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UNITARY QUANTUM GROUPS AND MUTANT KNOTS

H.R.MORTON
Department of Pure Mathematics, Universily of Liverpool, PO BOX 147,
Liverpool L69 3BX, England

Questions of interdependence of quantum group invariants of knots, particularly
those arising from the unitary quantum groups SU(N)gq, are discussed, with refer-
ence to the behaviour of these invariants on mutant pairs of knots.

1 Introduction

This paper is concerned primarily with knot invariants. A fuller account of
much of the material about mutants can be found in my article with Cromwell®,
while a wider introduction to the general techniques used here is contained in
my expository article®.

A knot K is taken to mean a simple closed curve in Euchdea.n space R3,
possibly compactified as the unit sphere S3. An invariant of K is some number
or function which, typically, can be calculated from a diagram of K, but which
only depends on the curve K up to physical manipulation in space as if it
were a closed piece of rope. The term ‘link’ is used instead of ‘knot’ when
more than one curve is involved. In what follows I shall be mostly concerned
with invariants of ‘framed’ knots or links, where a choice of parallel curve to
each component is assumed to be preserved by the manipulations. This can
be looked on as dealing with ribbon, rather than rope, and keeping a tally of
the twist in each ribbon. (Many recent invariants are sensitive to the twist
to some extent, and it has become conventional that a knot diagram should
be regarded as spec1fymg the choice of parallel curve which lles alongside each
curve in the diagram).

My own interest is in knots and links and in the related topology of 3-
dimensional manifolds. In this context a knot invariant may be used to try
to tell whether two different diagrams represent the same space curve, up to
appropriate manipulations, and more generally to try to reflect some other geo-
metric properties of the knot or of manifolds which can be constructed from it.
In recent years a great range of new knot invariants has been discovered, using
a wide variety of constructions. At this meeting the most familiar method must
be that of vertex models, where the Yang-Baxter equation plays a key role in
establishing invariance under topological manipulations of the related -knot.
The posmble uses of such models were realised initially by Jones 22 and Tu-
raev®. These models themselves were closely connected with the development.
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of quantum groups. Work in this area by Jimbo and others was quickly seen,
notably by Turaev and Reshetikhin?, to lead to a whole range of invariants of
knots.

From the knot theory viewpoint it is important to try to establish the
extent to which some invariants depend or do not depend on others. It is
known, for example, that certain invariants, such as Witten’s link invariants,
are sections of others, given by suitably specialising variables in an invariant
with more parameters. Typically these are quantwn group mvariants, which
in turn can be derived, in the case of the unitary quantum groups, from the
2-variable Homily polynomial of the link itself or of other geometrically related
links. There are thus quite frequently a number of very different ways of finding
out equivalent information about the knot or link, and so the question of decid-
g whether a given invariant depends, theoretically, or even quite explicitly,
on others, is increasingly of interest. As an example of a possible independence
result, if invariants 1, ..., I satisfy I\(K) = Li(K"),...,L.(K) = L.(K') for
all knots K, K' in some subclass of knots, while J(K) 7& J (K "} for some choice
of K, K’ in this same subclass, then clea.rly the invariant J does not depend
in any way on Iy,..., I,.

2 Mutant knots

It is not, in general, easy to find knots with a given value for an invariant
I, or pairs of knots on which a sequence of invariants takes the same value,
and indeed many algebraic features of invariants are not well documented in
relation to geometric properties of the knot. The class of mutani knofs, which
I shall now introduce, does however provide a relatively large selection of pairs
of knots K, K’ for which certain invariants are guaranteed to be the same. It
then follows that an invariant which does distinguish some pair of mutants
cannot depend in any way on these first invariants.

Here 1s a picture of the simplest and best-known mutant pair of knots, due
to Conway and Kinoshita-Teresaka in about 1960.
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The term muient was coined by Conway, and refers to the following general
construction.

Suppose that a knot X can be decomnposed into two ariented 2-tangles F
and ¢ as shown in figure 2.
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Figure 2

A new knot K’ can be formed by replacing the tangle F with the tangle
F' given by rotating F' through # in one of three ways, reversing its string
orientations if necessary. Any of these three knots K’ is called a muteni of K.
It is clear from figure 1 that the knots & and KT are mutants.

It was shown by Conway that mutants K, K’ always share the same Alexan-
der polynomial. Lickorish? generalised this by proving that mutants must also
have identical Homfly polynomials, and hence the same Jones polynomial. In-
deed, as I have suggested above, there is a range of other invariants which also
agree on mutants. I shall give a brief account of the construction of quantum
group invariants, and show how some of these invariants are inevitably ‘blind’
to mutants, while others can be seen by explicit calculation to distinguish the
knots ¢ and KT.

3 Quantum invariants

Reshetikhin and Turaev 7 have described in detail how a finite-dimensional
module V), over a suitable quantum group can be used to construet an invariant
Jx(Va} of a framed knot K which is a power series in the quantum group
parameter h. It can usually be expressed easily in terms of ¢ = e or s = e?/2.
For the present purposes the important features of a quantum group G
are that it is an algebra with coeflicients C[[h]] which admits tensor products
and duals of finite-dimensional modules. In the most frequently used examples
each module is completely reducible as a direct sum, as noted by Rosso?,
The construction of invariants is based on ‘colouring’ tangles by G-modules,
and representing these by module homomorphisms. This construction extends
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to determine an invariant of framed oriented links when ‘coloured’ by a choice
of module for each component. The invariants are multilinear under direct
sums of modules, while a knot K coloured with a tensor product V @ W of
two modules has the same invariant as the link K made up of two paralle
copies of K when coloured by V and W respectively on the two components.

As an illustration of the general construction, imagine that an oriented
tangle 7" has been given and that a choice of module has been made for each
string in T, as shown in figure 3.
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Figure 3

Associate modules Wy to the top and bottom of T, by taking the tensor
product of the modules colouring the strings which leave the bottorn, in their
order from left to right, as W_ and of those which arrive at the top as Wy,
using the dual module where the string orientation is in the opposite sense.
Where there are no strings at the top or the bottom, the trivial module C[[R]] is
used. In the example shown we have W, = U@V @U" and W_ = X*@X@V.

The aim is then to represent T by a homomorphism Jr : W_ — W, , using
composite or tensor product of homomorphisms where a tangle has been built
up from consistently coloured pieces as shown below.

11l
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Reshetikhin and Turaev show how to use the universal R-matrix for G

to represent the elementary coloured tangles :,XW and V}\’(W and

give consistent representations for the local maxima and minima, -‘ and

-‘ , with any choice of colouring and orientation. The composition laws
then determine Jp in terms of these elementary pieces. The essential part of
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their work is the following result, which is mainly a consequence of properties
of the universal R-matrix.
Theorem 1 (Reshetikhin, Turaev) Alteration of a coloured langle T' by
regular isotopy (string manipulation, respecling the choice of framing on each
string) leaves the homomorphism Jy unchanged.

In particular, a diagram of a knot K, coloured by a module V', determines
a module homomorphism C[[2]] — C[{t]] which must be multiplication by
some scalar. By theorem 1, this scalar, Jg(V) € C[[h]], depends only on the
framed lknot K, and not on the diagram chosen to picture it. For a link, we
can make a choice of one module per component; it is sufficient to deal with
irreducible modules V', as the invariants behave multilinearly under direct sums

of modules.
Returning now to the special case of mutants, suppose that K and K have

been coloured by a module V. The coloured tangle F determines a map
Jr:h@Vy—= W@V

If we know that Jpr = Jp then Jx(V3) = Jx(Va), because the remainder of
the diagram is the same for K’ as for K. Suppose now that F! = Ao FoA™1,

given pictorially by

F":

as in the case of the Conway and Kinoshita-Teresaka pair.
Then Jpr = Ry o Jp o (Ry)™}, where Ry : Vi ® Vi — Vi ® V), represents

the elementary tangle |Z| coloured by V.

We now give a sufficient condition for equality of mutant invariants in the
case above; the result is also true for the two other types of mutant, further
details can be found in Morton and Cromwell®.

Firstly a quick algebraic observation.

Suppose that a module W decomposes into irreducible summands as W =
Vi@ --- @ V,. Suppose further that no two of the summands Vj,...,V; are
isomorphic. Then any endomorphism a : W — W maps each V; to itself by
scalar multiplication with some a;, by Schur’s lemma, and consequently any
two endomorphisms «, # : W — W commute.

Suppose now that mutants K, K’ are coloured by a module V), such that
Vy ® Vi has no repeated summands. Then the homomorphisms Ry and Jp
commute, by the observation above with W = Vi @ V3. It follows that Jpr =
Ry oJpo R;" = Jp and hence that Jg(Vi) = Jx+(Va)-
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Examples of this behaviour occur among the invariants given by the uni-
tary quantum groups SU{N),. The irreducible modules over SU{N); can be
indexed by Young diagrams A, just as in the classical case of the Lie algebra
of SU(N), and satisfy some relations depending on &, again as in the classi-
cal case. The simplest module is the ‘fundamental module’, ¥, of dimension
N, associated with the Young diagram O. Decomposition of tensor prod-
ucts of modules in SU(N), into irreducibles is determined by the Littlewood-
Richardson combinatorial rules on the Young diagrams. These can be used to
test any product Vi ® V) for repeated summands. A quick application of the
rules shows that when X consists of a single row or colurnn then V) ® V) has
no repeated summands, and so the resulting invariants agree on mutants.

The following table gives a summary of the known coincidences and differ-
ences of unitary invariants on mutants K, K‘. Columns in the table are indexed
by Young diagrams A with increasing numbers of cells j, while rows are indexed
by N. The entries in the table refer to the difference Jx (V) — Jx+(V3) for the
SU(N), invariant with irreducible module V) whose Young diagram is A. An
entry 0 in the table means that the invariant listed agrees on all mutant pairs
K, K’'. Most, but not all, of these entries follow from the condition above. An
entry 7 means that evidence is unavailable, or inconclusive, while an entry x
means that the difference is known to be non-zero for some pair of mutants.

Je(Vi) — J(Va)

| 1] 2 3 4
N’“DHIIIEEF“:“EE:'BEIEFDDI”
2 fo|o|o [o|o [0 [0 >
3 0 0|0 1O |O|O x 0
1 1] 0] x[ofo]o 21 o
5 ? ?
RERERRAEIFE N n
Figure 4

All entries in the row N = 2 are known to be 0, as are all entries in the columns
with one or two cells in the Young diagram A.

'The entries in the column with A = [P are known to be 0 for N = 3 and to
be non-zero on the Conway and Kinoshita-Teresaka pair for N > 4, following
calculations of Morton and Cromwell ®.

More recent calculations with Ryder have shown that when ¥ = 3 and
A = HP the difference is also non-zero on this pair. The difference in this case
was found to be




(696 — 5% 2590 _ 4538 1 9486 1 334 432 4 530 (28 3.6 4 o2
45" + 457" + 2518 5510 | 551t _ 9512 _ 9410 4 458 — 255 4 52— 1)
(53_3—8)2(57_5—7)(36_8—6)(35_Sﬁ5)(34_5—4)2(33_3—3)2(52_3—2)(5_5—1)3,

up to a power of 5 = /2

When any of the quantum invariants is written as a power series in b
the coefficient of A9 is a rather restricted type of invariant of the knot known
as a Vassiliev finite-type invariant. It has been shown by Chmutov et al?
that for d < 9 every such invariant will agree on mutant pairs. It is thus of
interest to look at the degree of the lowest term in A in any of the non-zero
differences in the table. In the column with A = [F the first non-zero term for
Conway /Kinoshita-Teresaka is the term in k!, while the entry reported above
for the same pair of knots when N = 3 and A = HX can quickly be seen to
begin with the term in h12.

One consequence of this non-zero entry with N = 3 is a certain guarantee
that the SU(3); invariants of a knot can not all be derived from knowledge
of all its SU(2), invariants. Similar guarantees of the independence of the
SU(N + 1), invariants from the SU(N), invariants are anticipated, but are
not so far available for ¥ > 2.

It 18 worth noting that these invariants have alternative descriptions in
more combinatorial or geometric terms. For example, all the invariants for
one Young diagram, as N varies, can be organised as a Laurent polynomial in
two variables v, z, and the invariant for row N recovered by the substitution
v =5 2z=35— 51 where s = ¢*/2. The first column, with the fundamen-
tal representation, comes in this way from the Homfly polynomial, while the
column for each Young diagram with j cells comes from a linear combina-
tion of the Homfly polynomials of suitable satellite knots of the original knot,
consisting of certain cables with j strings.
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