Fibred knots with a given Alexander polynomial

H. R. Morton

1. Introduction. In this paper I shall show that, given any

fibred knot k in 83 of genus > 1, there are infinitely many
fibred knots with the same Alexander polynomial as k . These
knots all have the same Seifert form, (not necessarily that of k ).

The study of fibred knots was given its impetus by the work of '
Neuwirth and Stallings, [N1] ) [NE] , L8] » Where the geometric
condition that the complement of a knot k < S3 should fibre over
.E'»’I was shown to be eguivalent to an algebraic condition on the
group ﬁa( 83 -k ). This condition places a restriction on the
Alexander polynomial of a fibred knot, beyond the general restrictions
on the Alexander polynomial of any knot. Burde, [B] , constructed
a sequence of fibred knots realising all possible Alexander polynomials,
subject oniy to this one extra restriction.

Apart from Burde's examples, links of algebraic plane curve
singularities, and certain alternating knots, [Mu2] , there remained
a very limited known repertoire of fibred knots. 1 Indeed, if a
fibred knot has Alexander polynomial 1 , 1 -t + t2 or 1~ 3t + t2 ,
(the only possibilities of degree £ 2 }, then the knot must be
trivial, the trefoil or the figure-eight respectively. This is
in sharp contrast to the general case, where infinitely many knots
with Alexander polynomial 1 , and hence any other Alexander poly-
nomial , can be found.

4 brief survey of the known examples led Burde and Neuwirth to
make the appealing conjecture, [NBJ y that there were only finitely
many fibred knots with a given Alexander polynomial. This conjecture
crumbled when I showed, [M] , that an infinite sequence of satellites,

each fibred and with the same Alexander polynomial and Seifert form,
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could be found for any fibred knot.

Quach Cam Van attacked the problem further, [QW] ' [Q] , with
a series of examples giving infinitely many fibred knots for each
possible Alexander polynomial with a repeated root, although in her
examples the Seifert forms vary.

The present result, Theorem 4, demolishes the remains of the
conjecture by constructing an infinite sequence of fibred knots for
each possible polynomial, except the three listed of degree £ 2,
for which only a single fibred knot can be found.

The constructions start from Burde's examples. Since most
of the proofs showing that given knots are fibred rely on the more
or less algebraic techniques developed by Stallings, [82] y 1 feel
that it is worth redressing the balance, and providing in the next
two sections & geometric view of the fibrations which arise naturallyl
in many constructions of new fibred knots from old. A knot which
is built up in a suitable way from fibred pieces will then be shown
to be fibred by a fairly explicit exhibition of the fibres and the
monodromy.  Burde's examples will be seen in this context using
a redrawing of them which Paul Melvin and I developed in the course
of trying to understand their fibration geometrically, (fig. 2).
From this redrawing it is also easy to calculate the Conway -
Kauffman version of their Alexander polynomial. As in Burde's
own calculations, the number of twists prescribed in various places
relates readily to the coefficients of this polynomial, and a brief
desbription is given in the final section.

The main theorem is presented in section 4. The construction
used, twisting s times about a suitable unknotted curve lying in
a fibre, is another of the known devices for generating new fibred
knots from old, [H] ’ [SE] . It remains, then, to find such curves

in Burde's examples, check the effect on the Alexander polynomial,
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and finally to distinguish between the resulting knots for infinitely
many different cheoices of s .

The Seifert form will not be at hand in this case to distinguish
the knots, but use of Thurston's work on hyperbolic structures allows
me to show that either the knots themselves, or some companion, have
a hyperbolic structure on their complement, with finite volume which
varies with s . S8ince this volume is a topological invariant, the

proof will be complete.

2. Fibred knots and plumbing
3

An oriented knot or link k < S

>3
fibre F if F 85

is said to be fibred with
is an orientable surface, with k = OF ,
and there is an 'open-book decomposition' of S3 with binding k
and leaf F .

Such a decomposition is equivalent to a fibration of the
exterior of k {(the complement of an open tubular neighbourhood of
k in S3 ) over S1 with fibre F . It can best be described

3 such that

by a continuous surjective map p : F x [D,Erﬂ — 5
(i) p (x,t) = p (x,0) = x for each x ¢ k,
(ii) p (x,2m = p (h(x),0) for each x e F , where h : F—>TF

is a homeomorphism, called the monodromy,
(iii) no further identifications are made by p .

At each level t +the map p lF‘X{t} gives a homeomorphism from

F to a leaf Ft , With F_=F F , and otherwise two leaves

o~ “am”
meet only in their common boundary k .

3

We can view p as an isotopy in S from i to ie¢h ,
which is 'strictly monotone', rel 3 F, in a sense to be defined.
Notice that the path p ({f}x(0,27]), for f € F is either a single

point, when f € 3F, or else an arc or a circle traversed strictly

monotenically. As t increases, the surface Ft moves off itself




in the direction of the positive normal.

I propose to show that, under suitable conditions, an‘isotopy
p from i to ieoh in which certain parts of Ft remain fixed
for an interval as t increéses will still be enough to guarantee
that F is a fibre for k = OF with monodromy h . Such an
isotopy, called monotone, rel 3F , can be pictured as giving leaves
which are stuck together in places, like badly cooked puff-pastry.
These leaves must be separated to see the fibration.
Definitions. Let Pyr Py ¢ F—Y be embeddings, and let
pr:F x I —Y be an isctopy from P to Py which is constant

on a subset A <. F. Then p is (a) monotone rel & or (b)

strictly monotone rel A if it satisfies the conditions listed below

(a) if p (x,8) = p (y,t) and s <t then either s =0
and t=1,o0r x=y and p (x,vr} = p (x,8) for all r ¢ [s,t] .
(b) if p (x,8) = p (y,t) and s <t then either s = O
and t =1, 0or x=y & A.
In such an isotopy the paths traced out by different points of F
are disjoint, except possibly at their endpoints, and each path is
traversed (a) monotonically, (b) strictly monotonically except for

points in A .

Lemma 1 Let F and Y be compact manifolds, and let p : FxI—>Y

be B piecewise-differentiable isotopy from P, to P4 which is
monotone. Then there is an iscotopy p' from Py to P, which

has the same image as p , and is strictly monotone rel A, the subset
on which p is constant.

Corollary ~ Let F é-s3 be a compact surface with boundary k ,
and let h : F — F he a homecmorphism. Suppese that there is

a8 p.d. monotone isotopy from i to ioh which is constant precisely
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3

cn k , and has image SB. Then 87 - k is fibred over S1 with
monodromy h .
Proof The strictly monotone isotopy which can be constructed

using lemma 1 gives an appropriate map from F X I onto 83.

Proof of Lemma 1 The map £ i F X I~——: R given by f}(f,t) =
length of the curve p ({f}x[0,t] ) = Sﬂ ‘ibE(f:t)" dt is well-
defined and continuous. Then @: F x I -O—> F xa&g , given by
O(f,t) = (f,,o(f,t)) is continuous, with imege X say. This
map & 1is an identification map, since F is compact, and p then
factors through X as p = olo8.

Since p 1is monotone, the continuous map o : X —> Y is
injective, except possibly on the image in X of F % {0}, F x {1} .
Now let @' : F x I — X be the straight-line homotopy from E)O to
91 « This map provides the same family of paths in X as &, but
the paths are reparametrised to eliminate unnecessary pauses, for
@' is injective, except on A X I , where F =0 . The image of
Q' is again X , and p' = A,Q'" then gives a strictly monotone
isotopy, rel A, from Py to 'p,I s with the same image as p .

In many cases of the plumbing construction which follows a
monoton® isotopy can be seen fairly readily, hence a fibration and
its monodromy. A similar idea underlies Thurston's construction
of fibratioms, [T1] » in which an embedded surface ‘'vpops across' a

sequence of tetrahedra, building up naturally a monotone isotopy.

Plunbing This construction starts from knots k1 R k2 spanned

by oriented surfaces F1 ’ F2 and gives, with some further choices,

a new knot k and spanning surface I' .

Choose F, to lie entirely in the upper hemisphere D1 < 53 ’

1
and meet 82 = BIM in a closed Z2r-gon GO ; in which r alternate




edges form part of k1 = BZF1 . Choose F2 similarly to lie
2

entirely in the lower hemisphere D2 , also meeting S5~ in GO s

with the remaining r edges of G, lying in k_ = B:F2 « Suppose

0 2

that the orientations of F_1 ’ F2 are consistent on GO ywith the

positive normal pointing into D1 e« Then F = F1 v ZF2 is an

oriented surface, crossing 52 with an r - fold monkey-saddle,

(see figure 1), given by plumbing F, and F, along G, .

A surface T mey be seen to decompose in this way if, for
example, there ig one part of it, F1 , which in some projection
apparently overlays the rest, apart from a common disc. In the
case r =1 thekmot k = OF is just the connected sum of k1

and k but generally the knot k will depend oh the choice of

o1
disc GO in F1 and F2 as well as on kﬁ and k2 .

Figure 2 shows a typical knot and spanning surface from Burde's
examples, [B] - The surface is made of ribbons, each having a
number of full twists as indicated, and can be built up by successive
plumbing of a once-twisted annulus, g-1 copies of the surface Ls ’
(figure 3), for various s , and one further twisted annulus. One
stage of the plumbing decomposition is illustrated in figure 4, where
the shaded portion forms L02 + lying in the lower hemisphere, the
cross-hatched part forms the polygon GO of overlap, lying in the
equatorial level, while the rest of the surface lies in the upper

hemisphere. The complete surface in figure 2 is built up inductively

in this way.

Murasugi , [Mu1] ) [HuE] , used the plumbing construction, with
a special choice of F2 , in his work on alternating knots. It also

features in Stallings' work on fibred knots, [StZ] ) [H] « The
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The present description results from an independent investigation
by myself and Paul Melvin in trying to picture geometrically why
Burde's knots are fibred.

Murasugi needed firstly a result which is true for general

plumbings.
Theorem 1 If F1 and F2 are plumbed to give F then a basis
for H1(F) can be chosen so that F has Seifert matrix

Aq c

A = where A1 . A2 are Seifert matrices
0 A
2

for F1 s F2 .
Proof The basis regquired for Hq(F) is simply the union of any

chosen bases for H1(F1) and H1(F2) .
Now if det A #Z O then the constant term ZSK(O) in the

Alexander polynomial of k = OF is equal to det A , up to sign.

In this case |[§k(0)| = Illk (O).Zxk (0)| . Murasugi was able to
1 2

show that the Seifert matrices for the natural plumbing components

which come from an alternating knot diagram are non-singular, so that

Z&k(o) can be calculated in this way.

More striking is the second result.

Theorem 2 Let F1 and F2 be plumbed to give F .  Suppose
that F,I , F2 are both fibre surfaces, with monodromy h1 . h2

respectively. Then

(a) F is a fibre surface for k = OF,

(b) this fibration has monodromy hzoﬁ1 , where T, : F—F
is the extension of hi over F by the identity on F - Fi .
Corollary To prove that Burde's knots are fibred it is enough to

show that each LS is a fibre surface for the link KS = 0 LS s
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since it is easily seen from the Hopf fibration that a once-twisted
annulus is a fibre surface for its boundary, the Hopf link.

Theorem 2(a) was proved by Murasugi for his special cases, and
by Stallings in general, using algebraic methods. Harer, [HJ y proves

theorem 2(b) for a special choice of F, .

Proof of Theorem 2 Construct a piecewise differentiable monoctone
isotopy, rel AF y from i : F < S3 to io-ﬁao -E,] , With image .S3 .

The result then follows from the corollary to lemma 1.

Write HO for the complementary disc to GO in the equatorial

sphere 82 , and select a homeomorphism jo : GO——~>-H0 ’

boundary. Extend this by the identity over the rest of F to

fixed on the

., . _ . . . . .
j:FP—>F = (F GO) v By » and write j, , j, for the restriction
of j to F1, F2 respectively.
When GO and HO are identified by jo the upper hemisphere D1
becomes 83 - In this 83 the fibration with fibre F, and monodromy

1

h,l provides a strictly monotone isotopy, Py s in which FH x {0} and

Fo X {11 both have image F, .

to make P4 yield a strictly monotone isotopy pa in Dq - The image

We can undo the identification by jo ’

of F, X {0} under p} is still T, , but the image of F, X {1} is

4

[ - . : . .
F,| = (F1 GO) U H0 : HO here plays the role of the negatlYe side

of GO in 87 . The isotopy py runs from i F,1 C: D,1 to Jq c.h.,| .

We can assume that p% is plecewise differentiable. Extend it by the

identity on the rest of F to a monotone isotopy, 5} y from i : F < 53

to joH,I : F— F' , with image D,] v F2 .

This can be thought of as a half-way stage in the monodromy for
F , with the image F' lying just to the negative side of F1 and

just to the positive side of F,_ . The isotopy then continues by

2

marking time on F1 - GO and sweeping round through D2 from Ho and

the positive side of F2 to GO and the negative side of F2 -
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As above, identify G with Hy, and use the fibration coming

from F2 in D2 to get a strictly monotone isotopy from j2 : Fe-—> Fé

to i.sh This is in keeping with the positive direction on F2 .

2°72 "
Again, this extends by the identity over the rest of F +to give a
monotone isotopy from 3j to iolﬁé , and hence one from j oTﬁ to
ic,iéo'EH s with image D2 U F1 « The composite of this isotopy and
E} above gives an isotopy from i to iolﬁéolﬁa , Which is monotone

and fixes only AF .

3 Twisting
To complete the proof that Burde's knots are fibred, and to
construct the promised sequence of examples, I shall use the 'twist

construction', one other major technigue in building examples of

fibred knots, LH] , [st2] .

Twist construction Choose an unknotted curve ¢ in a fibhre surface

F , whose neighbourhood in F is an untwisted ribbon. Twist s times
about ¢ , so that the knot k = aF becomes the curve ks -
Theorem 3 (a) ks is fibred for each s ,
(b) the monodromy h, of k  is given by
U
h = ( Lc) h,

where h is the monodromy of k , and 'tc is a Dehn twist about ¢ .

Proof To describe the twist, construct a small cylinder c¢ x T ,
with ¢x{0} = ¢ , meeting neighbouring fibres to F transversely

in the curves c¢ x{t}. This forms part of the boundary of a solid
cylinder D x I , where D is a disc spanning ¢ . The disc D x {1}
will meet F again, and indeed k itself, unless ¢ hounds a disc
in F,

Cut & open along (cx I) (, (Dx{1}) and twist D x I through
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2Tst at level t before gluing back. Since D x{1} is glued back
by the identity we get the curve ks in place of k, spanned by a
surface FS homeomorphic to F . The cutting and gluing determines
a 'shearing' of 83 along < x I , and a homeomorphism on its comple-
ment. Any of the original fibres which meet ¢ x I still give a
genuine surface after this shear, as the cut edges at ¢ x I simply
slide some way around one of the curves c x{t} . The foliation of
the complement of kS by such spanning surfaces then ensures that ks
is fibred.

The homeomorphism on the complement of ¢ x I which carries k
to ks can be used to describe the complement of ks in terms of the
complement of k . Think of a neighbourhood of ¢ x I as a solid
torus, with core c¢ . Then 83 - ks is homeomorphic to 83 - k with
the s0lid torus V round ¢ removed, and replaced by a solid torus Vs ’
whose meridian disc spans a curve running s times longitudinally and
once meridianally around the boundary of V . The torus VS '
enclosing ¢ x I , can be viewed as the support for an isotopy of FS
which contributes (TIC)S to the monodromy of ks.. The monodromy
of kS is completed by composing this isotopy with the isotopy for k
having monodromy h .
Corollary The surface Ls in figure 4 is a fibre surface for
Ks = bLS for each s .
Proof LS is given from Lb by twisting s times about the
boundary curve c¢ shown in figure 4. This curve ¢ , or one parallel
to it in dint Lb , satisfies the construction requirements, consequently
LS is fibred for all s if and only if it is fibred for one s.
Now L1 is the connected sum of two once-twisted annuli, along the
arc a in figure 5. Connected sum is a special case of plumbing,

S0 L1 , and hence eadh Ls , is a fibre surface.
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Note It is important to remember that in order to refer to a link,
such as KS , as fibred, the orientation on each component must be
specified. It is possible to change orientation on some components

of a fibred link to arrive at a non-fibred link.

4, Main Theorem

Theorem 4 For each of Burde's knots with genus g 3» 1 there are
infinitely many fibred knots having the same Alexander polynomial and
Seifert form.

Corollary Burde's knots are known to realise all possible Alexander
polynomials of fibred knots, (see Theorem 5). Hence only the trefoil,
figure—eight and trivial knot are determined among fibred knots by

by their polynomial alone.

Proof Given one of Burde's knots k , I shall construct a sequence

of knots, kS , such that :

Te each ks is fibred,

2e each ks has the same Alexander polynomial and Seifert
form as k = ko )

S infinitely many knots in the sequence are different.
0. Construction Let F be a fibre surface for k , with genus > 1 .

select an unknotted curve ¢ in F which separates F but does not
bound a disc in ¥ , A neighbourhood of ¢ in F is then untwisted,
since one edge of the ribbon bounds in the complement of the other.

It is possible to find such a curve ¢ by first cutting F
along the separating arc b shown in figure 2. One of.the resulting
components is a torus with one hole, whose boundary is unknotted.
Choose ¢ parallel to the boundary curve in this torus.

Twist s times about ¢ to give the knot ks .
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1. Fibration By Theorem 3{(a) each ks is fibred, with fibre F ,
s

S58Y e

2. Similarities The monodromy hS induces an automorphism on

H1(Fs) » represented by H_ € GL(2g,%Z) « The Alexander polynomial

of ks is the characteristic polynomial of Hs .

We have HS = (TC)SH » where Tc , H represent the auto-
morphisms induced by ch , h respectively, relative to a suitable
choice of basis, from Theorem 3(b).

For the homology class <d» ¢ H1(F) represented by a closed
curve d we have

<’Cc(d)> = <d) + w<e),
where w is the algebraic intersection number of ¢ and d .

In this case <c) = 0O, s0 <’tc(d)> = <d» for all

<d)> eH,I(F). Thus T = I, and H = H, forall s.

The Alexander polynomial and Seifert form of ks are then independent

of s .

%. Differences I shall show that some subsequence, at least, of

the knots ks are all different, by considering the volume, as a
hyperbolic manifold, of the complement either of ks or of some
suitable companion.

The exterior of ks , i.e. the complement of an open tubular
neighbourhcod of ks , is given from the exterior of the link k y ¢
by attaching a solid torus, VS , to the boundary torus € of the
tubular neighbourhood of ¢ so that the meridian of Vs is attached
to (meridian + s x longitude) on C . Thus ext kS arises from

ext (k y ¢) by Dehn surgery on C .
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(a) If the complement of k ( ¢ has a hyperbolic structure,
with volume v , then, for all but finitely many s , s0 does the
complement of kS y With volume Vo<V . Under these conditions
Sup v = VvV , 80 there is some strictly increasing subsequence of
volumes. The corresponding sequence of knots kS are then all
different, since the wvolume v is a topological invariant. See

Thurston, [T1, chapters 5 & 6] or [T2] , for these results.

(b) The manifold ext (k , ¢) is irreducible, since c does
not bound a disc in ext k . Hence we can look at Johannson's
decomposition of it into characteristic Seifert fibre space pieces and
other atoroidal pieces. See [J] y or the description of the same
decomposition due to Jaco and Shalen, [JS] -

Let N be the component in this decomposition which contains
the boundary torus C of the tubular neighbourhocod of ¢ . Write
the components of N as C, Ty, S1u ceny Sr y where T separates
¢ from k . The other components Si , 1if any, are tori each leaving
¢ y k to one side and bounding a knot exterior on the other. N forms
part of a 'splice decomposition' for ext (k ( ¢) in the sense of
Neumann, [N] , as indicated in figure 6.

If N is not a Seifert space, then its interior has a hyperbolic
structure, EPﬁ] . As in the special case (a), where N = ext(ky c) ,
the manifolds NS = Ny VS will be non-homeomorphic for infinitely
many s . The Johannson decomposition of ext ks will be similar to
that of ext (k y ¢) , with N replaced by Ns s Where NS is hyper-
bolic.

Excluding at most those s for which NB is homeomecrphic to
a Johannson component of ext (k v ¢) leaves infinitely many ext k
with different Johannson decompositions. Since a Johannson decompos-

ition is preserved up to isotopy by a homeomorphism, it follows that
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there are infinitely meny inequivalent knots ks .

(c) The proof of Theorem 4 is completed by showing that N

can not be a Seifert space.

Lemma 2 There is a curve t, in the torus T with linking

number lk(tk,k) £Z 0.

Lemma_3 Each curve a in 8N - C has 1k(a,c) = O .

Corollary N is not a Seifert space.

Proof Suppose that N dis a Seifert space, with boundary components
C, 10e=y C k2 . Let p ¢t N— B be the fibre projection, where

1 k'
B is a surface with boundary curves p(Cq) yeoos p(Ck) . The subgroup

V < H1(B;Q) generated by p(Cq) yeeey p(Ck) has dimension k-1 , as

a vector space. The regular fibre generates ker p, , and each comp-

oment C. contains a regular fibre. Put U = i*H1(C211...(;Ck Q) .
Then (p*)-qV = U, by a dimension count, and so i*H1(C1) < U.
Teke C = C1 in the case above, and consider the inclusion

j: N < 83 ~GC. Since all curves in 3N - C have zero linking
number with c¢ we have j,(U) = 0O, and thus j*i*H1(C) = 0.

This is impossible, since a meridian in C generates H,I(S3 -C) £ 0.

The corollary can also be proved by regarding N as homneomorphic

to the exterior of a link with r+2 components, ¢, t, Sireees 5
corresponding to the boundary tori. The linking number of ¢ with
each of the others is © , by Lemma 3.

Now those links whose exteriors are Seifert fibre spaces can be

listed quite briefly, [N] , (Sw] . In particular, if the linking

number of one pair of components is zero then the linking number of
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any two regular fibres is zero, and the link is a 'necklace', figure 7.
N can not then be a Seifert fibre space, since each component in a

necklace has linking number +1 with at least one other.

Proof of Lemma 2 Complete ext (k y ¢) to g’ by adding a solid

torus with core ks . along the boundary of the tubular neighbourhood
of k , and the solid torus VS along C. Choose an embedded curve
tk in T which bounds on the side of T containing ks . Then
lk(tk,ks) = lk(tk,k) is independent of s, being calculated from
the intersection of the surface which spans tk avoiding VS y and
the core k_ » It is then enough to show that lk(tk,ks) £ 0 for
Bome s .

If T is incompressible in 83 - kS then TTq(T) is a subgroup
of T1,(s” k) , and its image in H(s” -k ) ¥ Z is gonerated by
lk(tk,ks) . If lk(tk,ks) = 0O then TT1(T) lies in the commutator
subgroup of 1‘r1(s3 - k) - This is impossible for a fibred knot k_
since the commutator subgroup is free, while 1T1(T) is free abelian

of rank 2. (More geometrically, T could be placed transverse to the

fibration, as in [N] , and the two sides analysed).

It remains to show that s can be found with T incompressible

in 8 -k .
s

(i) If N is not Seifert fibred we can choose s as above so
that Né has a hyperbolic structure, and forms part of a Johannson
decomposition for ext ks . Then T is one of the characteristic
tori in this decomposition, and is incompressible.

For Theorem 4 we only need Lemma 2 in the next case.

(i1) If N is Seifert fibred then so is NS y except when the

meridian discs of VS are glued along fibres in C . TFor some s

in any case the space NS will be 8Seifert fibred, and not a solid
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torus, unless N = T2 x I , which does not occur in a Johannson

decomposition, For such s each boundary compconent of Ns is
incompressible in NS , and hence in S3 -k .

5

Proof of Lemma 3 The torus Si must be compressible in 83 - C ,

since c¢ 1is unknotted. However it is incompressible on the side of

Si away from ¢ . Hence there is a compression disc in N spanning
an unknotted curve a, in 5. . Now H1(Si) can be generated by

a; and some curve bi which bounds on the side away from ¢ , and

we have 1k(ai,c) = lk(bi,c) = 0. It follows that 1k(ci,c) = 0
for every curve c; in Si .

For the torus T choose embedded curves tk ., as above, and tc s
bounding on the side in 83 which contains k and ¢ respectively,
and so generating Hq(T) . The curve t, generates the homology of
the side of T which contains k , so k is homologous, on this side
of T, to 1k(tk,k) x t, . Hence 1k(k,c) = lk(tk,k) . lk(tc,c) .

Now ¢ hounds in the complement of k by construction, =50
1k(k,c) = O . From Lemma 2 lk(tc,c) = 0. We already have
lk(tk,c) = 0O by construction. Thus 1k(t,c) = O for every

curve t in T.

5e Remarks
1. Tt is possible that an analysis of the 'stretch factor' of
the monodromy hS as 5 —»o0 would give an alternative method for
distinguishing enough of the knots ks - Bonahon, [Bo) , has used
this technique in looking at an explicit sequence of genus 2 knots.
Some investigation would be needed to recognise and deal with cases
where hS is not pseudo-Anosov. In the other cases there is some hope

that the stretch factor is a concave function of s . This would
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give the stronger result that among the knots ks for positive and

negative s there are at worst pairwise repetitions.

e The techniques actually used can be extended, with a closer
analysis of the case where N is a Seifert fibre space, which must
now be considered, to show that if ¢ is any unknotted curve in the
complement of a curve k , other than a meridian of k or spanning
a disc disjoint from k , then infinitely many of the knots kS given

by twisting about c¢ are different.

e The calculation of the Alexander polynomial of Burde's knots
given in B is most naturally related to the Conway-Kauffman version
of this polynomial. I shall finish with a brief description of this

version, and a direct calculation for Burde's knots.

Following Kauffman, [K] , start with an orientable spanning surface

M for a given oriented knot or link L , and construct a Seifert
matrix A in the usual way, using linking numbers of curves pushed
off M. Put

f(x,x_1) =  det(xA - x—1AT) )

and rewrite f as a polynomial Ukﬁz) in z=x- x| , which is
possible by virtue of the symmetry of f in x and x-1 .

For a knot the Alexander polynomial is recovered, up to a power

- 1 A
of t , by putting x T o 42 , and thus z = t 2(1-1t) in VL(Z) .

Indeed, for a knot ﬁVL'(Z) is a polynomial in 2 , and has constant
term 1 , since det(A - AT) = 1 = Cl}o) . In addition, for a

fibred knot of genus g the leading term is i+ ng .

It is shown in (K] that 'Qifz) depends only on [_, given an

orientation convention for linking numbers in 53 . The following
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lemmas often enable calculations to be made easily from knot diagrams.

Lemma 4 Let three links L ,L and L, have knot diagrams
identical except in the neighbourhood of one crossing, where, as
shown in figure 8, the positive crossing in L+ is cut out in LO

and replaced by a negative crossing in L .  Then
Vy () = YyL_(z) + z Y7L0(z) .

+

Lemma. 5 <7L(z) = 0 for a split link L .

It is then easy to establish the 'ring on a band' lemma.

Lemma 6 If L and K have diagrams identical except as shown
in figure 9 then VL(Z) - -2f VK(Z) .
Theorem 5 The knot K(c1,...,cg) in figure 10 has Kauffman
polynomial g - :

V(=) = 1+ 3= (-0t ! cy 22t

i=1

Proof By induction on g and cg » using the fact that
K(cq,...,cg_q,o) = K(c1,...,cg_1) . The induction starts with
g = O , when the knot is trivial and V/(z) = 1.

Assume that cg'} C . Alter one of the positive crossings in
the g th ribbon as for Lemma 4, to get links L = K(cq,...,cg) ,
L = K(c,].,...,cg - 1) and LO = L(°1*°“’°g_1) .

The link Lo , shown in figure 11, has a ring R on a band. Cut
the band and lose the ring, as for Lemma 6, to get L(°1""’°g_2) .
After cutting g-1 bands in this way we reach the positive Hopf link,

with polynomial =z , so, by Lemma 6 applied g-1 times,

Y7L (z) = (_ZE)g-1 % o
O
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g-1 28
Then T?L (z) = KZL (z) + (-1) z7° .
+ -
By the induction hypothesis we have t?i (z) , so the theorem follows.

A similar calculaticon works for the case cg 0.

Corollary Burde's knots, K(Cq’°"v°8_1=iﬂ) , realise all Kauffman

knot polynomials with leading coefficient + 1 .

Department of Pure Mathematics
University of Liverpool
P.0.Box 147

LIVERPOOL L69 3BX
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