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Fibred links from closed braids
José M. Montesinos-Amilibia and H. R. Morton

ABSTRACT. We show that every fibred link with %k components can be con-
structed using a simple d-sheeted cover of 5 branched over a suitable closed
braid, with d = k¥ for k£ > 3 and otherwise d = 3. The method used is to relate
the monodromy homeomorphism of the fibre to a homeomorphism of a dise of
which it is a simple d-sheeted cover. It extends the work of Hilden and Birman,
who treat the case & =1, [11], [6].

We go on to relate the construction of plumbing a Hopf band on to the
fibre, F, of a fibred link, L, (giving a fibre for a new fibred link [22]), with the
alteration by a Markov move of the closed braid used as branch set in the covering
construction for L. We show that a Markov move on the branch set always
corresponds to plumbing a Hopf band to the fibre F' in some way. Conversely we
show how any plumbing of a Hopf band on to F' can be realised by first adding
trivial components to the branch set which produced L, increasing the degree of
the cover correspondingly, and then conjugating the resulting braid and making
a Markov move.

1. Overview.

The idea of constructing a fibred knot using a closed braid is rooted in
the classical paper of Alexander [1],[2]. In recent years it has been fruitfully
developed by Goldsmith [9] and Birman [6], following the ideas of Hilden [11]
which we also use substantially in this paper. The work reported here was carried
out during a visit of the second author to Zaragoza in 1984, with the support of

CAICYT.

1.1 The basic idea.

Take a closed curve or curves C in S° which lie as a closed n-braid 8 = C
relative to an axis Lg. This means that there is a fibration p : 5% —Lg - St
in which C projects regularly to S, covering it n times, so that C' meets each
fibre p~1{e??} = Fp, say, transversely in n points. We shall take Lg to be
unknotted, so that Fp = D? and C is a closed n-braid in the usual sense.

Take any covering = : M*® — S° branched over C'. Any choice of rep-
resentation of €' as a closed braid ﬁ with axis [z gives rise to an open book

decomposition of M?, with leaves 7~ 1(Fp) and binding 77 1(Lg). In the cases
where C,n are chosen so that M? = 53 the curves m 1(Lg) then form a fibred

knot or link in the classical sense.

There are infinitely many ways to choose an axis Lg so as to represent C as
a closed braid, giving rise to a large selection of inequivalent fibred knots. These
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knots are all related by the construction of plumbing and deplumbing Hopf bands,
(see Theorem C).

Any given fibred link can be constructed in this way for a suitable choice of
C and w, see [12]. We show (Theorem A) that the construction is still possible
under strong restrictions on the degree and type of covering = which is used,
although we cannot impose restrictions on the branch set €' in general.

In Theorem D we show how to carry out this construction in the case of fibred
links which arise from the unknot by plumbing Hopf bands (without deplumbing),
while imposing very strong control on the nature of C' also.

I we could insist in general that C be always an unlink, for example, then
we would be able to deduce Harer’s conjecture [10] that all fibred links in $*
are related by plumbing and deplumbing Hopf bands.

1.2 Previous results.

Goldsmith, for example, considers the case where C is the trivial knot, and
7 is a cyclic covering of some order. An interesting selection of fibred links arises,
but by no means all possible ones. She also considers the case of a ‘generalised
axis’, Lg, for a closed curve C, using a fibred knot other than the trivial one as
the axis Lg.

Birman [6] shows that every open book decomposition of a closed manifold
M?® with connected binding, and in particular every fibred knot in S°, arises for
some choice of €' and representation of C as a closed braid with axis Ls, using
suitable 3-sheeted simple covers = : M?* — §3.

The term simple, applied to a d-sheeted cover 7 : M® — §%, will be de-
scribed shortly in more detail. It means that every meridian curve of the branch
set C' is covered by d — 1 circles, one of which projects by 7 as a 2-fold cover,
while the rest project homeomorphically. The name is adopted, following Berstein
and Edmonds [3], because of the close relation with simple covers in the classical
sense of Riemann surfaces.

1.3 Present results.

In this paper we prove:

THEOREM A. Ewery fibred link in S° with k components can be realised as
7Y (Lg) for a d-sheeted simple cover m: 5% — S* branched over some closed

braid B, with d = max{k,3}, where Ly is the azis of A.

Our proof shows that in fact every open book decomposition of a closed M*®
even with disconnected binding, arises in a similar way. For a given decomposition
there is a wide choice of § which can be used in the construction.

As an essential part of the proof of Theorem A we prove:
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THEOREM B. Let F be a surface with boundary, and = : F — D? a d-
sheeted simple cover, with d > 3. Then, up to 1sotopy fizing OF pointwise,
every homeomorphism of F which fizes OF pointwise covers a homeomorphism
of D?. That is, given a homeomorphism H' . F' — F there exists H isotopic to
H' and h:D? — D? with noH = how, where H, H' and the isotopy all fiz
OF pointwise.

In the last section of the paper we use both theorems to study the con-
struction of fibred links by Hopf plumbing. In this construction the fibre F' of a
given fibred link L and a Hopf band, (a ribbon with a single twist), are plumbed
together, using some proper arc in I, to give a surface F' whose boundary L'
then forms a fibred link with fibre F', [22].

We establish in THEOREM C a close relation between Hopf plumbings of
links and Markov moves on the braids used in the covering construction for the
links. It is well-known that any two presentations of a link as a closed braid
are related by a sequence of Markov moves. We show in section 5.3 that if we
alter the closed braid presentation § of the branch set by a single Markov move,
increasing braid index, then the fibre F' for the fibred link L constructed using
a simple cover 7 is altered by plumbing a Hopf band to F'.

Conversely, given ﬁ and 7 which construct a fibred link L as in theorem A,
we show how to find #' and =’ to construct the link L' which arises from L by
any given Hopf plumbing.

A direct consequence is the following theorem giving a construction for all
fibred links which arise from the trivial knot by a sequence of Hopf plumbings.

THEOREM D. A fibred link L arises from the trivial knot by a sequence of Hopf
plumbings if and only if it can be consiructed from the d-sheeted simple cover
of 83 branched over some E, where the braid 7 is directly reducible by Markov
moves to the triviel braid on d — 1 strings for some d.

2. Simple covers of surfaces.

2.1 Introduction.

DEFINITION, A continuous surjective map 7 : F — S between two surfaces is
called a simple cover with d sheets if there is a finite set ) in the interior of 5,
termed the branch set, and each s € S has a disc neighbourhood U over which
7 : 7w~} U) — U behaves as follows:

(1) if s ¢ @ then @|,—1 () is a trivial d-sheeted cover,
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(2) if s € Q then #~*(U) has d — 1 components, one of which is a disc
projecting to U as a double cover branched over s, while the others are dises
projecting homeomorphically.

DEFINITION. Two covers m; : Fy — 5, and my : £y — 5% are equivalent if there
are homeomorphisms H : Fy — F; and h: 57 — 53 such that np o H = homy.
In the special case where Sy = S and I = identity they are called isomorphic.

REMARK. The homeomorphism h carries the branch set 1n S} to the branch set
n Sz .

The term ‘simple cover’ and much of the theory in the case S = 5% comes
from the classical works of the last century. A modern treatment of this is given in
[4]. Simple d-sheeted covers arise classically where F' is a non-singular algebraic
curve of degree d in C? and = : F' — C is the projection of F' from a ‘generic’
point, that is, a point of C? through which all tangents to F' are simple.

2.2 Covers of a disc.

In our applications we shall only consider the case where § is a disc D?,
and we shall normally work with a fixed branch set @ = {¢1,...,¢n}. Where OF
has k components, 3F = C; U...UCy say, then a d-sheeted cover 7 : F — D?
restricts to covers @ : C; — ST of degree d; say, with dy + ...+ di = d. The
results of Hurwitz, extended to D? as in [4], show that, for a connected surface
F | the unordered set of boundary degrees dy, .. .,d; determines any simple cover
7 : F'— D? up to equivalence, as follows:

THEOREM 2.2.1. (equivalence theorem)

Let F' and F' be connected surfaces, with F' = F, and let = : F — D?,
7 : F' — D? be simple covers with degree d;, resp. d) when restricted to the
boundary curve C;, resp. C!. If d; = d; for all i then 7w and «’ are egquivalent.

PROOF: See section 4.4 for further comment, following [4,4.4]. O

REMARKS 2.2.2.

1. For a given connected surface F' with & boundary components it is possible
to construct a simple cover 7 : F' — D? having any given choice of boundary
degrees, except where k = 1 and F + D?, when we need d = d; > 2.

2. The number of branch points, n, for a simple cover is related to the Euler
characteristic x(F') and the degree d of the cover by x(F)=d - n.

For example, when F' = Fj ., the surface with genus g and k¥ boundary
components, we have 2—2g —k =d —n,so that n=d+2g+ %k —2.




2.3 Explicit views of a cover.

Given a cover 7 : F' — D? we may picture it by cutting D? along a splitting
complez for w.
This is a family of disjoint arcs {a;} in D?* chosen so that
1. the end points of each arc lie on dD? or on the branch set @,
2. the set D% — A is connected, where A = Ua;,
3. the cover 7 restricted to m~1(D? — A) is frivial.

If we number the d components of 771(D? — A) from 1 to d in some way,
for example by numbering the points of 7 1(*) for a point * ¢ A, then we can
reconstruct f and m by reassembling these sheets, given the instructions on how
to join the pieces along 7 '(a;). So we label the arc a; with a permutation
pj € Sz to show that as we cross 7~ *(a;) from sheet i we pass to sheet p;(7).
For a general covering we should specify the direction in which we cross a;, but
for a simple cover each of the permutations p; is a transposition.

THEOREM 2.3.1. Two covers « : F' — D? and n' : F' — D? giving permu-
tations {p;} and {p};} for the same splitting complez which satisfy p; = 9 ' pig
for a fized g € Sg and all j are isomorphic.

PROOF: We must construct H : F — F' with # = 7’ o H. The permutation
g shows how to construct H on the sheets of 771 (D? — A), while the relations
between p; and p} guarantee that H extends continuously across x~1(4). O

REMARK. Any set of arcs A in D? with D? — A connected, and every labelling
of the arcs by transpositions p; € Sq will determine, up to isomorphism, a simple
cover m of D? by a surface which is connected if and only if the elements p;
generate Sy.

Figure 2.1

If we have been given w, then the system of arcs shown in figure 2.1 where
the branch set @ = {q1,...,¢»} will always be a splitting family, (condition 3 is
satisfied since D? — A is simply-connected). These are called a Hurwitz system of
arcs, and the corresponding sequence (7y,...,7,) of transpositions is the Hurwitz
sequence for m. An explicit view of m constructed from the Hurwitz system is
shown in figure 2.2, in the case d =4.

FIGURE 2.2
In general, the tabs containing the branch points ¢1,...,¢n can be viewed
as neighbourhoods of the splitting arcs aj,...,a,. The cover 7 is given by

projection on the sheets, and on the attached tabs which are not affected by the
transposition. Where 7; = (k £), sheets £ and £ are joined by a band, drawn
here with a half-twist so as to respect orientation on the sheets. The effect of 7 on
this band is to identify points as suggested by a 180° rotation about a horizontal
axis normal to the centre of the band. In this identification the horizontal arc
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'b; across the band is folded in two and mapped to a;. Its midpoint is the single
critical point which projects to the branch point g;.

By theorem 2.3.1, every d-sheeted simple cover of D? with n branch points
at ¢i1,...,¢n isisomorphic to one drawn as in figure 2.2. We shall find it helpful at
some times, however, to use different splitting complexes, so that certain features
can be more easily seen in the view of the cover.

2.4 Algebraic data for a covering.

Sufficient data to reconstruct a cover 7 : F — D? up to isomorphism can
be given directly in terms of D? and the branch set @ as follows.

THEOREM 2.4.1.

a) Every d-sheeted cover w: F — D? with branch set () C D? determines, u
Y y UP
to conjugacy in Sq, a homomorphism @ : m(D? — Q, %) — Sy.

(0) If @ and ©" are covers with or = @ up to conjugacy in Sq then m and
7' are isomorphic.

PROOF OF (a): Number the points of #7!(x) from 1 to d. Each loop ¢ in
D? —  based at * will induce a permutation on these points as follows. Lift ¢
to a path in F starting from the point ¢ of #7!(%) and finishing at the point p(z)
say. Then p € S; depends on ¢ only up to homotopy in D? — @, over which =
is an ordinary cover. We then define () = p, where v = [¢] € m(D? — @, *).
Renumbering the points of 7 will simply alter ¢, by conjugacy. O

REMARKS. Suppose that we have chosen a splitting family of arcs A with * ¢ A.
A choice of numbering of the points m~!(*) then numbers the components of
771(D? — A) and thus labels each arc by a permutation. For any loop ¢ in
D? — @ crossing A transversely in a finite number of points, the permutation
wx([c]) is readily seen to be the product of the permutations from the ares crossed
by ¢ taken in order.

For a simple closed curve ¢ in D? — @, the nature of the covering = over
¢ is given by the cycle type of px([c]). If #!(c¢) has k components then there
are k disjoint cycles in the permutation ¢,([c]). The length of each cycle gives
the degree of the covering on the corresponding component.

The condition that the cover = be simple is equivalent to the requirement
that a meridian loop round each branch point be represented by a transposition
in Sg.

The cover 7 is connected if and only if the image of ¢, acts transitively on

the set {1,...,d}. In general, the orbits of this action correspond to components
of F.




Proor oF (b): Given a cover 7 choose a splitting family of arcs A and number
the points of 7~!(*). The homomorphism ¢, is then defined. The label of
the arc a; will then be @([¢;]), where ¢; is a loop crossing a; once only, and
crossing no other arc. Such a loop can be found, since D* — A is connected.
Suppose that 7' is another cover and that ¢, is conjugate to ¢, by ¢. The
arcs of A are then labelled as in theorem 2.3.1, and so = and #' are isomorphic.O

REMARKS. Condition 3 for a splitting complex is equivalent to the condition that
71(D? — A, *) should map into the kernel of ¢, under the inclusion of D?* — A
in D* — Q).

By theorem 2.2.1, a connected cover is determined, up to equivalence, by
the conjugacy class (cycle type) of px([c]), where ¢ is the boundary of D?.

2.5 Further explicit views of covers.

We shall now make use of a splitting family A with D? — A not simply-
connected, in visualising certain covers. The simplest example occurs when we
have a 2-sheeted cover of D? with just 2 branch points.

Using the view of figure 2.1, we take arcs @y, ay with transpositions 71,7 =
(1 2), and the cover appears as in figure 2.3, where the surface F' is an annulus.

FIGURE 2.3

As an alternative, we may take a single arc a joining the branch points,
labelled (1 2). Then each sheet covering D? — A is an annulus and we can
picture F' asin figure 2.4, where 7 is now given by identifying points of sheets 1
and 2 under a 180° rotation about the horizontal axis shown. The closed curve
b is then 7 !(a).

FiGgurre 2.4

The isomorphism between the two explicit covers will not, of course, carry
sheet 1 to sheet 1, since the sheets are defined using different choices of A. Under
the isomorphism we can see the image of the curve b again covering the arc a.

COVERINGS OF ARCS. Suppose that 7 : F — D? is a simple d-sheeted cover.

1 Let a be any arc joining two branch points in D*. Then 7 restricted to a
neighbourhood U of a is a (disconnected) d-sheeted cover of the disc U. The
nature of the cover depends on the element ,(0U) € Sy represented by the
boundary curve. Thig can be read off from a labelled splitting family, and will
be the product of two transpositions.

When the element ¢,(8U) is the identity then w”l(U) consists of d — 2
discs projecting homeomorphically to U and one annulus projecting to U as
in figure 2.4. In this case 7~ *(a) consists of d — 2 arcs and one simple closed
curve, the core of the annulus. In the other two possible cases m~'(a) consists
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of arcs, and 771(U) is a family of discs, with either one or two of them covering
U non-trivially.

2 Let a be an arc with one end on 8D? and the other at a branch point then
7~ 1(a) consists of d — 2 arcs each with one end on JF and one proper arc b
(with both ends on OF') which covers a. See for example the arcs aq,...,a5 in
figure 2.2.

EXAMPLE 2.5.1. We now describe some further views of covers extending the
example of the annulus in figure 2.4. In these views the surface F' appears in a
more familiar form than in figure 2.2.

FI1GURE 2.5

Construct a covering in which the given set of arcs A forms a splitting family
with labels as shown in figure 2.5, i.e. assemble 2 copies of D? — A as prescribed
by the labels. We then have g+1 arcs joining 2g+2 branch points, each labelled
with the transposition (1 2), describing a 2-sheeted cover, which we can view in
figure 2.6.

FIGURE 2.6

The surface I’ = F,,, and the cover is viewed, away from the tubes, as
projection, for sheet 1, and 180° rotation about the horizontal axis X followed
by projection, for sheet 2. On each tube the cover is viewed as in figure 2.4.

FiGuURE 2.7

Figure 2.7 shows a similar picture with one fewer branch point, where the
branch point at one end is joined to D% by a splitting arc labelled (1 2). The
band joining sheets 1 and 2 corresponds to a neighbourhood of this arc, and the
surface is Fy, ;. This view can be readily related to F,; as shown in figure 2.8,
where the curves sg; cover the arcs of the splitting family, while the curves sag—q
also cover arcs joining the branch points.

FIGURE 2.8

EXAMPLE 2.5.2. An extension of figure 2.6 fo the case of a d-sheeted cover,
where the splitting family consists of g + 1 arcs labelled (1 2) and further arcs
labelled (i — 1 1), one for each ¢ with 3 < ¢ < d gives a view as in figure 2.9
of the surface Fj i, with & = d > 3, where the cover = has degree 1 on each
boundary component.

FIGURE 2.9

In this picture, the projection 7 is realised by turning over alternate sheets,
while mapping the connecting tubes as in figure 2.4.




3. Surface homeomorphisms and covers.

In this section we prove the first main theorem, called Theorem B in the
introduction. Our proof draws on the ideas of Hilden [11] where he treats the
case of closed surfaces. The case of surfaces with one boundary component is
covered by Birman and Wajnryb [7].

THEOREM B. Let F = F,; be a surface of genus g, with £ > 0 boundary
components, let m : F — D? be any simple d-sheeted cover with d > 3 and
let H : F — F be a homeomorphism fiming OF pointwise. Then there 1s a
homeomorphism H' isotopic to H fizing OF pointunse and a homeomorphism
h:D? - D% such that ro H' = how.

OUTLINE OF PROOF: We prove the theorem for generators of the mapping class
group, as described in theorem 3.4.1. We use induction on d to reduce to the
case d =k, for F,; with k¥ > 3, and otherwise to the case d = 3. Under these
conditions any two d-sheeted simple covers of F, are equivalent, by theorem
2.2.1, so it is enough to prove the result for one explicit choice of .

Having made this reduction we prove theorem B for £ =1 and 2 simulta-

neously, by induction on g. We then finish the proof for & > 2 and any ¢ by
induction on k for each g¢. , O

3.1 Preliminaries.

NoOTATION. Write M(F) for the mapping class group of a compact, orientable
surface F with boundary, i.e. the group of orientation-preserving homeomor-
phisms, modulo those isotopic to the identity. The isotopy is not required to fix
the boundary pointwise.

Write P(F') < M(F) for the subgroup which does not permute the boundary
components of F'.

Write H(F') for the group of homeomorphisms which fix OF pointwise,
modulo those isotopic to the identity fixing OF pointwise.

A simple closed curve s in F' determines a right-hand Dehn twist about s
depending on the orientation of F' (not s) and on a choice of annular neighbour-
hood of s. All choices of annulus give the same element 7, € H{F).

We shall extend the notation, and the idea of Dehn twists, to the case where
@ C F is a finite set of points in the interior of F'. In the applications we shall
usually look at Q C D? as the branch set of some cover.

Write H(F,Q) for the set of homeomorphisms of (F, () up to isotopy fixing
Q@ setwise and OF pointwise.

An arc ¢ in F with both end points in @ determines an element
7, € H(F,Q), thought of as a half-twist about @, as follows. Take a neigh-
bourhood of a, and a homeomorphism of this, of order 2, which carries a to a,
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exchanging its end points. Extend this over a collar of the boundary of the neigh-
bourhood by a right-hand half Dehn twist, (depending again on the orientation
of F), and by the identity over the rest of F. (See [3], [11]).

REMARK. The natural homomorphism H(F) — P(F) is surjective; its kernel is
generated by Dehn twists about the boundary curves of F'. For example, when
F is an annulus then P(F) = {e} and H(F) = Z.

We shall principally be concerned with H(F) in what follows. It is well
known that H(F) is generated by Dehn twists about closed curves in F', [8].
Smaller generating sets have been given for closed surfaces by Lickorish [15] and
refined by Humphries [13], and the case where GF # ¢ has been discussed by
Birman [5].

NOTATION. Let # : F — D? be a simple cover. We say that an element
n € H(F) is a w-cover if there is a homeomorphism H representing n and a
homeomorphism h : D? — D? such that o H = how.

Write Hr(F) C H(F) for the subset consisting of w-covers. Then H,(F)
is a subgroup of H(F').

The element h represents an element § € H(D?, @) which we say is covered
by 5.

Theorem B can then be restated as saying that H.(F) = H(F) for all
(connected) simple covers m with at least 3 sheets.

3.2 Dehn twists.

We shall show how to find sufficiently many Dehn twists in £ which are
7 -covers to form a generating set for the whole of H(F). Some of these are
constructed as covers of Dehn twists about closed curves in D? — @, or as covers

of half-twists 7, € H(D?, Q).

We now discuss fractional Dehn twists briefly in the context of explicit home-
omorphisms of F', rather than the equivalence classes H(F').

LEMMA 3.2.1. Let A’ and A be annuli, and let w: A’ — A be a regular n-fold
cover. Let 7o, : A — A be a Dehn twist to the right through an angle a. Then

To 18 covered by T : A' —» A', where T =714y, t.e. moT =150,

Proor: We illustrate, without further proof, the case « = 2x, n =3, in figure
3.1 ]

Ficure 3.1

COROLLARY. A full Dehn twist in A’ covers n full twists in A.
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REMARK. We always choose the orientations of F' and D? so that m is orienta-
tion preserving,.

LEMMA 3.2.2. (Well-known)

Let w: Fop — D? be the 2-sheeted cover illustrated in figure 2.4. Then
He(Fo,2) = H(Foz2).

Proor: We must simply show that the Dehn twist 7, about the core of the
annulus is a w-cover.

Let A C D? be a collar of the boundary. Take h : D? -+ D? to be a half
Dehn twist on A, fixing dD? | extended by a rigid 180° rotation exchanging the
branch points on D? — A, i.e. h represents the element 7, € H(D?* ()). Each
component of 'n'"'l(A) covers A once, so if we take H : Fy 9 — Fy 2 to be the half
Dehn twist on each of these components, and a 180° rotation about the vertical
axis on the rest of Fy 5 we have mo H = how. Moreover, H is in total a full
Dehn twist about the core b, so 7, € H(Fp2), covering 7, € H(D?, Q). O

An extension of this result gives the following much-used lemma.

LEMMA 3.2.3. Let w: F — D? be a simple cover, with branch set @ C D?,
and let a be an arc joining two points of ), whose interior avords (). Suppose
that m'(a) contains a closed curve b, (see section 2.5). Then € Ho(F).

ProoY: Construct a homeomorphism of (D?, Q) representing 7, € H(D?,Q)
by using %k from the previous lemma on a disc neighbourhood U of a, ex-
tended by the identity outside U/. This is covered by a homeomorphism H
which is the identity outside #~1(U), and is a Dehn twist on the component of
7~ 1(U) containing b. On each other disc component U; of m~1(U) we construct
H|U; - U; tocover h:U — U using the homeomorphism = | U; — U. Then
H is isotopic to the identity outside a neighbourhood of 5, and represents 7, in
H(F), so 7 covers Tg. O

We now give a lemma, proved using the techniques introduced by Hilden
[11].

LEMMA 3.2.4. Let F = F,; 5 with boundary curves C, Cy, andlet w1 F — D?
be a 8-sheeted simple cover. Then 7, and 1o, both lie in H (F).

Proo¥: If 7, is a m-cover and 7' is equivalent to « then the twist about the
corresponding component to C; will be a #'-cover. So it is enough to establish
the lemma for one choice of 7.

Let 7 be given by the family of arcs labelled as in figure 3.2, where there
are ¢ + 1 arcs labelled (1 2) and one labelled (2 3). The closed curve b covers
the arc a, labelled (2 3), so 73 covers 7., by 3.2.3, and thus 7, € H;(F'). Now
b is parallel to the boundary component Cj, so 7 = 7¢, .
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FrauRre 3.2

The boundary 8D? is covered twice by C; and once by €, so a double
Dehn twist in D? about 8D? will be covered by (7¢,)*rq,, by 3.2.1. Thus
(r¢,)?70, € Ho(F); since 7¢, € Hy(F) it follows that ¢, € H.(F) also. |

3.3 Stabilisation of covers.

We now set up the basis for the induction on the number of sheets in the
cover, which we shall use in the proof of theorem B. In what follows we suppose
that F' is a surface with F' C F'. Define a homomorphism ¢ : H(F') - H(F),
by extending a representative homeomorphism of F to one of ' by the identity
on F — F'. The subgroup (H(F')) C H(F) is then generated by Dehn twists
about curves in F'. Note that if F' = F'UD where D is any disc in F' meeting
F' along a single arc in OF' then i(H(F")) = «(H(F")).

LEMMA 3.3.1. Let F be o surface with k boundary components, C1U...UCy,
and let # : F — D? be a (d+ 1)-sheeted simple cover. Then there is o surface
F' C F such that
(1) F is the union of F' with a number of discs pasted to F' along single arcs
in OF,
(2) = | F' — Dy is a simple cover of degree d, where d > { £ %fk}j

2 ifk=1.
PROOF: It is enough to prove the result for a cover equivalent to =. Suppose
that = has degrees (d1,...,dy) on the components of F. Then dy+...+di =
d+1>k,so d; > 2 for some j. We may suppose that the components have
been numbered so that dp > 2. Then there exists a covering ' : F' — D? with

degrees (di,...,d}) where dj = dp — 1, and d; = d; otherwise, (see remarks
2.2.2).
Describe #' by some Hurwitz sequence of transpositions m,...,7, € Sy,

where n = d+2g+k—2. We can suppose that the sheets have been numbered so
that the component Cy meets the dth sheet. (Then in the permutation 7y 7y. . .7,
which represents dD? the cycle containing d has length dj, corresponding to
the boundary component Cy). If we now take a (d -+ 1)-sheeted cover with
Hurwitz sequence Ty,...,Tn, Tnt1, where 7,41 = (d d + 1), we will have a cover
equivalent to =, for it is connected and has d 4+ 1 sheets, with the right degree
on each boundary component. ‘

Replace 7 by this new cover, illustrated in figure 3.3.

FIGURE 3.3

Then 7~1(D;) consists of a disc in sheet d + 1 together with a connected
surface F', and 7 | F' — D; is a d-sheeted simple cover. The surface F' is the
union of F' with a number of discs, as required. 0
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DEFINITION. Where F' C F' are related as in lemma 3.3.1 we say that the cover
7 : I — D? arises from the cover 7 | F' — D; by attaching a trivial sheet.

THEOREM 3.3.2. It is sufficient to prove theorem B, as formulated in 3.1, in
the case where w has degree d = max{3,k}. Since any two simple covers of this
degree for a given F' are equivalent, 1t 13 then enough to prove theorem B for a
single choice of cover of this degree.

ProoF: Let 7 : F — D? be a simple cover with r > max{3, k} sheets. Choose
F'C F asin 3.3.1. Then i(H(F")) = H(F), by condition (1).

Set 7' = x| F' — Dy. Then i(Hu(F")) C He(F), forif H' : F! — F'
covers h': Dy — D; we can define a m-cover H: F— F by H' on F', k' on
the cover of D, in sheet d + 1 and the identity elsewhere. The extension of H’
to F' by the identity outside F’ is isotopic to H, since they just differ by »’ on
a disc, so i([H']) = [H| € H(F).

If theorem B holds in the case » = max{3, k} then by induction on r we
can assume that Hy(F') = H(F'). Hence H(F) =i(H(F")) C H(F). O

3.4 Generators for H(F).

We draw on existing descriptions for the mapping class groups to establish
sets of generators for H{F') which can be used inductively.

THEOREM 3.4.1. Let F=F,; andlet F' = F,_1, lie as shown in figure 3.4
Then H(F) is generated by i(H(F")) together with tunsts about OF and T, .

FIGURE 3.4

PRroOF: Generators for the mapping class group of F are well-known, [5]. O

THEOREM 3.4.2. Let F=F,;, k> 2, ¢ >0 andlet F' = Fy; 1 lic as
shown in figure §.5. Then H(F') is generated by i(H(F')) together with twists
sbout curves in OF and 7,, .

FIGURE 3.5

PrROOF: We use Birman’s description [5] in this case.

Let F" 5 F be the surface given by filling in one boundary component
C; with a disc B. We then have homomorphisms 7 : H(F') — H(F) and
i: H(F) — H(F") whose composite is an isomorphism, induced by the inclusion
of F/ in F". Then H(F) is generated by i(H(F")) together with the kernel
of 1 : H(F) — H(F"). This kernel is itself generated by twists about C;, and
‘transport’ of C; about curves in F", [5]. We now define the term transport.

Transport of ' about a simple closed curve s of F' through a point ¢
of B is defined by choosing an annulus in F"' containing B in its interior, and
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having boundary curves s;,s; parallel to s. Then the homeomorphism 7, 7"

L]
or its inverse, regarded as an element of H(F'), gives transport about s in the
sense required, as indicated in figure 3.6.

FiGguRrr 3.6

Transport about a composite of simple loops is taken to be the composite of
the transport homeomorphisms. It depends, up to twists about Cy only on the
homotopy class of the loop used in m; (F" ).

Now m1(F",¢) can be generated by simple closed curves. In the present case,
where we have ¢ > 0, we can assume that these are all non-separating curves,
one of which, s, is as shown in figure 3.7, while the others each have the form
©(8), for some homeomorphism ¢ : F" — F" fixed on dF" and on F" — F'.
Then transport about ¢(s) is the conjugate in H(F') of transport about s by
the clement of i(H(F')) determined by ¢.

FIGURE 3.7

It is now sufficient to observe that the twists about sy and s¢ allow transport
of @B about s. Together with {(H(F')) and twists about OB these twists
generate all other transport of C;, and hence the whole of H(F'). O

3.5 Proof of Theorem B.

CASE 1. We start with the result for F ; and Fj 5, which we prove by induction
on g. Recall that we want to prove that every element of H({F') is a w-cover,
where 7 is a connected d-sheeted simple cover with d > 3. By theorem 3.3.2 it
is enough to show this when d = 3. It is then enough to prove for one explicit
7, since all others are equivalent.

Suppose, by induction, that theorem B holds for F;_1; and Fy_; 2. Now
take m : F,1 — D? given by the Hurwitz sequence 7y,...,73,12, Where 7; =
(12), 1< 2¢g+2,and 75,49 = (2 3). We may picture # as constructed from a
splitting complex of arcs as shown in figure 3.8.

FIGURE 3.8

Let D; C D? be the subdisc shown, and set F' = 'ﬂ’ﬁl(Dl) =~ Fy_1,2. This
surface ' C F lies as in figure 3.4, except for the addition or deletion of discs
meeting JF in single arcs, so that theorem 3.4.1 applies equally to this choice of
F', with the curve s; chosen as shown. Then H(F) is generated by ¢(H(F")},
together with 7,, and a twist around OF. It is now enough to prove that each
of these twists lies in H.(F), and that {(H(F')) C H.(F).

Since OF covers 0D? three times it follows from lemma 3.2.1 that 7oF
covers the 3-fold Dehn twist about @D%. We can also see that s; covers an
arc a joining the first two branch pomts in D?, so 7, covers 7, and hence

75, € Ho(F). It remains to show that i(H(F')) C H.(F).
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Now ' = 7|p+ is a simple 3-sheeted cover, and by the induction hypothesis
Ho(F') = H(F"). Clearly i(Hp(F')) C Hp(F), noting that any 7'-cover ex-
tended by the identity outside F' is a w-cover. The result then follows at once
for Fy .

FIGURE 3.9
Now take 7 and D; as in figure 3.9. Then ¥ = F, , and F' = 771(D,) &
F;1, where ' = 7| is a simple 3-sheeted cover. A similar argument shows

that {(H(F")) C Hy(F), as is 7,, , and we have already proved that Dehn twists
about both curves in JF are m-covers, so the result for Fy 3 follows from theorem

3.4.2.

CASE 2. We now prove theorem B for F, ¢, & > 3, g > 0, by induction on %
for fixed g. Again it is enough to prove it where 7 is a simple d-sheeted cover
with d = k (the minimum possible), and any two such covers are equivalent.

FIGURE 3.10

Take 7 as in figure 3.10, with Hurwitz sequence ry,...,7,, where 7; =
(12),i <2g+4 2, and Togqai—1 = Tog42i = (1 1+ 1), 2<i< k-1, using split-
ting arcs as shown. Take the subdisc Dy which omits the first branch point.
Then we have F' = 'JT_l(Dl) & Fy k-1, and ® = @|p is a d-sheeted cover. It
follows as in case 1 that (H(F")) C H.(F), since Hp(F') = H(F') by indue-
tion. We also see that 7,, € H,(F), so it is enough to prove that all boundary
twists lie in Hp(F).

To prove this, consider F" = w~'(Dy) where D, omits the last branch
point. Again F" = F, ;_,, and we have i{(H(F")) C Hn(F'). Now the first
k — 2 boundary curves of F' are isotopic to curves in F', so twists about these
lic in H,(F). The boundary curve C} in F on sheet k is isotopic to the curve
sy, which covers an arc in D? | so 7y, € Hy(F).

To show that 7¢,_, € Ha(F) it is enough to note that the single twist about
9D? is covered by the product 7¢,7¢,. . .7¢, of all boundary twists, since 7 is a
single cover on each boundary component.

CASE 3. For the final case Fp ) we shall prove directly that every Dehn twist is
a m-cover, where m is a k-sheeted simple cover. The boundary curve Cj,e > 1,
is 1sotopic to the curve s;, which covers an arc in D%, 50 75, € H.(F). The
remaining boundary twist, 7¢, , is dealt with as before, by considering the cover
of a twist about 4D?.

FIGURE 3.11
Choose the cover described by k arcs labelled (1 2),(1 3),...,(1 k) as in
figure 3.11. Then sheets 2,...,k consist of collars of boundary components,

Cy,...,C;. Sheet 1 looks very like F'. Given any simple closed curve s in F,
isotop it until it avoids the collars of 8F', and so lies in sheet 1.
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Put a = w(s) in D?. Then 7~ '(a) consists of s together with one curve in
each other sheet. A full twist about a is then covered by the product of a full
twist about s and one about each of the other curves in # 1(a). We already
know that all of these other twists are w-covers (they are either boundary twists,
or trivial in H(F)) so the twist about s will be also.

4. Braids and open book decompositions.

In this section we give the connection between closed braids and open-book
decompositions which leads directly to our theorem A.

4.1 Open-book decompositions.

DEFINITION. Let H : F — F be a homeomorphism of a compact ortented surface
F', which fixes OF pointwise. A 3-manifold M is called the relative mapping
torus of H if there is a continuous surjective map p : F'x I — M making exactly
the following identifications;

(a) p(f,1)=p(H(S),0) forall feF,
(b)  p(f,t)=p(f,0) for all t € I, when f € OF.

The result is an open-book decomposition of M | with leaves Fy = p(F x {t}),
and binding L = OF, independent of f. The identifications in (a) and (b)
determine (M, F}) up to homeomorphism.

REMARK. Alteration of H by isotopy fixing OF pointwise does not alter M.
Conversely, given one leaf Fj, say, we can recover the monodromy H : Fy — Fy |

as an element of H(Fy), from the embedding of Iy in M.

The binding L C M acquires an orientation from the surfaces £}, and can be
regarded as a fibred link in M , for we have a natural fibration pg : M — L — §?
defined by pr(p(f,1)) = e>™, with fibres int(F}).

Stallings’ work on fibred links shows that given the oriented binding L, any
choice of coherently oriented spanning surface F' of minimal genus 1s isotopic to
Iy and so itself forms part of an open-book decomposition. The monodromy
for F is equivalent to that for Fp, in the sense that ¢ o H = Hj o ¢ for some
homeomorphism ¢ : F — Fj.
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4.2 Braids.

There are several ways of describing the abstract braid group on n strings,
[5]. Here we shall use the fact that B, is isomorphic to the group H(D?,@Q),
where @ is a set of n interior points of D? | (see 3.1). An element 8 € H(D?,Q)
can be pictured geometrically by taking a representative h : (D?%,Q) — (D?,0Q)
and an isotopy £ : D?* x I — D? x I from 1p: to h fixing 8D%. The subset
R(Q x I) C D? x I then appears as n strings of a geometrical braid. Alteration
of h simply changes the strings by isotopy, fixing their ends.

For example, when n = 2 and 8 = 7, € H(D* Q), where a is the arc
shown in figure 4.1 then § can be pictured as shown in figure 4.2.

DEFINITION. The closure, B, of a geometric braid f is the image of the strings
in 5% when the top and bottom of D? x I containing the braid are identified.
The azis Lg is, up to isotopy in S% — B, any of the meridian circles 8D x {t},
(see, for example, [19]).

In the present context an alternative equivalent description which relates
directly to 4.1 will be more useful.

DEFINITION. Let h: (D?,Q) — (D?,Q) represent a braid . Choose a contin-
uous map p: D? x I -» 8% which makes exactly the identifications
(a)  p(f,1) = p(h(f),0) for all f € D?,
(b)  p(f,t) =p(f,0) forall t € I, when f € 8D2.
Then p(Q x I) is the closure, B, of 8, with azis Lz = p(S* x {0}).

REMARK. The link E U Ly depends up to isotopy only on f, and not on the
choices of h or p.

As in 4.1, one of the leaves D = Dy, say, where D, = p(D?* x {t}), together
with the curve g = p(Q x I, is enough to determine h: (D, Q) — (D,Q) as an
element of H(D,Q) i.e. as a braid.

If Lsu B arises also from some other braid 8 € H (D', Q") then f' and

B are equivalent in the sense that ¢ o A = h' 0 ¢ for some homeomorphism
w:(D,Q)— (D', Q") where h and h' represent # and f'.

4.3 Simple covers of 3-manifolds.

DEFINITION. Let M?®, N® be closed 3-manifolds. A map 7 : M — N is called
a simple d-sheeted cover, with branch set C C N if it is locally homeomorphic
to the product of an interval with a simple d-sheeted cover of a disc, and the
branch points in the products form the set C'.

We can now prove our main theorem, giving much tighter bounds on the
degree of the cover than the comparable results in [12]. The bounds obtained
here are in fact the best possible in general.
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THEOREM A. Let (M, F};) be any open-book decomposition of a closed manifold
M. Then there is o closed braid C = B C S% with azis L, and a d-sheeted
stmple cover m : M — S with branch set C such that Fy = 7 (D¢} for cach
t, where {D:} is a family of discs spanning L.

The binding OF; of the decomposition is then =~ 1(L}. If OF; has k com-
ponents we can choose ™ 30 that d = max{3,k}.

COROLLARY 4.3.1.  Ewery fibred link in S® can be constructed as #=*(L) for
some choice of closed braid C' and simple cover m branched over C, by applying
theorem A to the open-book decomposition of S hawing the given link as binding.

PROOF OF THEOREM A: Let H : F; — F, be the monodromy of the
given decomposition. Choose a d-sheeted simple cover 7 : Fy — D? with
d = max {3,k}. By theorem B the element represented by H in H(Fp) covers
a braid f € H(D? Q). We may suppose, without altering the decomposition,
that H actually covers a representative h of 3. Using these representatives, we
have maps p: FoxI — M, p: D¥*xT — 8% and 7 xid : Fy xI — D? x I. The
composite p o (7 x id) : Fy x I — S§* factors through M to give a continuous
map 7: M — S* with mop=po(r x id). It is not difficult to check that 7 is
a d-sheeted simple cover with branch set ' = p(@ x I); away from O(D? x I it
can be compared directly with 7 x id , while near the boundary it is standard.
This cover clearly has the required properties. O

Theorem A shows that when a braid 8 € H(D,Q) is covered by a home-
omorphism H : FF — F under 7 : FF — D then we can extend = to a cover
7+ M — 8% branched over the closure of 8, where M has an open-book
decomposition with monodromy H. Given a simple d-sheeted simple cover
7 : M — S° branched over C, if we choose D C S® meeting C transversely in
Q@ =CND then 7 | FF— D is a simple d-sheeted cover branched over @}, where
F==x"1D).

As a converse to theorem A we make precise a theorem of Alexander, [2].

THEOREM 4.3.2. (Alezander).  Let # : M — S° be a simple d-sheeted
cover with branch set C', and let D C S® present C as the closure of @ braid
g € HD,Q), t.e. C can be regarded as a closed braid with azis D . Set
F=a"YD). Then B is covered under = by a homeomorphism H : F — F,
and M has an open-book decomposition with F' as one leaf, monodromy H, and
binding OF = m—1(8D).

REMARK. This theorem can be readily extended by replacing D with a surface
S presenting C' as a generalised closed braid. The cover itself need not be simple,
cf. Goldsmith [9], and it is also possible to have a more general manifold N in
place of 5%. Our particular concern, however, will be for the case of the theorem,

with M = 5%,
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Before proving theorem 4.3.2, we establish some more general results about
covers of 3-manifolds. As in 2.4.1, a simple cover 7 : M — N determines a
homomorphism ¢, : 7 (N — C,*} — S4, up to conjugacy in Sg, taking every
meridian of C to a transposition. Conversely any such homomorphism deter-
mines a cover, and two covers with the same homomorphism up to conjugacy are
equivalent.

When N = S§2 it is natural to prescribe a cover from a diagram of C by
giving @, in terms of a Wirtinger presentation of m1(S® — C), so that each
overpass is labelled by a transposition, compatibly arranged at the crossing.

An explicit construction of a cover can be visualised by use of a 2-dimensional
splitting complex, whose 2-cells are labelled by transpositions, prescribing a way
to reassemble d copies of the split manifold N. For details of such constructions
for general covers branched over C see [21], [17].

LEMMA 4.3.3.  Suppose that m : F — D is a cover with branch set @@, and
B € H(D,Q). Choose * € dD and number the points w (%) to determine
or 1 T{D — @, %) — Sq. Then B induces an isomorphism

Bu:m(D—Q,%) = 71 (D —Q,*),
and B is covered by some H : F — F fizing OF if and only of orofs = pn.

ProoF: Themap n' =woh: F — D is also a cover with branch set @), where
h represents B, and ¢ = g0 f«. If (o = ¢ then the covers are isomorphic
and we have H : I — I with w o H = n' as required.

Conversely if the covers are isomorphic and H fixes OF then ¢, = . O

REMARK. A given covering 7 : F' — D then determines a ‘lifting’ subgroup of
the braid group H(D,Q) = {#: ¢x ¢S+ = @x}, This subgroup maps homomor-
phically to H(F), taking § to the element represented by H. An interesting
question is to identify the kernel of this homomorphism. Theorem B shows that
the image, H.(F), is the whole group for all simple covers of degree > 3

PROOF OF THEOREM 4.3.2: Choose a basepoint * on dD and a numbering of
7 !(%). The map g, for F — D is given from @ by @g|, = ¢r 01, where
in s m (D — Q,%) = 7 (S — C,*) is induced by inclusion. Now m1($® — C, *) is
generated by the image of m (D —Q, *), with the relations 7,3.(g) = i.(g) for all
g in 1 (D—Q,%). Hence @p(iafBs(0)) = @a(i=(9)) for all g, 50 iy 0By = Py
Thus £ is covered under 7 by some H : F' — F.

The relative mapping torus of H then covers S° with branch set ', and
defines the same homomorphism ¢, since this is determined by ifs effect on
7 (D — @,*), which has been fixed by ¢, . Then this mapping torus gives a
cover equivalent to M . O
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4.4 Braids and surface covers.

At this stage we reformulate the equivalence theorem 2.2.1 in terms of braids.
We give an easy corollary which we shall use in section 6.

Take Q@ = {q1,...,qn} C D*, and choose * on dD*. Write «(7) : F(1) —
D?* for the connected cover given by the Hurwitz sequence 7 = (7q,...,7),
where 7; € §4 generates S3. The sheets of the cover are numbered by making
a choice of numbering on (7(7))"!(*). In the notation of section 3 we have
T; = Qar)(gi), where g; € m (D2 — @, *) is represented by a loop which meets
the arc a; once, and meets no other splitting arc. The braid group H(D?, Q)
operates on Hurwitz sequences, by defining (r) = 7', where 7] = @) 84(g:)-
Then there is an equivalence H(f): F(r) — F(r'") with n(r')o H(f) = hon(1),
where h represents f, which preserves the numbering of the sheets above *.

REMARK. By 2.3.1if 7 and 7 = ¢ 'rg are conjugate Hurwitz sequences, i.e.
there exists ¢ with ¢g~1r;g = 7! for all 7, then there is H(g) : F(7) — F(7’) with
7(t') o H(g) = n(r) which permutes the inverse image of * by g.

THEOREM 4.4.1. (Braid version of the equivalence theorem)

H(D?,Q) acts transitively on Hurwitz sequences with connected cover hav-
ing fixed product 779...7,.

PrOOT: See [14], or [4], cf. also [18, TV]. O

PROOF OF THEOREM 2.2.1: Take m = n(r) and «' = «n(7'), where 7 and 7/
are Hurwitz sequences whose products have the same cycle type. Their products
are then conjugate by some g € Sq. Then 7 and 7 = g~ lr'g have the same
product, so by 4.4.1 we have g € H(D?,Q) and H(8): F(r) — F(r'") covering
B which does not permute the sheets over *. We also have an isomorphism
H(g) : F(#") — F(7'), so that H{g)o H(B) : F(r) — F(7') is an equivalence
between m(r) and w(7') which covers § and permutes the sheets over * by g¢.
O

COROLLARY 4.4.2. Let w : F' — D? be a simple cover with the same degree on
two boundary components C; and C;. Then there is an equivalence H : F' — F
of m with itself which interchanges C; and C, and fixes the other components
of OF.

ProOF: Use the proof of 2.2.1 with 7 = /. Then the product 7y 73...7, has
two cycles of the same length, corresponding to the two boundary components
C; and C;. Take g to interchange these cycles and fix everything else. Then
take H = H(g) o H(B) as above, to give an equivalence of n(r) with itself as
required. O
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5. Markov moves and Hopf plumbings.

We now look at the case where C C $° and n : M — 5° branched over
C are fixed, and we consider the changes in the open-book decomposition of M
which arise as we alter the choice of L in relation to ', always assuming that
C is a closed braid with axis L.

If we select a disc fibre D spanning L, with ¢ = D N C this determines
p € H(D,Q) with C as its closure. Any other 8’ arising from D' spanning
another axis L' is related to 8 by a sequence of Markov moves, in a sense to be
described. The fibres F = #=3(D) and F' = #~1(D’) of the resulting open-book
decomposition of M are then shown to be related by a corresponding sequence
of Hopf plumbings.

5.1 Markov moves.

CONSTRUCTION 5.1.1. Let f§ € H(D,Q) be a braid and let ' be an arc in D
with one end on @, the other on dD. Extend D to a disc D' = DU Dy, where
DN Dy is an arc of 8D containing the end point of &'. Take Q' = QU {gnt1},
where ¢np41 € Dq, and extend o' to an arc a in D' with endpoint ¢,41, as
illustrated in figure 5.1

FIGURE 5.1

Then the braids i(f)rt! € H(D',Q') arc said to be given from 8 by a
Markov move on a (with sign +1).

REMARKS. When @ = {¢1,...,¢»} is in standard position, i.e. the points lie in
order on a fixed diameter of D, then H{D, Q)iH(D', Q") is regarded as the
standard inclusion of B, in Bp41, and f is usually written in place of ¢(7).
Where o' is the arc along the diameter from g, to 0D then 7, = o,, the
generator of By = H(D', Q") which interchanges ¢, and gny1.

Since there is a homeomorphism g : (D, Q) — (D, Q) carrying any other o
to this arc, it follows that in general 7, = ¥ lo,y, where v € H(D,Q) & B,, is
represented by ¢. In this context the Markov move given above replaces § € B,
by By~ 'ox'v € Byt

- It is well known that braids related by Markov moves close to isotopic links.
Conversely, if the closures of two braids are isotopic then we can pass from one
braid to the other, up to equivalence, by a sequence of Markov moves and their
inverses, see e.g. [5], [20].

5.2 Hopf plumbing.
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DEFINITION. Let F C M?® be a surface with boundary, and b C F a proper
arc. Then F' C M? is given from F' by plumbing a Hopf band along b if F'
differs from F' only in a neighbourhood B of b in M? by adding a band R with

one full twist (in either sense) as shown in figure 5.2. This is a special case of
Murasugi sum of embedded surfaces [22].

FIGURE 5.2

It is well known, [22], that F' is a fibre surface if and only if F is a fibre
surface, and in this case F¥ depends up to isotopy only on F' and the choice of
b up to isotopy within F.

We say also that F' arises from F' by deplumbing a Hopf band.

HARER’S CONJECTURE. It is an open conjecture of Harer that plumbing and
deplumbing Hopf bands, starting from a disc, 1s sufficient to generate all fibre
surfaces in S°, [10].

REMARK. Plumbing alone (without deplumbing) is not sufficient, [16].

5.3 Their interaction.

We now give details of the connection between Markov moves and Hopf
plumbings.

THEOREM 5.3.1. Let C C S® andlet #: M — S? be a simple cover branched
over C'. Let C be presented as o closed braid with azis L, with a partscular disc
fibre D meeting C in @ determining a braid 8 € H(D,Q). Let o' be an arc
in D joining a point of Q@ to 0D, and let D' = DU Dy be a disc meeting «
ball neighbourhood B of a' as in figure 5.3. Take a to be the arc in D' which
extends a' as in construction §.1.1, ending at the point DN C.

Then
(e¢) C 1is presented by D' as the closure of f' € H(D',Q") where f' = i(8)1,,

gwen from B by ¢ Markov move on a, and

(b)  the fibre surface F' = 7= 1(D') is given up to isotopy from F = =~ D)
by plumbing a positive Hopf band to F along the proper arc b which covers a'.

Figure 5.3

Proor:

(a) Redrawing the figure inside the ball B as in figure 5.4 shows that C' can
be positioned as the closure of 3 relative to 8D'.
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FIGURE 5.4

(b) F and F' ouly differ inside «~1(B), which consists of d—2 balls covering
B homeomorphically, and one ball, containing the arc b of ¥, which doubly
covers B. In the balls which cover trivially, ¥ and F' differ only by isotopy.
The double cover, illustrated in figure 5.5, provides the Hopf band as shown,
plumbed along b.

FIGURE 5.5
O

REMARK. A similar figure to 5.5 allows a negative Markov move on § with a
corresponding negative Hopf band plumbed to F.

As a corollary, we have

THEOREM C. The fibres for any two fibred links in M which arise from closed
braid presentations of C using a fized simple cover m: M — 5% branched over
C are related by o sequence of plumbing and deplumbing of Hopf bands, and
tsotopies.

PROOF: Any two closed braid presentations for €' are related by a finite se-
quence of Markov moves and their inverses, (see section 5.1). O

EXAMPLE 1. For the simple d-sheeted cover of D? with Hurwitz sequence
T1,...,Td—1 having 7; = (2 ¢ 4+ 1), the covering surface ¥ is homeomorphic to
D?, as shown in figure 5.6.

FIGURE 5.6

The homeomorphism 1p covers 1p:, representing the identity braid on d—1
strings in H(D?,Q). Then if we take the d-sheeted cover of S* branched over
the closure of the identity braid as determined on D? by the given sequence, we
get an open-book decomposition of the covering manifold M with fibre F = D?
and monodromy 1p. Thus M = S$% and we have a d-sheeted simple cover
7 : 8% = §° branched over the trivial link € of d — 1 components.

By theorem C, any representation of this trivial link as a closed braid with
axis L will give, using the same cover 7, a fibred link »~'(L) in $*, whose fibre
is given from a disc in $*® by plumbing and deplumbing Hopf bands.

REMARK. We know (Theorem A) that every fibred link in S* arises from a
simple cover of S° over some closed braid. If we could show that this closed
braid can always be chosen to be the unlink then Harer’s conjecture, 5.2, would
follow. There is, for example, a lot of freedom in the choice of braid to produce
a given monodromy when the map = : F' — D? is given, and further choice of 7
itself is available by using more sheets.

23




EXAMPLE 2. As a special case of example 1 we may consider a braid built
from the trivial braid on d — 1 strings by a sequence of Markov moves, each
increasing the string index. Call such a braid, or any conjugate, completely
reducible. Certainly its closure will be the d — 1 string unlink. Using the d-
sheeted cover of $* defined in example 1 we get, from each completely reducible
braid, a fibred link in $° constructed from the disc by plumbing Hopf bands.

In the final section we consider the case where F' is a fibre surface which has
arisen from some 8 € H(D, Q) and some cover 7 : FF — D. We find conditions
on proper arcs b in F', under which plumbing a Hopf band along & can be
realised by doing a Markov move on . In particular, we show that the converse
to the construction in example 2 holds, namely:

THEOREM D. Every fibre surface in S° which is given from a disc by a sequence
of Hopf plumbings arises, for some d, from the d-sheeted cover of S® branched
over ¢ completely reducible broid, closing to the unlink on d—1 strings.

REMARK. There is no obvious bound on d in terms of the number of boundary
components of the fibre surface, but it is certainly bounded in terms of the number
of bands used in the plumbing. We finish with a look at the construction in this
way of fibred knots of genus 2, showing that we can always take d < 3, with
d = 2 in many cases.

6. Realisation of Hopf plunbings.

We suppose that a fibre surface ' C M has been given, and that we have
found a braid # € H(D,Q) and a simple covering = : M — S* branched over
the closed braid C with F = 7~ '(D), and as usual ¢ = DN C. We shall
give conditions on a proper arc b in F which ensure that we can plumb a Hopt
band to £ along b by altering f by a Markov move. We shall show that if
the conditions do not hold then a simple alteration of # and « (adding a trivial
sheet to the cover) can be made so that the conditions are satisfied for the new
B and =.

By theorem 4.3.1 we can plumb a Hopf band along b by a Markov move on
B3 if b, after isotopy in F', covers an arc in D under w : I — D. Let F' have
boundary components C,...,Cr. We look first at the case of arcs joining two
different boundary components.

THEOREM 6.1.1. If F C M is a fibre surface constructed from € H(D,Q)
and o covering ® : M — 5% of degree > 3, and b is ¢ proper arc in F joining
two components of F then we can plumb a Hopf band to F' along b by a Markov
move on 3.
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PROOF: By repeated use of lemma 3.3.1 we can find a surface F' C F', where
F' is the union of F' with discs each meeting JF" in a single arc, and = | F' has
degree d = max{3,k}. The arc b can be isotoped within F' to an arc ¥ lying
entirely in F'. It is enough to show that & covers an arc under «’ = 7 | F'. We
may then assume without loss that 7 is the cover of degree d. It is enough to
show, for each pair of components C; and C;, that one arc joining them covers,
because there is a homeomorphism of F' fixing JF which carries any one such arc
to any other (up to isotopy of the arc), and all clements of H(F) are w-covers,
by theorem B.

When k=2 (and d = 3 for the minimal degree cover) it is easy to find an
arc in I whose cover joins the two components; a suitably chosen arc from a
Hurwitz family will do.

When & > 2, eny of the Hurwitz arcs will be covered by an arc joining some
pair of boundary components, since the minimal degree cover then has degree 1
on each component, (the ends of the covering arc project to the same point on
dD?). Tt only remains to show that every pair of components can be so joined.
This is now an immediate consequence of 4.4.2, o

REMARK. For F,, we have shown that every arc joining the components will
cover, when the cover 7 has degree > 3. This can be shown also, when ¢ =1 for
the cover = of degree 2, because H,(F'} then contains enough homeomorphisms
to put such an arc in standard form up to isotopy, noting that we need not fix the
boundary pointwise. This is not guaranteed for the degree 2 cover when ¢ > 1.

We now look at the case of a proper arc b with both ends in the same
boundary component C; of a surface F', with a simple cover 7 : F' — D? of
degree d > 3. For b to cover it is essential that w|¢, have degree d) > 2, since
the ends of &, after isotopy, must have a common image.

THEOREM 6.1.2. Let v : F' — D? be a simple cover of degree d > 3, and let
F have boundary components Cy,...,Cy. Let b be a proper arc in F' with both
ends in C; and let di = degreew|c,. Then b covers an arc in D* so long as
(1) b does not separate F', and dy > 2, or
(2) b separates F' = F, ; into two pieces, of genus g1,g90 with g14+g2 = g, con-

tawning respectively ki, k2 of the original boundary components Cy, ..., Cy,

and

(¢) di > 2 when ki, ks > 1,

(b) di >3 when ky > 1,k =0,

(c) di >4 in the case k=1, (i.e. by =ky=0).

In cases 2 (b) and (c) it is enough to have dy > 2,3 vespectively if the arc b
simply cuts off a disc.

PROOF: Asin 6.1.1 it is enough to prove where = has minimal degree subject
to the conditions on dy. Thus we can assume that d; = 1 for § > 1, and
dy = 2,3 or 4 as indicated. Any two such minimal degree covers are equivalent,
so it is enough to look at one such cover.
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If we can prove that one arc b covers then so does the image of & under
every element of H(F'), using our covering theorem for H(F'). Thus it is enough
to exhibit just one non-separating covering arc b for one minimal degree cover 7
to prove (1), and one covering arc b which separates F' in the way specified for
each case of (2). Since, by 4.4.2, there is a covering homeomorphism H : F' — F
realising any permutation of Csy, ..., C), we must simply exhibit a minimal degree
cover 7 and a covering arc b which splits F' into Fy, r,+1 and F,, ;.44 for each
choice of ¢1, 92, k1, k2, in order to prove (2).

CONSTRUCTION FOR (1). Suppose that FF = F, ;. Let «' : F' — D’ be a cover
of degree 1 on each boundary component of F' = Fy_ r14.

FIGURE 6.1

Construct a cover of D = D'U D; as shown in figure 6.1 using n' to cover
D' and adjoining one extra branch point in Dy with permutation (1 2) say.
Then the surface covering D is homeomorphic to F' with an extra band joining
sheets 1 and 2, and hence is homeomorphic to F'. The cover has degree 2 on one
component of the boundary, and the arc a is covered by a proper arc b which
crosses the added band, and does not separate F'.

REMARK. It is easy to give an explicit Hurwitz sequence for m, but the essential
information is its relation to w'.

CONSTRUCTION FOR (2). We shall build a cover of D? by F from covers by
FI =2 Fy k41 and F" 2 Fo, 411, of degrees d',d". The exact relation of d',d"
to k1, k2 depends on the subcases (a), (b) and (¢), but the basic construction is

the same in each case.

FIGURE 6.2

As shown in figure 6.2 we divide D? into three pieces D', D;,D". Use
the cover ' : FY — D' on sheets 1,...,d"', and #" : F — D" on sheets

d+1,...,d =d +d", with the cover on D; prescribed by having one branch
point labelled with the permutation (d' d' +1). The arc @ in D; is covered by
a proper arc across the band which joins sheets d' to d' + 1, and consequently
the covering surface is separated by b into the pieces required.

CasE 2(a). We can find covers «', 7" with degrees &' =k +1, d' =ky +1, s0
long as k1,k2 > 1, for each choice of ¢1,g2. In this case we then have a cover
of D? by F of degree k+ 1, since k = ky - k3 + 1. This cover has degree 1 on
each boundary component except for the one arising from sheets d' and d' + 1,
where the degree is 2. The construction gives a cover of the degree stated, and a
covering arc b which separates as required.
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CASE 2(b). Where kg =0, but % #0 we must take d"” = 2, unless g, = 0 also,
but we can still take d' = ky +1. The total degree d is then k-2, having degree
3 on one component and again degree 1 on those not met by the separating arc

b. (When g, =0 we may take d" =1).

CASE 2(c). When %k = ky = 0 we take d' = d" = 2, giving a total degree of 4
on the single boundary component, again with a reduction if g = 0.

REMARK. The hypothesis that d > 3, imposed to ensure that all elements
of H(F) cover, and hence that other arcs besides the chosen b will cover, is
automatically forced except in case (1) when F' =2 F, ;. Here there is a cover of
degree 2 and our construction exhibits a non-separating arc in # which covers.
When g = 1 we know that all elements of H(F) cover, so all non-separating
arcs will cover, but when g > 1, there will be non-separating arcs which do not
cover under the double cover 7 : Fy; — D?.

As a corollary we get our main plumbing theorem.

THEOREM 6.1.3. Let F C M® be a fibre surface, presented as F' = #~1(D) for
a simple cover m: M — S* in which the branch set C represents the closure of
¢ braid B € H(D,Q). Let b be a proper arc in F'. Then the fibre surface given
by plumbing a Hopf band along A arises by a Markov move on b provided thatl if
both ends of b lie in the same component of OF then the degree of 7 is at least
2 (% or 4} on this component, as determined by 6.1.2.

PrOOF: The arc b covers, by 6.1.1 or 6.1.2. O

Finally, if F,f are as in theorem 6.1.3, but the degree of = on a component
of OF is not large enough to satisfy 6.1.2 for a given arc b, it is easy to alter
and 7 so as to increase this degree as follows. Extend the cover 7 : F' — D to
7% : I'™ — D* by adding a trivial sheet, as in 3.3, to increase the degree on a
chosen boundary component of F'. The branch set @Q* for n* then consists of
the branch set @) for w, together with one further point.

Suppose that F' C M? is a fibre surface with monodromy H , covering 8 €
H(D,Q). Now t(H(F) = H(F*) and i[H] € H(F™) covers () € H(D*,Q").
Construct the relative mapping torus M* for a homeomorphism H* : F* — F*
which covers i(8}. There is then a covering 7* : M* — $% extending 7* on F™*,
whose branch set is the closure of the braid ¢(4). This is the closure of the braid
i(f) together with an extra trivial string.

There is a homeomorphism j : FF — F* which is the identity outside a
neighbourhood of @F. Then [joH oj~'| =i[H| = [H*] € H(F*). The mapping
torus M* is then equivalent, as an open book, to the manifold M? presented
as the mapping torus of H : F — F, (section 4.1). The fibre surface F C M?*
may then be replaced, up to homeomorphism, by F* C M™, while increasing the
degree of the cover on the chosen boundary component, and altering the braid 3

to i(8).
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COROLLARY 6.1.4. Let F C M? be a fibre surface, presented as F' = n~1(D)
for a simple cover w : M® — S° branched over the closure of a braid g €
H(D,Q). Then the fibre surface given by plumbing a Hopf band o F arises
from the closure of ' which is given from [ by o Markov move, possibly after
addition of some trivial strings to 3.

O

We have the most satisfying consequence in the shape of

THEOREM D. Ewery fibre surface F in S° which i3 given from a disc by a
sequence of Hopf plumbings arises for some d from the d-shected simple cover
of 8% branched over a completely reducible braid, closing to the unlink on d —1
strings.

ProoF: By induction on the number of bands, using corollary 6.1.4. For if j
is completely reducible to the unlink on k strings, say, then 3’ is completely
reducible to the unlink on k 4+ s strings, and the degree of the cover has been
increased by s. The induction starts with 0 bands, using the case F' = D?
presented as a d-sheeted cover by # : F — D? with d — 1 branch points,
corresponding to the identity braid on d — 1 strings, as in section 5, example 1.
Here we can even take d = 2, although at some stage extra strings may need to
be added as the bands are put on, to ensure that the conditions of 6.1.3 are met.
O

REMARK. It is known that theorem D does not hold in general with d = 2, for
the fibred knots constructed in this way have special features of their Alexander
polynomial which exclude, for example, the connected sum of two trefoils, [16].

6.2 Examples.

We conclude with the examples of genus 2 fibred knots which can be con-
structed by plumbing Hopf bands, analysing the maximum degree d needed in
this case. .

Starting from the disc Fy 1 we must plumb on four Hopf bands to reach Fj; .
The sequence of intermediate surfaces will depend on the nature of the arcs used
at each stage. The diagram below summarises the possible ways, where s and
ns are used to indicate whether the arc separates or not.

E ns E ns F ns ns
o0 —» ‘gp ———* 44 —» F1,2 — F2,1

S
ns
. \ F1 '2 F2'1
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In the cases listed the only type of separating arc available will cut off a
disc, because of the low genus. The eventual need to have only one boundary
conmponent ensures that at some steps we may only choose an arc which connects
different boundary components.

Start with Fy ; represented by the identity braid on 1 string with d = 2.
Then without increasing d we can plumb on one Hopf band by a Markov move
to get Fj ; with braid alil. The non-separating arc covers when d = 2, so we
can use another Markov move to get F; with braid O'itl 05':1 . (This realises the
figure eight or trefoil knot, depending on signs). The separating arc at this stage

requires d = 3 to cover, so we must pass to ¢! in By before doing a Markov

move, The result, up to conjugacy, is criﬂa;t] giving the connected sum of two

Hopf links with fibre Fj 5.

The bottom line of the table can be completed without increase of degree
(6.1.2) by two further Markov moves, giving a braid in Bg which closes to the
2-string unlink,

Returning to the surface F ;, we must increase to d = 3 if we want to use
the separating arc (6.1.3), and again we can complete with one further Markov
move, without further increase of d.

To follow the top line we can pass to Fy 2 without increase of d, since all
non-separating arcs in Fj ; cover when d = 2. We can continue with degree 2 to
Fy 1 since the arcs joining the two components in Fi 3 also cover when d = 2.
The resulling knots are presented by braids in Bz which close to the unknot.

REMARK. Higher genus knots constructed by plumbing Hopf bands may need a
degree d cover where d is roughly the number of bands used, because up to half
the arcs used may be separating, of type 2(b) from 6.1.3, being attached in each
case to a component on which the degree is 1. The remaining arcs will have to
join different components, so they can be added without increasing d. We do
not have any explicit examples constructed in this way for which an alternative
construction of lower degree can be shown not to exist, so this bound may be
rather generous.
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