ALEXANDER POLYNOMIALS OF CLOSED 3-BRAIDS

H. R. Morton

1. Introduction

The knots and links which can arise as the closure of
3~string braids, and their relations to the braids which give
rise to them have been studied by Murasugi [Mu] and others,
including Hartley [H] and more recently Przytycki [P]
Three-braids appear to form a rather special class among braids
from some points of view, [M1]; they are, also, the only group
of braids for which Burau's representation is known to be
faithful [B]. They are, however, varied enough to provide
an interesting range of knots and links on which to test a
number of conjectures.

In this paper I present a compact formula giving the

Alexander polynomial of @ U LB, and hence ﬁ, for the braids

P, -4 p q
n 1 1 r r . .
B = ¢ Ul 02 ce 01 02 s where LB is the axis of the
A
closed braid f, ¢ = (0102)3 generates the centre of B3’ and
>
P,y a, >0
These braids form Murasugi's class 96, making up the
vast majority of 3-string braids, up to conjugacy. The formula,

in terms of the indices pi, qi and their order of appearance,

up to cyclic permutation, emables the number, r, of 'terms' in 8




to be read off from the Alexander polynomial, and also the smallest
index m = min {pl, ey qr} and its multiplicity.

It provides evidence to support the conjecture that for a
braid B ¢ Bn, the Alexander polynomial of the link ﬁ U LB,
where LB is the axis of @, determines the link (possibly up to
orientation), and hence the conjugacy class of £ and its reverse.
This Alexander polynomial A(x, t) is just the characteristic
polynomial det(xI - B{t)) of the reduced Burau matrix B(t) of B,
50 the conjecture for n > 3 would imply the faithfulness of the
corresponding Burau representation.

With considerable combinatorial ingenuity it might be
possible to recover the indices of a 3-string braid B up to cyclic
order from the polynomial given in Theorem 3 and so prove the

conjecture for 3-braids, but I can see no prospect for a direct

attack when n > 3,




§2, A formula for the Alexander polynomial of a closed 3-braid

Given any 3-braid B, the Alexander polynomial of the

A
link B U L the closure of {3 together with its axis, is given

B?
by A(x, t) = det(xI - B(t)), where the variable x refers to
the me?idian of the axis LB, and t to all meridians of the
oriented closed braid ﬁ, and B(%) 1is the reduced Burau matrix
of B [M2].

A
In the case of a knot [, its Alexander polynomial can be
2

recovered as A(l, t)/(L + t + € ).

A
Conjecture Given A(x, t) the link g U LB is determined

(possibly only up to orientation), and so £ 1is determined up to

conjugacy (maybe with reversal or reflection included).

2
Note Alx, t) = X - trB(t).x + detB(t), so
s
from A(x, t), even given only up to multiples by *x tk, we can
recover tr B(t) and det B(t) = (—t)lBl, where IBl = algebraic

number of crossings in B.
It will be more convenient to use s = -t in place of t.

The Burau matrices for the braid group generators are then

s 1 f1 0
ol(s) = and G_ {(8) = , (s = s ).

Except for a small number of f we can write B up to conjugacy as

P, -4 P-4

n-1 1 r 3

= e ' ith > 1 and ¢ = g.ag

B ¢ 9y 9% % %2 with By 9y ' (0,0,

the generator of the centre of B3, Mu]. The Burau matrix of ¢
3

is s I_, SO

2




3n.
= e M
B(s) 8 M(pls ql) (pr’ qr):
where
Di _qi
M(pi, qi) = Burau mgtrlx of 01 02
P. qa.
_ i -1 i
= 01(8) (02 (s))
P, p.-1 q.
a 8 . i1+s+ ... 8 1 =} . 0}
= g *t q.~1
0 1 s(1 + +s T ) 1J
_qi
= 8 C (s)D (s) say
i Y
3n-Iq, T
Then B(s) = s TV ¢ =D (8.
1 Py Y
3n—Eqi T
So tr B(s) = 8 tr -n-C {(s)D (8).
1 P; 9
r
Write tr J1C (s)D° (s) = Q(s), a polynomial in s,
1 P, q,
i i
= 2
Theorem 1 Q(s) = 1 + rs mod s
, 3n—Zqi
Corollary 1. We can find Q(s) from tr B(s) = s Q{s) by

k .
multiplying tr B(s) by s to get a polynomial with constant term 1,

We then also find k = 3n - Zqi.

Corollary 2. From tr B(s) we can find r, the number of 'terms'
Pi _qi

in B of the form Gl 02

Theorem 2 If » =1, Q(s) determines the unordered pair

{pl, ql}. Let m = min {pl, cees qr} and let « be the number of

these indices equal to m. Then

2 2 +1 +2
(1 - 3) rQ(s) = (1 -8 + s )r - usm mod sm , when r > 1.




Corollary 3 From Q¢(s) we can find m and o,

These results follow fairly readily from calculations of C

2 m+2 i

and Dp mod s or mod S , or from the complete formula for
i

Q(s) given in Theorem 3. I shall construct the formula for Q(s)

from a polynomial in s and indeterminates ¢t .oy t2r which contains

1!
no squares oy higher powers of any indeterminate tk by putting
Pi q

s and ¢t = B 1

tZi—l = 2i . Each monomial in {tk} has as

coefficient a polynomial in s depending on the number of gaps when the
indeterminates in the monomial are arranged in order round a circle.
To formulate this explicitly, write the numbers 1, ..., 2r

consecutively round a circle,

Definition For each subset J < {1, ..., 2r} write c(J)

for the number of 'blocks' of J on the circle, i.e. the components

of the subset of S1 given by joining all adjacent pairs which lie in J.
Make the conventiom that ¢{(J) = 0 when J =@ and when

J = {1, ..., 2r}. Then c(J) counts the number of times you pass

1

from J to its complement J' on making a circuit of S, and

c(JV)y = c(J).
For example, the subsets {1, 2} and {1, 4} of {1, 2, 3, 4}
have one block, while {1, 3} has two.

Write t for the monomial .Tr t in indeterminates
J k
ked
S We can now give our explicit formula for Q({s), the
. Pl -q Dr |
trace of the reduce Burau matrix B(t) for R = <¢ Gl 02 ... G, © s

where 8 = -t, normalised to have lowest degree term 1.




2 J J 2 r-c(Jd
Theorem 3 Q(s){1 - s) o= z (-1)l ‘Sc( )(1-S+S ) ( )tJ,
Jgcl1,...,2r}
P, q :
_ i _ i
where tzi—l = 5 , tZi s .
Remark The appearance of the numbers c¢{(J)} make it possible

that the order of the indices {pl, PR qr} around a circle could be
recovered from Q(s) as part of a process for finding the set of indices.
In the case r =1 or 2 the index set and, for r = 2, the circular

order can be recovered from Q(s).




3. Proofs

Proof of Theorem 2

Take m = min {p., 4.}.
1 J

{a) When m > 1 then tJ = 0 mod sm+2, with tk as in Theorem 3,

for all J with [J]| > 1.

2r 2. r 2. r-1 2r
Then Q(s)(l - s) = 1-s+s8) -s@-8s+5s) th
1
m+2
mod s
2r
m m+1l .
Now z tk = as mod s , where a is the number of tk equal
. 2 r-1% 1 2
m r- + +
to 8, so s(1 -s +8) Ztk = asm mod sm , giving
\
Theorem 2 in this case.
(b) When m = 1 it is still true that SC(J)tJ -~ 0 mod s¥? for

IJI > 1, apart from the case r =1, where c(J) = 0 when

|J| = 2, giving a single exception p1 = q1 =1, r=1.

The proof of theorem 2 follows as above except in this one

simple case, which can be detected in advance from the highest degree
Ip, + Iq,
term in Q(s), namely s 1 b
1Y a

2 2
In the case r =1 we have Q(s)(1I - s) = (1 -8+ s ) - s(s 1-#5 1)
p,+d
+ (1 -8 + 8 )s 1
p1+q1+2
Find the largest degree term S , and then remove
5 P1+q
(1 - s +58 )(1 + s ) to recover p1 and ql.
2
Proof of Theorem 1l From Theorem 3, Q(s)(1 - 2rs) = 1 - rs mod s ,

2
so0 Q(s) = 1 + rs mod s




P, qi
P f of Th 3 Writ t = =
Yoo eorem rite 2i-1 s , t21 s .
t,. ,(1-8) 1-t )
2i-1 2i-1
Th 1 - = =
en ( s)Cpi(s) tzi—lAl + Bl’
9 0 1-s
1-s -1 0 1
where A = and B =
1 0 0 1 0 1-s
imilarl -s)D = A
Similarly {1-s) @ tZi o + B2, where
i
1-s o 0 0
A, = and B, =
2 -8 0 2 s 1-s
2r r
Th s)Y{1 - s = tr A + B t A + B .
en Q(s)( ) (U (ty, A+ BD(E, A + B))
i=1
Write MJ for the product of the sequence of matrices Al, Bl' A2, B2
determined explicitly by each subset J c {1, 2, ..., 2r} as
2r
= = A i T C = i 4
MJ |J Ck’ where Ck K i k ¢ J, and K Bk if k¢ J,
taking Ak = A1 for k odd, Az for k even and similarly for Bk.
fﬁ
Then (t.. A, + B, A +B) = ) t M_, and so
4=1 2i-1'1 1 2i 2 2 Je{,. .., 2r) JJ
)1 - $)°F = T P (s)t., where P (s) = trM, . Theorem 3 will
J J J J J
then follow from the calculation of tr MJ given in Lemma 4.
Lemma 4 For Jc {1, ..., 2r} and MJ as above,
J J 2 r-c(J).
tr MJ = (—1)| Lc( )(1 - 8 + 8 )r c(d)
Proof of Lemma 4 Without altering the trace of MJ we may
cyclically permute the matrices Cl' ey CZr' In the product we have
e(J) blocks of consecutive matrices of type A separated by c¢(J)

kl




blocks of matrices of type Bk' up to cyclic reordering. In the

product the subscripts 1 and 2 will alternate.

The proof is by induction on r, based on several straightforward

calculations.
1) A1A2A1 = vAl, AzAlA2 = vA2 H B1B2B1 = vBl, B2B1B2 = VBZ,
_ 2 1 0
where v = (1 -8 + 58 ). For example, use A A = v .
12 0 0
(2) B2A1A2B1 = SB2B1' BlAzAle = sBlB2 H
AleBlA2 = sAlAz, AZBIBZA1 = sAzAl.
Case 1

If any block of J or J' has three or more elements, we
can use (1), after cyclic permutation of the matrices Ck if necessary,
to give ftr MJ = vir MK where K is the subset of {1, ..., 2r - 2}

given from J by omitting two consecutive numbers in the block of J

or J', and renumbering. Then the number of blocks is unchanged,
as is the parity of |J|, and induction gives
J J -1-c(J
br M, = (-1 JgSPFmireld)
K
Case 2

If a block of J or J' has two elements, then we can use (2),
possibly after cyclic permutation, to give tr MJ =85 tr MK' where K
is given by omitting the two element block and renumbering. Then

c(K) = ¢(J) - 1 and again induction gives the result.

Finally, if each block of J and J' has only one element, we

have




- 10 -

Case 3
MJ (AIBZ) or MJ (BlAz) .
[—s -(1-8)
Here c¢(J) = |J| = r Now A_B = and
12
0 0
-5 -s(1-8)
B1A2 = . A quick calculation confirms that in either
0 0]
case tr M = (-s)r, as required.

The induction is completed by checking the remaining cases with

=1, M_ = AA d B .
r R 7 18 an 1B2

This completes the proof of Lemma 4, and of Theorem 3.
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