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Abstract. At low frequencies, for which the wavelengths are wide, the acoustic waves and
the mechanical vibrations cannot easily be reduced in the structures at macroscale by using
dissipative materials, contrarily to the middle- and high-frequency ranges. The final objective
of this work is to reduce the vibrations and the induced noise on a broad low-frequency band
by using a microstructured material by inclusions that are randomly arranged in the material
matrix. The dynamical regimes of the inclusions will be imposed in the nonlinear domain in
order that the energy be effectively pumped over a broad frequency band around the resonance
frequency, due to the nonlinearity. The first step of this work is to design and to analyze the
efficiency of an inclusion, which is made up of a hollow frame including a point mass centered
on a beam. This inclusion is designed in order to exhibit nonlinear geometric effects in the
low-frequency band that is observed. For this first step, the objective is to develop the simplest
mechanical model that has the capability to roughly predict the experimental results that are
measured. The second step, which is not presented in the paper, will consist in developing
a more sophisticated nonlinear dynamical model of the inclusion. In this paper, devoted to
the first step, it is proved that the nonlinearity induces an attenuation on a broad frequency
band around the resonance, contrarily to its linear behavior for which the attenuation is only
active in a narrow frequency band around the resonance. We will present the design in terms
of geometry, dimension and materials for the inclusion, the experimental manufacturing of this
system realized with a 3D printing system, and the experimental measures that have been
performed. We compare the prevision given by the stochastic computational model with the
measurements. The results obtained exhibit the physical attenuation over a broad low-frequency
band, which were expected.

1. Introduction
Among the first papers devoted to the energy pumping by simple oscillators, the works by Frahm
[1] and by Roberson [2] can be cited. Since these pioneering works, the developments of metama-
terials for absorbing vibrations and noise have recently received a great attention and numerous
papers have been published, as for instance, [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. Con-
cerning the energy pumping by linear or nonlinear mechanical oscillators in order to attenuate
vibrations and noise for discrete or continuous systems at macro- or at micro-scales, many works
have been published such as [17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28].



This paper is devoted to the reduction of vibrations and induced noise in structures at
macro-scale for the low-frequency band for which the first structural modes are excited. It is
well known that the dissipative passive materials are not really efficient for this case contrarily
to their efficiency in the middle and high frequencies. The final objective of this work is to
reduce vibrations and induced noise on a broad low-frequency band by using a microstructured
material by inclusions that are randomly arranged in the material matrix. The first step of
this work is to design and to analyze the efficiency of an inclusion, which is made up of a
hollow frame including a point mass centered on a beam. This inclusion behaves as a nonlinear
oscillator that is designed in order that the energy pumping be efficient on a broad frequency
band around its resonance instead of a narrow frequency band as for a linear oscillator. For
this first step, the objective is to develop the simplest mechanical model that has the capability
to roughly predict the experimental results that are measured. The second step will consist
in developing a more sophisticated nonlinear dynamical system. In this paper, devoted to the
first step, it is proved that the nonlinearity induced an attenuation on a broad frequency band
around its resonance, whereas the associated linear system yields a reduction only on a narrow
frequency band. We will present the design in terms of geometry, dimension and materials for
the inclusion, the experimental manufacturing of this system realized with a 3D printed system,
and the experimental measures that have been performed. We compare the prevision given by
the stochastic computational model with the measurements. The results obtained exhibit the
physical attenuation over a broad low-frequency band, which were expected.

2. Design of the inclusion, experimental manufacturing, and material identification
An inclusion has been designed at a macro-scale. It is made up of a point mass constituted of
a cube with a hole, centered on a beam whose ends are attached to a frame. The beam length
is 0.0125m and its square section is 0.001 × 0.001m2. The exterior dimensions of the cube
are 0.005 × 0.005 × 0.005m3. The hole is a cylinder that is centered in the cube for which the
dimensions are 0.005× 0.001752πm3. The material of the inclusion and of the frame is in ABS.
This inclusion is manufactured using a 3D printing system (the ABS (Acrylonitrile Butadiene
Styrene) is commonly used as a material for 3D printing). A steel screw is inserted in the hole
(see Figure 1). The mass m of the inclusion is approximated by the mass of the screw that

Figure 1. Design of the inclusion inserted in the frame (left figure) and its manufacturing with
a 3D printing system (right figure).

is 0.0012 kg. The mass density of the ABS is 1, 780 kg/m3. Some experimental traction tests
have been carried out for identifying the mechanical properties of the ABS material which is



assumed to be homogeneous, linear elastic and isotropic. The experiments yield for the Young
modulus, 2.2× 109 Pa and for the Poisson coefficient 0.35. This inclusion has been designed in
order that the first eigenfrequency of the frame be around 1, 200Hz and the first eigenfrequency
of the inclusion (point mass and beam) be around 167Hz. We are interested in analyzing the
stationary random response of the inclusion in the frequency band of analysis Ba = [−fmax, fmax]
with fmax = 1, 024Hz, induced by the stationary random excitation generated by an imposed
acceleration of the two ends supports of the beam. The same acceleration is imposed to the
two supports. This acceleration is equal to the acceleration that is imposed to the frame (that
can be considered as rigid in the frequency band of analysis), on which a stationary random
external force is applied (see Section 5). The frequency band that is observed is the band
Bo = [90, 190]Hz ⊂ Ba, which contains the resonance frequency for the low and the high
amplitudes of the excitation.

3. Computational model with stochastic excitation
As explained in Section 1, a nonlinear oscillator with one DOF is constructed for modeling
the nonlinear dynamical behavior of the inclusion defined in Section 2. The nonlinearity of
the inclusion is due to nonlinear geometrical effects induced by finite displacements, the ABS
material staying with a linear behavior. For the experimental configuration that is studied, the
principal direction of the excitation and of the measured response of the inclusion is according
to the normal displacement to the plane defined by the frame (bending of the beam in the
plane perpendicular to the plane of the frame). Consequently, the proposed approach consists
in modeling this normal displacement of the inclusion by a one-DOF nonlinear oscillator. As
the nonlinearity is due to geometrical effects due to finite displacement, it could be expected
a hardening effect that would induce an increase of the resonance frequency. However, the ex-
perimental measurements performed for this inclusion (see Section 5) have shown a softening
behavior for which the resonance frequency significantly decreases. Such behavior can only be
explained by the participation of other displacement DOFs (torsion around the axis of the beam
and in plane bending displacement that is in the plane of the frame), which are excited by a
nonlinear coupling. Consequently, for this type of behavior, it would be better to develop a
multi-DOFs nonlinear oscillator (which is in progress as the step two of the work). Nevertheless,
it is interesting to develop a one-DOF nonlinear oscillator for which the nonlinear elastic force
is directly identified by using the experimental results. Such an identified model, which will
approximatively reproduce the measurements, will allow to analyze the expected phenomena of
the energy pumping over a broader frequency band around the resonance frequency.

The one-DOF nonlinear model is composed of a mass-spring-damper system with a nonlinear
spring, excited by its support (see the scheme displayed in Figure 2). The mass of the beam
is neglected. Let Xexp

imp(t) be the displacement imposed at the support in the absolute frame
and let Xs(t) be the relative displacement of the point mass with respect to the support. Let
{Ẍexp

imp(t), t ∈ R} be the acceleration imposed to the support, which is a Gaussian stationary
second-order centered stochastic process, defined on the probability space (Θ, T ,P), for which
the power spectral density function is denoted by SẌexp

imp
(ω). We aim to find the stationary second-

order stochastic solution {Xs(t), t ∈ R} (which is not Gaussian) of the following stochastic
nonlinear equation m(Ẍs(t) + Ẍexp

imp(t)) + cẊs(t) + Φ′(Xs(t)) = 0 for t in R, which is rewitten as

mẌs(t) + cẊs(t) + Φ′(Xs(t)) = F exp
s (t), t ∈ R, (1)

in which F exp
s (t) = −mẌexp

imp(t), where m is the mass of the inclusion introduced before, c is the
damping coefficient, Φ′(x) is the derivative with respect to x of the elastic potential which will
be identified in Section 5 for two different amplitudes of the excitation.
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Figure 2. 1D simplified model.

The mean input power Πin = E{F exp
s (t) Ẋs(t)} (in which E is the mathematical expectation)

and the mean power dissipated Πdiss = cE{Ẋs(t)
2}, which are independent of t and which are

equal (due to the stationarity), can be written as Πin =
∫
R πin(ω) dω and Πdiss =

∫
R πdiss(ω) dω,

in which the density πin(ω) and πdiss(ω) are such that

πin(ω) = SF exp
s Ẋs

(ω) , πdiss(ω) = c SẊs(ω) . (2)

In Eq. (2), SF exp
s Ẋs

is the cross-spectral density function of the stationary stochastic processes

F exp
s and Ẋs, and SẊs is the power spectral density function of the stationary stochastic process

Ẋs. The energy pumping expressed as a function of the frequency is therefore characterized by
πin(ω) = πdiss(ω). In order to qualify the efficiency of this energy pumping as a function of the
intensity of the nonlinearity, we introduce the normalized quantity,

πin,norm(ω) =
πdiss(ω)

SF exp
s

(ω)
. (3)

Finally, the elastic potential Φ(x) will be experimentally identified by using the frequency
dependent function FRF2(ω) defined on B0 by,

FRF2(ω) =
|SẊsF exp

s
(ω)|2

|SF exp
s

(ω)|2
(4)

It should be noted that if Φ′(x) was a linear function of x (linear oscillator), then FRF2 would
represent the square of the modulus of the frequency response function of the associated linear
filter for which F exp

s is the input and Ẋs is the output.

4. Stochastic solver and signal processing

Stochastic solver. For constructing the stationary stochastic solution of the nonlinear differential
equation Eq. (1), the Monte Carlo method [29] is used. Let {F exp

s (t; θ`), t ∈ R} be a realization
of the stochastic process F exp

s for θ` ∈ Θ. Considering L independent realizations, for each
realization θ`, we then have to solve the deterministic nonlinear differential equation with initial
conditions, {

mẌ(t; θ`) + cẊ(t; θ`) + Φ′(X(t; θ`)) = F exp
s (t; θ`), t ∈ [0, t0 + T ],

X(0, θ`) = 0, Ẋ(0, θ`) = 0.
(5)

The part {X(t; θ`), t ∈ [0, t0]} of the non-stationary random response corresponds to the tran-
sient signal induces by the initial conditions, that decreases exponentially due to the damping.



This part of the response is removed in the signal processing of the second-order quantities of the
stationary solution. Time t0 is chosen in order that the transient response be negligible for t ≥ t0.
The part of the trajectory corresponding to the stationary response is Xs(t; θ`) = X(t − t0; θ`)
for t in [t0, t0 + T ]. The time duration T that is related to the frequency resolution is defined
after. The deterministic problem defined by Eq. (5) will be solved with a Störmer-Verlet scheme
presented after.

Time and frequency sampling. For constructing the second-order quantities of the stationary
response Xs, the signal processing requires a time sampling with a constant time step ∆t that is
performed using the Shannon theorem for the stationary stochastic processes [30, 31]. The sam-
pling frequency is thus written as fe = 2 fmax and the time step is ∆t = 1/fe. The corresponding
time sampling is tα = α∆t with α = 0, 1, ..., N−1 in which the integer N is chosen in order that
the frequency resolution ∆f = 1/T = 0.125Hz where T = N∆t yielding N = 16, 384 for T = 8 s.
The corresponding sampling points in the frequency domain are fβ = −fmax + (β + 1/2)∆f for
β = 0, 1, ..., N − 1.

Generation of independent realizations of stochastic process F exp
s . The usual second-order

spectral representation of the stationary stochastic processes is used [32, 33]. The power spectral
density function SF exp

s
(ω) of the Gaussian stationary second-order centered stochastic process

F exp
s is such that SF exp

s
(ω) = m2 SẌexp

imp
(ω), in which SẌexp

imp
(ω) = ω4 SXexp

imp
(ω). The autocorrelation

function τ 7→ RẌexp
imp

(τ) of stochastic process Ẍexp
imp is such as RẌexp

imp
(τ) = E{Ẍexp

imp(t + τ)Ẍexp
imp(t)}

and is such that RẌexp
imp

(τ) =
∫
R e

iωτSẌexp
imp

(ω) dω. The generator of realizations of the Gaussian

stationary second-order stochastic process Ẍexp
imp is based on the usual spectral representation

[34, 35]. Let Ψ0, . . . ,ΨN−1 be N mutually independent uniform random variables on [0, 1], and
let φ0, . . . , φN−1 be N mutually independent uniform random variables on [0, 2π], which are
independent of Ψ0, . . . ,ΨN−1. The spectral representation used is,

Ẍexp
imp(t) '

√
2∆ω Re

{N−1∑
β=0

√
SẌexp

imp
(ωβ)Zβ e

−iωβt e−iφβ
}
, t ∈ [0, t0 + T ] , (6)

in which ∆ω = 2π∆f , where Zβ =
√
− log(Ψβ) and ωβ = 2π fβ. From Eq. (6), it can be

deduced that the realization {Ẍexp
imp(t; θ`) , t ∈ [t0; t0 + T ]} is written as

Ẍexp
imp(t; θ`) '

√
2∆ω Re

{N−1∑
β=0

gβ,` e
−iωβt

}
, t ∈ [0, t0 + T ] , (7)

in which gβ,` =
√
SẌexp

imp
(ωβ)Zβ(θ`) e

−iφβ(θ`). Introducing the FFT {ĝ0,`, . . . , ĝN−1,`} of

{g0,`, . . . , gN−1,`}, which is written as ĝα,` =
∑N−1

β=0 gβ,` exp
{
− 2i π αβ/N

}
for α = 0, 1, ..., N−1,

we obtain

Ẍexp
imp(tα; θ`) =

√
2∆ω Re

{
exp

{
− iπα

(1−N
N

)}
ĝα,`

}
, α = 0, 1, . . . , N − 1 . (8)

Störmer-Verlet integration scheme. The Störmer-Verlet integration scheme is well suited for the
resolution of dynamical Hamiltonian systems [36, 37] as proposed, for instance, for the dissipative
case, in [38]. Such a scheme preserves the mechanical energy during the numerical integration.



We thus rewrite Eq. (5) in the following dissipative Hamiltonian form as

Ẋ(t; θ`) =
1

m
Y (t; θ`) , t ∈ [t0, t0 + T ] ,

Ẏ (t; θ`) = −Φ′(X(t; θ`))−
c

m
Y (t; θ`) + F exp

s (t; θ`) , t ∈ [t0, t0 + T ] ,

X(0; θ`) = 0 , Y (0; θ`) = 0 .

(9)

We use the notation uα` = U(tα; θ`). The Störmer-Verlet integration scheme for Eq. (9) is then
written, for α = 0, 1, ..., N − 1, as

x
α+1/2
` = xα` +

∆t

2m
yα` ,

yα+1
` = yα` + ∆t

(
−Φ′(x

α+1/2
` )− c

2m
yα` −

c

2m
yα+1
` + F exp

s (tα+1; θ`)
)
,

xα+1
` = x

α+1/2
` +

∆t

2m
yα+1
` ,

(10)

in which F exp
s (tα+1; θ`) = −mẌexp

imp(tα+1; θ`).

Signal processing. For estimating, the power spectral density functions and the cross-spectral
density functions defined in Eqs. (2) and (4), the periodogram method [30, 31] is used.

5. Experimental measurements and identification of the model with stochastic
excitation

Figure 3. The experimental configuration.

Experimental configuration and measurements. The experimental configuration can be viewed
in Figure 3. The displacement Xexp

imp at a point of the rigid frame that is suspended and the
displacement Xexp of the point mass (inclusion) are measured with two laser sensors. The ex-
citation applied to the rigid frame is done by a shaker. The experimental responses have been
measured for two amplitudes of the experimental accelerations Ẍexp

imp: the first one corresponds
to a low amplitude for which the response of the oscillator is approximately linear and the sec-
ond one corresponds to a high amplitude for which the response is nonlinear. These two cases
will be identified by symbols L and NL, respectively. Consequently, the corresponding force
F exp
s = −mẌexp

imp applied to the oscillator is denoted, for the two amplitudes, by F exp,L
s and F exp,NL

s .
The power spectral density functions SF exp,L

s
and SF exp,NL

s
are displayed in Figure 4 for the fre-

quency band Bo. Some fluctuations can be seen in these power spectral density functions, which



imply some fluctuations in the power spectral density functions of the inclusion displacement
(these fluctuations will be reduced for the future works by adapting the experimental configura-
tion and the signal processing). As these experimental power spectral density functions are used
as input for computing the stochastic responses of the nonlinear oscillator, these fluctuations
induce some fluctuations in the power spectral density functions of the responses.
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Figure 4. Experimental PSD function SexpFx
for a low amplitude (L) and for a high amplitude

(NL) of the excitation.

Experimental identification of the nonlinear elastic force. As explained in Section 3, for each
one of the two amplitudes, the experimental identification of the nonlinear elastic force is
performed by minimizing over the frequency band Bo, the distance between FRF2 (defined by
Eq. (6)) computed with the model and the same quantity constructed with the experimental
measurements.
(i)- Low amplitude. A one-parameter algebraic representation of Φ′(x) is chosen as Φ′L(x) = k1 x.
The experimental identification gives k1 = 1, 305N/m (see Figure 5).
(ii)- High amplitude. A three-parameters algebraic representation of Φ′(x) is defined by
Φ′NL(x) = k1 x (α1 + α2x

2)−1/4 in which k1 is fixed to the value identified for the low-amplitude
case and where the experimental identification of the two positive parameters α1 and α2 yields
α1 = 3 and α2 = 108m−2 (see Figure 5).
For each one of the two amplitudes, Figure 6 displays the comparison of the FRF2 function
for the identified model with that obtained with the experiments. It can be seen a reasonable
agreement between the experiments and the computation, knowing that an approximation has
been introduced for constructing the model (see the explanations given in Section 3) and in taking
to account the existence of fluctuations in the experimental power spectral density function of
the input.

6. Energy pumping in frequency band Bo and comparison with the experiments
Figure 7 (predictions with the identified model) and Figure 8 (experiments) display the
normalized input power density defined by Eq. (3) for the low amplitude and for the high
amplitude. It can be seen a reasonable agreement between the prediction with the model and
the experiments. Nevertheless, the results presented in these two figures confirm a strong effect
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of the nonlinearity that allows the pumping energy phenomenon to be efficient over a broader
frequency band around the resonance frequency than for the linear case, which was the objective
of the work.

7. Conclusions
In this paper, we have presented the results related to the first step of a work devoted to the
design and the analysis of a nonlinear microstructured material to reduce noise and vibrations
at low frequencies. We have developed the design of an inclusion at macroscale, which has been
manufactured with a 3D printing system. The dimension of this inclusion can easily be reduced
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with the same technology. A first version of a nonlinear dynamical model has been developed
and its parameters have been identified with the experiments. Both the predictions given by the
model and the experiments confirm that the pumping energy phenomenon is more efficient over
a broader frequency band around the resonance frequency than for the linear case. The work
in progress is the development of a more sophisticated model of the inclusion, which takes into
account the nonlinear couplings between several degrees of freedom.
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