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It 1s a curious feature of the Fibonacei sequence {f,} that the greatest common
divisor (fm, fn) of two terms in the sequence is itself the k-th term in the sequence,
with & = (m,n). This result and its extension to sequences satisfying the recurrence
relation

for1 =afn +bfus,

starting with f = 0, when a and b are any coprime integers, is proved by Lucas [L1],
[L2]. The traditional proof, which is nicely presented in Hardy and Wright [HW 148-
9], uses relations between the sequence {f,} and an auxiliary sequence, describing
both sequences in terms of the roots of the quadratic #2 — at — b. The purpose of
this article is to present a proof which uses only simple congruence features of the
sequence {f,}. The result is stated below as theorem A. It is deduced readily from
theorem B, which shows that the terms fy in the sequence which are divisible by
any fixed d are regularly spaced.

Theorem A. Let {f,} be the sequence of integers determined by the wmitral con-
ditions fo =0, f1 =1 and the recurrence relation

forr=afp +bfn_1,

where a and b are any two coprime integers. Then (fr, fn) = Lfimn)-

Remark. The choice of f; =1 is not important; any other choice will just result in
a multiple of the same sequence.

Theorem B. Let {f,} be the sequence of integers defined in theorem A. Let d
be a positive integer, and let S be the sel of integers N for which fn 18 divisible
by d. Then S consisis of all mulliples of some inleger k, depending on d and the
sequence.

In what follows we shall use standard congruence notation and algebra; thus
fr = 0 mod d means that f, is divisible by d. The only property of ged which is
needed 1s that every common divisor of two numbers also divides their ged. In the
case of general coprime coeflicients ¢ and b we need the result that if d divides be
and is coprime to b then d divides ¢, or equivalently, in the context of congruences,
that any number coprime to d has an inverse mod d. In the case b = £1 the proofs
use more elementary arguments, involving only addition and multiplication mod d.
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Deduction of theorem A from theorem B: Let d be a positive integer and let f,, =
O modd and f, =0 modd.

Consider the set S of integers N for which fy = 0 mod d. By theorem B this
set consists of all multiples of some k. Now m,n € S, by hypothesis. Thus m and
n are each divisible by & and hence also their ged, (m,n), is divisible by k. The
integer (m,n) thus belongs to .5, which in turn means that f,, ,) = 0 mod d.

Now choose d = (fm, fn). Then fn and f, are both divisible by d. The
argument above shows that fq, ») is also divisible by d = (fm, fn)-

Conversely, choose d = f(, ») and again consider the set S of integers N for
which fy = 0modd. Then S consists, by theorem B, of all multiples of some k.
Clearly (m,n) € §, since f(m n) is divisible by d, and hence (m,n) is a multiple
of k. Now m and n are multiples of {m,n), and hence are also multiples of k. So
m,n € S and thus f.,, and f, are both divisible by d. It follows at once that their
ged, (fm, fu), is divisible by d = fim,n) -

We have already established that f,, »y is divisible by (fm, fz). Thus fim n) =
+(fim, fn), as claimed. a

It remains to establish theorem B. This is most simply done in the case b= +1,
when ¢ can be any integer, by extending the sequence to include terms f;, for negative
integers n also. The proof follows from two simple propositions; modifications of
these needed to prove the general case are then given. Finally an alternative proof of
theorem B is indicated, along lines suggested by the referee.

Proposition 1. Let {fn} be a sequence of integers satisfying the recurrence

relation fp41 = afn + bfn—1, where a and b are integers. Suppose that f, =
Omodd. Then for every k < n the terms fnir are related by

Fatk 4+ (-)F fa—t = 0 mod d.

Proof: By induction on k. It 1s clearly true for £ = 0,1. Now

ot + (*b)k-i_lfn—k—l = afptr + bfngri—1 + (—b)kafn—k + 5(“b)k71fn—k+1
=0mod d ’

by the induction hypothesis. W]

In general, proposition 1 shows that fnyx = £b%f, x mod d with n > k, as-
sumning that f, = 0 mod d.

Suppose now that & = +1. The relation can be read in the opposite direction as
fa-1 = —abfy, +bfpi1, since b ! =b. Integers f, satisfying the recurrence relation
may then be defined for all negative integers n also. Proposition 1 holds for all k£ in
this case, showing that f,4x = +frn—r mod d for all k, where f, = 0 mod d. Then
fa—t = 0mod d if and only if f,,4% = 0 mod d.

The set S of all integers N (positive and negative) for which fy = 0 mod d is
thus invariant under ‘reflection’ in any of its elements n € 5, where reflection in n
interchanges the integers n £ k.

Theorem B now follows from the geometrically obvious proposition 2.
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Proposition 2. Any set S of integers which contains 0 and is invarient under
reflection in each element of S consists of all multiples of some fized integer k.

Proof: Either § = {0} or we can take & > 0 as the least distance between any two
elements of S, which we can write as n and n + k. Symmetry of § under reflection
in n+ k shows that n + 2k € §. By induction on r, symmetry about n + (r— 1)k
shows that n+rk € .9 for all positive integers ». Symmetry about n extends this to
show that n 4 rk € 9 for all integers . Because k is the least distance between any
two integers in S there are no further elements of 5. Given that 0 € § we can then
wiite 0 = n + rk for some r, so that n is a multiple of %, and hence S consists of
the multiples of %. 0

In the general case of coprime a and b proposition 2 holds, when restricted to
positive integers n only. In this case the reflection invariance for the set S should be
taken as saying that if n € S and n > k then n + k€ S ifandonlyif n — k€ §.
Proposition 1 shows that foix = +b*f,_; mod d with n > & when f, = 0 mod d.
Hence the set S of integers N > 0 with fy = 0modd does have the modified
reflection invariance, provided that b and d are coprime. Theorem B then follows in
the case that d is coprime to b.

In the remaining cases, when & and d have a common factor, ¢ > 1 say, the
recurrence relation gives fn41 = af, mod ¢, and hence f, = " ! mod c¢. Now a
and 6 are coprime, and hence a and ¢ are coprime, so £, is never divisible by ¢ for
any n > 0. The terms f,, with n > 0 are then never divisible by d; in these cases
the set .5 consists only of 0, and again satisfies theorem B, taking k= 0.

Sketch of an alternative proof of theorem B: Observe that if f, = 0mod d then
the sequence fy,, frut1,..-, fagk,-.. is a multiple of the sequence Fos froe ooy faye .
mod d. Explicitly, an easy induction on k, using the recurrence relation, shows
that fu4r = fuy1fx mod d. After another induction to prove that f,, and Sny1 are
coprime, and hence that f,y1 is coprime to d, it follows that when n € § then & € §
if and only if n+ & € §. The set S thus has the property that if m,n € S with
m > n then m +n € 5. Theorem B follows readily.

Remarks. It is interesting to look explicitly at the sequences given by small choices
of a and b, besides the Fibonacci sequence with a = b = 1, and the tegers, with
a=2b=-—1.

It is shown above that the terms f,, with n > 0 are never divisible by any prime
factor of . On the other hand Lucas showed that each prime p which is coprime
to b divides some term f, in the sequence, with n > 0, and hence divides infinitely
many terms.

Values of n for which f, is divisible by p can be found as follows, although these
are not always the smallest possible. Set A = a? + 45 and let p be any prime not
dividing A or b. If A is a square mod p then f,. 1 is divisible by p, while if A is
not a square mod p then f 11 is divisible by p. If p divides A then fp 1s divisible
by p. Explicit details of this and other divisibility properties of Lucas are reported
in [D] and [HW].
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It is a curious feature of the Fibonacei sequence {f,} that the greatest common
divisor (fy,, fn) of two terms in the sequence is itself the k-th term in the sequence,
with £ = (m,n). This result and its extension to sequences satisfying the recurrence
relation

o1 = afn + bfn—1,

starting with fo = 0, when ¢ and & are any coprime integers, is proved by Lucas [L1},
[L2]. The traditional proof, which is nicely presented in Hardy and Wright [HW 148-
9], uses relations between the sequence {f,} and an auxiliary sequence, describing
both sequences in terms of the roots of the quadratic t2 — af — b. Alternative proofs
generally use more or less elaborate induction methods. The purpose of this article is
to present a proof which uses only simple congruence features of the sequence {f,}.
The result is stated below as theorem A. Tt is deduced readily from theorem B, which
shows that the terms fy in the sequence which are divisible by any fixed d are
regularly spaced.

Theorem A. Let {f,} be the sequence of integers determined by the initial con-
ditions fo =0, fi =1 and the recurrence relation

fn-f-l =af, + bfn—l,

where a and b are any two coprime integers. Then (fin, fa) = £fim,n) -

Remark. The choice of f; =1 is not important; any other choice will just result in
a multiple of the same sequence.

Theorem B. Let {f.} be the sequence of integers defined in theorem A. Let d
be a positive integer, and let S be the set of integers N for which fn 15 diwsible
by d. Then S consists of all multiples of some integer k, depending on d and the
sequence.

In what follows we shall use standard congruence notation and algebra; thus
frn = 0mod d means that f, is divisible by d. The only property of ged which is
needed is that every common divisor of two numbers also divides their ged. In the
case of general coprime coefficients ¢ and & we need the result that if d divides be
and is coprime to b then d divides ¢, or equivalently, in the context of congruences,
that any number coprime to d has an inverse mod d. In the case b = 41 the proofs
use more elementary arguments, involving only addition and multiplication mod d.
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Deduction of theorem A from theorem B: Let d be a positive integer and let f,, =
Omod d and f, =0 mod d.

Consider the set S of integers N for which fy = 0 mod d. By theorem B this
set consists of all multiples of some k. Now m,n € S, by hypothesis. Thus m and
n are each divisible by & and hence also their ged, (m,n), is divisible by k. The
integer (m,n) thus belongs to S, which in turn means that fi, ) = 0mod d.

Now choose d = (fim,frn). Then f, and f, are both divisible by d. The
argument above shows that f(m, ») is also divisible by d = (fm, fn).

Conversely, choose d = f(;n,n) and again consider the set S of integers N for
which fiy = 0 mod d. Then S consists, by theorem B, of all multiples of some k.
Clearly (m,n) € 5, since f(m,n) is divisible by d, and hence (m,n) is a multiple
of k. Now m and n are multiples of (m,n), and hence are also multiples of k. So
m,n € 5 and thus f, and f, are both divisible by d. It follows at once that their
ged, (fm, fn), is divisible by d = fim ).

We have already established that f(m ny is divisible by (fm, fn). Thus fim,e) =
+(fm, fn), as claimed. |

It remains to establish theorem B. This is most simply done in the case b = 41,
when a can be any integer, by extending the sequence to include terms f,, for negative
integers n also. The proof follows from two simple propositions; modifications of
these needed to prove the general case are then given. Finally an alternative proof of
theorem B is indicated, along lines suggested by the referee.

Proposition 1. Let {fn} be a sequence of integers satisfying the recurrence
relation fpy1 = afn -+ bfn_1, where a and b are integers. Suppose that f, =
0 mod d. Then for every k < n the terms fnir are related by

Fatk 4 (0¥ far =0mod d.

Proof: By induction on k. It is clearly true for £ = 0,1. Now

Fotre1 (=05 fospos = afnsk + bFatrcr + (=0 *afnr + 6(—=b)* " fu_rin
= 0 mod d ,

by the induction hypothesis. 0

In general, proposition 1 shows that foi; = £b*fn_x modd with n > k, as-
suming that f, = 0 mod d.

Suppose now that b = +1. The relation can be read in the opposite direction as
fn-1 = —abfy +bfny1,since =1 = b. Integers f, satisfying the recurrence relation
may then be defined for all negative integers n also. Proposition 1 holds for all &£ in
this case, showing that fr,4r = +fn—r mod d for all &, where f, = 0 mod d. Then
fn—t =0mod d if and only if fr4r = 0 mod d.

The set S of all integers N (positive and negative) for which fy = 0 mod d is
thus invariant under ‘reflection’ in any of its elements n € S, where reflection in n
interchanges the integers n - k.

Theorem B now follows from the geometrically obvious proposition 2.
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Proposition 2.  Any set S of integers which contains 0 and is invariant under
reflection in each element of S consists of all multiples of some fized integer k.

Proof: FEither § = {0} or we can take k& > 0 as the least distance between any two
elements of S, which we can write as n and n+ k. Symmetry of S under reflection
in n+ k shows that n + 2k € §. By induction on r, symmetry about n + (r — 1)k
shows that n+rk € S for all positive integers r. Symmetry about n extends this to
show that n+rk € S for all integers r. Because k is the least distance between any
two integers in S there are no further elements of 5. Given that 0 € § we can then
write 0 = n 4 rk for some r, so that n is a multiple of %, and hence S consists of
the multiples of k. 0

In the general case of coprime a and & proposition 2 holds, when restricted to
positive integers n only. In this case the reflection invariance for the set S should be
taken as saying that if n € S and n > k then n+ k€ S fandonlyif n—% € S.
Proposition 1 shows that fpyr = £b* f,_r mod d with n > k& when fn = 0mod d.
Hence the set S of integers N > 0 with fy = 0mod d does have the modified
reflection invariance, provided that b and d are coprime. Theorem B then follows in
the case that d is coprime to b.

In the remaining cases, when 5 and d have a common factor, ¢ > 1 say, the
recurrence relation gives fo,41 = af, mod ¢, and hence f, = ¢" ' modc. Now a
and b are coprime, and hence a and ¢ are coprime, so f, is never divisible by ¢ for
any n > 0. The terms f, with n > 0 are then never divisible by d; in these cases
the set .5 consists only of 0, and again satisfies theorem B, taking & = 0.

Alternative proof of theorem B: Observe that if f, = 0 mod d then the sequence
fo, foe1s oo fatk, ... 18 & multiple of the sequence fo, f1,..., fr,... modd. Ex-
plicitly, an easy induction on %k shows that fuir = fna1fr mod d. After another
induction to prove that f, and f,41 are coprime, and hence that f,1, is coprime to
d, it follows that when n € S then k€ § if and only if n + k € §. The set S thus
has the property that if m,n € § with m > n then m £ n € §. Theorem B follows
readily.

Remarks. It is interesting to look explicitly at the sequences given by small choices
of a and b, besides the Fibonacci sequence with ¢ = 6 = 1, and the integers, with
a=2b=-1.

Lucas shows that each prime p which is coprime to & divides some term f,, in
the sequence, with n > 0, and hence divides infinitely many terms. Values of n for
which fn is divisible by p can be found as follows, although these are not always the
smallest possible. Set A = a? + 4b and let p be any prime not dividing A or b. If
A 18 a square mod p then f,_; is divisible by p, while if A is not a square mod p
then f,41 is divisible by p. If p divides A then f, is divisible by p. Explicit details
of this and other divisibility properties of Lucas are reported in [D] and [HW].
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