THE 2-VARTIABLE POLYNOMIAL OF CABLE KNOTS
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Abstract

The 2-variable polynomial PK of a satellite K is shown not to

satisfy any formula, relating it to the polynomial of its companion and of

]
the pattern,which is at all similar to the formulae for Alexander polynomials.
Examples are given of various pairs of knots which can be distinguished by
calculating P . for 2-strand cables about them even : .though the knots
themselves share the same P. Properties of a given knot such as braid
index and amphicheirality which may not be apparent from the knot%

polynomial, P, are shown in certain cases to be detectable from the

polynomial of a 2-cable about the knot.
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I. o : Introduction

With the development of the 2-variable polynomial PK of an
oriented knot K (of one or more components), [FYHLMOl, has come the
desire to relate it directly to the geometry of the knot exterior,
as Seifert, and later Fox, were able to do with the.Alexander polynomial,
One obvious place where the geometry should show up is when the knot

is a satellite. In this case the exterior is made up of the union of

two link exteriors, that of a companion and that of a pattern link,

forming part of a natural decomposition of the exterior in the context of
3-manifolds.

The multi-variable Alexander polynomial of such a union bears a
gimple relation to those of the two constituent link exteriors, This
takes the form of an equation SK = SC'SR' where K is a satellite with
companion € and pattern link R consisting of an unknotted component
defining a complementary solid torus V which contains the other
component(s) of R. The knot K is formed from the image oI these
component(s) when a solid neighbourhood of C is replaced by V using
a faithful (longitude-preserving) homeomorphism. In the equation S is
either the multi-variable Alexander polynomial, or, in the case of a
1-component knot, a modified version of it; the variables, which
correspond to homology classes ;n the appropriate link exterior, are each
replaced by the element whichthey;represent in the exterior of K, See

Fox's 'Free Differential Calculus V', [F], for a general, but not very

readable, account.




Possible satellite formula

On the analogy of the Alexander polynomial we anticipated some guch
satellite formula for the other polynomials. For each X a
conjectural function SK of several variables might exist, specialising

to PK in some way and satisfying an equation SK = SC' SR' ¢ dfor a

satellite K of C with pattern R, where the variables in SC and SR
are substituted by others in a way which depends in some suitable sense
only on the gluing of these two exteriors, and ¢ 1is a possible
normalising factor, again depending only on the gluing homeomorphism.

Under such a framework, if two knots C and C with S =8
1 2 C1 02

were used with the same pattern and method of gluing to construct

satellites K and K we would then have S =8 .,
1 2 Kl K2

Conceivably there may be an SK which specialises to PK and

satisfies such a satellite formula (possibly specialising also to

Kauffman's recently announced polynomial F [Klj). In this paper

Kl
we show however that no such function SK can be found with the

additional property that SK = PK for a l-component knot K, even if it

differs from PK when X has more components.

The examples given are palrs of knots C1 and 02 with PC = PC
1 2

whose (2, 1) cables K1 and K2 (satellites constructed with

the same pattern R = - | ) have P. $ P . These
D ST

are described in a later .section under the heading 'Birman's pairs of 3-braids'

and the polynomials are displayed in table 1.

II. Scope of,the.ca}curatipné

Toicompute the polynomial P for these examples we developed a
program to calculate PK from a presentation of X as a closed braid,

pased on the comstruction of Ocneanu and Jones, [01], [J1]. Details of the
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theoretical basis for the calculations, and their practical
implementation are given in [M-8].

Our program can handle interactive calculations for 7-string braids
of over 100 crossings and will deal with 8-string braids of up to 150
erossings on the Liverpool University IBM 3083 computer using less than
16 megabytes storage and under 200 seconds of computer time. The time
required grows relatively slowly (quadratically) with the number of crossings
for braids of a given string index, so within the constraints of
presentation as a closed braid on at most 8 strings the method provides an
efficient way of handling knots with many crossings. It may be contrasted
with Thistlethwaite's encyclopaedic work in producing tables of P for all
knots up to 13 crossings based on the Conway recurrence relation, [T].
His method works well, given information about all knots with fewer
crossings, and is not particularly sensitive to braid index, but in general
it would face exponential time growth with the number of crossings if
calculation of P for an individual knot beyond the range of the table
was regquired.

Annotated copies of the Pascal program to calculate the polynomial
P and also the Alexander and Jones polynomials of a knot presented as

a closed braid on at most eight strings are available on request.

I1I, Further consequences

While the failure of the satellite formula proves disappointing
from the point of view of understanding the general structure of the

pelynomial P it leaves the way open to using P in a second attempt at

K

distinguishing two knots C and C with P =P by comparing P on
1 2 Cl 02

satellites of C1 and CZ' From our limits on the computing power

available we have been restricted to considering 2-string cables where
Cl and 02 can themselves be presented as closed braids on at most four

strings, so that the cables can be presented as 8-string braids. Other
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satellites such as doubles or higher string cables could in principle
be used.
The only examples so far observed where the satellites are still
indistinguishable using P have come when C2 is a mutant of Cl'
In all cases tried so far, if Cl and C2 are mutants then their

2-cables, although not ‘apparently mutants themselves, have the same P.

Examples are discussed in a later sectiom.

Burau polynomials

The possibility of calculating PK from the 'Burau polynomial’
of a closed braid representative B of X, 1i.e. from the characteristic
polynomial - det(xI - B(t)) of the Burau matrix B(t)y for B, was raised
tentatively by Jones [JZJ. Our examples used in disproving the existence

of a zimple satellite formula can also serve to discount this possibility.

To see why this is so, suppose that C is a knot presented as the

~ ~

g’ congisting of @

-~

closure B of some B ¢ Bn' The'complete closure, B U L

together with the braid axis LB is then a 1link whose

2—variab1e Alexander polynomial is the Burau polynomial of B, [mez],

The géz,r) cable K about C can be presented naturally as the closure
of a 2n-string braid, by doubling all strings in £, with twists as
required. The complete closure of this braid is then a satellite
constructed using the (2, r) cable pattern R on the string C Irom

the complete closure C U L of B. Using the satellite formula for

B

Alexander polynomials the Burau polynomial of this representation for K

can then be calculated from that of C U LB and the pattern,

If this construction is applied to two braids Bl and 82 with

the same Buray polynomial the resulting braid presentations for the (2, r)

cables K and KX will then have the same Burau polynomial. The

1 2

examples of Birman given in tables 1 and 2 are (2, r) cables about
3-braids with the same Burauy polynemial, The resulting 6-braids have

then the same Burau polynomials, but their closures K1 and K2 have




With the failure of the satellits formulagfeatures of a kmot K which
do not show up directly from PK may nevertheless become apparent from

the polynomial of a 2-cable about K. These features include the

praid index and the question of amphicheirality of K, and examples are

discussed in the course of the next section.

IV Discussion of examples

Braids in the accompanying tables are listed as elements of B

8 ]
. . +1
using * i to stand for the generator Ui . The polynomial PK(V, %)
is given as a matrix of coefficients (pij)’ where PK(v,-z) = ZpiJ zle,
with the range of i and j indicated at the side. We use the
-_— + —
convention that v P,+ -vP _ = zP , where K , K and K° differ
K K K°
only as shown : Tyﬂ R‘f C
N 4 .
K* K K°
Putting v = 1 gives VK(z), the Conway polynomial. The
. . -1 -1 2 .
substitutions z=x-x ,v=1; and z =x -X , Vv =X give
respectively the Alexander and Jomes polynomials, &(xz) and V(xz). In

the tables the negative powers of x in the Alexander polynomial have
been omitted, because of its invariance when x 1is replaced by -x

The Alexander polynomial in particular serves as a useful check
for the calculations, since it can be quickly found for a cable using the
gsatellite formula.

It is noticeable in these examples that the coefficients of the
Alexander and Jones polynomials are considerably smaller than those in
the Conway polynomial, This cannot be true in general, since all integer
polynomials in 22 with constant term 1 are possible as Conway
polynomials of some knot, and so some Conway polynomials must correspond to
Alexander polynomials with larger geefficients. Most probably it is a

result of using fairly positive braids on a relatively small number of

strings.




To reduce the size of coefficients in these examples it would he
tempting to rewrite P 1tself in terms of x rather than =, but this
would only be possible for a l-component knot because of the negative
powers of =z which occur otherwise.

Birman's pairs of 3-braids

The original motivation for these calculations arose from the
simple examples of pairs of 3-braids discovered by M,T. Lozano and
myself, and simultaneously in greater variety by J. Birman [B]., Each

B

example consists of two 3-braids B with the same exponent sum

1t T2’

and the same trace for their Burau matrix, consequently the same Burau
polynomial, while closing to inequivalent knots, Since the polynomial
P for the closure of a 3-braid is also determined by exponent sum and
trace of Burau matrix these pairs give examples of inequivalent knots with

the same polynomial P.

-1 7 4 -7

£ th impl =h iy i = =
One o e simplest such pair is 81 01 02, 82 Aa 01 02 ,
. 2 2 2 -3 . .
conjugate to 02 01 02 01 02 01 . Their closures give inequivalent knots

C1 (the (2, 7) +torus knot) and Cz. A 2-cable about each can be

presented as a 6-braid, by replacing Ul with 02 03 01 02 and 02

with %4 05 03 04. The linking number of the two strands in the

resulting cable is then the exponent sum of the original 3-braid, so that

the cables produced in this way will‘in'this”examplehbe'the - (2,712) - cables about

C1 and C2 respectively. Addition of one extra 01 to each 6-braid will
give l-component knots Kl’ Kz, the (2, 13) cables about Cl' CZ. In
table 1 the polynomials PK and P are exhibited; they can be seen to

' 1 2

differ considerably, as do the Jones polynomials of Kl and 'KZ’ while

their Alexander polynomials, which satisfy a satellite formula, do not.
One’ further pair is given in table 2 of Birman's more general type.

These pairs are given by Bl==61 62 63, 62
§ =*cglaQ1cp20q2 g, = oploqz §_ = Gpl-pchz—ql
171727172 T2 172! T3 ta 2

= 61 63 62, where




All other Birman pairs which we have tried can be distinguished by their
2-cable polynomials, This may be compared with Birman's difficulties
in distinguishing the closed 3-braids using other methods,

Any of these examples will show also that the Burau polynomial is
insufficient for calculating P, as noted earlier.

Symmetry and amphicheirality

The polynomial P of an amphicheiral knot K is unchanged when v

K
-1
is replaced by -v . The knot 942 has

2 4
2 - (3 + 4z +z ) + (2 + zz)vz, which has this symmetry

2 -
P(v, z) = (2 + z )v
although 942 is not amphicheiral. The (2, 0) cable about an

amphicheiral knot will again be amphicheiral, so its polynomial will be

symmetric. Calculation of the polynomial for the (2, 0) cable about 942
is displayed in table 3. This polynomial is not symmetric, so giving a
proocf that 942 is not amphicheiral. Notlice that the Jones polynomial in

table 3 still exhibits symmetry, so that it does not detect the lack of
amphicheirality, in this case, nor apparently does Kauffman's new polynomial
Braid index

It was shown in [M1], and also [F—Wl}, that a lower bound for the
brald index of K can be found from the polynomial PK'

Explicitly, n = %(ghax-wemin) + 1, where n is the brald index of K,
i.e. the smallest number of strings needed to present K as a closed braid,
emax and emin are the largest and smallest degrees respectively of the
non-Alexander variable v in PK(V, z}). Thig same inequality is shown in
[M1] to apply also where n ig the number of Seifert circles arising from
any diagram of K.

In a number of instances the braid index inequality can be shown to

‘be strict, and the braid index calculated exactly, by applying the
inequality to a cable about X, For example the (2, 7) cable K about
a trefoil can be presented as the closure of the 4-braid 01(62 63 01 02)3,

but it has %(e -e )+ 1= 3, This is noted by Franks and Williams,
max min




[F-—Wz], who asked whether its braid index was actually 3. Our
calculations presented in table 4 exclude this possibility. For if K
has a presentation as a 3-braid then every 2-cable about K has a
presentation as a 6-braid, and so the polynomial for each cable would
. ] o < ; .
satisfy é(emax emin) £ 6, as would also be the case if any diagram for K
had just 3 Seifert circles.
The 8-braid used in table 4 -represents the “¢2, 27) cable about K,
The seven non-zero columns of coefficients show that (e -e  }Yy+1=17,
max min
so that at least seven strings are needed to present this cable. The
knot K d4is then an example of the closure of a positive braid with
braid index strictly larger than 3(e - e ) +1,
max min

Mutants

A knot : K -whose. diagram is made .mp of tangles R and 8 as in
figure 1 is converted into a mutant of K by replacing R with 7T(R),

where <t 1is the operation of rotation through 7 about one ef three axes.

o )
T(R) = or @& or

Figure 1

Mutants have long been known to have the same Alexander polynomial,
and more recently to have the same polynomial P, [L-M]. Possibly the
best known mutant pair are the inequivalent knots of Conway and
Kinoshita-Terasaka which both have trivial Alexander polynomial. Although
their 2-cables are not obviously mutants they do still share the same
polynomial P shown in table 5. This colncidence of polynomials has

given us a measure of confidence in the accuracy of the computer
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calculations, as it would appear highly unlikely that the coefficients
would all agree if there was an error in the algorithm or its implementation.
Other pairs of mutants within the range of our computations have
been tried with similar results. A variety of mutants can be tackled
using the fact that the 4-braids w(cl, 02) v(az, 03),
w(ol, 02) 0;1xr(02, 63)02, w(ol, 02) Rev V(UZ' 03) and
w(cl,ca)c;l Rev v(oz, 03)02 close to mutants, where Rev v is the braid
v in reverse.
The result suggested by these calculations, that 2-cables
of any pair of mutant knots have the same polynomial, has been

subsequently proved by Lickorish and Lipson, and also by Przytycki

and.Traczyk.
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