
ar
X

iv
:1

60
9.

06
45

8v
3 

 [
he

p-
th

] 
 2

3 
D

ec
 2

01
6

LTH1097

The a-function for N = 2 supersymmetric
gauge theories in three dimensions

J.A. Gracey1, I. Jack2 and C. Poole3

Dept. of Mathematical Sciences, University of Liverpool, Liverpool L69 3BX, UK

Y. Schröder4
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three dimensions was demonstrated for a general theory at leading order and for a
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1 Introduction

Following Cardy’s suggestion [1] that Zamolodchikov’s two-dimensional c-theorem [2] might
have an analogue in four dimensions, considerable progress has been made in proving the
so-called a-theorem in even dimensions [3–15] (for a review see Ref. [16]). The Weyl
anomaly played a central role in the derivation of the c-theorem and the a-theorem in even
dimensions, and therefore it seems unlikely that the a-theorem could be extended to odd
dimensions where there is no Weyl anomaly. An alternative candidate for a function which
evolves monotonically along renormalisation group (RG) flows in odd dimensions is the
so-called F -function [17–20]. This is the Euclidean path integral of the theory (or “free
energy”) conformally mapped (in the case of three dimensions) to S3. It has been shown to
increase between UV and IR fixed points for a variety of theories. However, an additional
important feature of the a-function in even dimensions is the gradient flow property; for
theories with couplings gI and corresponding RG β-functions βI , it satisfies

∂Ia ≡
∂

∂gI
a = TIJβ

J (1.1)

for a function TIJ . A crucial consequence of Eq. (1.1) is that we then have

µ
d

dµ
a = βI ∂

∂gI
a = GIJβ

IβJ (1.2)

where GIJ = T(IJ), (IJ) denoting symmetrisation. The a-theorem then follows immediately
if GIJ is positive definite. There is, however, so far no evidence that F possesses the
gradient flow property except in simple cases at leading order, where its existence is trivial
in the sense that no conditions are imposed on the β-function coefficients.

Accordingly a different approach has recently been taken [21, 22] in which a function
with the gradient flow property Eq. (1.1) has been constructed order by order, using as a
starting point the β-functions for a range of three-dimensional theories. The method was
essentially that employed in four dimensions in the classic work of Ref. [23]. Initially [21]
the leading-order (two-loop) β-functions computed by Avdeev et al in Refs. [24, 25] were
used to construct a solution of Eq. (1.1) for abelian and non-abelian (for the case SU(n))
Chern-Simons theories at leading order. Moreover the “metric” GIJ was indeed positive
definite at this order. The Yukawa and scalar couplings in these theories were of a restricted
form. However, it was then shown [21, 22] that the results extended at leading order to
completely general abelian Chern-Simons theories (and there was no reason to doubt that
the extension to the non-abelian case would be fairly immediate). The extension to next-
to-leading order involves the four-loop β-functions (recall that there are no divergences
at odd loop orders in odd dimensions). The four-loop Yukawa β-function for a general
(ungauged) fermion/scalar theory was therefore computed [22] and it was shown that
the definition of the a-function in Eq. (1.1) could be extended to this order as well. In
the general gauged case at leading order, and in the ungauged case at next-to-leading
order, Eq. (1.1) imposes stringent conditions on the β-function coefficients. Clearly (in
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the absence of a general proof of the gradient flow property) the next natural step would
be to extend the calculation for a general gauge theory to next-to-leading order. The β-
function computation for a general theory at four loops would be very involved; however,
the supersymmetric case is much more tractable and consequently we consider here the
case of N = 2 supersymmetry. Here we can avail ourselves of the superspace formalism
to simplify the calculations and furthermore as a consequence of the nonrenormalisation
theorem [26], the Yukawa β function is determined by the chiral field anomalous dimension.
Another motivation for consideration of the supersymmetric case is that the F -theorem
has mostly been studied in this context and therefore a comparison might be facilitated. In
order to check the validity of Eq. (1.1), it is sufficient to compute only the contributions to
the anomalous dimension which contain Yukawa couplings. This is because Eq. (1.1) places
constraints on the Yukawa-dependent contributions (which we shall show are satisfied) but
not on the Yukawa-independent terms. This is a fortunate situation since it saves us a
great deal of arduous computation.

We find that indeed we can construct the a-function satisfying Eq. (1.1) at next to
leading order in the case of a general N = 2 supersymmetric Chern-Simons theory. On the
one hand there are far fewer constraints (only two, in fact) on the RG coefficients than we
found even in the ungauged non-supersymmetric case at next-to-leading order; so that the
imposition of supersymmetry itself must guarantee that most of the original constraints are
satisfied. On the other hand, one of the remaining constraints is highly non-trivial since it
involves a constraint on a Feynman diagram which had not hitherto been computed and
which we had to deploy advanced techniques to evaluate.

The structure of the paper is as follows: in Section 2 we describe the N = 2 Chern-
Simons theory and its quantisation, recall the lowest-order (two-loop) result for the anoma-
lous dimension and use it to construct the leading-order term in the a-function. In Section
3 we consider the a-function at next-to leading order, and show how its existence imposes
consistency conditions on some of the coefficients in the next-to-leading order (four-loop)
anomalous dimension. In Section 4 we present our calculation of the Yukawa-dependent
terms in the four-loop anomalous dimension (as explained earlier, these are all we need),
in particular checking that the consistency conditions are satisfied. We explain in some
detail the computation of the particular diagram mentioned above. Finally, some closing
remarks are offered in the Conclusion. Details of the superspace conventions and some
explicit results for momentum integrals are deferred to appendices.

2 General procedure and lowest-order results

In this section we describe the N = 2 Chern-Simons theory and the general framework
for our calculations. We also review the two-loop anomalous dimension calculation and
construct the corresponding a-function. The action for the theory can be written

S = SSUSY + SGF (2.1)
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where SSUSY is the usual supersymmetric action [27]

SSUSY =

∫

d3x

∫

d4θ

(

k

∫ 1

0

dtTr[D
α
(e−tVDαe

tV )] + Φj(eVARA)ijΦi

)

+

(
∫

d3x

∫

d2θW (Φ) + h.c.

)

. (2.2)

Here V is the vector superfield, Φ the chiral matter superfield and the superpotential
W (Φ) (quartic for renormalisability in three dimensions); see Appendix A for our N = 2
superspace conventions. We take W (Φ) to be given by

W (Φ) = 1
4!
Y ijklΦiΦjΦkΦl. (2.3)

(We use the convention that Φi = (Φi)
∗, and also denote Y ijkl = (Y ijkl)∗.) We assume

a simple gauge group, though we comment later on the extension to non-simple groups.
Gauge invariance requires the gauge coupling k to be quantised, so that 2πk is an integer.
The vector superfield V is in the adjoint representation, V = VATA where TA are the
generators of the fundamental representation, satisfying

[TA, TB] =ifABCTC ,

Tr(TATB) =δAB. (2.4)

The chiral superfield can be in a general representation, with gauge matrices denoted RA

satisfying

[RA, RB] =ifABCRC ,

Tr(RARB) =TRδAB. (2.5)

In three dimensions the Yukawa couplings Y ijkl are dimensionless and (as mentioned ear-
lier) the theory is renormalisable. In Eq. (2.1) the gauge-fixing term SGF is given by [28]

SGF = − k
2ξ

∫

d3xd2θ tr[ff ]− k
2ξ

∫

d3xd2θ tr[ff ], (2.6)

where ξ is a gauge-fixing parameter, and we introduce into the functional integral a corre-
sponding ghost term

∫

DfDf∆(V )∆−1V (2.7)

with

∆(V ) =

∫

dΛdΛ δ(F (V,Λ,Λ)− f)δ(F (V,Λ,Λ)− f), (2.8)

and F = D2V , F = D
2
V . With the gauge-fixing parameter ξ = 0 this results in a gauge

propagator
〈V A(1)V B(2)〉 = − 1

k
1
∂2D

α
Dαδ

4(θ1 − θ2)δ
AB. (2.9)
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The gauge vertices are obtained by expanding SSUSY + SGF as given by Eqs. (2.2),
(2.6):

SSUSY + SGF →− i
6
fABC

∫

d3xd4θD
α
V ADαV

BV C

− 1
24
fABEfCDE

∫

d3xd4θD
α
V AV BDαV

CV D + . . . . (2.10)

The ghost action resulting from Eq. (2.8) has the same form as in the four-dimensional
N = 1 case [26, 29]; we refrain from quoting it explicitly since we do not need to consider
diagrams with ghost propagators. Finally the chiral propagator and chiral-gauge vertices
are readily obtained by expanding Eq.(2.2); the chiral propagator is given by

〈Φi(1)Φj(2)〉 = − 1
∂2 δ

4(θ1 − θ2)δ
i
j. (2.11)

The regularisation of the theory is effected by replacing V , Φ, Y by corresponding bare
quantities VB, ΦB , YB, with the bare and renormalised fields related by

VB = Z
1
2
V V, ΦB = Z

1
2
ΦΦ. (2.12)

Since the Chern-Simons level k is expected to be unrenormalised for a generic Chern-Simons
theory due to the topological nature of the theory (so that kB = k), the only β-functions
are those for the superpotential coupling and its conjugate. These will be given according
to the non-renormalisation theorem [26] by

βijkl
Y = (γΦ)m

(iY jkl)m, βY ijkl = Y m(ijk(γΦ)l)
m. (2.13)

where the anomalous dimension γΦ is defined by

γΦ =
1

2
µ
d

dµ
lnZΦ. (2.14)

Using dimensional regularisation with d = 3− ǫ dimensions, we have

ZΦ =
∑

L even,m=1...
L
2

Z
(L,m)
Φ

ǫm
(2.15)

where L is the loop order. γΦ is determined by the simple poles in ZΦ according to

γ
(L)
Φ = −

L

2
Z

(L,1)
Φ . (2.16)

The anomalous dimension of the chiral superfield is given at two loops by [28, 30]

(8π)2γ
(2)
Φ = 1

3
Y2 −

2
k2
CRCR − 1

k2
T̃CR (2.17)
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where

(Y2)i
j =Y iklmY

jklm

CR =RARA,

CGδAB =fACDfBCD,

T̃ = TR − CG, (2.18)

and TR is defined in Eq. (2.5). This result may readily be obtained by N = 2 superfield
methods [24,28,30,31]; see Appendix A for our N = 2 superfield conventions. Henceforth
we set k = 1 for simplicity, and also neglect factors of (8π)2 (one for each loop order); these
factors of k and (8π)2 may easily be restored if desired. The two-loop results for general
Chern-Simons theories obtained in Ref. [25] are not directly comparable since they were
computed in the N = 1 framework.

The β-functions βY and βY are given at lowest order by inserting (2.17) into (2.13). It
is then clear that Eq. (1.1) is satisfied to this order in the form5

∂

∂Y ijkl
A = βY ijkl,

∂

∂Y ijkl

A = βijkl
Y , (2.19)

(hence effectively with a unit TIJ on the right-hand side of Eq. (1.1)) by taking

A(5) = a
(5)
1 A

(5)
1 + a

(5)
2 A

(5)
2 + a

(5)
3 A

(5)
3 (2.20)

where
A

(5)
1 = (Y2)i

j(Y2)j
i, A

(5)
2 = (Y2)i

j(C2
R)j

i, A
(5)
3 = CG(Y2)i

j(CR)j
i, (2.21)

with Y2 given by Eq. (2.18), and

a
(5)
1 = 2

3
, a

(5)
2 = −8, a

(5)
3 = −4T̃ . (2.22)

Notice that at this order the construction of the a-function imposes no constraints on the
anomalous dimension coefficients, since there is a one-to-one correspondence between a-
function structures and anomalous dimension structures. For later convenience it will be
useful to rewrite Eq. (2.19) in the form

dYA ≡ dY ◦ ∂YA = dY ◦ βY , dYA ≡ dY ◦ ∂YA = dY ◦ βY , (2.23)

where ◦ is a scalar product on Yukawa couplings so that for instance Y ◦ Y ≡ Y ijklY ijkl.

5We prefer to use the notation A (rather than a) in three dimensions in the absence of any connection
to a conformal anomaly coefficient.
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3 Consistency conditions for four-loop anomalous di-

mension

In this section we derive the consistency conditions on the four-loop anomalous dimension
coefficients required for Eq. (1.1) to be satisfied at next-to-leading order. We assume an
a-function at this order of the general form

A(7) =

14
∑

i=1

a
(7)
i A

(7)
i + ã(β

(2)
Y ) ◦ (β(2)

Y
) (3.1)

where the structures A
(7)
i are depicted in Table 1, except for A

(7)
14 which it is more convenient

simply to define explicitly, viz:

A
(7)
14 = 1

4
tr(Y2{RA, RB})tr(Y2{RA, RB}), (3.2)

and the final term represents the usual arbitrariness [10] in defining the a-function. Our
convention for the chiral lines is that the arrows point from a Y vertex to a Y vertex;
furthermore, a box represents an insertion of CR, and an A or B represents an insertion of
a gauge generator RA or RB respectively. At this order we expect

dYA
(7) = dY ◦ T (3) ◦ β(4)

Y
+ dY ◦ T (5) ◦ β(2)

Y
+ dY ◦K(5) ◦ β(2)

Y (3.3)

where as we saw in the previous section, T (3) is effectively the unit matrix and we write

T (5) =
7

∑

i=1

t
(5)
i T

(5)
i , K(5) =

2
∑

i=1

k
(5)
i K

(5)
i , (3.4)

where the individual contributions dY ◦T (5)
i ◦dY , dY ◦K(5)

i ◦dY are depicted in Tables 2 and
3, with a cross denoting dY and a diamond denoting dY . The corresponding expression
for dY may be obtained by conjugation and is not given explicitly. Finally the four-loop
anomalous dimension is expected to take the form

(8π)4γ
(4)
Φ =

12
∑

i=1

giγ
(4)
i + . . . (3.5)

where the invariants involving Yukawa couplings are given by
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A
(7)
1 A

(7)
2 A

(7)
3 A

(7)
4 A

(7)
5

B
A

A B

A
B

A
B

A
(7)
6 A

(7)
7 A

(7)
8 A

(7)
9 A

(7)
10

A
(7)
11 A

(7)
12 A

(7)
13

Table 1: Contributions to A(7) (for notation, see Section 3)

T
(5)
1 T

(5)
2 T

(5)
3 T

(5)
4 T

(5)
5

A

B

A

B

T
(5)
6 T

(5)
7

Table 2: Contributions to T (5)

K
(5)
1 K

(5)
2

Table 3: Contributions to K(5)
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(γ
(4)
1 )i

j = Y ilmn(Y2)k
lY kmnj ,

(γ
(4)
2 )i

j = Y ipqrY
pqmnY mnklY

klrj,

γ
(4)
3 = Y2CRCR,

(γ
(4)
4 )i

j = Y ikln(CRCR)
n
mY

klmj

(γ
(4)
5 )i

j = Y iklm(CR)n
mY pkln(CR)p

j ,

(γ
(4)
6 )i

j = Y iklm(CR)n
l(CR)p

mY knpj,

(γ
(4)
7 )i

j = Y iklm(RARB)n
mY pkln(RBRA)p

j,

(γ
(4)
8 )i

j = Y iklm(RARB)n
l(RARB)p

mY knpj,

γ
(4)
9 = Y2CR,

(γ
(4)
10 )i

j = Y iklm(CR)n
mY klnj,

(γ
(4)
11 )i

j = 1
2
tr(Y2RARB)({RA, RB})i

j,

(γ
(4)
12 )i

j = Y iklm(RACR)n
l(RA)p

mY knpj. (3.6)

The structures γ
(4)
1−11 form a basis for 2nd rank tensors with four gauge matrices; γ

(4)
12 is not

independent but has been retained since it appears naturally in diagrammatic calculations
(and in fact ultimately cancels). The ellipsis in Eq. (3.5) indicates Yukawa-independent
terms which we have not computed. We then find that Eq. (1.1) entails

a
(7)
1 + 1

3
ã =t

(5)
1 = 2g

(4)
1 + 1

2
(t

(5)
2 + k

(5)
1 ),

a
(7)
2 =4g

(4)
2 = 2

3
t
(5)
3 = 2

3
t
(5)
3 + 4

3
k
(5)
2 ,

a
(7)
3 + 1

9
ã =1

9
(t

(5)
1 + t

(5)
2 + k

(5)
1 ),

a
(7)
4 − 4

3
ã =2g

(4)
3 − t

(5)
1 − t

(5)
2 − k

(5)
1 + 1

6
t
(5)
4 ,

a
(7)
5 − 4ã =4g

(4)
4 − 6t

(5)
2 − 6k

(5)
1 = −6t

(5)
1 + t

(5)
4 ,

a
(7)
6 =4g

(4)
5 = 2

3
t
(5)
5 ,

a
(7)
7 =4g

(4)
6 = 2

3
t
(5)
5 ,

a
(7)
8 =4g

(4)
7 = 2

3
t
(5)
6 ,

a
(7)
9 =4g

(4)
8 = 2

3
t
(5)
6 ,

a
(7)
10 =− 4t

(5)
3 = −4t

(5)
3 − 8k

(5)
2 ,

a
(7)
11 =− 2T̃ t

(5)
3 = −2T̃ t

(5)
3 − 4T̃ k

(5)
2 ,

a
(7)
12 − 2

3
T̃ ã =2g

(4)
9 − 1

2
T̃ (t

(5)
1 + t

(5)
2 + k

(5)
1 ) + 1

6
t
(5)
7 ,

a
(7)
13 − 2T̃ ã =4g

(4)
10 − 3T̃ (t

(5)
2 + k

(5)
1 ) = −3T̃ t

(5)
1 + t

(5)
7 ,

a
(7)
14 =2g

(4)
11 , (3.7)
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(where ã is the parameter introduced in Eq. (3.1)). The a-function coefficients a
(7)
2 , a

(7)
6−9,

a
(7)
14 , are given directly in terms of the anomalous dimension coefficients in Eq. (3.7); while

the remaining ones are given by

a
(7)
1 =4

3
g
(4)
1 ,

a
(7)
3 =0,

a
(7)
4 =8

3
g
(4)
1 + 2g

(4)
3 + 2

3
g
(4)
4 ,

a
(7)
5 =8g

(4)
1 + 4g

(4)
4 ,

a
(7)
10 =− 24g

(4)
2 ,

a
(7)
11 =− 12T̃ g

(4)
2 ,

a
(7)
12 =4

3
T̃ g

(4)
1 + 2g

(4)
9 + 2

3
g
(4)
10 ,

a
(7)
13 =4T̃ g

(4)
1 + 4g

(4)
10 , (3.8)

together with

t
(5)
1 =1

3
(4g

(4)
1 + ã),

t
(5)
2 + k

(5)
1 =2

3
(−2g

(4)
1 + ã),

t
(6)
3 =k

(5)
2 = 6g

(4)
2 ,

t
(5)
4 =16g

(4)
1 + 4g

(4)
4 − 2ã,

t
(5)
5 =6g

(4)
5 ,

t
(5)
6 =6g

(4)
7 ,

t
(5)
7 =8T̃ g

(4)
1 + 4g

(4)
10 − T̃ ã,

k
(5)
2 =0, (3.9)

subject to the consistency conditions

g
(4)
5 = g

(4)
6 , g

(4)
7 = g

(4)
8 . (3.10)

Turning to the Yukawa-independent terms, it is clear that we may satisfy Eq. (1.1) if for
each Yukawa-independent term X i

j, we add to A(7) a term Y ijklXm
(iYjkl)m, and therefore

there will be no further constraints.

As we have observed already in four dimensions [10, 32] and six dimensions [33], and
indeed at lower orders in three dimensions [21,22], the a-function coefficients are determined
completely (within a given renormalisation scheme) up to the arbitrariness parametrised
by the coefficient ã.
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(a) (b)

Table 4: Classes of diagrams that do not contribute

4 Four-loop calculation

In this section we describe the diagrammatic computation of the four-loop anomalous
dimension, again focussing on contributions containing Yukawa couplings. We are there-
fore concerned with the calculation of four-loop two-point diagrams. Two large classes
of diagrams may be immediately discarded as giving no contribution to the anomalous
dimension [31]. The first consists of those diagrams in which the first (last) vertex en-
countered along the incoming (outgoing) chiral line has a single gauge line. In this case
after performing the superspace D-algebra6 one is left with a diagram which is finite by
power counting. These diagrams are shown schematically in Table 4(a). The second class
consists of those diagrams which contain a one-loop subdiagram with one gauge and one
chiral line, depicted in Table 4(b); in this case one finds that one is left with fewer than
two D’s and two D’s on the loop shown, hence giving a vanishing contribution.

The diagrams which do potentially give non-trivial contributions to the four-loop anoma-
lous dimension are depicted in Table 5. With the exception of 5(h) (which will be discussed
in more detail shortly), the momentum integrals obtained after performing the superspace
D-algebra in these diagrams may be expressed using integration by parts in terms of a
relatively small basis of momentum integrals [34, 35] which are depicted in Table 6, and
whose divergences are also listed in Appendix B. (The graph labelled X in Table 6 will
also be discussed in more detail shortly.) The massless 4-loop 2-point functions depicted
in Table 6 are assumed to have their UV subdivergences subtracted; the “dot” on the
propagator in Ỹ in Table 6 represents a double propagator. The results given later, and
also most of these conventions for labelling the diagrams, are taken from Refs. [34, 35];
except for Ỹ which was defined (without the tilde, used here to avoid confusion with the
Yukawa coupling) in Ref. [22]. Our results for the diagrams of Table 5 are listed in Ta-
ble 7. The central columns of Table 7 show the divergent contribution from each diagram
(again, except 5(h)) expressed in terms of this basis. These momentum integrals multiply
a variety of group structures, as defined in Eqs. (2.18), (3.6), which are tabulated in the
final column of Table 7. Finally the first column of Table 7 contains an overall symmetry
factor. The resulting contribution to the two-point function for each diagram is therefore
obtained by adding the momentum integrals with the coefficients listed in the appropriate
row and multiplying the resulting sum by the corresponding symmetry factor and group

6See Appendix A for conventions and definitions.
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structure. For instance, row (j) of Table 7 denotes a contribution

(−1)(−2I4 + I4bbb)
(

γ
(4)
7 − 1

12
CGγ

(4)
9

)

. (4.1)

We note here the cancellation of γ
(4)
12 between rows (e) and (i), as mentioned in the previous

Section.

We now return to graph (h) of Table 5. After performing the superspace D-algebra,
this results in the momentum integral labelled X in Table 6. In it there is an implicit
spinor trace over the momenta of the rim propagators, k/, where we use three dimensional
γ-matrices with TrI = 2. This particular integral provided us with a technical challenge
compared to the other graphs we had to evaluate. Accordingly we describe our method
for evaluating it in more detail than usual. Firstly, by power counting it is straightforward
to see that the graph is primitively divergent, which provides a shortcut to finding the
divergence. Either we can reroute the external momentum through the diagram in such a
way that it becomes simpler to compute, or we can use a vacuum bubble expansion, such
as that discussed in Refs. [36, 37]. In the former case one has to be careful that infrared
divergences are not introduced. However, we have chosen to follow the latter course as it is
more systematic and accessible to recently developed integration-by-parts algorithms. In
converting the massless four-loop 2-point function to vacuum bubbles we recursively apply
the identity

1

(k − p)2
=

1

[k2 +m2]
+

2kp− p2 +m2

(k − p)2[k2 +m2]
(4.2)

to all propagators, where k can be regarded as a loop momentum. The recursion terminates
when all resulting integrals involving the external momentum are finite by Weinberg’s
theorem. In our case one in effect replaces the scalar propagators of the graph by the
first term of the identity. What remains is an integral with products of scalar products
of internal and external momenta after the trace has been taken. To proceed we have
applied the Laporta algorithm [38]. This constructs identities based on integration by
parts for all such scalar product integrals and then reduces these to a base set of what
is termed master integrals. Specifically these are four-loop massive vacuum diagrams. In
particular they have been evaluated numerically to very high precision in three dimensions
in Ref. [39] using the approach of Ref. [40], running parallel to the same calculation in
four dimensions [41]. Therefore for our particular graph we have constructed a database
of relations between all possible integrals within that of graph X of Table 6 using the
Reduze formulation [42] of the Laporta algorithm. We have used Form [43,44] to handle
the resulting algebra. One aspect of the integration-by-parts approach is that one has
to substitute terms from the masters beyond the poles in ǫ. This is because factors of
1/(d − 3) will appear as coefficients of the master integrals in the decomposition of the
original integral. In addition, as several of the masters have double poles in ǫ then in order
to have an answer which corresponds to a primitive the poles higher than the simple one
have to cancel. It is reassuring to find that this is indeed the case when we perform the
actual computation, giving us a strong check. Interestingly it transpires that integral X of
Table 6 is in fact finite.
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(a) (b) (c) (d)

(e) (f ) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r)

(s) (t) (u) (v)

Table 5: Four-loop diagrams contributing to the Yukawa-dependent part of the anomalous
dimension
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I4 I22 I4bbb Ỹ X

Table 6: The basis of massless two-point momentum integrals. For definitions and results,
see Appendix B as well as the main text. The dotted propagator is squared, and the arrows
on the last integral denote numerator factors of k/.

The simple pole contributions in Table 7 may now be summed using Eq. (B.3) and
we obtain the Yukawa-dependent contribution to the four-loop anomalous dimension using
Eq. (2.16). Our final result is

(8π)4γ
(4)
Φ =2

3
γ
(4)
1 + π2

4
γ
(4)
2 + 4

3

(

1− 1
3
π2
)

γ
(4)
3 −

(

4− 2
3
π2
)

γ
(4)
4

− 1
3
π2(γ

(4)
7 + γ

(4)
8 )

+
[

2
(

1− 1
8
π2
)

T̃ + 1
8
π2CG

] (

1
3
γ
(4)
9 − γ

(4)
10

)

− 4
3
γ
(4)
11 + . . . , (4.3)

where as before the ellipsis indicates Yukawa-independent terms. We may now read off
the coefficients g

(4)
i as defined in Eq.(3.5), and in particular we see that g

(4)
5 = g

(4)
6 = 0,

g
(4)
7 = g

(4)
8 = −1

3
π2, in accord with Eq. (3.10).

5 Conclusions

We have demonstrated the existence of an a-function having the gradient flow properties of
Eq. (1.1) at next-to-leading order, for a general three-dimensional N = 2 supersymmetric
gauge theory in this paper; and for a completely general (non-supersymmetric) ungauged
three-dimensional theory in Ref. [22]. It is worth emphasising that in our a-function con-
struction we have had to compute a new class of Feynman diagram at four loops to ensure
full consistency. For instance, we found by computation that graph X of Table 6 was
finite. Alternatively we could have used properties of our a-function construction to have
predicted this a priori. That the two approaches tally is indicative that our a-function
and the field theories we have examined are fully informed of each other. It seems highly
likely that the gradient flow property will extend to a completely general three-dimensional
Chern-Simons theory coupled to scalars and fermions at next-to-leading order and prob-
ably beyond; and again, based on this one might obtain predictions for further Feynman
diagrams which would otherwise require advanced techniques to evaluate.

It would be very desirable to find a general all-orders proof, or to make contact with the
F -function described in Refs. [17–19] which has been argued to have similar properties at
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symm I4 I22 I4bbb Ỹ overall group factor

(a) − 1
12

1 0 0 0 γ
(4)
1

(b) −1
8

0 0 1 0 γ
(4)
2

(c) −1
4

−2 0 0 0 γ
(4)
4 − 1

4
CGγ

(4)
10

(d) −1
2

0 0 1 0 γ
(4)
4 − 1

2
CGγ

(4)
10

(e) −1 0 0 2
3

0 −1
2
γ
(4)
4 − 1

2
γ
(4)
12 − 1

12
CGγ

(4)
9 + 1

4
CGγ

(4)
10

(f) 1 0 0 −2
3

0 γ
(4)
8 + 1

12
CGγ

(4)
9 − 1

4
CGγ

(4)
10

(g) −1
4

0 0 −2 0 γ
(4)
8 + 1

12
CGγ

(4)
9 − 1

4
CGγ

(4)
10

(i) 1
2

0 0 −2
3

0 1
2
γ
(4)
4 + 1

2
γ
(4)
7 − γ

(4)
8 + γ

(4)
12

(j) 1 −2 0 1 0 γ
(4)
7 − 1

12
CGγ

(4)
9

(k) −1
2

−2 0 0 0 γ
(4)
7 − 1

12
CGγ

(4)
9

(l) 1 −2 0 4
3

0 1
6
γ
(4)
3 − 1

2
γ
(4)
7

(m) − 1
12

−2 0 0 0 γ
(4)
3 − 1

4
CGγ

(4)
9

(n) −1
2

1 0 −1
2

0
(

T̃ + 1
2
CG

)(

1
6
γ
(4)
9 − 1

2
γ
(4)
10

)

(o) −1
2

0 1
2

0 0
(

T̃ + 1
2
CG

)

γ
(4)
10

(p) 1
2

0 1
2

0 0
(

T̃ + 1
2
CG

)

γ
(4)
10

(q) − 1
12

0 1 0 −2 γ
(4)
11

(r) 1
6

1 0 0 −1 γ
(4)
11

Table 7: Results for diagrams listed in Table 5 in terms of master integrals (see Table 6)
and invariants involving Yukawa couplings of Eq. (3.6)

.

least at leading order. In this connection it might be interesting to compute the a-function
as in Eqs. (3.1), (3.7), (3.8) for the particular theories considered in Refs. [17,18] in order to
make a direct comparison. It would be all the more desirable to relate our a-function with
the F -function since as we mentioned earlier, it has been shown that the latter increases
as expected between IR and UV fixed points; whereas although we have demonstrated
monotonic behaviour of our a-function perturbatively, i.e. for weak couplings (since our
metric is the unit matrix at leading order), we currently have no way to prove this in
general.
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A Conventions

In this appendix we list our superspace and supersymmetry conventions. We use a metric
signature (+ − −) so that a possible choice of γ matrices is γ0 = σ2, γ

1 = iσ3, γ
2 = iσ1

with
(γ0)α

β = (σ2)α
β, (A.1)

etc. We then have
γµγν = ηµν − iǫµνργρ. (A.2)

We have [28] a complex two-spinor θα (with conjugate denoted θ
α
) with indices raised and

lowered according to
θα = Cαβθβ , θα = θβCβα, (A.3)

with C12 = −C12 = i. We then have

θαθβ = Cβαθ
2, θαθβ = Cβαθ2, (A.4)

where
θ2 = 1

2
θαθα. (A.5)

The supercovariant derivatives are defined by

Dα =∂α + i
2
θ
β
∂αβ , (A.6)

Dα =∂α + i
2
θβ∂αβ , (A.7)

where
∂αβ = ∂µ(γ

µ)αβ, (A.8)

satisfying
{Dα, Dβ} = i∂αβ . (A.9)

We also define
d2θ = 1

2
dθαdθα d2θ = 1

2
dθ

α
dθα, d4θ = d2θd2θ, (A.10)

so that
∫

d2θθ2 =

∫

d2θθ
2
= −1. (A.11)

The vector superfield V (x, θ, θ) is expanded in Wess-Zumino gauge as

V = iθαθασ + θαθ
β
Aαβ − θ2θ

α
λα − θ

2
θαλα + θ2θ

2
D, (A.12)
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and the chiral field is expanded as

Φ = φ(y) + θαψα(y)− θ2F (y), (A.13)

where
yµ = xµ + iθγµθ. (A.14)

B Integrals

Here, we list the UV divergences of our basis of momentum integrals. As in Refs. [34, 35],
these are subdivergence-subtracted massless two-point functions, depicted schematically in
Table 6. The basic massless 1-loop integral (defined to be dimensionless here) is given by7

G(a, b) =

∫

ddk

(2π)d
p2(a+b−d/2)

k2a (k − p)2b
=

Γ
(

a+ b− d
2

)

Γ
(

d
2
− a

)

Γ
(

d
2
− b

)

(4π)d/2Γ(d− a− b) Γ(a) Γ(b)
. (B.1)

A standard method is then to iteratively integrate out massless sub-graphs in higher-loop
integrals in terms of the function G, and this is indeed sufficient to evaluate the first
four of the integrals of Table 6. Due to dimensional reasons, in odd dimensions the first
logarithmic UV divergence can only occur at even loop orders, which here is parametrized
by the 2-loop massless sunset-type integral

I2 =

∫

ddk

(2π)d

∫

ddq

(2π)d
p2(3−d)

k2 q2 (k + q − p)2
= G(1, 1)G

(

2− d
2
, 1
)

. (B.2)

We are now ready to define our basis of momentum integrals, using an operator K̂ [f(ǫ)]
that extracts the pole parts of the function f(ǫ). Recalling that we work in d = 3 − ǫ
dimensions, we obtain

I4 = K̂
[

I2

(

G(1, 1)G
(

5− 3d
2
, 1
)

− K̂ [I2]
)]

=
1

(8π)4

(

−
2

ǫ2
+

4

ǫ

)

,

I22 = K̂
[

I2

(

I2 − 2K̂ [I2]
)]

=
1

(8π)4

(

−
4

ǫ2
+

0

ǫ

)

,

I4bbb = K̂
[

G3(1, 1)G
(

4− d, 2− d
2

)]

=
1

(8π)4

(

π2

ǫ

)

,

Ỹ = K̂
[

G2(1, 1)G
(

2, 2− d
2

)

G
(

2− d
2
, 4− d

)]

=
1

(8π)4

(

−
2

ǫ

)

, (B.3)

the first three of which agree with Refs. [34, 35] after adjusting for our definition of ǫ
which differs by a factor of 2. Furthermore, the integrals satisfy the consistency condition
4Ỹ = I22 − 2I4 given in Eq. (4.1) of Ref. [22]. We note that in fact the result for Ỹ is not
required since it cancels between rows (q) and (r) of Table 7.

7The G-function notation was introduced in Ref. [45].
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