multi-wire proportional counter (MWPC) which recoils

pass through before implanting in the DSSD. For recoil events there are coincident

signals in the DSSD and MWPC, but for a decay there is a signal in the DSSD only.
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The detection efficiency of the MWPC for particles which pass through it is almost

100 % and it is bigger than the DSSD so all recoil implantation signals in the DSSD

will also have a signal from the MWPC [87].

PIN diodes

Upstream of the DSSD is a box of 28 silicon PIN diodes. Some of the α particles

or conversion electrons emitted by implanted recoils which escape from the DSSD

will be detected by the PIN diodes. This improves the total efficiency for detecting

these decays in GREAT.

Planar germanium detector

The planar germanium detector measures X-rays and low-energy γ rays. It has a

thickness of 15 mm and an area of 120 mm× 60 mm, divided into 5 mm× 5 mm

pixels. To reduce any attenuation of γ rays emitted from particles implanted in the

DSSD the planar detector is only about 10 mm behind it and has a thin beryllium

entrance window.

Clover germanium detectors

Three clover germanium detectors are positioned around GREAT to measure

higher-energy γ rays. One of these is above the DSSD and the other two are either

side of it. The clovers are similar to those at the target position (described in

section 5.2) but the crystals in each are used as four individual detectors without

add-back.

5.5 Electronics and data acquisition
Figure 5.9 shows a diagram of the data acquisition system at JYFL. The DSSD

uses analogue electronics with signals sent to shaping amplifiers and constant fraction

discriminators to determine their energies and times and then to VXI time-stamping

analogue-to-digital converters (ADCs). All other detector channels use fully digital

electronics. Signals from the detector pre-amplifiers are sent through gain and offset
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Figure 5.9: Signal processing for TDR data acquisition at JYFL.

(GO) boxes to Lyrtech ADCs with 14-bit resolution and a 100 MHz sampling rate.

The ADCs use a moving-window deconvolution algorithm [92] to find the signal

energies and times.

Using digital electronics each channel in SAGE can count at rates up to around

30 kHz. Count rates at the focal plane are much lower (because there is much less

background) and faster signal processing is not as important but digital electronics

give better resolution and a more linear energy response at low energies.

In a traditional recoil-decay tagging experiment (section 6.1) a common trigger

is used for all channels. This leads to high dead times, particularly when tagging

on longer-lived states. To overcome this problem JYFL uses the total data readout

(TDR) system [93]. Each channel triggers individually and the data is stamped with

a time signal (with a 10 ns resolution) and its channel number before being sent to a

common data stream and written to disk. The dead time for each channel depends

only on the intrinsic dead time of each individual detector. For data analysis the

Grain data-sorting software [94] reconstructs events from the data stream, with the
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triggering channel and the event time delay and width defined in software. In the

analysis from this experiment the trigger was any DSSD strip, with 4 µs long events

starting 2 µs before the DSSD signal.

5.6 Calibration

Energy calibration

All germanium detectors were calibrated using sealed 152Eu and 133Ba sources.

For the SAGE silicon detector open 133Ba and 207Bi sources were used. An open

133Ba source was also used for DSSD-X and the PIN diodes. A mixed α source

containing 239Pu, 241Am and 244Cm was used to calibrate DSSD-Y. The source

was outside the DSSD so α particles from it lost around 60 keV of energy passing

through the detector dead layer. For α decay of nuclei implanted into the DSSD this

did not occur and all the α particle energy was absorbed by the detector. This shifts

the energies of observed α-decay peaks to around 60 keV higher than expected. The

energy loss of electrons in the detector dead layer is negligible [95] so no adjustments

are needed for the DSSD-X calibration. Calibration coefficients were calculated for

each detector channel from a quadratic fit to raw peak centroids and known peak

energies [96], except for DSSD-Y where there were only three degrees of freedom in

the fit (from only three data points) and a linear fit was used.

Efficiency calibration

The efficiency of the detectors in SAGE was measured using the same radioactive

sources as the energy calibration. For the sealed sources absolute efficiencies were

found using measured activities of the sources corrected for the decay since the time

of measurement. For the open electron sources the activity was not known so the

germanium detectors were used to measure the activity of the sources to calibrate

the silicon detector efficiency.
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(a) Fitted efficiency curves for the germanium detectors in the two beam times.
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(b) Fitted efficiency curves for the silicon detector in the two beam times with the
different voltages on the HV barrier. Increasing the barrier voltage reduces the efficiency
at low energies but the data for −38 kV was taken in a different beam time when the
overall detector efficiency was higher. The different size error bars on the experimental
data points are because the 133Ba and 207Bi data were not measured for the same length
of time.

Figure 5.10: Fitted efficiency curves for SAGE silicon and germanium detectors.
Experimental data points are also shown for one set of data in each case.
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Table 5.2: Values of the parameters for the curves fitted to the SAGE detector
efficiency data.

(a) For the germanium detectors, using equation 5.3.

Run A B D E F
2013 4.75 3.1 3.54 -0.63 0.16
2016 4.54 2.37 3.53 -0.64 0.15

(b) For the silicon detector, using equation 5.4.

Run HV barrier /kV a b c d e
2013 38 -25.5 10.3 -0.94 -0.0038 -0.0007
2016 28 2.53 -5.85 2.16 -0.21 -0.0002
2016 32 1.89 -5.76 2.18 -0.21 -0.0004

The curve fitted to the efficiency data for the germanium detectors has the form

log(ε) =
[
(A+ Bx)−3 + (D + Ey + Fy2)−3

]−1/3
(5.3)

where ε is the efficiency, x = log(Eγ/100), y = log(Eγ/1000) and Eγ is in units of

keV [97].

The curve fitted to the efficiency data for the silicon detector has the form

log(ε) = a + bx + cx2 + dx3 + ex4 (5.4)

where x = log(Eγ) [98].

Figure 5.10 shows the fitted efficiency curves and table 5.2 lists their parameters.

The efficiency of the germanium array changes when individual detectors within it

are swapped so efficiency curves were found separately for each beam time. For the

silicon detector the efficiency at low energies depends on the operating voltage of

the high-voltage barrier so separate efficiency measurements were made for each

barrier voltage. When they were used in the data analysis the efficiency curves for

each part of the experiment were scaled by the number of recoils in that part and

added together.

Efficiency curves from GEANT simulations by Andreyev et al. [91] were used for the
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5.6 Calibration

detectors in GREAT.

Time resolution

Although the data acquisition electronics have a time resolution of 10 ns the

intrinsic time resolutions of the detectors is not this good. The measured time

resolutions are around 65 ns for the SAGE germanium detectors and 50 ns for the

silicon detector pixels. Using Grain the timing of each detector channel can be

shifted backwards or forwards by multiples of 10 ns. This can be used to correct for

any difference in timing (for example from differences in cabling) between different

elements within SAGE or GREAT.

Doppler correction

SAGE is calibrated with a source fixed at the target position, but 254No recoils

move through the spectrometer as they leave the target. The energies of γ rays are

Doppler shifted by different amounts depending on their emission angle relative to

the recoil’s direction. The shifted energy, E′, is related to the energy in the frame of

the recoiling nucleus, E, by the equation,

E′ = E (1 + β cos θ) (5.5)

where θ is the angle between the emitted γ ray and the beam direction and β = v
c

with v = recoil velocity and c = the speed of light. The value of β is found by looking

at the energy shift of γ rays observed in the three rings of germanium detectors,

which are at different angles to the beam direction.

For the silicon detector the Doppler shifted energy must also take into account

the rest mass of the electron, me,

E′ =
E +me + β cos θ

√
E2 + 2meE√

1− β2
−me (5.6)

The emission angle of electrons is not known, because of the magnetic fields
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used to transport them to the SAGE silicon detector. Simulations of the SACRED

spectrometer [99] showed that 150◦–160◦ was the most common emission angle for

electrons reaching the detector, so a value of θave = 150◦ is used for the Doppler

correction of all SAGE pixels.
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Chapter 6

Data analysis and simulations

6.1 Recoil-decay tagging
Most of the radiation at the target position is background and it is necessary to

identify any γ rays or conversion electrons from 254No within this. Recoil-decay

tagging (RDT) [100–102] identifies prompt radiation from 254No recoils which reach

the focal plane. When recoiling 254No nuclei from the target position reach GREAT

they pass through the MWPC and are then implanted into the DSSD. Gating on

the particle’s time of flight (ToF) from the MWPC to the DSSD and its energy

loss (dE) as it passes though the MWPC discriminates between fusion-evaporation

recoils and any contamination from unreacted beam which is not removed by RITU.

The α decay of 254No is then identified by its energy,

7.8 MeV < Eα < 8.2 MeV

and correlated with a recoil implantation event in the same DSSD pixel within around

five half-lives earlier,

∆t < 275 s

Data is only taken from the detectors at the target position in coincidence with a

correlated recoil (taking into account flight time through RITU). Figure 6.1a shows

this schematically and figure 6.2 shows the effect on the SAGE germanium detector

spectrum.
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(b) Recoil-isomer tagging on conversion electrons from decay of the slow isomer

Figure 6.1: Schematic diagrams of recoil-decay tagging using correlations between
recoil implantations and decays in a single DSSD pixel.

For the 208Pb + 48Ca reaction the cross section for 2n evaporation is so much bigger

than for any other channel that taking prompt data for any recoil which passes the

ToF-dE gate, without requiring a correlated α-decay, gives a recoil-tagged spectrum

(figure 6.2) with no contamination from other reaction channels. Comparing this

with the recoil-decay tagged spectrum confirms that it has no extra peaks from

contaminant channels, but the recoil-tagged spectrum has more counts making it

easier to identify and fit peaks in it.

Recoil-isomer tagging

Figure 6.1b shows a variation of the RDT technique which tags on the decay

of an isomeric state, identified by the emitted cascade of conversion electrons in
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each of the isomers are shaded.
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the DSSD, instead of an α decay [103]. Tagging on correlated chains of recoil →
isomer → α decay can be used to confirm that the recoil-isomer tagged spectrum

is free of contamination in the same ways as recoil-decay tagging is used to check

recoil-tagged data.

The two isomeric states in 254No can be separated by tagging on chains of recoil

→ isomer → isomer and by their different half-lives. The time distribution of any

radioactive decay follows an exponential decrease,

dN

dt
= Nλe−λt (6.1)

and making the substitution θ = loge(t) transforms this into

dN

dθ
= Nλe−λe

θ

eθ (6.2)

which is a peak with a shape independent of the decay half-life [104]. The height

of the peak depends on the number of decays, N, and its position depends on the

half-life, with the centroid at loge(1/λ). Using logarithms means that a single time

distribution can show peaks from decays with half-lives which vary by several orders

of magnitude. Figure 6.3 shows the time distribution for isomeric decays in 254No,

with two separate peaks from the two isomers. The fitted curves give a half-life for

the slow isomer of

t 1
2

= 266 ms

and for the fast isomer

t 1
2

= 170 µs

The time gate for recoil-decay correlations for the slow isomer is

1.5 ms < ∆t < 2200 ms
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6.2 SAGE background subtraction

and for the fast isomer

∆t < 1.5 ms

The slow isomer is identified from recoil → slow isomer chains but the identification

of the fast-isomer uses recoil → fast isomer → slow isomer chains. The energy gate

for isomeric decays is set separately for each DSSD-X channel to be the total useful

range above electronic noise and below overflow.

6.2 SAGE background subtraction
Even after using RDT to identify prompt radiation in SAGE the silicon detector

spectrum still contains a lot of background. The background is also seen outside the

recoil-SAGE time gate (figure 6.4a) so extra time gates before and after the prompt

radiation are used to fill background spectra. After normalising the background

spectra to the prompt radiation spectrum using the relative widths of the time

gates they are subtracted from the prompt SAGE electron spectrum. This leaves a

spectrum containing only electrons associated with 254No. Figure 6.4b shows spectra

before and after this background subtraction. Some background is still left but this

is from unresolved transitions in 254No feeding into the ground-state band [58].

The spectra from the SAGE germanium detectors have much less background and

more significant peaks so the prompt spectra in coincidence with 254No recoils are

used without any background subtraction.

6.3 Peak fitting
Peaks in the spectra are fitted using the tv software package [105]. A polynomial

background can be fitted either side of the peak. The fit is weighted using the

uncertainties on the numbers of counts in each bin of the spectrum and tv can

calculate the uncertainties using either a Gaussian or a Poisson distribution [106].

The Poisson distribution is better for peaks with small numbers of counts. The

fitted peak areas are corrected for detector efficiency using the efficiency curves from
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Figure 6.4: Time gating and background subtraction for SAGE silicon detector
spectrum.
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6.4 Geant4 simulations

section 5.6 to find the intensities.

6.4 Geant4 simulations
To help with interpretation of experimental results a Geant4 simulation package

for the SAGE spectrometer is available [107,108]. Geant4 is a software toolkit which

uses Monte Carlo methods to simulate the transport of particles and their interactions

with matter [109]. The simulation package for SAGE uses Geant4 to reconstruct the

geometry of the spectrometer and the electromagnetic fields inside it. It takes input

data files describing possible level schemes, generates γ rays and conversion electrons

with the correct energies. These are then tracked through the spectrometer and

simulated energy spectra from the silicon and germanium detectors are produced.

Simulations used in this work have been run with Geant4 version 10.0.4 with the

emstandard_opt4 physics list.

Simulations can be run for many more events than it is possible to collect exper-

imental data for so the differences between the spectra for different possible level

schemes can be seen more easily. It is also possible to use the simulation to investigate

the performance of the spectrometer. The energy deposited in non-sensitive parts of

the spectrometer (for example the target wheel) can be found and different parts of

the geometry (for example silicon detector dead layers or the carbon foil unit) can

be turned on or off to see their effect on the observed spectra.

Detector resolution and efficiency

Geant4 can simulate the energy loss of particles before they reach the detector

volume and scattering into or between detector volumes but it does not reproduce

the intrinsic energy resolution of the detector. The energy recorded is always exactly

the same as the energy deposited by the interacting particle. To give more realistic

spectra the resolution for the detectors was measured experimentally at different

energies and a linear fit of peak full-width half-maximum (FWHM) against energy

performed. Figure 6.6 shows this.
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Figure 6.5: Experimental and simulated efficiency curves for the SAGE silicon
detector, both with the HV barrier at −38 kV. The experimental data is fitted as
described in section 5.6 and the simulated data is fitted with a cubic spline.

The efficiency of the simulated detectors is slightly higher than the measured

experimental efficiency, as shown in figure 6.5. This is corrected for by simulating

a series of mono-energetic γ-ray and electron sources at the target position and

producing efficiency curves from this data for both the germanium and silicon

detectors.

Figure 6.7 shows the steps in the processing of raw output from Geant4. A

Gaussian spread is applied to the energies, with the FWHM increasing with energy,

and the simulated spectra are then scaled by the ratio of the experimental efficiency

curve to the simulated curve. The simulated efficiency can only be measured above

the HV barrier voltage so the spectrum is cut off below this. Add-back in the

clover germanium detectors and escape suppression for γ rays scattered into the

BGO shields are also performed for the simulated data in the same way as for the

experimental data.
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Figure 6.6: Measured full-width half-maximum for the SAGE silicon detector, with a
linear fit to the data points. The measured points are from 133Ba and 207Bi sources.
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Figure 6.7: Processing of output from Geant4 simulations to match experimentally
measured resolution and efficiency. This example shows spectra from the silicon
detector for a simulation of the 254No ground-state band with 98700 simulated
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line in all the spectra marks the energy cut-off with the maximum HV barrier voltage
used in the experiment (−38 kV). A similar process is also used for the germanium
detectors.
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Chapter 7

Branching ratios and
E2/M1 transition intensities

In a rotational band the branching ratios for ∆I = 1 inter-band transitions and

∆I = 2 intra-band transitions depend on the reduced transition probabilities, B(M1)

and B(E2) (equations 3.26 and 3.28). The reduced transition probability B(M1) is

proportional to the square of the difference between the single-particle g factor, gK,

and the rotational g factor, gR (both discussed in section 2.5),

B(M1) ∝ (gK − gR)2 (7.1)

This means that the branching ratios are affected by the single-particle structure of

the band. Figure 7.1 shows the transition intensities for the same rotational band

with some different values of gK. This shows how the relative intensities of E2 and

M1 transitions varies with gK − gR, but depends only on its magnitude and not its

sign. The E2 transition intensity is higher if |gK − gR| is closer to zero and the M1

transitions dominate if |gK − gR| is bigger.

The rotational g factor, gR, can be calculated (equation 2.19) so if the relative

intensities of M1 and E2 transitions can be measured the single-particle g factor,

gK, can be determined. The value of gK depends on the orbitals occupied by the

unpaired protons and neutrons making up a state so the ratio of intensities for M1

and E2 transitions in a rotational band gives information about the band’s underlying
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7.1 E2/M1 electron intensity ratios

single-particle structure.

With enough data the intensities (I) of all transitions can be found by fitting their

peaks in a γ-ray spectrum, such as the simulated examples in figure 7.2a, and the

branching ratio IE2/IM1 found for the transitions depopulating each level in the band.

These branching ratios can then be compared to theoretical values calculated with

the gK values of different possible single-particle structures for the band.

7.1 E2/M1 electron intensity ratios
When only a more limited amount of data is available, for example the simulated

spectra in figure 7.2b, it is not possible to measure individual M1 and E2 transition

intensities. An alternative approach based on the summed intensity of all γ rays

from the band has been developed [110], but the dominance of internal conversion

over γ decay in the heaviest nuclei means that adapting this method to use electron

intensity ratios from SAGE is more useful.

The silicon detector spectrum can be split into two regions, one containing electrons

from M1 inter-band transitions and the other containing electrons from E2 intra-band

transitions. For M1 transitions the largest component of the conversion coefficient

is for the K shell so conversion electrons are mostly in the lower-energy part of the

spectrum. For E2 transitions the L-shell component of the conversion coefficient

is larger and the electrons have higher energies. Splitting the spectrum into these

two areas depends only on the general shape of the electron distribution and not

on being able to identify discrete peaks. The numbers of electrons in each of these

regions, IM1 and IE2, are measured and the ratio between them is calculated,

R =
IE2

IM1
(7.2)

As well as calculating R from the experimental spectrum it is also found from Geant4

simulations for the same level scheme with different gK values (which give different

branching ratios) and the experimental value can then be compared to the simulated
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Figure 7.2: Simulated spectra from the SAGE germanium detectors for two extreme
values of |gK − gR| with different numbers of events.
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Figure 7.3: Ratio of E2 and M1 electron intensities from simulated SAGE silicon
detector spectra with different numbers of events, for two extreme values of |gK − gR|.
The vertical blue line shows the number of recoil-isomer tagged events in the
experimental data.

values to find gK for the band.

Figure 7.3 shows the value of the ratio R from simulations with different values of

|gK − gR| for different numbers of events. As the number of events decreases the

uncertainty on the ratio increases but the ratio itself does not change significantly.

This makes it possible to investigate gK for a band with a much smaller amount of

data than would be needed to use γ-ray intensities from fitting individual peaks.

In order for the method to work it must be possible to separate the electron

spectrum into regions of M1 and E2 electrons, the limits for each of these regions

must be chosen and a background contribution to the experimental spectrum in each

region must be estimated. Each of these points is discussed in more detail in the

following sections.
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Figure 7.4: Regions of conversion electrons from M1 and E2 transitions shown on
the experimental recoil slow-isomer tagged SAGE spectrum.

7.2 M1 and E2 electron region limits
The division of the SAGE silicon detector spectrum into two separate regions, one

of electrons from M1 transitions and the other of electrons from E2 transitions, is

shown on a recoil-isomer tagged electron spectrum in figure 7.4 and this section

explains how the edges of each region have been chosen.

For the ratio of the M1 and E2 electron region areas to give useful information it

is also important that it is not strongly sensitive to the exact choice of the edges of

each region. This has been investigated with the recoil-isomer tagged SAGE data by

varying each of the edges while holding the other three constant. Figures 7.5–7.8

show the effect of this on the intensity ratio.

The lower limit of the M1 electron region is at 40 keV, just above the SAGE barrier

voltage. Electrons from the target position with energies less than this shouldn’t

reach the silicon detector so they are excluded from the M1 electron region. The

efficiency correction between the simulated and experimental spectra (section 6.4) is
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Figure 7.5: Change in E2/M1 electron intensity ratio as lower limit of M1 electron
region is varied for the experimental spectrum. The vertical line marks the chosen
limit of 40 keV.
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Figure 7.6: Change in E2/M1 electron intensity ratio as upper limit of M1 electron
region is varied for the experimental spectrum. The vertical line marks the chosen
limit of 180 keV.
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Figure 7.7: Change in E2/M1 electron intensity ratio as lower limit of E2 electron
region is varied for the experimental spectrum and Geant4 simulations with three
different values of |gK − gR|. The vertical line marks the chosen limit of 200 keV.
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Figure 7.8: Change in E2/M1 electron intensity ratio as lower limit of E2 electron
region is varied for the experimental spectrum. The vertical line marks the chosen
limit of 370 keV.

78



7.2 M1 and E2 electron region limits

also not possible below the barrier voltage.

The upper limit for of the M1 electron region is 180 keV. This is determined

from the K-shell electron binding energy of the atom (149 keV for nobelium). For

M1 transitions with energy lower than the K-shell binding energy it is not possible

to emit K-shell conversion electrons so the L-shell component of the conversion

coefficient is largest and the most energy electrons are at around Eγ − EL. For M1

transitions with energy greater than the K-shell binding energy the K-shell component

of the conversion coefficient dominates and most electrons have an energy Eγ − EK,

with only a much smaller number at Eγ − EL . This means most electrons from

M1 transitions will have energies less than the K-shell binding energy. The limit is

set slightly above this to take into account the resolution of the silicon detector.

Figure 7.6 shows that the ratio, R, does not vary much even when the upper edge

of this region is moved by ±20 keV.

The E2 transitions have higher energies than the M1 transitions and are all above

the K-shell binding energy, but the L-shell component of the conversion coefficient is

bigger than the K-shell component so most of the emitted conversion electrons are

from the L shell, with energy Eγ −EL (Eγ − 29 keV in nobelium). The lower limit of

the E2 electron region is set from the lowest energy E2 transition in the band minus

the L-shell binding energy. The lowest energy E2 transition in the band above the

isomer in 254No is 234 keV so the lower limit of the E2 electron region is at 200 keV

to include all E2 L-shell electrons. There is a gap left between the upper edge of the

M1 electron region and the lower edge of the E2 region so that moving the edge of

one does not affect the other. In figure 7.7 the value of R is affected more strongly

by moving this edge of this region. The ratio has also been plotted from simulated

spectra with a range of gK values with the lower edge of the E2 region varied in the

same way as for the experimental data. The values of R from simulations with any

value of gK vary with the E2 region lower limit in the same way as the experimental

R so the value of gK found by comparing experiment and simulation will be the same

even if the edge of the region is moved.
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7 Branching ratios and E2/M1 transition intensities

0

50

100

150

200

250

300

C
o

u
n

ts
/

2
ke

V

Recoil-tagged

0 50 100 150 200 250 300 350 400

Energy /keV

0

20

40

60

80

C
o

u
n

ts
/

3
ke

V

Recoil-isomer tagged

Figure 7.9: Recoil-tagged and recoil-isomer tagged SAGE silicon detector spectra
with modelled background curves.

The upper limit of the E2 region is at 370 keV, just above the highest E2 transition,

but its exact position makes only a small difference to the E2/M1 intensity ratio

because the conversion coefficient and detector efficiency both decrease with energy

and the number of observed electrons around this energy is very small.

7.3 Background

The difference between the background in the simulated and experimental SAGE

spectra must also be considered when the E2/M1 intensity ratios are compared.

The simulated level scheme includes only the rotational band being investigated, but

even after subtraction of time-random background (section 6.2) there will still be
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7.3 Background

background in the experimental spectrum from any other bands in 254No feeding

into the simulated band.

The background intensity, Ibgr, in the electron spectrum is modelled with the same

function of energy as was used for the SACRED spectrometer [59],

Ibgr(E) = a

(
1−

√
b

E

)
ecE (7.3)

The parameter b is the HV barrier voltage [111], and is set at b = 36 from the

average of the three different barrier voltages used, weighted by the number of events

at each voltage. The parameters a = 1440 and c = −0.02 are set so the shape of

the background distribution matches the recoil-tagged spectrum in the upper panel

of figure 7.9. This is then scaled to give an estimated maximum background for the

recoil-isomer tagged spectrum by setting a = 240 without changing b or c , as shown

in the lower panel of figure 7.9. Integrating the function numerically gives the total

background contribution to each of the M1 and E2 electron regions,

BM1 =

∫
M1

Ibgr(E) dE (7.4)

BE2 =

∫
E2

Ibgr(E) dE (7.5)

To take into account any uncertainty in estimating the background the ratio R is

found with a maximum and minimum (zero) background. With no background the

value is just

R =
IE2

IM1
(7.6)

To find the value with an estimated background the background in each region is

subtracted from that region’s area before the ratio is calculated

Rbgr =
IE2 − BE2

IM1 − BM1
(7.7)

81



7 Branching ratios and E2/M1 transition intensities

The experimental value of R is found from the average of these two values (which

would match an average estimated background) but the uncertainty on the value

includes the values within the uncertainties on each individual value (which is bigger

than if an average estimated background was used).

The much smaller total number of electrons in the E2 region means the contribution

of the background in it has a much greater effect on the ratio than the background

in the M1 region, but from equation 7.7 it can be seen that if the background in

both regions is increased each will have an opposite effect on the E2/M1 ratio. The

shape of the background distribution means that increasing the background in the

E2 region also increases the background in the M1 region and the effect on the

intensity ratio is smaller than it would be if the background in each region was varied

independently.

7.4 Initial population of levels

In prompt spectroscopy the intensity of transitions depends on the initial population

of the levels above them from the fusion-evaporation reaction, as well as the intensities

of the transitions feeding those levels. Entry distributions have been measured for

the 208Pb(48Ca,2n)254No reaction at beam energies of 215 MeV and 219 MeV [112]

and at 219 MeV and 223 MeV [113,114].

Simulations using level populations based on any of these entry distributions show

no significant difference so the 219 MeV measurement by Henning et al. [114], shown

in figure 7.10, is used and assumed to be valid for the 220 MeV beam energy in this

work.

7.5 Simulations

Simulations are run for the same level scheme with a range of gK − gR values from

−0.9 to +0.9 in steps of 0.05. For each step events are simulated with the SAGE

high-voltage barrier at 28 kV, 32 kV and 38 kV for a total of 100000 events, split
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7.5 Simulations
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Figure 7.10: Entry distribution and its spin projection for the 208Pb(48Ca,2n)254No
reaction with a 219 MeV beam energy. In the upper panel the solid red line shows
the 254No yrast line, the dashed black line shows the neutron separation energy, Sn,
and the dotted blue lines are the maximum excitation energy at the front and back
of the target, Emax. Modified from figure 1 of Henning et al. (2014) [114].
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7 Branching ratios and E2/M1 transition intensities
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Figure 7.11: Ratio, R, of E2 and M1 electron intensities from Geant4 simulations.
The curve is symmetric because R depends only on the modulus of gK − gR.

between the barrier voltages in proportion to the number of experimental isomer-

tagged events at each voltage. After applying corrections to the raw Geant4 output

for detector efficiency and resolution (section 6.4) the ratio R of the number of

counts in the E2 and M1 electron regions is found. This is plotted against gK − gR
in figure 7.11.

The value of R from an experimental spectrum can be drawn as a horizontal line on

figure 7.11 and from the points at which it crosses the simulated curve two possible

values of gK − gR will be found.

7.6 Summary
In this chapter a method has been developed to investigate the single-particle

structure of an isomeric state by determining a value for gK − gR from the conversion

electron spectrum of the band built on the isomer. The electron spectrum is split
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7.6 Summary

into separate regions of electrons from M1 and E2 transitions. The edges of each

of these regions have been justified and it has also been shown that the deduced

gK − gR should not be sensitive to small changes in the location of these edges. The

function used to model the background in the experimental spectrum has also been

discussed.
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Chapter 8

Ground-state band

Both γ rays and conversion electrons from the ground-state band of 254No have

been observed separately in previous experiments, but using SAGE is the first time

that they have been measured at the same time. This allows coincidences between

them to be seen and by measuring the intensities of γ rays and conversion electrons

from the same transitions experimental values for the conversion coefficients can be

calculated.

8.1 Conversion coefficients
Figure 8.1 shows recoil-tagged γ-ray and electron singles spectra. The electron

spectrum has had background subtracted using the method described in section 6.2.

Where possible the peaks have been fitted to find their energies and intensities and

table 8.1 gives details of these.

For the transitions where it is possible for the peak areas to be measured in both the

γ-ray and conversion-electron spectra the conversion coefficients can be calculated

using equation 3.19 and these are also listed in table 8.2b. The L- and M-shell

components of the conversion coefficients are plotted separately in figure 8.2a with

theoretical conversion coefficients for E1, M1, E2 and M2 multipolarity transitions,

calculated using BrIcc, also shown for comparison.

For some transitions the energy resolution of SAGE is good enough to resolve the

L-shell peak into two components: one from the LI and LII sub-shells, and one from
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8.2 Coincidences
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Figure 8.1: Spectra from the SAGE silicon and germanium detectors for recoil-
tagged data. γ-ray and conversion-electron peaks from the same transitions in the
ground-state band are shaded in the same colour and electron shells are labelled on
the silicon detector spectrum.

the LIII sub-shell. The ratios of the conversion coefficients for these sub-shells,

αLI
+ αLII

αLIII

(8.1)

are plotted in figure 8.2b, with theoretical values from BrIcc also shown.

8.2 Coincidences

Coincidences between γ rays and conversion electrons from different transitions

show that they are both part of the same cascade in a nuclear decay and helps to
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8 Ground-state band
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8.2 Coincidences

Table 8.1: Ground-state band transition energies, E, and intensities, I, measured
with SAGE. Subscripts refer to γ rays, L-shell electrons and M-shell electrons.

(a) Measured energies for γ rays and L- and M-shell conversion electrons.

Transition Eγ /keV EL /keV EM /keV
4+ → 2+ 101.2(6) 75(1) 91(2)
6+ → 4+ 159.1(2) 133(1) 154(3)
8+ → 6+ 214.5(2) 186(2) 207(3)

10+ → 8+ 267.8(1) 242(3) 263(5)

(b) Measured intensities, corrected for detector efficiency, for γ rays and L- and M-shell
conversion electrons. Total conversion coefficients, α, from the experimental peak areas
and from BrIcc are also listed.

Transition Iγ IL IM αexp αBrIcc

4+ → 2+ 5.6(27) 120(30) 30(11) 27(14) 30(1)
6+ → 4+ 31(4) 82(23) 31(7) 3.6(9) 3.99(6)
8+ → 6+ 60(5) 35(6) 17(3) 0.9(1) 1.20(2)

10+ → 8+ 54(5) 14(4) 6(2) 0.37(9) 0.532(8)
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Figure 8.3: Time differences between hits in the SAGE silicon and germanium
detectors with shaded areas showing the gates used to select coincidences.
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8 Ground-state band
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8 Ground-state band

place the transitions in a level scheme. When the data is sorted each event is 4 µs

long so as well as these true coincidences there will also be random coincidences

between unrelated signals in different SAGE detector elements (germanium detector

crystals or silicon detector pixels). Within each event the true coincidences are

identified with a much tighter gate on the time difference, ∆t, between the signals,

−60 ns ≤ ∆t ≤ 70 ns

The distribution of time differences between hits in the germanium and silicon

detectors are shown in figure 8.3.

Spectra can be produced of γ rays or electrons in coincidence with any chosen

transition by gating on the energy of one hit in each coincident pair. The first hit in

the pair is only added to the spectrum if the second hit passes an energy gate used to

identify the chosen transition. It is also possible to identify transitions in coincidence

with any one of a number of chosen transitions by comparing the second hit with a

set of energy gates. In this case a hit is only added to the resulting spectrum once,

even if it is in multiple-coincidence with more than one other hit passing more than

one of the set of energy gates [115].

Using SAGE transitions can be identified by gating on either γ rays or conversion

electrons of the correct energy. Spectra in coincidence with γ rays from the ground-

state band are shown in figure 8.4. The gates used to identify the ground-state band

transitions have a width of 4 keV centred on the transition energy, Eγ . Figure 8.5

shows hits in coincidence with L-shell electrons from the ground-state band. The

energy gates have a width of 6 keV centred on the LI electron energy, Eγ − 29 keV.

In both cases spectra are also shown of hits in coincidence with any of the gates

used.
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8.3 Discussion

8.3 Discussion

The ground-state band has been observed previously and the SAGE data does not

extend the level scheme. The singles spectra (figure 8.1) show how as the transition

energy decreases and the conversion coefficient increases the electron peaks become

relatively more important than the γ-ray peaks. The lowest-energy transition in the

band (Eγ = 44(1) keV, 2+ → 0+) is not seen in either spectrum. Its low energy

means it has a very large conversion coefficient of α = 1550(200) and γ ray emission

is unlikely, but L-shell electrons from it have energies of 15–22 keV and are stopped

from reaching the silicon detector by the high-voltage barrier.

Conversion coefficients

Comparing the measured conversion coefficients from the ground-state band

transitions with values from BrIcc (figure 8.2a) shows that they are not consistent

with either E1 or M2 multipolarity. E2 multipolarity looks most likely, but M1 is also

possible.

The relative size of the conversion coefficients for different electron shells also

varies with transition multipolarity, and comparing the experimental ratios of LI +

LII to LIII conversion coefficients to theoretical values for M1 and E2 multipolarity

(figure 8.2b) rules out M1 multipolarity and leaves E2 as the only possible multipolarity

of the ground-state band transitions. This is as expected for a rotational band.

Although the uncertainties on the calculated conversion coefficients are large

the theoretical conversion coefficients for different multipolarity transitions vary by

several orders of magnitude and the multipolarity of the transitions can be determined

experimentally. For a rotational band built on the ground state of an even-even nucleus

the multipolarity of all transitions could be deduced to be E2 without measuring

the conversion coefficients, but the measurement shows that with enough data it is

possible to use SAGE to determine transition multipolarities.

93



8 Ground-state band

Coincidences
Coincidence spectra gated on either γ rays or electrons from the ground-state

band show peaks in both the germanium and silicon detector spectra from other

transitions in the band. This confirms that both the γ rays and conversion electrons

are from transitions in the same band. Coincidences between electrons from more

highly-converted low energy transitions and γ rays from higher energy transitions can

be seen, for example the 367 keV γ rays in coincidence with the 4+ → 2+ electrons

in the top-left spectrum of figure 8.5. Gating on γ rays shows the 102 keV γ-ray

peak from the 4+ → 2+ transition much more clearly than in the singles spectrum

but it is still not possible to identify the 2+ → 0+ transition.

The spectra in coincidence with conversion electrons show a greater number

of nobelium X-rays than those in coincidence with γ rays. These are the X-rays

emitted when atomic electrons re-arrange themselves after a conversion electron

is emitted. The relative importance of γ rays and conversion electrons for higher-

and lower-energy transitions is also seen in the spectra. As the transition energy

increases fewer conversion electrons are emitted and the number of coincident hits

in figure 8.5 drops quickly as the transition energy is increased. For γ rays more

coincidences are seen as transition energy increases, before the number falls again

due to lower detector efficiency.

There is no background subtraction performed on the coincidence spectra and for

the lower-energy transitions in the silicon detector a lot of background electrons also

pass the energy gate. This gives more background from random coincidences in the

electron-gated spectra.
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Chapter 9

Level scheme
between the isomers

The two proposed level schemes above the slow isomer in 254No are both based

on decay spectroscopy of the fast isomer, but in this work the structure above the

slow isomer can also be investigated using recoil-isomer tagged in-beam spectroscopy.

Figure 9.1 shows the two suggested level schemes along with a third simpler level

scheme in which the 605 keV transition directly depopulates the fast isomer

The main differences between the level schemes are the placement of the 605 keV

transition. In level scheme C it depopulates the fast isomer directly and should not

be seen in the prompt data. This level scheme can therefore be ruled out if any

γ rays or conversion electrons from the 605 keV transition are seen in SAGE.

In level schemes A and B the 605 keV transition does not directly depopulate the

fast isomer and in either case it would be expected to be seen in the prompt data,

but the intensity would be different. Each excited state can be populated either by

transitions into it from decay of higher-energy excited states in 254No or directly from

the fusion-evaporation reaction, but the state is depopulated only by decay through

the transitions out of it into lower-energy states. This means the total intensity

of transitions out of any state must be at least as much as the total intensity of

transitions into the state. Transitions nearer the bottom of the level scheme must

have higher intensities than those near the top. If level scheme A is correct then the

intensity of the 605 keV transition should be higher than the transitions placed in
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9 Level scheme between the isomers
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9.1 Intensity of 605 keV transition

Table 9.1: Transition intensities above the slow isomer measured in-beam with SAGE
compared to previously measured values from decay spectroscopy of the fast isomer.
Intensities are corrected for detector efficiency and internal conversion and normalised
to the 605 keV peak.

Intensity Intensity
Energy /keV Area /counts (in-beam) (decay spectroscopy [49])
159.3(7) 22(10) 3.8(21) 0.99(17)
179(2) 25(12) 3.3(19) 0.90(13)
604(3) 48(15) 1.0(3) 1.00(8)

the 10+ band above it, but if level scheme B is correct and the 605 keV transition is

placed above these transitions (now in an 8− band) then the intensity of the 605 keV

transition should be lower.

The other difference between level scheme A and level scheme B is the 482 keV

transition in level scheme A. This is expected to have a low intensity [49] but if it is

seen in SAGE then level scheme A is the only one of these three proposals which

could be correct.

In this chapter the differences between the level schemes are investigated using the

recoil-isomer tagged SAGE spectra by looking for the presence and intensity of γ rays

or conversion electrons from the 605 keV or 482 keV transitions. Background from a

74Ge(n,n’γ) reaction is also considered when the 605 keV transition is investigated.

9.1 Intensity of 605 keV transition

The middle and lower panels of figure 9.2 show the recoil-isomer tagged spectra

from SAGE. In the spectrum from the germanium detectors it is possible to fit the

peaks at 159 keV, 179 keV and 605 keV. The peaks from the transitions expected

in the band at 123 keV and 145 keV can’t be fitted because they are too close

to the peaks from nobelium Kα and Kβ X-rays. Table 9.1 gives the energies and

intensities of the fitted peaks, with intensity data from a previous decay spectroscopy

experiment also listed for comparison. The intensity of the 605 keV peak in the

in-beam data is relatively less than in the decay spectroscopy data.
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9 Level scheme between the isomers
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Figure 9.2: Spectra from the focal-plane clover detectors in coincidence with the
decay of the fast isomer and from SAGE for prompt data from recoil-isomer tagged
events. The top spectrum shows γ rays in the focal-plane clover detectors in
coincidence with the decay of the fast isomer. Arrows show some of the γ-ray peaks
from 254No. The 250 keV peak has not been seen in any previous experiments
and its origin is unknown. There is not enough data to identify any other γ rays
in coincidence with it. The middle panel shows the recoil-isomer tagged SAGE
germanium detector spectrum. The most prominent peaks are from nobelium X-rays
and some of the γ-ray peaks from 254No are labelled. The bottom panel shows the
recoil-isomer tagged SAGE silicon detector spectrum after background subtraction.
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9.2 74Ge(n,n’γ)
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Figure 9.3: Raw spectrum (after Doppler correction) from the SAGE germanium
detectors. The arrows show the biggest peaks from Ge(n,n’γ) reactions.

9.2 74Ge(n,n’γ)
The shape of the 605 keV peak in the SAGE germanium detector spectrum is

broader than any of the other γ-ray peaks and the raw SAGE germanium detector

spectrum (figure 9.3) has a peak in the same position from the 74Ge(n,n’γ) inelastic

neutron scattering reaction (Eγ = 596 keV [116]) occurring within the detectors.

The broad shape of the peak in the raw spectrum, with a tail on the high-energy side,

is characteristic of inelastic neutron scattering because the energy of the γ ray is

summed with any kinetic energy transferred to the germanium crystal lattice from the

neutron [117]. Applying the Doppler correction to the different rings of germanium

detectors in SAGE also shifts the peak energies in each of them and broadens the

peak in the total spectrum from all three rings.

The 208Pb + 48Ca fusion-evaporation reaction used to make 254No also produces

two neutrons. These are emitted in coincidence with 254No recoils and this means

any γ rays from neutron scattering can’t be removed from the spectrum by the

subtraction of random-time background (section 6.2) and all possible recoil-decay

tagging chains which identify 254No recoils will also identify γ rays from scattering

of the two neutrons.
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9 Level scheme between the isomers

The time of flight for neutrons from the target position to the germanium detectors

is longer than for γ rays but the distance is so short (250 mm [107]) that the time

difference is not enough discriminate between them [118].

In this experiment there is not enough data for it to be possible to split the peak at

about 605 keV into separate components from 254No and from neutron scattering,

but in this section evidence is shown that at least some of the intensity is from the

inelastic neutron scattering reaction.

Doppler shift

The γ rays from 254No are Doppler-shifted because the recoiling nuclei are moving

relative to the detectors. For the (n,n’γ) reaction the γ rays are emitted from 74Ge

nuclei within the detector and there is no Doppler shift. If Doppler correction is

not applied to the data then looking at each ring of germanium detectors in SAGE

separately should show the 254No γ rays at slightly different energies, E′, related to

the angle of the detectors, θ, by equation 5.5. Plotting E′ against cos θ should give

a straight line with a positive gradient proportional to the peak energy in the frame

of the recoils. The γ rays from the (n,n’γ) reaction are emitted from 74Ge nuclei

inside the detector so there is no Doppler shift in their energies.

Figure 9.4 shows that for 254No X-rays and transitions in the ground-state band

and out of the 3+ state the uncorrected energy does increase with cos θ but for the

peak at about 605 keV there is almost no difference in energy between the different

detector rings.

Efficiency of clover germanium detector rings

The position of the SAGE target wheel inside the target chamber means it absorbs

γ rays emitted from the target position towards the downstream ring of clover

detectors more than γ rays emitted towards the upstream ring of clover detectors.

This gives a difference in efficiency between the two rings, despite the geometry of

the detectors being the same. Figure 9.5 shows this for the calibration data with

100
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Figure 9.4: Energies of the same peaks in different SAGE germanium detector rings
with no Doppler correction. Energies are shown for 254No Kα1 X-rays (128 keV),
254No ground-state band peaks (215, 268 and 318 keV), 3+ → ground-state band
(943 keV) and the 605 keV peak.
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Figure 9.5: Ratio of numbers of counts in the two rings of clover germanium detectors
in SAGE. The horizontal line marks where the number of counts in upstream and
downstream detector rings is the same. A line has also been drawn through the data
points for 152Eu and 133Ba sources to guide the eye. It is not a line of best fit. Error
bars on the data points from the 152Eu and 133Ba sources and neutron scattering
peaks in the raw spectrum are smaller than the symbols used to plot them.

the 152Eu and 133Ba sources and for γ rays from the recoil-tagged 254No spectrum,

where the ratio of number of counts in the two rings is roughly 1.4. For any γ rays

emitted by scattering reactions within the germanium detectors there is no shadowing

effect from the target wheel and the efficiency is the same in both rings of clover

detectors, as shown in figure 9.5 for the neutron scattering peaks from the raw

germanium detector spectrum. The ratio of numbers of counts for the 605 keV peak

in figure 9.5 is much closer to the raw neutron scattering than the recoil-tagged

254No. This suggests that these γ rays are not emitted at the target position.
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9.3 Conversion electrons from a 605 keV transition

Table 9.2: Expected number of electron counts in the SAGE silicon detector from a
605 keV transition in 254No.

Multipolarity K-shell electrons L-shell electrons
E1 1.7(5)× 10−3 0.9(3)× 10−3

M1 5(1)× 10−2 2.5(8)× 10−2

E2 7(2)× 10−2 4(1)× 10−2

M2 0.10(3) 0.06(2)

9.3 Conversion electrons from a 605 keV transition

Observation of conversion electrons from a 605 keV transition in 254No would

not have the same problems with background from 74Ge(n,n’γ) and could provide

unambiguous evidence for the presence of the transition in the in-beam data. The

number of electrons detected, Ne, is linked to the number of γ rays, Nγ , by

Ne =
αNγεe
εγ

(9.1)

where α is the conversion coefficient and εγ and εe are the efficiencies for detecting

γ rays and electrons. The fitted area of the peak at 605 keV (assuming a Gaussian

peak shape) is

Nγ = 48(15) counts

Assuming that all these counts are 254No γ rays the expected numbers of electrons

detected can be calculated assuming different possible multipolarities for the 605 keV

transition, and these are listed for the K- and L-shell peaks in table 9.2. For higher

multipolarities than these the Weisskopf estimate for the half-life becomes so long

that the electrons would not be seen in the prompt data. Rounding any of the

numbers of electrons in table 9.2 to the nearest whole count gives zero, the same

as if there was no prompt 605 keV transition. No counts are seen at the expected

energies in the experimental spectrum, but this does not help to determine if the

605 keV transition is seen in the prompt data.
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Figure 9.6: Enlarged section of recoil-isomer tagged SAGE germanium detector
spectrum, showing the location of the 482 keV peak seen in decay spectroscopy [49].
The shaded area is the region used to find the background when a limit is put on
the intensity of the 482 keV peak and the thicker red line is the fitted average
background.

9.4 Intensity of a 482 keV transition

Observation of the 482 keV transition from level scheme A in the in-beam data could

also help confirm this level scheme without any problems from (n,n’γ) background.

There is no obvious peak seen above the background in the SAGE germanium detector

spectrum in figure 9.6, but confidence limits can be placed on the possible number

of counts from a 482 keV transition using the method described in Feldman and

Cousins (1998) [119] for Poisson processes with background.

Any γ rays from this transition are assumed to be in the energy range of 480–

484 keV and an average background is calculated from a linear fit to the spectrum in

the energy ranges 400–500 keV and 520–584 keV. The background region is chosen

to avoid the peaks at 511 keV and 605 keV. Figure 9.6 shows both the regions used

to find the background and the average fitted background. At a 90 % confidence
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9.5 Decay of the fast isomer

level the limits on the number of counts from a 482 keV transition are:

Lower limit = 0

Upper limit = 3.25

These can be corrected for detector efficiency, adjusted for internal conversion

(assuming E1 multipolarity [49]) and normalised to the 605 keV peak to give intensity

values directly comparable with table 9.1,

Lower limit = 0

Upper limit = 0.61

With the intensity of the 605 keV transition in 254No being hard to determine

accurately it is more useful to compare the 482 keV intensity to a different transition.

Taking the ratio of intensities of the 179 keV and 482 keV peaks in the decay

spectroscopy data gives
I(482 keV)

I(179 keV)
= 0.078(24)

but using SAGE the limits on the ratio are

0 <
I(482 keV)

I(179 keV)
< 0.018(9)

There is no evidence in the SAGE data for a 482 keV transition at the intensity

expected from level scheme A.

9.5 Decay of the fast isomer

The top panel of figure 9.2 shows the GREAT clover germanium detector spectrum

in coincidence with conversion electrons in DSSD-X from the decay of the fast isomer.

The peak at 605 keV is much narrower than the peak in the in-beam spectrum and

there should be much less neutron-scattering background at the focal plane so it is
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Figure 9.7: Sum of energy from all focal-plane detectors (DSSD, PIN diodes and
planar and clover germanium detectors) in the decay of the fast isomer.

assumed that this peak is entirely from a 605 keV transition in 254No.

Focal-plane energy sum

The sum of the energy deposited in all of the focal-plane detectors when the fast

isomer decays gives a lower limit on the energy difference between the fast isomer

and the slow isomer. Figure 9.7 shows that the total energy spectrum extends up to

around 1500 keV. The energy difference between the isomers is greater than this for

all three level schemes in figure 9.1 and it is not possible to use this spectrum to rule

out any of these level schemes.

9.6 Discussion

If there is an intermediate 10+ state between the isomers with a 605 keV transition

linking it to the band built on the 8− isomer (level scheme A in figure 9.1) then the

intensity of the 605 keV transition in the in-beam data should be at least as much as

the transitions placed in the 10+ band above it. Instead, the in-beam data (table 9.1)

shows that the 159 keV and 179 keV transitions have higher intensities than the

605 keV peak. Creating the nucleus directly in a fusion-evaporation reaction would
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9.6 Discussion

increase any side feeding of the 605 keV transition from other levels not populated

by the decay of the fast isomer. This would increase the intensity of the 605 keV

transition relative to those above it in the in-beam data compared to the decay

spectroscopy data, which is not what is seen experimentally. The uncertainties on

the intensities from SAGE are large, but the difference between the in-beam and

decay spectroscopy intensities is still significant.

When the transition intensities are compared they are corrected for internal

conversion with the assumption that the 605 keV transition has E1 multipolarity.

Changing the multipolarity could increase the intensity of the 605 keV transition in

the in-beam data, matching better with level scheme A, but it would also increase

the transition’s total intensity from the decay spectroscopy data. Changing the

intensity of the transition by the same factor in both cases does not change the

relative difference in intensity between the in-beam and decay spectroscopy data.

There is evidence from the Doppler shift and relative intensities of the two rings

of clover detectors for a peak in the recoil-isomer-tagged spectrum from inelastic

neutron scattering at around the same energy as the 605 keV γ rays from 254No. It is

not possible to split the peak in the in-beam spectrum into separate components from

these two sources or to determine if the peak is entirely due to neutron scattering

without any 254No γ rays. If the peak is split then the intensity of the transition in

254No is reduced even more and level scheme A is still inconsistent with the SAGE

data.

If all the intensity of the in-beam 605 keV peak is from neutron scattering then

the transition in 254No can directly depopulate the fast isomer (as shown in level

scheme C). If there is a contribution from a transition in 254No then there must be an

unknown intermediate structure between the fast isomer and the 605 keV transition

(as shown in level scheme B), or there could be a 605 keV doublet in 254No with one

transition depopulating the fast isomer and the other somewhere else in the level

scheme. Without determining unambiguously the source of the peak seen in SAGE

it is not possible to rule out any of these cases. If there are two different 605 keV
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9 Level scheme between the isomers

transitions then they will have the same Doppler shift and be even more difficult to

separate than γ rays from 254No and from the (n,n’γ) reaction.

The 605 keV γ rays seen at the focal plane in coincidence with the decay of the

fast isomer confirm that there is a transition with this energy in 254No somewhere

between the two isomers, but it does not give any more information about where

in the level scheme the transition should be placed. Any of the level schemes in

figure 9.1 is consistent with this observation.

Spin and parity of the fast isomer
If level scheme C is correct then the fast isomer decays by the 605 keV transition

into the 15− level in the band in the band built on the slow isomer [49, 50]. This

suggests a spin of 16 for the fast isomer and coupling together two 8− excitations

can produce a 16+ four-quasiparticle configuration. If the 605 keV transition does

directly depopulate a 16+ isomer to a 15− level then it would have E1 multipolarity.

With a half-life of 184 µs the reduced hindrance factor (section 3.3) for the decay is

fν = 42

This is within the expected range for K-hindered decays [38] and level scheme C

remains plausible with a 16+ assignment for the fast isomer.
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Chapter 10

Structure of the Kπ = 8- isomer

If all the transitions observed above the 8− isomer are placed in a single rotational

band (as in level schemes B or C from figure 9.1) then the method described in

chapter 7 can be used to find the value of gK for the bandhead. This can then

be compared to calculated values of gK for different possible single-particle states

with the right spin and parity to determine which of these is most likely to be the

single-particle structure of the isomer.

10.1 Finding gK for the slow isomer

The M1 and E2 electron regions are shown again in figure 10.1 and their limits

are:

M1 region = 40–180 keV

E2 region = 200–370 keV

The background curve (equation 7.3) with the parameters a = 240, b = 36 and

c = −0.02 is also shown in figure 10.1. The electric quadrupole moment of 254No

used to calculate B(E2) for the simulations is Q0 = 13.3 eb [56].

The E2/M1 electron intensity ratio is shown for experimental and simulated spectra

in figure 10.2. The crossing of the experimental value and the line connecting the
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Figure 10.1: Experimental recoil-isomer tagged SAGE silicon detector spectrum.
The shaded areas show the E2 and M1 electron regions and the smooth black line is
the modelled background which is subtracted from the area of each region.

simulated points gives a pair of possible gK − gR values for the band,

gK − gR = −0.16+0.05−0.09

gK − gR = +0.16+0.09−0.05

The nominal value of gK − gR is taken from the average experimental ratio (the solid

green line in figure 10.2) and the uncertainties include the range of values within the

uncertainties both with and without subtraction of modelled background from the

spectrum (everything within the two shaded green regions in figure 10.2).

10.2 Discussion

There are three possible 8− two-quasiparticle configurations in 254No which are

predicted to be at about the right energy for the slow isomer [121–123]. Table 10.1
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Figure 10.2: E2/M1 electron intensity ratio from experimental and simulated SAGE
spectra. The dashed green horizontal lines show the experimental ratios with (lower
line) and without (upper line) subtracting the modelled background, with lighter
green bands either side showing the uncertainty on each. The solid green line is the
average of these two values. The red lines shows the ratio from Geant4 simulations.
The vertical lines mark the values of gK − gR for three calculated 8− states, with
unquenched gR in light blue and quenched gR in dark blue.

Table 10.1: Possible quasiparticle configurations for the 8− isomer, with calculated
gK values (from the swbeta code [120]) and gK − gR for unquenched and quenched
rotational g factors. The spin g factors, gs , for the protons and neutrons are reduced
from the values for free nucleons by a factor of 0.7.

gK − gR gK − gR
Configuration gK (unquenched) (quenched)

7
2

+
[613]ν ⊗ 92

−
[734]ν -0.28 -0.68 -0.56

7
2

+
[624]ν ⊗ 92

−
[734]ν -0.02 -0.42 -0.30

7
2

−
[514]π ⊗ 92

+
[624]π +1.01 +0.61 +0.73
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10 Structure of the Kπ = 8- isomer

lists them with their calculated gK values and gK − gR for each configuration with

unquenched (gR = Z/A = 0.402) and quenched (gR = 0.7×Z/A = 0.281) rotational

g factors. Comparing the gK − gR values for each configuration with the values

found from figure 10.2 shows that none of them are within the uncertainty for either

experimental value, but the

{
7
2

+
[624]ν ⊗ 92

−
[734]ν

}8−
two quasi-neutron structure with a quenched gR is closest.

Previous experiments [56] have given the structure of the isomer as the two-proton

state, based on γ-rays seen in coincidence with the decay of the fast isomer. The

value of gK − gR was calculated from the E2/M1 γ-ray branching ratio out of levels

in the band built on the isomer. A separate value was found using the transitions

depopulating each level. The values found were

gK − gR = −0.60(8)

gK − gR = +0.60(8)

There were only three levels where the intensity of both the transitions were big

enough to be measured, so this result is based only on those. The method used

to find the values of gK − gR in the current work should be sensitive to conversion

electrons from transitions depopulating all levels in the band.

The two-neutron assignment suggested here for the isomer is the same as for

the 8− isomers in the N = 150 isotones, including 252No, but a proposed N = 152

deformed shell gap would be expected to increase the excitation energy of two-neutron

states in N = 152 nuclei above the two-proton state [122]. Not all calculations

predict a deformed shell gap at N = 152. There are also HFB calculations using

the Skyrme SLy4 interaction for 250Fm which prefer a gap at N = 150 [124] and

projected shell model calculations which predict 72
+

[624]ν ⊗ 92
−

[734]ν to be the
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10.2 Discussion

lowest-lying 8− state in 254No [62].

Comparison with hafnium isotopes

In the rare-earth region where K isomerism is also common both 176Hf and 178Hf

have two 8− states (one two-proton 72
+

[404]π ⊗ 92
−

[514]π and one two-neutron

7
2

−
[514]ν ⊗ 92

+
[624]ν). Only the lower-lying of the two states is isomeric but γ rays

from rotational bands built on both configurations have been seen experimentally

in both nuclei [76,125]. Figure 10.3 shows partial level schemes for both isotopes.

Similarly to this, it is likely that in 254No all three possible 8− configurations exist,

even if they have not yet all been identified.

The method used to determine gK assumes on all electrons are from the same

band or are part of a modelled background based on the recoil-tagged data. This is

likely to be true if the transitions within the 8−1 isomeric band are more intense than

those in any other band. Without being able to measure and compare the intensity

of γ rays from more than one 8− band this can’t be checked experimentally, but in

both the hafnium isotopes the intensity of transitions within the 8−2 bands are less

than within the 8−1 band. Assuming that 254No is similar the other 8− states should

not affect the determination of gK for the slow isomer.

Conversion electrons from transitions between the 8− bands could also be a

problem. The transitions between the bands link levels with ∆I = 0 or ∆I = 1 and

have M1 multipolarity. These could give extra electrons in the M1 region of the

silicon detector spectrum. The spacing of levels within the 8− bands are similar

(because the moments of inertia are similar) and these transitions can be grouped

into two sets (∆I = 0 or ∆I = 1) with similar energies within each set. The actual

energies of the transitions depend on the energy difference between the bandheads.

If the transitions have similar energies then any electrons from them will also have

similar energies and would be likely to form a broad peak in the electron spectrum,

instead of being spread evenly through it. This wouldn’t be possible to remove

with the current modelled background shape, but if there were a significant number
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10 Structure of the Kπ = 8- isomer

(a) Partial level scheme for 176Hf. The transitions are labelled with their γ-ray intensities
measured in the decay of the 14− isomer. Based on figure 1 from Khoo et al. (1975) [76].

(b) Partial level scheme for 178Hf. The transitions are labelled with their energies and
(in brackets) their γ-ray intensities measured in the 176Yb(α,2n)178Hf reaction. Based
on figure 1 from Khoo et al. (1977) [125].

Figure 10.3: Partial level schemes for 8− isomers in hafnium isotopes.
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10.2 Discussion

of electrons from this source they would be more obvious in the spectrum if they

were all grouped together and nothing like this is seen experimentally. Depending

on the energy difference between the 8− states these transitions could have higher

energies than the M1 transitions within the 8−1 band giving them smaller conversion

coefficients and reducing their contribution to the electron spectrum.

Mixing between two-proton and two-neutron states with the same Kπ is also seen

in the hafnium isotopes [125,126], but in 254No this has not been considered.
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Chapter 11

Conclusions

11.1 Structure of K isomers in 254No
The aims of this experiment were to determine which, if either, of the two most

recently proposed level schemes above the 8− isomer in 254No was correct and to

determine the single-particle structure of the isomeric states. It has been shown

that one of the level schemes is not consistent with the in-beam data from SAGE

and that it is likely that all observed transitions lie in a single rotational band. It is

also possible that the fast isomer is depopulated directly by a 605 keV transition,

with no intermediate structure, but the limited amount of data makes it impossible

to completely separate any transition at this energy in 254No from the background

74Ge(n,n’γ) peak at around the same energy.

The separation of peaks from 254No and from neutron scattering by their different

Doppler shifts would be greater with detectors closer to 0° or 90° to the beam

direction, instead of the two rings of clover detectors at closer to 90° in SAGE,

which might make resolving them easier. This is difficult because detectors at small

angles in the downstream direction are hard to fit around a recoil separator and in

the upstream direction the SAGE silicon detector couldn’t be used. Using scintillator

detectors for γ rays instead of germanium would remove the background peak, but

the worse energy resolution would make identifying peaks from γ rays in the rotational

band built on the 8− isomer even harder.

Even if all transitions seen above the 8− isomer are in the same rotational band
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11.1 Structure of K isomers in 254No

this is not enough to determine the single-particle structure of the isomeric state.

This work has developed a method to investigate the structure of the isomer using

the prompt conversion-electron spectrum without having to be able to fit individual

peaks in the γ-ray spectrum. This method has also been tested to check that it is not

strongly sensitive to any of the choice of parameters used when it is applied. Advances

in instrumentation (combining both γ-ray and conversion electron spectroscopy with

SAGE) and data acquisition (switching from analogue to digital electronics) have

lowered the limit of feasible cross sections for in-beam studies of transfermium nuclei

and development of analysis methods for use with limited amounts of data should

also help this.

The conversion-electron spectrum suggests a two-neutron 72
+

[624]ν ⊗ 92
−

[734]ν

configuration for the 8− isomer, unlike previous assignments from γ-ray spectroscopy

of a two-proton state [56]. The two-neutron assignment is the same as all the

assigned 8− isomers in the N = 150 isotones but for the N = 152 isotones there are

no other isomers with structural assignments. More data for these nuclei would be

useful to provide an overview in any systematic trends in isomeric configurations in

the transfermium region. 252Fm would be a particularly interesting case to compare

with 250Fm, 252No and 254No to see the effects of changing either the proton

number or the neutron number, but unlike these three it can’t be produced by a

cold-fusion reaction of a 48Ca beam on a stable target. An 18O beam on a 238U

target could be used but the recoils would have very low energy. The long half-life

(25.39(4) hours [127]) would also make recoil-decay tagging very hard, but as long as

the reaction channel is clean tagging on the decay of isomers with shorter half-lives

would be easier.

Extending the data to heavier nuclei is difficult because of the decreasing production

cross sections, but more data on isomeric states in some of the curium and californium

isotopes could also be helpful. Beam intensities for in-beam spectroscopy are limited

by background rates in the detectors at the target position and decay spectroscopy

can’t be used to investigate the levels above isomeric states unless they are fed by
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11 Conclusions

decay of another isomer. Detailed studies of isomers in nuclei with much smaller

production cross sections will require either longer experiments or further advances

in instrumentation.

11.2 Measuring conversion coefficients with SAGE
Although this work has not extended the level scheme for the ground-state band

the simultaneous detection of γ rays and conversion electrons has allowed conversion

coefficients to be measured for some transitions. For a rotational band built on a

Kπ = 0+ bandhead it is known that all transitions must have E2 multipolarity, but

the measurement shows that, if there is enough data to be able to fit peaks in both

the γ-ray and electron spectra, SAGE can directly determine transition multipolarity.

There are other cases in which this could be used to assign spins and parities of

the states linked by a transition. The uncertainties on the conversion coefficients

from SAGE are large, but there are several orders of magnitude difference between

calculated conversion coefficients for different multipolarities, and when comparing

measured values with those from BrIcc the transition multipolarity can be easily

determined.

The conversion coefficient for a transition decreases rapidly with energy, making

conversion coefficients harder to measure at higher energies because it is much less

likely that a statistically significant electron peak is seen in SAGE. The efficiency of

SAGE for detecting either γ rays or electrons also decreases with increasing energy

but the effect of this is smaller. Unfortunately many of the transitions in 254No for

which measuring the conversion coefficient would be most useful are the higher-energy

transitions linking different bands. The lower-energy transitions within rotational

bands are of less interest as their multipolarity can already be deduced from their

placement in the level scheme.

118



References
[1] D.C. Hoffman, A. Ghiorso and G.T. Seaborg, The Transuranium People: The Inside Story,

World Scientific Publishing (2000) [see p. 1]

[2] S. Hofmann, On Beyond Uranium: Journey to the end of the Periodic Table, Taylor & Francis

(2002) [see p. 1]

[3] Yu.Ts. Oganessian, V.K. Utyonkov, Yu.V. Lobanov et al., Phys. Rev. C 74 (2006) 044602

[see p. 1]

[4] D. Rudolph, U. Forsberg, P. Golubev et al., Phys. Rev. Lett. 111 (2013) 112502 [see p. 1]

[5] R.-D. Herzberg and P.T. Greenlees, Prog. Part. Nucl. Phys. 61 (2008) 674–720 [see p. 2]

[6] R.-D. Herzberg, Nuclear Structure of Superheavy Elements in M. Schädel and D. Shaughnessy,

The Chemistry of Superheavy Elements, Springer (2013) [see p. 4]

[7] C.F.v. Weizsäcker, Z. Phys. 96 (1935) 431–458 [see p. 3]

[8] R.F. Casten, Nuclear Structure from a Simple Perspective, Second edition, Oxford University

Press (2000) [see pp. 4 and 17]

[9] M. Goeppert-Mayer, Phys. Rev. 74 (1948) 235–239 [see p. 5]

[10] O. Haxel, J.H.D. Jensen and H.E. Suess, Naturwissenschaften 35 (1948) 376 [see p. 6]

[11] M. Goeppert-Mayer, Phys. Rev. 75 (1949) 1969–1970 [see p. 6]

[12] R.D. Woods and D.S. Saxon, Phys. Rev. 95 (1954) 577–578 [see p. 7]

[13] R.B. Firestone, Table of Isotopes, Eighth edition, John Wiley & Sons (1996) [see pp. 9, 10,

and 28]

[14] S.G. Nilsson, K. Dan. Vidensk. Selsk. Mat. Fys. Medd. 29 (1955) 1–69 [see p. 8]

[15] A. Bohr and B.R. Mottelson, Nuclear Structure (Volume II), W. A. Benjamin (1975) [see

pp. 13, 14, 15, and 32]

[16] L. Grodzins, Annu. Rev. Nucl. Sci. 18 (1968) 291–342 [see p. 15]

[17] K.S. Krane, Introductory Nuclear Physics, John Wiley & Sons, Inc (1988) [see pp. 16 and 29]

[18] V.M. Strutinsky, Nucl. Phys. A 95 (1967) 420–422 [see p. 18]

[19] V.M. Strutinsky, Nucl. Phys. A 122 (1968) 1–33 [see p. 18]

[20] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 35 (2004) 2447–2471 [see p. 20]

[21] A. Parkhomenko and A. Sobiczewski, Acta Phys. Pol. B 36 (2005) 3115–3137 [see p. 20]

[22] M. Bender, W. Nazarewicz and P.-G. Reinhard, Phys. Lett. B 515 (2001) 42–48 [see pp. 21

and 22]

119

http://dx.doi.org/10.1103/PhysRevC.74.044602
http://dx.doi.org/10.1103/PhysRevLett.111.112502
http://dx.doi.org/10.1016/j.ppnp.2008.05.003
http://dx.doi.org/10.1007/BF01337700
http://dx.doi.org/10.1103/PhysRev.74.235
http://dx.doi.org/10.1007/BF00594911
http://dx.doi.org/10.1103/PhysRev.75.1969
http://dx.doi.org/10.1103/PhysRev.95.577
http://dx.doi.org/10.1146/annurev.ns.18.120168.001451
http://dx.doi.org/10.1016/0375-9474(67)90510-6
http://dx.doi.org/10.1016/0375-9474(68)90699-4
http://dx.doi.org/10.1016/S0370-2693(01)00863-2


References

[23] D.R. Hartree, Math. Proc. Cambridge Philos. Soc. 24 (1928) 111-132 [see p. 20]

[24] M. Bender, P.-H. Heenen and P.-G. Reinhard, Rev. Mod. Phys. 75 (2003) 121–180 [see

p. 20]

[25] T.H.R. Skyrme, Nucl. Phys. 9 (1958) 615–634 [see p. 20]

[26] P. Ring and P. Schuck, The Nuclear Many-Body Problem, Springer (2004) [see p. 22]

[27] M. Bender, K. Rutz, P.-G. Reinhard, J.A. Maruhn and W. Greiner, Phys. Rev. C 60 (1999)

034304 [see p. 22]

[28] S.E. Agbemava, A.V. Afanasjev, T. Nakatsukasa and P. Ring, Phys. Rev. C 92 (2015) 054310

[see p. 22]

[29] S. Ćwiok, J. Dobaczewski, P.-H. Heenen, P. Magierski and W. Nazarewicz, Nucl. Phys. A

611 (1996) 211–246 [see p. 22]

[30] P.M. Whelan and M.J. Hodgson, Essential Pre-University Physics, John Murray (1971) [see

p. 23]

[31] H. Geiger and J.M. Nuttall, Philos. Mag. (series 6) 22 (1911) 613–621 [see p. 24]

[32] O. Hahn and L. Meitner, Z. Phys. 26 (1924) 161–168 [see p. 27]

[33] T. Kibédi, T.W. Burrows, M.B. Trzhaskovskaya, P.M. Davidson and C.W. Nestor Jr., Nucl.

Instrum. Meth. A 589 (2008) 202–229 [see p. 30]

[34] V.F. Weisskopf, Phys. Rev. 83 (1951) 1073 [see p. 30]

[35] P. Walker and G. Dracoulis, Nature 399 (1999) 35–40 [see pp. 32, 33, and 34]

[36] B. Kourchatow, I. Kourchatow, L. Kourchatow, L. Myssowsky and L. Roussinow, C. R. Acad.

Sci. 200 (1935) 1201–1203 [see p. 32]

[37] G.D. Dracoulis, P.M. Walker and F.G. Kondev, Rep. Prog. Phys. 79 (2016) 076301 [see

p. 32]

[38] F.G. Kondev, G.D. Dracoulis and T. Kibédi, Atom. Data Nucl. Data 103–104 (2015) 50–105

[see pp. 33 and 108]

[39] R.-D. Herzberg and D.M. Cox, Radiochim. Acta 99 (2011) 441–457 [see p. 33]

[40] L.I. Rusinov, Sov. Phys. Usp. 282 (1961) 282–290 [see p. 34]

[41] P.M. Walker, G.D. Dracoulis, A.P. Byrne, T. Kibédi and A.E. Stuchbery, Phys. Rev. C 49
(1994) 1718–1721 [see p. 34]

[42] K.E.G. Löbner, Phys. Lett. B 26 (1968) 369–370 [see p. 34]

[43] P.R. Fields, A.M. Friedman, J. Milsted et al., Phys. Rev. 107 (1957) 1460–1462 [see p. 35]

[44] A. Ghiorso, T. Sikkeland, J.R. Walton and G.T. Seaborg, Phys. Rev. Lett. 1 (1958) 18–21

[see p. 35]

[45] G. Münzenberg, Nucl. Phys. A 693 (2001) 207–218 [see p. 35]

[46] Yu.Ts. Oganessian, J. Phys. G 34 (2007) R165–R242 [see p. 35]

[47] H.W. Gäggeler, D.T. Jost, A. Türler et al., Nucl. Phys. A 502 (1989) 561c–569c [see pp. 36

and 42]

120

http://dx.doi.org/10.1017/S0305004100011920
http://dx.doi.org/10.1103/RevModPhys.75.121
http://dx.doi.org/10.1016/0029-5582(58)90345-6
http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/PhysRevC.60.034304
http://dx.doi.org/10.1103/PhysRevC.92.054310
http://dx.doi.org/10.1016/S0375-9474(96)00337-5
http://dx.doi.org/10.1016/S0375-9474(96)00337-5
http://dx.doi.org/10.1080/14786441008637156
http://dx.doi.org/10.1007/BF01327324
http://dx.doi.org/10.1016/j.nima.2008.02.051
http://dx.doi.org/10.1016/j.nima.2008.02.051
http://dx.doi.org/10.1103/PhysRev.83.1073
http://dx.doi.org/10.1038/19911
http://dx.doi.org/10.1088/0034-4885/79/7/076301
http://dx.doi.org/10.1016/j.adt.2015.01.001
http://dx.doi.org/10.1524/ract.2011.1858
http://dx.doi.org/10.1070/PU1961v004n02ABEH003337
http://dx.doi.org/10.1103/PhysRevC.49.1718
http://dx.doi.org/10.1103/PhysRevC.49.1718
http://dx.doi.org/10.1016/0370-2693(68)90614-X
http://dx.doi.org/10.1103/PhysRev.107.1460
http://dx.doi.org/10.1103/PhysRevLett.1.18
http://dx.doi.org/10.1016/S0375-9474(00)00705-3
http://dx.doi.org/10.1088/0954-3899/34/4/R01
http://dx.doi.org/10.1016/0375-9474(89)90689-1


References

[48] A.V. Belozerov, M.L. Chelnokov, V.I. Chepigin et al., Eur. Phys. J. A 16 (2003) 447–456

[see pp. 36 and 42]

[49] R.M. Clark, K.E. Gregorich, J.S. Berryman et al., Phys. Lett. B 690 (2010) 19–24 [see

pp. 37, 39, 96, 97, 104, 105, and 108]

[50] F.P. Heßberger, S. Antalic, B. Sulignano et al., Eur. Phys. J. A 43 (2010) 55–66 [see pp. 37,

39, 96, and 108]

[51] A. Bhagwat, N.J. Thompson and J.K. Tuli, Nucl. Data Sheets 105 (2005) 959–986 [see

p. 36]

[52] G. Audi, F.G. Kondev, M. Wang et al., Chin. Phys. C 36 (2012) 1157–1286 [see p. 36]

[53] P. Reiter, T.L. Khoo, C.J. Lister et al., Phys. Rev. Lett. 82 (1999) 509–512 [see p. 36]

[54] M. Leino, H. Kankaanpää, R.-D. Herzberg et al., Eur. Phys. J. A 6 (1999) 63–69 [see p. 36]

[55] S. Eeckhaudt, Spectroscopy in the transfermium region: probing rotational, non-yrast and

isomeric structures in 253,254No, PhD thesis, University of Jyväskylä (2006) [see pp. 36 and 38]

[56] C. Gray-Jones, Isomer spectroscopy of 254No, PhD thesis, University of Liverpool (2008) [see

pp. 36, 39, 109, 112, and 117]

[57] S.M. Harris, Phys. Rev. 138 (1965) B509–B513 [see p. 36]

[58] P.A. Butler, R.D. Humphreys, P.T. Greenlees et al., Phys. Rev. Lett. 89 (2002) 202501 [see

pp. 36 and 65]

[59] R.D. Humphreys, In-beam electron spectroscopy of 254No and 226U in conjunction with a

gas-filled recoil separator, PhD thesis, University of Liverpool (2003) [see pp. 36 and 81]

[60] S. Eeckhaudt, P.T. Greenlees, N. Amzal et al., Eur. Phys. J. A 26 (2005) 227–232 [see

p. 38]

[61] A. Ghiorso, K. Eskola, P. Eskola and M. Nurmia, Phys. Rev. C 7 (1973) 2032–2036 [see

p. 38]

[62] R.-D. Herzberg, P.T. Greenlees, P.A. Butler et al., Nature 442 (2006) 896–899 [see pp. 38,

39, and 113]

[63] S.K. Tandel, T.L. Khoo, D. Seweryniak et al., Phys. Rev. Lett. 97 (2006) 082502 [see pp. 38

and 39]

[64] P.G. Hansen, K. Wilsky, C.V.K. Baba and S.E. Vandenbosch, Nucl. Phys. 45 (1963) 410–416

[see p. 40]

[65] R.W. Hoff, T. von Egidy, R.W. Lougheed et al., Phys. Rev. C 29 (1984) 618–622 [see p. 40]

[66] S. Ketelhut, Rotational structures and high-K isomerism in 248,250Fm, PhD thesis, University

of Jyväskylä (2010) [see p. 40]

[67] D. Peterson, B.B. Back, R.V.F. Janssens et al., Phys. Rev. C 74 (2006) 014316 [see p. 40]

[68] A.P. Robinson, T.L. Khoo, I. Ahmad et al., Phys. Rev. C 78 (2008) 034308 [see p. 40]

[69] K. Katori, I. Ahmad and A.M. Friedman, Phys. Rev. C 78 (2008) 014301 [see p. 40]

121

http://dx.doi.org/10.1140/epja/i2002-10109-6
http://dx.doi.org/10.1016/j.physletb.2010.04.079
http://dx.doi.org/10.1140/epja/i2009-10899-9
http://dx.doi.org/10.1016/j.nds.2005.10.002
http://dx.doi.org/10.1088/1674-1137/36/12/001
http://dx.doi.org/10.1103/PhysRevLett.82.509
http://dx.doi.org/10.1007/s100500050318
http://dx.doi.org/10.1103/PhysRev.138.B509
http://dx.doi.org/10.1103/PhysRevLett.89.202501
http://dx.doi.org/10.1140/epja/i2005-10163-6
http://dx.doi.org/10.1103/PhysRevC.7.2032
http://dx.doi.org/10.1038/nature05069
http://dx.doi.org/10.1103/PhysRevLett.97.082502
http://dx.doi.org/10.1016/0029-5582(63)90815-0
http://dx.doi.org/10.1103/PhysRevC.29.618
http://dx.doi.org/10.1103/PhysRevC.74.014316
http://dx.doi.org/10.1103/PhysRevC.78.034308
http://dx.doi.org/10.1103/PhysRevC.78.014301


References

[70] D.C. Rostron, Spectroscopy of 250Fm using tagging techniques, PhD thesis, University of

Liverpool (2009) [see p. 40]

[71] E. Parr, Spectroscopy of excited states in 252No, PhD thesis, University of Liverpool (2011)

[see p. 40]

[72] H.M. David, J. Chen, D. Seweryniak et al., Phys. Rev. Lett. 115 (2015) 132502 [see pp. 40

and 41]

[73] U. Shirwadkar, Spectroscopy of heavy elements: K-isomers in 246,248Cm, PhD thesis, University

of Massachusetts Lowell (2009) [see p. 40]

[74] H.B. Jeppesen, I. Dragojević, R.M. Clark et al., Phys. Rev. C 79 (2009) 031303(R) [see

p. 40]

[75] A.P. Robinson, T.L. Khoo, D. Seweryniak et al., Phys. Rev. C 83 (2011) 064311 [see pp. 40

and 41]

[76] T.L. Khoo, F.M. Bernthal, R.A. Warner, G.F. Bertsch and G. Hamilton, Phys. Rev. Lett. 35
(1975) 1256–1259 [see pp. 41, 113, and 114]

[77] M.B. Smith, P.M. Walker, G.C. Ball et al., Phys. Rev. C 68 (2003) 031302(R) [see p. 41]

[78] E. Liukkonen, in Cyclotrons and their Applications: Proceedings of the 13th International

Conference, Vancouver 1992, World Scientific, Singapore (1993) 22–27 [see p. 42]

[79] P. Papadakis, Combining in-beam γ-ray and conversion electron spectroscopy: The SAGE

spectrometer, PhD thesis, University of Liverpool (2010) [see pp. 44, 47, and 48]

[80] J. Pakarinen, P. Papadakis, J. Sorri et al., Eur. Phys. J. A 50 (2014) 53 [see pp. 44 and 48]

[81] G. Duchêne, F.A. Beck, P.J. Twin et al., Nucl. Instrum. Meth. A 432 (1999) 90–110 [see

p. 46]

[82] C.W. Beausang, S.A. Forbes, P. Fallon et al., Nucl. Instrum. Meth. A 313 (1992) 37–49 [see

p. 46]

[83] T.K. Alexander, C. Broude, O. Häusser and J.F. Sharpey-Schafer, Nucl. Instrum. Meth. 65
(1968) 169–172 [see p. 46]

[84] J.F. Sharpey-Schafer and J. Simpson, Prog. Part. Nucl. Phys. 21 (1988) 293–400 [see p. 46]

[85] J. Sorri, Electron spectroscopy with the SAGE spectrometer, PhD thesis, University of

Jyväskylä (2016) [see p. 48]

[86] M. Leino, J. Äystö, T. Enqvist et al., Nucl. Instrum. Meth. B 99 (1995) 653–656 [see p. 50]

[87] J. Sarén, J. Uusitalo, M. Leino and J. Sorri, Nucl. Instrum. Meth. A 654 (2011) 508–521

[see pp. 50 and 54]

[88] W.E. Lamb, Phys. Rev. 58 (1940) 696–702 [see p. 51]

[89] J. Sarén, The ion-optical design of the MARA recoil separator and absolute transmission

measurements of the RITU gas-filled recoil separator, PhD thesis, University of Jyväskylä

(2011) [see p. 51]

[90] R.D. Page, A.N. Andreyev, D.E. Appelbe et al., Nucl. Instrum. Meth. B 204 (2003) 634–637

[see pp. 52 and 53]

122

http://dx.doi.org/10.1103/PhysRevLett.115.132502
http://dx.doi.org/10.1103/PhysRevC.79.031303
http://dx.doi.org/10.1103/PhysRevC.83.064311
http://dx.doi.org/10.1103/PhysRevLett.35.1256
http://dx.doi.org/10.1103/PhysRevLett.35.1256
http://dx.doi.org/10.1103/PhysRevC.68.031302
http://dx.doi.org/10.1140/epja/i2014-14053-6
http://dx.doi.org/10.1016/S0168-9002(99)00277-6
http://dx.doi.org/10.1016/0168-9002(92)90084-H
http://dx.doi.org/10.1016/0029-554X(68)90558-2
http://dx.doi.org/10.1016/0029-554X(68)90558-2
http://dx.doi.org/10.1016/0146-6410(88)90035-X
http://dx.doi.org/10.1016/0168-583X(94)00573-7
http://dx.doi.org/10.1016/j.nima.2011.06.068
http://dx.doi.org/10.1103/PhysRev.58.696
http://dx.doi.org/10.1016/S0168-583X(02)02143-2


References

[91] A.N. Andreyev, P.A. Butler, R.D. Page et al., Nucl. Instrum. Meth. A 533 (2004) 422–434

[see pp. 53 and 58]

[92] A. Georgiev and W. Gast, IEEE Trans. Nucl. Sci. 40 (1993) 770–779 [see p. 55]

[93] I.H. Lazarus, D.E. Appelbe, P.A. Butler et al., IEEE Trans. Nucl. Sci. 48 (2001) 567–569

[see p. 55]

[94] P. Rahkila, Nucl. Instrum. Meth. A 595 (2008) 637–642 [see p. 55]

[95] A.N. Andreyev, D. Ackermann, F.P. Heßberger et al., Nucl. Instrum. Meth. A 533 (2004)

409–421 [see p. 56]

[96] W.H. Trzaska, Nucl. Instrum. Meth. A 297 (1990) 223–229 [see p. 56]

[97] D.C. Radford, Nucl. Instrum. Meth. A 361 (1995) 297–305 [see p. 58]

[98] L.P. Gaffney, Octupole collectivity in 220Rn and 224Ra, PhD thesis, University of Liverpool

(2012) [see p. 58]

[99] H. Kankaanpää, In-beam spectroscopy of very heavy elements, PhD thesis, University of

Jyväskylä (2001) [see p. 60]

[100] K.-H. Schmidt, R.S. Simon, J.-G. Keller et al., Phys. Lett. B 168 (1986) 39–42 [see p. 61]

[101] R.S. Simon, K.-H. Schmidt, F.P. Heßberger et al., Z. Phys. A 325 (1986) 197–202 [see

p. 61]

[102] E.S. Paul, P.J. Woods, T. Davinson et al., Phys. Rev. C 51 (1995) 78–87 [see p. 61]

[103] G.D. Jones, Nucl. Instrum. Meth. A 488 (2002) 471–472 [see p. 64]

[104] K.-H. Schmidt, C.-C. Sahm, K. Pielenz and H.-G. Clerc, Z. Phys. A 316 (1984) 19–26 [see

p. 64]

[105] J. Theuerkauf, S. Esser, S. Krink et al., Program Tv, Institut für Kernphysik, Universität zu

Köln [see p. 65]

[106] A. Fitzler, Tv Benutzer-Handbuch, Institut für Kernphysik, Universität zu Köln (2007) [see

p. 65]

[107] D.M. Cox, J. Konki, P.T. Greenlees et al., Eur. Phys. J. A 51 (2015) 64 [see pp. 67 and 100]

[108] D.M. Cox, A Geant4 simulation of the SAGE spectrometer and its first application to 255Lr,

PhD thesis, University of Liverpool (2014) [see p. 67]

[109] S. Agostinelli, J. Allison, K. Amako et al., Nucl. Instrum. Meth. A 506 (2003) 250–303 [see

p. 67]

[110] E. Parr, R.-D. Herzberg, S. Antalic et al., Eur. Phys. J. A 48 (2012) 134 [see p. 73]

[111] P.A. Butler, P.M. Jones, K.J. Cann et al., Nucl. Instrum. Meth. A 381 (1996) 433–442 [see

p. 81]

[112] P. Reiter, T.L. Khoo, T. Lauritsen et al., Phys. Rev. Lett. 84 (2000) 3542–3545 [see p. 82]

[113] G. Henning, Stability of transfermium elements at high spin: measuring the fission barrier of
254No, PhD thesis, Université Paris-Sud (2012) [see p. 82]

123

http://dx.doi.org/10.1016/j.nima.2004.07.205
http://dx.doi.org/10.1109/TNS.1972.4326542
http://dx.doi.org/10.1109/23.940120
http://dx.doi.org/10.1016/j.nima.2008.08.039
http://dx.doi.org/10.1016/j.nima.2004.07.204
http://dx.doi.org/10.1016/j.nima.2004.07.204
http://dx.doi.org/10.1016/0168-9002(90)91370-Q
http://dx.doi.org/10.1016/0168-9002(95)00183-2
http://dx.doi.org/10.1016/0370-2693(86)91456-5
http://dx.doi.org/10.1007/BF01289651
http://dx.doi.org/10.1103/PhysRevC.51.78
http://dx.doi.org/10.1016/S0168-9002(02)00469-2
http://dx.doi.org/10.1007/BF01415656
http://dx.doi.org/10.1140/epja/i2015-15064-5
http://dx.doi.org/10.1016/S0168-9002(03)01368-8
http://dx.doi.org/10.1140/epja/i2012-12134-2
http://dx.doi.org/10.1016/S0168-9002(96)00762-0
http://dx.doi.org/10.1103/PhysRevLett.84.3542


References

[114] G. Henning, T.L. Khoo, A. Lopez-Martens et al., Phys. Rev. Lett. 113 (2014) 262505 [see

pp. 82 and 83]

[115] C.W. Beausang, D. Prevost, M.H. Bergstrom et al., Nucl. Instrum. Meth. A 364 (1995)

560–566 [see p. 92]

[116] B. Singh and A.R. Farhan, Nucl. Data Sheets 107 (2006) 1923–2102 [see p. 99]

[117] E. Gete, D.F. Measday, B.A. Moftah, M.A. Saliba and T.J. Stocki, Nucl. Instrum. Meth. A

388 (1997) 212–219 [see p. 99]

[118] R. Holzmann, I. Ahmad, R.V.F. Janssens et al., Nucl. Instrum. Meth. A 260 (1987) 153–156

[see p. 100]

[119] G.J. Feldman and R.D. Cousins, Phys. Rev. D 57 (1998) 3873–3889 [see p. 104]

[120] S. Cwiok, J. Dudek, W. Nazarewicz, J. Skalski and T. Werner, Comput. Phys. Commun. 46
(1987) 379–399 [see p. 111]

[121] Yu.A. Lazarev, Yu.V. Lobanov, R.N. Sagaidak et al., Phys. Scr. 39 (1989) 422–435 [see

p. 110]

[122] F.R. Xu, E.G. Zhao, R. Wyss and P.M. Walker, Phys. Rev. Lett. 92 (2004) 252501 [see

pp. 110 and 112]

[123] F.G. Kondev, G.D. Dracoulis, T.L. Khoo et al., in Proceedings of the International Conference

on Nuclear Data for Science and Technology, Nice 2007, EDP Sciences (2008) 61–64 [see

p. 110]

[124] A. Chatillon, Ch. Theisen, P.T. Greenlees et al., Eur. Phys. J. A 30 (2006) 397–411 [see

p. 112]

[125] T.L. Khoo and G. Løvhøiden, Phys. Lett. B 67 (1977) 271–274 [see pp. 113, 114, and 115]

[126] T.L. Khoo, J.C. Waddington, R.A. O’Neil, Z. Preibisz, D.G. Burke and M.W. Johns, Phys.

Rev. Lett. 28 (1972) 1717–1720 [see p. 115]

[127] N. Nica, Nucl. Data Sheets 106 (2005) 813–834 [see p. 117]

124

http://dx.doi.org/10.1103/PhysRevLett.113.262505
http://dx.doi.org/10.1016/0168-9002(95)00438-6
http://dx.doi.org/10.1016/0168-9002(95)00438-6
http://dx.doi.org/10.1016/j.nds.2006.05.006
http://dx.doi.org/10.1016/S0168-9002(96)01163-1
http://dx.doi.org/10.1016/S0168-9002(96)01163-1
http://dx.doi.org/10.1016/0168-9002(87)90397-4
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1016/0010-4655(87)90093-2
http://dx.doi.org/10.1016/0010-4655(87)90093-2
http://dx.doi.org/10.1088/0031-8949/39/4/002
http://dx.doi.org/10.1103/PhysRevLett.92.252501
http://dx.doi.org/10.1051/ndata:07775
http://dx.doi.org/10.1051/ndata:07775
http://dx.doi.org/10.1140/epja/i2006-10134-5
http://dx.doi.org/10.1016/0370-2693(77)90368-9
http://dx.doi.org/10.1103/PhysRevLett.28.1717
http://dx.doi.org/10.1103/PhysRevLett.28.1717
http://dx.doi.org/10.1016/j.nds.2005.11.003

	Abstract
	Contents
	Introduction
	Nuclear models
	Liquid drop model and semi-empirical mass formula
	Spherical shell model
	Nuclear deformation and the Nilsson model
	Nuclear rotation
	Magnetic moments and nuclear g factors
	Mixing of states
	Calculations and theoretical predictions

	Radioactive decay
	Alpha decay
	Electromagnetic decay
	Isomers

	Previous knowledge and regional systematics
	Alpha decay
	Ground-state rotational band
	3+ band
	263 ms isomer
	183 µs isomer
	Other K isomers around No-254

	Experimental details
	Targets
	SAGE – in-beam spectroscopy
	RITU – recoil separation
	GREAT – decay spectroscopy
	Electronics and data acquisition
	Calibration

	Data analysis and simulations
	Recoil-decay tagging
	SAGE background subtraction
	Peak fitting
	Geant4 simulations

	Branching ratios and E2/M1 transition intensities
	E2/M1 electron intensity ratios
	M1 and E2 electron region limits
	Background
	Initial population of levels
	Simulations
	Summary

	Ground-state band
	Conversion coefficients
	Coincidences
	Discussion

	Level scheme between the isomers
	Intensity of 605 keV transition
	Ge-74(n,n'g)
	Conversion electrons from a 605 keV transition
	Intensity of a 482 keV transition
	Decay of the fast isomer
	Discussion

	Structure of the 8- isomer
	Finding gK for the slow isomer
	Discussion

	Conclusions
	Structure of K isomers in No-254
	Measuring conversion coefficients with SAGE

	References

