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Abstract

In this paper we introduce arbitrary arrow update logic (AAUL). The logic

AAUL takes arrow update logic, a dynamic epistemic logic where the accessi-

bility relations of agents are updated rather than the set of possible worlds, and

adds a quantifier over such arrow updates.

We investigate the relative expressivity of AAUL compared to other logics,

most notably arbitrary public announcement logic (APAL). Additionally, we

show that the model checking problem for AAUL is PSPACE-complete. Finally,

we introduce a proof system for AAUL, and prove it to be sound and complete.

Keywords: Modal Logic, Knowledge Representation, Arrow Update Logic,

Dynamic Epistemic Logic, Arbitrary Arrow Update Logic, Arbitrary

Announcement Logic

1. Introduction

In dynamic epistemic logic [16] various information changing events can be

modeled, from modest public announcements, to powerful action models that

can change an epistemic model beyond recognition. Here, we study arrow up-

dates, a type of information changing event that is more powerful than public
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announcements but less powerful than action models. Roughly speaking, in

public announcement logic (PAL [28]) one specifies which states in the model

will remain as a result of the announcement, in arrow update logic (AUL [22])

one puts constraints on pairs in relations that endure the update (while in ac-

tion model logic, also new states and new pairs can emerge as a result of the

action). Let us emphasise at this point that although such relations can denote

indistinguishability for an agent between states, they can also denote any kind

of transition between states, or a temporal relation, a preference, etc. In other

words, arrow update logic is relevant for many logics that are used in Artificial

Intelligence, whether these logics model epistemic, doxastic or other attitudes of

agents, dynamics, strategic interaction, or systems of norms (see also Section 2).

One line of dynamic epistemic logics adds quantifiers over information chang-

ing events, ranging from quantifiers over public announcements [10, 5], group

announcements [2], to quantifiers over action models [5]. An overview of the lit-

erature on this topic is provided by [14]. These different “quantified operator”

logics find their application in analyzing the concept of knowability [10], but also

in, e.g., security where one can express properties like no information changing

event can disclose certain information to some agent. Such logics with quan-

tifiers over information change find an application in epistemic protocol logics

[32, 15] that allow for protocol change or protocol declaration. For a different

approach to quantification over information change see [8], where a first-order

modal logic is used.

In this paper we introduce arbitrary arrow update logic (AAUL), which allows

quantification over arrow updates. Like the other quantified logics, we can use

AAUL to reason about knowability and security. Additionally, AAUL can be

used to reason about protocol and rule design, as we will show in Section 2.

We establish three kinds of results concerning AAUL. The first concerns

expressivity of the logic. We show that, under the usual assumptions that the

set of agents is finite and the set of propositional variables is infinite, arbitrary

public announcement logic and arbitrary arrow update logic are incomparable in

expressivity over the class of all Kripke models. We also identify a case where
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AAUL is more expressive than APAL. Finally, we compare arbitrary arrow

update logic to a number of other logics, and conclude that it is incomparable

to epistemic logic with common knowledge and that it is more expressive than

basic epistemic logic (and therefore also more expressive than arbitrary action

model logic and refinement modal logic [12]). Secondly, we show that the model

checking problem for AAUL is PSPACE-complete. Finally, we introduce a proof

system for AAUL, and prove it to be sound and complete with respect to our

set of intended models.

To argue for the relevance of AAUL for Artificial Intelligence in general and

knowledge representation in particular, it is helpful to also show why AUL is rel-

evant, and to keep in mind that AAUL is to AUL what APAL is to PAL. Where

in PAL, semantically (that is, on Kripke models), the object of study is the elim-

ination of states that do not satisfy a given specification (the announcement),

in APAL then the question is what kind of sets can be eliminated, and which

properties are invariant under arbitrary elimination. As pointed out above,

PAL and APAL are primarily studied in contexts where the states represent

epistemic information of agents, so PAL and APAL are pre-dominantly used

as formalisms to study dynamic epistemic phenomena, answering questions like

what kind of information can be learned (‘for which ϕ is [ϕ]�aϕ true?’), and

what kind of information is knowable (‘for which ϕ is there an announcement ψ

such that [ψ]�aϕ?’). But elimination of states is also relevant in other contexts

then epistemic ones, like for instance in deontic reasoning, where some states

may be (morally, or deontically) better than other states. In this context, the

PAL construct [ψ]ϕ would be interpreted as ‘if a law guaranteeing ψ would be

enforced, as a result, ϕ would be true’.

Where PAL and APAL focus on the elimination of specified or arbitrary

sets of states, respectively, the focus of attention of AUL and AAUL is on the

elimination of specified or arbitrary sets of transitions. For instance, where the

deontic interpretation of (A)PAL addresses ought-to-be norms (‘Sein Sollen’), a

deontic interpretation of (A)AUL is about ought-to-do norms (‘Tun Sollen’), see

e.g., the chapter ‘Deontic logic as I see it’, by the founder of deontic logic, von
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Wright, in [26] or [13] for a computer science perspective. So if the relations in

the Kripke model represent transitions, AUL can be used to reason about social

laws: is it the case that, by disallowing certain transitions, we can guarantee a

particular property? Norms can relate to rationality for instance, and indeed, in

AUL one can mimic backward induction in an extensive form game by requiring

that all moves for agent i should be kept which do not affect his chances of

winning the game. But then, under this perspective, AAUL is useful for the

Syntheses problem in social laws, and the mechanism design problem in game

theory, because it allows one to study questions like ‘is there a social law (in

the sense that only certain transitions are allowed) that guarantees a certain

outcome?’ Or, ‘is there a game (in the sense that only certain moves in the

extensive form of it are allowed) that only leaves a specified set of outcomes?’.

The application of AUL and AAUL to social laws and mechanism design in

further studied in [25, 23]. We return to the normative interpretation of arrow

updates in Section 2.2.

Arrow updates also have epistemic interpretations, which reinforces their

relevance for knowledge representation. As we will argue in Section 2.1, arrow

updates are more general than public announcements, since one can model semi-

private announcements. These are announcements where only a sub-group of

all the agents learn certain information, while all agents are aware what the

protocol is (like when all students in a class know that their teacher has sent

their marks to the administration office). This implies that AAUL provides

a formalism to reason about arbitrary semi-private announcements, making it

possible to express properties that are relevant for epistemic planning, like ‘there

is a private announcement, such that everybody in Ag1 knows what the password

to the system is, while everybody in Ag2 remains ignorant about this password’.

The application of (A)AUL to doxastic logic would have a similar taste as that

to epistemic logic. To give a simple example, removing a reflexive arrow in

doxastic logic would correspond to a situation where an agent’s belief are not

necessary correct any more.

More generally, in every AI-context where Kripke models are used to repre-
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sent information in a certain context, AUL and AAUL can be applied to reason

about a dynamic representation of that context, where certain transitions be-

tween certain states can be removed. If the binary relations represent agents

who can take moves, AUL enables us to reason about forbidding certain agents

to act in certain situations, wheres AAUL can represent information about what

can be achieved in principle, by restricting the moves that are available to the

agents. If the accessibility relation represents the flow of time, AAUL can formu-

late questions of what is guaranteed to hold if certain transitions will not occur.

The relation in a Kripke model could represent what the goals are of agents:

AAUL in this case would provide a formalism to reason about agents dropping

goals, which is considered to be an important aspect in agent programming

languages (see for instance the programming language GOAL [21, 1]). Like-

wise AUL and AAUL provide tools to reason about intention revision ([31]) and

hence, in principle for the dynamics of many agents’ attitudes, including Beliefs,

Desires and Intentions ([29]).

The arbitrary arrow update operator in AAUL adds implicit quantification

over arrow updates. Recently, [9] used the capacity in second order modal

logic to explicitly quantify over propositions. This makes it possible to define

arbitrary announcements within the object language: ∀p[p]ϕ. Additionally, this

also makes it possible to express properties like preservation (ϕ→ ∀p[p]ϕ) and

knowability (ϕ → ∃p〈p〉�aϕ within the object language. It would of course be

interesting to do something similar for arrow updates. If we represent an arrow

update by U , the analogue of preservation would express a stability condition

of the environment, and, likewise, knowability could be studied with respect to

arrow updates. There would also interesting generalisations outside the scope

of epistemic logic that would become expressible, like for instance in agent

normative languages: Ought(ϕ)→ ∃U〈U〉[π]ϕ (if ϕ ought to be the case, there

is a social law such that, when implemented, the agent’s program will achieve

(or maintain) it). However, as will become clear from the next sections, updates

U are not represented by a formula only, and hence quantifying over them in an

object language would require much more than embedding it in second-order
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modal logic. We leave studying such extensions of the object language for future

work.

The rest of this paper is organised as follows. We start with an informal

discussion of logics for arrow updates in Section 2. After that, in Section 3, we

define arbitrary arrow update logic as well as the logics we want to compare

AAUL to. Then, in Section 4 we prove a number of expressivity results related

to AAUL. In Section 5 we show that the model checking problem for AAUL is

PSPACE-complete. Finally, in Section 6 we provide a proof system for AAUL,

and we show that it is sound and complete.

2. The Different Meanings of Arrow Updates

Public announcements and arrow updates were originally introduced as types

of dynamic epistemic logic. As such, they were intended to be interpreted as

so-called “epistemic events,” which change the information state of one or more

agents. But there are other interpretations of these operators that seem equally

useful. We briefly discussed several of these interpretations in the Introduction.

Here, we discuss two interpretations in more detail: the epistemic interpretation

and the normative interpretation.1 interpretation.

2.1. The Epistemic Interpretation

Consider the following situation: Alice and Bob are playing a simple card

game. There are only two cards in play, the king of spades and the ace of spades.

Both players are dealt one card, face down, so neither player knows which card

they (or the other player) have been dealt. There are two possibilities: Alice has

the king, which we denote by p, or Alice has the ace, which we denote by ¬p.

Suppose that Alice has in fact been dealt the king, although neither Alice nor

Bob knows this. We are interested in the information state of the two agents,

which is usually represented as a Kripke model such as the model MEp shown

1Note that we call it the “normative interpretation” because we use the logics to reason

about norms. We do not wish to take a position in the normative vs. descriptive debate.
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w1

p

w2ab ab
ab

Figure 1: A simple epistemic model MEp .

in Figure 1. In this interpretation, arrows between worlds are used to represent

the uncertainty of agents. There is an arrow labeled a from w to w′ if and only if

in world w agent a is uncertain about the state of the world and thinks it might

be w′ instead of w. In such a case we say that w′ is epistemically accessible from

w for a. We say that a knows in w that ϕ if and only if ϕ is true in every world

w′ that is epistemically accessible for a.

Note that MEp is an accurate representation of the simple card game. The

case where Alice has the king is represented as world w1 and the case where

Alice has the ace is represented as world w2. Regardless of who has which card,

neither agent knows what card they have, so they consider both cases possible.

But the agents do posses knowledge: in w1 for instance, Alice knows that Bob

does not know that Alice holds the king, written MEp , w1 |= �a¬�bp. In our

example Alice holds the king, so w1 is the actual state of the world while w2 is

an alternative that the agents consider possible.

In this setting, a public announcement represents any event that is publicly

observed and that provides agents with more information. In particular, because

it is publicly observed, all agents receive the same information. An example of

a public announcement is a literal announcement that is made in public by a

trusted source. Claire could walk in, look at both cards and state that “Alice

has the king.” But there are also other events that, while not literally being

announcements, have the same effect. For example, Alice could turn her card,

and place it face up on the table. Note that when Alice does this, all agents

receive the same information: they learn that p is true.

In the model, the effect of a public announcement is quite simple: if ϕ is

announced then all worlds that do not satisfy ϕ are removed, as well as all

arrows that point to such worlds. In the example, if Alice turns her card face
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Figure 2: The updated model MEp ∗ p.

up the model MEp is changed to the model MEp ∗p, which is shown in Figure 2.

In this updated model only one world remains. In this world p holds, so both

agents know that p. This makes sense: Alice just turned her card face up so

obviously both agents now know that she has the king. We denote this by

MEp , w1 |= [p](�ap ∧ �bp), which can be read as “after p is announced, a and

b know that p.”

A formula ϕ holds after an arbitrary public announcement, written [!]ϕ, if

for every ψ, we have [ψ]ϕ. The dual, 〈!〉ϕ, denotes that for some ψ, it holds

that [ψ]ϕ. In our example, we have for instance that after all announcements

Bob considers it possible that Alice has the king of spades, and there is no

announcement after which Alice learns her card while Bob does not:

MEp , w1 |= [!]¬�b¬p ∧ ¬〈!〉(�ap ∧ ¬�bp) (1)

Public announcements are very useful for modeling events that are observed

by all agents. But they cannot model more complicated events. For these more

complicated events we could instead turn to the extremely powerful action mod-

els [7]. Unfortunately, the great power of action models comes with a significant

cost: the model checking problem for public announcement logic can be solved

in polynomial time [11][Lemma 29], whereas the model checking problem for a

logic with event models is PSPACE-complete [4].2 Additionally, the increased

power of action models requires a more complicated syntax, making them harder

for humans to read and understand. Arrow updates fit in between: they are

capable of modeling more events than public announcements—if not as many

2The satisfiability problem for action models is also more expensive than that of public

announcements, taking NEXPTIME as opposed to PSPACE [4].
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as action models—but their model checking problem can still be solved in poly-

nomial time, as shown in [25]. Switching from public announcements to arrow

updates does, however, still come with some cost: arrow updates are harder for

humans to read and understand than public announcements, even though they

are still easier to read than action models.

The kind of events that can be modeled by arrow updates are sometimes

referred to as semi-private announcements. Like public announcements, semi-

private announcements are events where agents learn new information. But

unlike public announcements, this new information need not become available

to all agents. However, while the new information can be private, the procedure

or protocol through which the agents gain information is publicly known. It is

this combination of private information and a public protocol that gives semi-

private announcements their name.

Returning to our card scenario, suppose that instead of turning her card face

up, Alice openly looks at her card without showing it to Bob. By doing this,

Alice learns that she holds the king. Her action cannot be modeled as a public

announcement, because the new information is not given to all agents. It can,

however, be modeled as a semi-private announcement: Alice looking at her card

can be seen as a run of the protocol “if Alice holds the king then she learns

she has the king, if Alice holds the ace she learns that she has the ace.” Bob

does not learn that Alice holds the king, but he does know that the protocol

has been executed. We can represent this semi-private announcement as the

arrow update UEp := (p, a, p), (¬p, a,¬p), (>, b,>). The triples in the arrow

update are called clauses. A clause has the form (source, agent, target), and

can be interpreted as “if source holds then agent learns that target holds.”3 Or

perhaps it might be better to say that the agent learns that the target used to

hold, as in some cases the very fact that the agent learns the truth of the target

3For technical reasons we allow multiple clauses with the same source and agent but dif-

ferent target. Such clauses can be read disjunctively. For example, (p, a,�bp), (p, a,�ap) can

be read as (p, a,�bp ∨ �ap).
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can make it false. For example, if a learns that the Moore sentence p ∧ ¬�ap

holds, then p ∧ ¬�ap becomes false.

Remark 1. There is another, more technical, difference between public an-

nouncements and arrow updates that is worth mentioning. Public announce-

ments are usually assumed to be truthful. There is no such assumption for arrow

updates. While the information contained in an arrow update can, of course,

be truthful, there is no technical restriction on arrow updates that guarantees

truthfulness. So arrow updates can be used to model events that, accidentally

or by design, convey incorrect information to an agent.

Knowledge is, traditionally, assumed to be truthful. It might therefore be

slightly more accurate to say that we are modeling the effect that events have

on the agent’s beliefs, rather than their knowledge.

Recall that in order to apply a public announcement [ϕ] in a Kripke model

we removed all worlds that did not satisfy ϕ. In order to apply an arrow

update we do something similar: an arrow (w1, w2) ∈ R(a) satisfies a clause

(ϕ1, b, ϕ2) if and only if w1 satisfies ϕ1, a = b and w2 satisfies ϕ2. When

applying an arrow update we remove all arrows that do not satisfy any of the

clauses in the update.4 Let us return to our example. If we apply the update

UEp = (p, a, p), (¬p, a,¬p), (>, b,>) to the model MEp we obtain the model

shown in Figure 3. All arrows for b are retained, because they satisfy (>, b,>).

The arrow for a from w1 to itself satisfies (p, a, p) and the arrow for a from w2

to itself satisfies (¬p, a,¬p), so both are retained. The arrows for a between

w1 and w2 satisfy none of the clauses, so they are removed. Note that in

MEp ∗ UEp Alice knows which card she holds and Bob knows that Alice knows

this, but Bob does not know which card Alice holds. This is exactly as it

should be, since Alice looked at her card openly but without showing it to Bob.

Similar to public announcements, we use MEp , w1 |= [UEp ]ψ to denote “after

4In order to emphasize the similarities between public announcements and arrow updates

we specify the arrows that are to be retained. We could, alternatively, specify the arrows that

are to be removed. The two types of specification are inter-definable.
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Figure 3: The updated model MEp ∗ UEp.

UEp has happened, ψ holds.” In our particular example, we have for instance

MEp , w1 |= [UEp ](�ap ∧ ¬�bp).

It should now be clear how the quantified construct [l]ϕ reads, namely that

ϕ holds for every arrow update U .5 We use 〈l〉 as a dual of [l], so 〈l〉ϕ holds

if and only if there is some U such that [U ]ϕ. In the epistemic interpretation,

〈l〉ϕ means “there is some semi-private announcement U that will make ϕ true.”

A typical example is 〈l〉(�ap ∧ ¬�bp), which can be read as “it is possible to

semi-privately inform a that p is true, without informing b.” Indeed, for our

example we have:

MEp , w1 |= 〈l〉�b¬p ∧ 〈l〉(�ap ∧ ¬�bp) (2)

The reader should compare (1) with (2). With public announcements and ar-

bitrary public announcements, we can only remove access to a world for all

agents at the same time, by removing the world entirely. Using arrow updates

and arbitrary arrow updates, we can more subtly just remove access between

two worlds for some agents, while leaving it intact for others. In words: us-

ing announcements in MEp , the two agents that start out knowing the same

will always know the same, while using arrow updates, it is possible to reach a

situation in which the two agents have different knowledge.

2.2. The Normative Interpretation

In the normative interpretation, we interpret arrows not as uncertainty but

as the agents’ ability to act; There is an a-arrow from w1 to w2 if and only if

in w1 there is some action agent a can take that would change the state of the

5There is a technical complication here, related to circularity. See Section 3 for details.
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Figure 4: The model MNo .

world from w1 to w2. So we have �aϕ if and only if ϕ will be true after every

(single) action by a. Let us consider an example. Alice an Bob are together

in the office, working late. Both need to use the printer, but printer time is a

limited resource: there is only enough time to print two files. At each point in

time, either Alice has control of the printer (p) or Bob has control (¬p). The

person in control of the printer can choose to print their own file, or they can

print the other agent’s file. If they print the other’s file, then by doing so they

also transfer control. If Alice has finished printing her file we represent this

by fa, and if Bob has finished printing his file we represent that by fb. This

situation can be represented by the model MNo shown in Figure 4.

In this example, like in most other situations, some of the available actions

are more desirable than others. Ideally, both agents get the opportunity to print

their files, so in w2 Alice should not keep control of the printer to herself, and in

w3 Bob should not keep control to himself. The division of actions into “good”

actions and “bad” actions can be referred to as a norm.6

6In the example, we considered a norm of fairness or perhaps morality, but we could also

have considered a norm of legality, rationality or etiquette. Even an arbitrary set of actions

can become a norm if the agents involved agree to abide by it.
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Figure 5: The updated model MNo ∗ UNo .

In the normative interpretation, arrows in a Kripke model represent ac-

tions. Arrow updates allow us to specify a subset of the arrows, which we

can interpret as those actions that are allowed. Returning to our example,

the norm that agents should not keep the printer to themselves if they have

finished printing their file can be represented by the arrow update UNo :=

(¬fa, a,>), (fa, a, fb), (¬fb, b,>), (fb, b, fa).7 If we apply UNo to MNo we get

the model shown in Figure 5. In the updated model we only consider those

actions that are not only possible but also allowed. Writing �ϕ for �aϕ∧�bϕ,

we have MNo ∗ UNo , w1 |= ��(fa ∧ fb), which is equivalent to MNo , w1 |=

[UNo]��(fa ∧ fb). The latter can be read as “if everyone obeys the norm UNo

then in two times steps fa ∧ fb is guaranteed to hold.” Readers familiar with

the literature on Normative Systems may also note that the normative inter-

pretation of arrow updates is in some ways very similar to Normative Temporal

Logic, see for example [3].

In the normative interpretation, [U ]ϕ means “if everyone obeys the norm U ,

then ϕ will hold.” As such, 〈l〉ϕ means “there is some norm/rule/protocol/law

7Note that UNo can be read as “if your file isn’t printed yet, do whatever you want. If

your file is printed, make sure the other file gets printed.”
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that, if obeyed, will guarantee the truth of ϕ.” Returning to the example

given above, 〈l〉��(fa ∧ fb) means “there is some rule that, if followed, would

guarantee that both files get printed. We saw that [UNo ]��(fa ∧ fb) holds in

MNo , w1, so 〈l〉��(fa ∧ fb) holds there as well.

Remark 2. Recall that, in the epistemic interpretation, arrow updates are not

necessarily truthful. Semantically, this means that there is no guarantee that

an arrow from a state to itself will be retained. In the normative interpretation,

this property means that a norm U does not necessarily allow agents to remain

in the same state—i.e. to do nothing. So arrow updates can be used to formalize

norms that require agents to take action.

In sum, using logics for arrow updates, one can reason about the result of

removing certain transitions from a model. This can be used to reason about

ethics, rationality or planning. One interesting line of research (that we will not

pursue further in this paper, but see [24] for some preliminary results), would

be to enhance the capability of AAUL to reason about planning by adding more

temporal operators. For example, we could use the CTL operators AG (“on ev-

ery path, at all times in the future”) and AF (“on every path, at some time in

the future”) to represent properties like liveness, fairness and safety in concur-

rent processes (see for instance [30]). Let good represent some kind of desirable

state, bad an undesirable state, eni the fact that agent i is enabled and ex i the

fact that agent i is allowed to execute. Then we can define live := AG AF good ,

fair :=
∧
i(AG AF eni → AG AF (eni ∧ ex i)) and safe := AG ¬bad . The for-

mula [U ](live ∧ fair ∧ safe) then means “the protocol U guarantees liveness,

fairness and safety.” As such, 〈l〉(live∧ fair ∧ safe) expresses that there is a way

to constrain the overall system such that the desirable properties hold.

3. Language and semantics

In this paper we compare AAUL to a number of other logics. For the sake

of brevity we only give full definitions for some of these logics. In addition to

AAUL we give definitions for arbitrary public announcement logic (APAL), the
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fragments arrow update logic (AUL) and public announcement logic (PAL) of

AAUL and APAL respectively and a basic epistemic logic (EL). For definitions

of the other logics we refer to publications that do give a complete definition.

This still leaves us with five logics to define. The most convenient way to

do this is to consider them as fragments of one larger logic. This logic is a

combination of APAL and AAUL, so we refer to it as APAUL. Let A be a

nonempty finite set of agents and P a countably infinite set of propositional

variables.

Definition 1 (Languages). The language L(A,P ) of APAUL consists of all

formulas and updates given by the following BNF:

ϕ ::= p | ¬ϕ | (ϕ ∧ ϕ) | �aϕ | [ϕ]ϕ | [U ]ϕ | [!]ϕ | [l]ϕ

U ::= (ϕ, a, ϕ) | (ϕ, a, ϕ), U

where p ∈ P and a ∈ A. We write L for L(A,P ) where this should not cause

confusion.

The language LEL of epistemic logic is the fragment of L that does not

contain the operators [ϕ], [U ], [!] and [l]. The language LPAL of public an-

nouncement logic is the fragment of L that does not contain the operators [U ],

[!] and [l]. The language LAPAL of arbitrary public announcement logic is the

fragment of L that does not contain the operators [U ] and [l]. The language

LAUL of arrow update logic is the fragment of L that does not contain the op-

erators [ϕ], [!] and [l]. The language LAAUL of arbitrary arrow update logic is

the fragment of L that does not contain the operators [ϕ] and [!].

We use ∨,→,↔,>,⊥,
∧

and
∨

in the usual way as abbreviations, and we

abuse notation slightly by identifying the list U = (ϕ1, a1, ψ1), · · · , (ϕn, an, ψn)

with the set U = {(ϕ1, a1, ψ1), · · · , (ϕn, an, ψn)}. Furthermore, we use ♦a, 〈ϕ〉,

〈U〉, 〈!〉 and 〈l〉 as abbreviations for ¬�a¬, ¬[ϕ]¬, ¬[U ]¬, ¬[!]¬ and ¬[l]¬.

Finally, if B = {a1, · · · , an} we write (ϕ,B, ψ) for (ϕ, a1, ψ), · · · , (ϕ, an, ψ).

These languages are all interpreted on Kripke models.

Definition 2. A Kripke model M is a triple (W,R, V ) where
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• W 6= ∅ is a set of worlds,

• R : A→ ℘(W ×W ) assigns an accessibility relation to each a ∈ A and

• V : P → ℘(W ) is a valuation.

A Kripke model M = (W,R, V ) is an S5 model if R(a) is an equivalence relation

for all a ∈ A.

We can now define the semantics of APAUL. The other logics simply inherit

their semantics from APAUL.

Definition 3. Let M = (W,R, V ) be a Kripke model and let w ∈ W . The

satisfaction relation |= is given inductively as follows.

M,w |= p iff w ∈ V (p)

M,w |= ¬ϕ iff M,w 6|= ϕ

M,w |= (ϕ ∧ ψ) iff M,w |= ϕ and M,w |= ψ

M,w |= �aϕ iff M, v |= ϕ for each v such that (w, v) ∈ R(a)

M,w, |= [ψ]ϕ iff M,w 6|= ψ or (M ∗ ψ), w |= ϕ

M,w |= [U ]ϕ iff (M ∗ U), w |= ϕ

M,w |= [!]ϕ iff M,w |= [ψ]ϕ for each ψ ∈ LPAL
M,w |= [l]ϕ iff M,w |= [U ]ϕ for each U ∈ LAUL

where (M ∗ ψ) and (M ∗ U) are given by:

M ∗ ψ = (Wψ, Rψ, V ψ)

Wψ = {w ∈W |M,w |= ψ}

Rψ(a) = R(a) ∩ (Wψ ×Wψ)

V ψ(p) = V (p) ∩Wψ

M ∗ U = (W,RU , V )

RU (a) = {(v, v′) ∈ R(a) | ∃(ϕ, a, ϕ′) ∈ U :

(M,v |= ϕ and M,v′ |= ϕ′)}

A formula ϕ is true on M, denoted M |= ϕ, if M,w |= ϕ for all w ∈ W . A

formula ϕ is valid, denoted |= ϕ, if M |= ϕ for every Kripke model M . A

formula ϕ is valid on S5, denoted |=S5 ϕ, if M |= ϕ for every S5 model M .
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Remark 3. Note that the arbitrary public announcement operator [!] quantifies

only over ψ ∈ LPAL. So the formulas that [!] quantifies over do not themselves

contain [!] (or [l], for that matter). Likewise, [l] only quantifies over arrow

updates U that do not contain [l] and [!]. Restricting [!] and [l] in this way is

necessary in order to avoid circularity.

The price we pay for solving the circularity problem this way is that [!] and

[l] do not quite have the informal meaning we would like to associate with them.

We would like [!]ϕ to mean “for every announcement [ψ], we have [ψ]ϕ.” And

when we say every announcement, that includes those announcements [ψ] where

ψ contains [!]. But, as shown in [24], there are ϕ and ([!]-containing) ψ such

that 6|= [!]ϕ → [ψ]ϕ. So [!] does not quite have the desired informal meaning.

A similar proof for [l] does not yet exist, but we believe that the U and ϕ

containing [l] can be constructed such that 6|= [l]ϕ→ [U ]ϕ.

Remark 4. Unlike public announcements, arrow updates do not preserve S5:

updating an S5 model M with an arrow update U may result in a non-S5 model

M ∗ U .8 We can, of course, evaluate AAUL on S5 models. We just have to

keep in mind that it is possible that, during the evaluation of a formula, we may

move from an S5 model to a non-S5 model. As a result, necessitation fails for

[U ] on S5. For example, we have |=S5 �aϕ→ ϕ but 6|=S5 [U ](�aϕ→ ϕ).

Necessitation for [U ] does still hold on the class of all Kripke models: if |= ψ

then |= [U ]ψ. It therefore seems fair to say that the class of all Kripke models

is the “natural habitat” of arrow updates.

The main reason why arrow updates do not preserve S5 is that, as discussed

above, they are not guaranteed to be truthful.

Now that we have defined the semantics of AAUL, let us consider a few

equivalences that will be useful later.

Lemma 1. For every pointed model M,w, every p ∈ P , every a ∈ A and every

8The same holds for other commonly used subclasses of the class of all Kripke models, such

as S4 and KD45.
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ϕ,ψ, U, U ′ ∈ LAAUL we have

M,w |= [U ]p ⇔ M,w |= p

M,w |= [U ]¬ϕ ⇔ M,w |= ¬[U ]ϕ

M,w |= [U ](ϕ ∧ ψ) ⇔ M,w |= [U ]ϕ ∧ [U ]ψ

M,w |= [U ]�aϕ ⇔ M,w |=
∧

(ψ,a,χ)∈U (ψ → �a(χ→ [U ]ϕ))

M,w |= [U ][U ′]ϕ ⇔ M,w |= [U × U ′]ϕ

where U × U ′ = {(ψ1 ∧ [U ]ψ2, a, χ1 ∧ [U ]χ2) | (ψ1, a, χ1) ∈ U, (ψ2, a, χ2) ∈ U ′}.

Proof. The first three statements are easy to prove. Arrow updates do not

change the valuation of a model, so M,w |= [U ]p if and only if M,w |= p.

Arrow updates commute with negation because M,w |= [U ]¬ϕ⇔ (M ∗U), w |=

¬ϕ ⇔ (M ∗ U), w 6|= ϕ ⇔ M,w 6|= [U ]ϕ ⇔ M,w |= ¬[U ]ϕ. Arrow updates

distribute over conjunctions because M,w |= [U ](ϕ∧ψ)⇔ (M∗U), w |= ϕ∧ψ ⇔

(M ∗ U), w |= ϕ and M,w |= ψ ⇔ M,w |= [U ]ϕ and M,w |= [U ]ψ ⇔ M,w |=

[U ]ϕ ∧ [U ]ψ.

The last two statements require slightly more work to prove. We have

M,w |= [U ]�aϕ⇔ (M ∗U), w |= �aϕ⇔ (M ∗U), w′ |= ϕ for all w′ that are a-

accessible from w′ inM∗U . Note that we have (M∗U), w′ |= ϕ⇔M,w′ |= [U ]ϕ.

So M,w |= [U ]�aϕ ⇔ M,w′ |= [U ]ϕ for all w′ that are a-accessible from w in

M ∗ U . The trick is now to determine which worlds w′ are a-accessible from

w in M ∗ U , so for which w′ we must have M,w′ |= [U ]ϕ in order to have

M,w |= [U ]�aϕ.

Consider any clause (ψ, a, χ) ∈ U . If M,w |= ψ then every a-successor w′ of

w that satisfies χ is an a-successor of w in M ∗ U . The formula [U ]ϕ holds in

all these worlds if and only if M,w |= ψ → �a(χ → [U ]ϕ). We then only have

to repeat this for every (ψ, a, χ) ∈ U : we have M,w |= [U ]�aϕ if and only if

M,w |=
∧

(ψ,a,χ)∈U (ψ → �a(χ→ [U ]ϕ)).

Finally, in order to determine when we have M,w |= [U ][U ′]ϕ we must

determine which arrows are retained if we apply [U ] and [U ′] after each other.

An arrow is retained by the first update [U ] if and only if it satisfies some

clause (ψ1, a, χ1) ∈ U . In order for this arrow to be retained by U ′ as well,
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it must additionally satisfy some clause (ψ2, a, χ2). But it must satisfy this

(ψ2, a, χ2) not in M but in M ∗ U . Such an arrow must therefore start in a

ψ1∧[U ]ψ2 world, and go to a χ1∧[U ]χ2 world. In that case it satisfies the clause

(ψ1∧[U ]ψ2, a, χ1∧[U ]χ2). We have such a combined clause for every (ψ1, a, χ1) ∈

U and every (ψ2, a, χ2) ∈ U ′, so M,w |= [U ][U ′]ϕ ⇔ M,w |= [U × U ′]ϕ where

U × U ′ = {(ψ1 ∧ [U ]ψ2, a, χ1 ∧ [U ]χ2) | (ψ1, a, χ1) ∈ U, (ψ2, a, χ2) ∈ U ′}.

In later sections we will also use the notions of bisimulation and bisimulation

contraction. The following definitions are as usual.

Definition 4. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be models and

let B be a relation on W1 ×W2. The relation B is a bisimulation on M1 and

M2 if for all (w1, w2) ∈ B, we have

• for every p ∈ P , w1 ∈ V1(p)⇔ w2 ∈ V2(p),

• for every a ∈ A and every w′1 ∈ W1 such that (w1, w
′
1) ∈ R1, there is a

w′2 ∈W2 such that (w2, w
′
2) ∈ R2 and (w′1, w

′
2) ∈ B and

• for every a ∈ A and every w′2 ∈ W2 such that (w2, w
′
2) ∈ R2, there is a

w′1 ∈W1 such that (w1, w
′
1) ∈ R2 and (w′1, w

′
2) ∈ B.

Two states w1 ∈ W1 and w2 ∈ W2 are bisimilar, denoted w1 ∼M1,M2 w2, if

there is a bisimulation B on M1 and M2 such that (w1, w2) ∈ B.

We omit mentioning the models where this should not cause confusion, and

write w1 ∼ w2 if the states are bisimilar. The following is a standard result, see

any textbook or handbook on modal logic for details.

Lemma 2. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be models. The

relation ∼⊆W1×W2 is an equivalence relation, and it is a bisimulation on M1

and M2. Furthermore, ∼ is the largest bisimulation on M1 and M2.

Definition 5. Let M = (W,R, V ) be a model. The bisimulation contraction of

M is the model MBC = (WBC , RBC , VBC) given by

• WBC := {[w] | w ∈W}, where [w] := {w′ ∈W | w ∼ w′},
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• for every a ∈ A, RBC(a) = {([w], [w′]) | (w,w′) ∈ R(a)} and

• for every p ∈ P , VBC(p) = {[w] | w ∈ V (p)}.

It as another standard result that, for every w ∈W , we have M,w ∼M,MBC

MBC , [w]. Furthermore, using the Paige-Tarjan algorithm9 [27], we can compute

MBC in polynomial time and linear space.

The relevance of bisimulation is that well-behaved modal logics tend to be

invariant under bisimulation, i.e. if w1 ∼ w2 then any formula φ that holds in

one of the states also hold in the other. AAUL is no exception.

Lemma 3. For every φ ∈ LAAUL and every M1, w1 and M2, w2 such that

w1 ∼ w2, we have M1, w1 |= φ if and only if M2, w2 |= φ.

Proof. We first show that AUL is invariant under bisimulation. The proof is

by induction on the construction of φ. The first clause of the definition of

bisimilarity guarantees that w1 and w2 satisfy the same propositional variables.

So if φ is atomic, we have M1, w1 |= φ ⇔ M2, w2 |= φ. Suppose then as

induction hypothesis that φ is not atomic and that the lemma holds for all

strict subformulas of φ.

We continue by case distinction on the main connective of φ. Most of the

cases are as usual, so we do not discuss them in detail. The one relatively

interesting case is φ = [U ]φ′.

We first show that ∼M1,M2
is also a bisimulation relation on M1 ∗ U and

M2 ∗ U . Take any w1 ∈ W1 and w2 ∈ W2 such that w1 ∼M1,M2
w2. The

valuations of M1∗U and M2∗U are identical to that of M1 and M2, respectively,

so w1 and w2 agree on propositional variables. Furthermore, take any a ∈ A and

any w′1 such that (w1, w
′
1) ∈ RU1 (a). Then, in particular, (w1, w

′
1) ∈ R1(a). Since

∼M1,M2
is a bisimulation, there is a (w2, w

′
2) ∈ R1(a) such that w′1 ∼M1,M2

w′2.

The arrow from w1 to w′1 is retained by the update U , so there is some

clause (ψ, a, ψ′) ∈ U such that M1, w1 |= ψ and M1, w
′
1 |= ψ′. By the induction

9Technically, the algorithm described in [27] applies to single agent models only, but ex-

tending it to the multi-agent context is trivial.
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hypothesis, and the facts that w1 ∼M1,M2 w2 and w′1 ∼M1,M2 w′2, it follows

that M2, w2 |= ψ and M2, w
′
2 |= ψ′. So the arrow from w2 to w′2 matches

the clause (ψ, a, ψ′) is retained by U . It follows that (w2, w
′
2) ∈ RU2 (a) and

(w′1, w
′
2) ∈∼M1,M2

.

By similar reasoning, for every w′2 such that (w2, w
′
2) ∈ R2 ∗ U(a) there is

some w′1 such that (w1, w
′
1) ∈ R1 ∗ U(a) and w′1 ∼M1,M2

w′2. So ∼M1,M2
is a

bisimulation not only on M1 and M2, but also on M1 ∗ U and M2 ∗ U . By the

induction hypothesis it follows thatM1∗U,w1 |= φ′ if and only ifM2∗U,w2 |= φ′,

and therefore M1, w1 |= [U ]φ′ if and only if M2, w2 |= [U ]φ′, which was to be

shown.

Now that we have shown that AUL is invariant under bisimulation, we can

show that AAUL is also invariant under bisimulation. The proof is again by

induction and by case distinction on the main connective. The only new case is

φ = [l]φ′, so we omit the other cases.

Let w1 ∼ w2. For every U ∈ LAUL, we have M1, w1 |= [U ]φ′ if and only

if M2, w2 |= [U ]φ′. It follows immediately that M1, w1 |= [l]φ′ if and only if

M2, w2 |= [l]φ′.

So bisimilar states are indistinguishable. In general it is not the case that

every two non-bisimilar states are distinguishable, but for finite models it is the

case.

Lemma 4. Let M1 = (W1, R1, V1) and M2 = (W2, R2, V2) be finite models. For

any w1 ∈ W1 and w2 ∈ W2 such that w1 6∼ w2, there is a φ ∈ LAUL such that

M1, w1 |= φ and M2, w2 6|= φ.

It is a standard result that the above lemma holds for basic modal logic

(which we referred to as EL here). Since LEL ⊆ LAUL it follows immediately

that the lemma holds for AUL as well.

4. Expressivity

In this section we investigate the expressive power of the newly defined

arbitrary arrow update logic relative to arbitrary public announcement logic

21



and a number of other well-known logics in (dynamic) epistemic logic.

Definition 6 (Expressivity). Let two logical languages L1 and L2 and a class

of structures C be given. If for every formula ϕ ∈ L1 there is a ψ ∈ L2 such

that ϕ and ψ are equivalent on C, we say that L2 is at least as expressive as

L1 on C, notation: L1 �C L2 (and L1 6�C L2 if this is not the case). If the

converse also holds, L1 and L2 are equally expressive on C, notation L1 ≡C L2.

If the converse does not hold, L2 is strictly more expressive than L1, notation

L1 ≺C L2. When both L1 6�C L2 and L2 6�C L1 then L1 and L2 are expressively

incomparable on C, notation: L1 ‖C L2. We omit the subscript C if C is the

class of all Kripke models.

4.1. APAL and AAUL are incomparable in expressivity

In this subsection we prove that LAPAL ‖ LAAUL. This proof will be sig-

nificantly easier to understand if we first describe the general structure of the

proof, without considering most of the technical details.

Let Upd! and let Updl be the set of updates quantified over by 〈!〉 and

〈l〉 respectively.10 Now take any ψ ∈ Upd!. PAL and AUL are both equally

expressive as EL [7, 22], so in particular PAL and AUL are equally expressive

as each other. As such, there is a formula ψ′ ∈ LAUL that is equivalent to ψ.

Let Uψ := (>, A, ψ′), and note that Uψ ∈ Updl. The public announcement

〈ψ〉 removes all worlds that do not satisfy ψ. The arrow update 〈Uψ〉 does not

remove any worlds, but does eliminate all arrows to worlds that do not satisfy

ψ′ (which is equivalent to ψ). Inaccessible worlds might as well not exist, so

removing all arrows to a world has essentially the same effect as removing the

world entirely: whenever (M ∗ ψ), w exists11, it is bisimilar to (M ∗ Uψ), w.

On the other hand, for some U ∈ Updl and M,w there is no ψ ∈ Upd! that

makes (M ∗U), w and (M ∗ψ), w bisimilar.12 If we abuse notation by identifying

10So Upd! = LPAL and Updl = {U ∈ LAUL | U is an arrow update}.
11If M,w 6|= ψ then w is removed by 〈ψ〉, so (M ∗ ψ), w doesn’t exist.
12This follows from the fact that public announcements preserve S5, but arrow updates do

not necessarily do so.
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ψ with Uψ, we therefore have Upd! ⊂ Updl. In other words, 〈l〉 quantifies over

a strictly larger set than 〈!〉. Crucially, this quantification is “all or nothing”;

in AAUL we can quantify over Updl, by using 〈l〉, but not over the smaller

set Upd!. For suitably chosen ϕ we would expect to find three kinds of pointed

models:

1. models M1, w such that M1, w 6|= 〈X〉ϕ for all X ∈ Updl,

2. models M2, w such that M2, w 6|= 〈X〉ϕ for all X ∈ Upd! but M2, w |=

〈X〉ϕ for some X ∈ Updl,

3. models M3, w such that M3, w |= 〈X〉ϕ for some X ∈ Upd!.

The AAUL formula 〈l〉ϕ distinguishes between M1, w and M2, w, but not be-

tweenM2, w andM3, w. The APAL formula 〈!〉ϕ on the other hand distinguishes

between M2, w and M3, w, but not between M1, w and M2, w. At this point

we cannot guarantee that there is no ψ1 ∈ LAAUL that distinguishes between

M2, w and M3, w, or that there is no ψ2 ∈ LAPAL that distinguishes between

M1, w and M2, w. But, because AAUL cannot quantify over Upd! and APAL

cannot quantify over Updl, there is no reason to assume that such ψ1 and/or

ψ2 exist. As such, we would expect there to be no APAL formula equivalent to

〈l〉ϕ (which implies that LAAUL 6� LAPAL) and no AAUL formula equivalent

to 〈!〉ϕ (which implies that LAPAL 6� LAAUL).

The method we use to show that LAPAL ‖ LAAUL is inspired by the consid-

erations described above, but with one difference. Instead of three models M1,

M2 and M3, we use three sets {Mx
1 | x ∈ P \ {p}}, {Mx

2 | x ∈ P \ {p}} and

{Mx
3 | x ∈ P \ {p}}.

Definition 7. For x ∈ P \ {p} the model Mx
1 = (W1, R1, V

x
1 ) is given by

• W1 = {w1, w2},

• R1(a) = {(w1, w2)} ∪ {(w1, w1)},

• R1(b) = ∅ for all b 6= a,

• V x1 (p) = {w1},
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• V x1 (q) = ∅ for all q 6= p.

The model Mx
1 is shown in Figure 6. We use w3 as an alias for w1 and w4 as

an alias for w2 in Mx
1 , so Mx

1 , w3 = Mx
1 , w1 and Mx

1 , w4 = Mx
1 , w2.

Definition 8. For x ∈ P \ {p}, the model Mx
2 = (W2, R2, V

x
2 ) is given by

• W2 = {w1, w2, w3},

• R1(a) = {(w1, w2), (w3, w2), (w1, w3), (w3, w1)} ∪ {(w1, w1), (w3, w3)},

• R1(b) = ∅ for all b 6= a,

• V x2 (p) = {w1, w3},

• V x2 (x) = {w3},

• V x2 (q) = ∅ for all q 6∈ {p, x}.

The model Mx
2 is shown in Figure 7. We use w4 as an alias for w2 in Mx

2 , so

Mx
2 , w4 = Mx

2 , w2.

Definition 9. For x ∈ P \ {p}, the model Mx
3 = (W3, R3, V

x
3 ) is given by

• W3 = {w1, w2, w3, w4},

• R1(a) = {(w1, w2), (w3, w4), (w1, w3), (w3, w1)} ∪ {(w1, w1), (w3, w3)},

• R1(b) = ∅ for all b 6= a,

• V x3 (p) = {w1, w3},

• V x3 (x) = {w3, w4},

• V x3 (q) = ∅ for all q 6∈ {p, x}.

The model Mx
3 is shown in Figure 8

The reason for using w3 as an alias for w1 and w4 as an alias for w2 is that

it allows us to succinctly point out the similarities between the models; there
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is an arrow from wi to wj (i, j ∈ {1, 2, 3, 4}) in one of the models if and only if

there is such an arrow in the other models.

Let φ1 := �ap ∧ ♦a¬�ap. We first show that Mx
1 , w1 6|= 〈l〉φ1, Mx

2 , w1 |=

〈l〉φ1, Mx
2 , w1 6|= 〈!〉φ1 and Mx

3 , w1 |= 〈!〉φ1 for all x ∈ P \ {p}. After that,

we show that there is no APAL formula that distinguishes between Mx
1 , w1 and

Mx
2 , w1 for all x ∈ P \{p}, and that there is no AAUL formula that distinguishes

between Mx
2 , w1 and Mx

3 , w1 for all x ∈ P \{p}. This suffices to show that there

is no APAL formula equivalent to 〈l〉φ1 and no AAUL formula equivalent to

〈!〉φ1, which implies that LAPAL ‖ LAAUL.

Lemma 5. For every x ∈ P \ {p} we have Mx
1 , w1 6|= 〈l〉φ1, Mx

2 , w1 |= 〈l〉φ1,

Mx
2 , w1 6|= 〈!〉φ1 and Mx

3 , w1 |= 〈!〉φ1.

Proof. Recall that φ1 = �ap ∧ ♦a¬�ap. Let Ux := (p, a, p), (x ∨ ¬p, a,>) and

ψx := p ∨ x. Then Mx
2 ∗ Ux and Mx

3 ∗ ψx are as shown in Figure 9. We have

(Mx
2 ∗ Ux), w1 |= φ1 and (Mx

3 ∗ ψx), w1 |= φ1, which implies that Mx
2 , w1 |=

〈Ux〉φ1 and Mx
3 , w1 |= 〈ψx〉φ1. Because Ux ∈ LAUL and ψx ∈ LPAL this, in

turn, implies that Mx
2 , w1 |= 〈l〉φ1 and Mx

3 , w1 |= 〈!〉φ1.

Left to show is that Mx
1 , w1 6|= 〈l〉φ1 and Mx

2 , w1 6|= 〈!〉φ1. In order for any

pointed model to satisfy φ1 there must be at least two p-worlds in the model:

one that satisfies �ap and one that satisfies ¬�ap. The model Mx
1 has only one

p-world and arrow updates cannot add worlds. So for every arrow update U we

have Mx
1 , w1 6|= 〈U〉φ1. This implies that Mx

1 , w1 6|= 〈l〉φ1.

Now suppose towards a contradiction that there is some ψ ∈ LPAL such

that Mx
2 , w1 |= 〈ψ〉φ1. In order for φ1 to hold in (Mx

2 ∗ ψ), w1 there must be

at least two p-worlds in Mx
2 ∗ ψ. This means that both w1 and w3 must be

retained by the update 〈ψ〉. Furthermore, w3 must satisfy ¬�ap so w2 must

also be retained. But then (Mx
2 ∗ ψ), w1 6|= �ap, contradicting the assumption

that Mx
2 , w1 |= 〈ψ〉φ1. We therefore have Mx

2 , w1 6|= 〈ψ〉φ1 for every ψ ∈ LPAL,

which implies that Mx
2 , w1 6|= 〈!〉φ1.

It remains to be shown that APAL cannot distinguish between Mx
1 , w1 and

Mx
2 , w1, and that AAUL cannot distinguish between Mx

2 , w1 and Mx
3 , w1. The
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Figure 9: The updated models Mx
2 ∗ Ux and Mx

3 ∗ ψx.

proofs of these claims are by induction, but there is one complication: due to

the update modalities our induction hypothesis has to apply not only to Mi

and Mj , but also to certain submodels of Mi and Mj . We call these submodels

APAL-equivalent and AAUL-equivalent.

Definition 10. Let Nx
1 = (WN1 , RN1 , VN1) and Nx

2 = (WN2 , RN2 , VN2) be

submodels of Mx
1 and Mx

2 respectively. We say that Nx
1 and Nx

2 are APAL-

equivalent if

• Nx
1 and Nx

2 can be obtained from Mx
1 and Mx

2 respectively by a finite

sequence of public announcements,

• for every i ∈ {1, 2, 3} we have wi ∈WN1
if and only if wi ∈WN2

.

Note that public announcements only remove arrows that go to or from a

world that is removed. As a result, two APAL-equivalent models Nx
1 and Nx

2

also have the property that (wi, wj) ∈ RN1
if and only if (wi, wj) ∈ RN2

(for all

i, j ∈ {1, 2, 3}).

Lemma 6. Let Nx
1 = (WN1

, RN1
, VN1

) and Nx
2 = (WN2

, RN2
, VN2

) be submod-

els of Mx
1 and Mx

2 respectively that are APAL-equivalent, let ϕ ∈ LAPAL and

suppose x ∈ P \ {p} is a propositional variable that does not occur in ϕ. Then

for every i ∈ {1, 2, 3}, if wi ∈ WN1
then ϕ does not distinguish between Nx

1 , wi

and Nx
2 , wi.
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Proof. Fix any i ∈ {1, 2, 3} such that wi ∈WN1 (and therefore also wi ∈WN2).

We show by induction that ϕ does not distinguish between Nx
1 , wi and Nx

2 , wi.

As base case, suppose that ϕ ∈ P . The pointed models Nx
1 , wi and Mx

2 , wi

agree on all propositional variables other than x. By assumption ϕ does not

contain x, so it does not distinguish between those worlds.

As induction hypothesis, assume that ϕ 6∈ P and that the lemma holds for

all subformulas of ϕ. If a Boolean combination distinguishes between two worlds

then so does at least one of the combined formulas, so we can assume without

loss of generality that the main connective of ϕ is not Boolean. Furthermore,

there are only arrows for agent a so we can assume without loss of generality

that every �b operator has a = b. This means that ϕ is of the form �aϕ′, [ϕ′]ϕ′′

or [!]ϕ′ for some ϕ′, ϕ′′ ∈ LAPAL.

• Suppose ϕ = �aϕ′. The models Nx
1 , wi and Nx

2 , wi are APAL-equivalent,

so a world wj is accessible from wi in Nx
1 if and only if it is accessible in

Nx
2 . In order for ϕ to distinguish between Nx

1 , wi and Nx
2 , wi it is therefore

necessary that ϕ′ distinguishes between Nx
2 , wj and Nx

3 , wj for some wj .

That would contradict the induction hypothesis, so ϕ does not distinguish

between Nx
1 , wi and Nx

2 , wi.

• Suppose ϕ = [ϕ′]ϕ′′. We claim that Nx
1 ∗ ϕ′ and Nx

2 ∗ ϕ′ are APAL-

equivalent. Suppose towards a contradiction that they are not APAL-

equivalent. Then there is some world wj from Nx
1 and Nx

2 that is retained

in Nx
1 ∗ ϕ′ but not in Nx

2 ∗ ϕ′, or retained in Nx
2 ∗ ϕ′ but not in Nx

1 ∗ ϕ′.

That means ϕ′ must distinguish between Nx
1 , wj and Nx

2 , wj , contradicting

the induction hypothesis. We have arrived at a contradiction, so our

assumption that Nx
1 ∗ ϕ′ and Nx

2 ∗ ϕ′ are not APAL-equivalent must be

wrong.

It then follows from the induction hypothesis that ϕ′′ does not distin-

guish between Nx
1 ∗ ϕ′, wi and Nx

2 ∗ ϕ′, wi, which implies that ϕ does not

distinguish between Nx
1 , wi and Nx

2 , wi.
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• Suppose ϕ = [!]ϕ′. Every world in Nx
1 is uniquely identified by whether

it satisfies p. Every world in Nx
2 is uniquely identified by whether it

satisfies p and x: w1 satisfies p∧¬x, w2 satisfies ¬p∧¬x and w3 satisfies

p∧x. This means that for every formula ψ ∈ LPAL there is some formula

ψ′ ∈ LPAL such that, for every j ∈ {1, 2, 3}, we have Nx
1 , wj |= ψ if and

only if Nx
2 , wj |= ψ′. Likewise, for every formula ψ′ ∈ LPAL there is some

ψ ∈ LPAL such that, for every j ∈ {1, 2, 3}, Nx
1 , wj |= ψ if and only if

Nx
2 , wj |= ψ′.

In either case, Nx
1 ∗ψ and Nx

2 ∗ψ′ are APAL-equivalent. By the induction

hypothesis this implies that ϕ′ cannot distinguish between Nx
1 ∗ψ,wi and

Nx
2 ∗ψ′, wi. As a result, there is a formula ψ ∈ LPAL such that Nx

1 , wi 6|=

[ψ]ϕ′ if and only if there is a formula ψ′ ∈ LPAL such that Nx
2 , wi 6|= [ψ′]ϕ′.

In other words, Nx
1 , wi 6|= [!]ϕ′ if and only if Nx

2 , wi 6|= [!]ϕ′.

In each of the three possible cases ϕ does not distinguish between Nx
1 , wi and

Nx
2 , wi, completing the induction step and thereby the proof.

The proof that AAUL cannot distinguish between Nx
2 , w1 and Nx

3 , w1 is very

similar to the preceding proof, so we omit some of the details.

Definition 11. Let Nx
2 = (WN2 , RN2 , VN2) and Nx

3 = (WN3 , RN3 , VN3) be

submodels of Mx
2 and Mx

3 respectively. We say that Nx
2 and Nx

3 are AAUL-

equivalent if

• Nx
2 and Nx

3 can be obtained from Mx
2 and Mx

3 respectively by a finite

sequence of arrow updates,

• for every i, j ∈ {1, 2, 3, 4} we have (wi, wj) ∈ RN2
if and only if (wi, wj) ∈

RN3 .

Lemma 7. Let Nx
2 = (WN2

, RN2
, VN2

) and Nx
3 = (WN2

, RN2
, VN2

) be submod-

els of Mx
2 and Mx

3 respectively that are AAUL-equivalent, let ϕ ∈ LAAUL and

suppose x ∈ P \ {p} is a propositional variable that does not occur in ϕ. Then

for every i ∈ {1, 2, 3, 4}, ϕ does not distinguish between Nx
2 , wi and Nx

3 , wi.
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Proof. Fix any i ∈ {1, 2, 3, 4}. We show by induction that ϕ does not distinguish

between Nx
2 , wi and Nx

3 , wi. As base case, suppose that ϕ ∈ P . The models

agree on all propositional variables other than x, so ϕ does not distinguish

between them.

As induction hypothesis, assume that ϕ 6∈ P and that the lemma holds for

all subformulas of ϕ. We can assume without loss of generality that ϕ is of the

form �aϕ′, [U ]ϕ′ or [l]ϕ′ for some U ∈ LAAUL and ϕ′ ∈ LAAUL.

• Suppose ϕ = �aϕ′. The models Nx
2 and Nx

3 are AAUL-equivalent so a

world wj is accessible from wi in one of the models if and only if it is

accessible in the other model. By the induction hypothesis ϕ′ does not

distinguish between Nx
2 , wj and Nx

3 , wj , so ϕ does not distinguish between

Nx
2 , wi and Nx

3 , wi.

• Suppose ϕ = [U ]ϕ′. We claim that Nx
2 ∗ U and Nx

3 ∗ U are AAUL-

equivalent. In order for any arrow (wj , wk) to be retained in one of the

models but not the other, there would have to be a clause (ψ, a, ψ′) ∈ U

such that ψ distinguishes between Nx
2 , wj and Nx

3 , wj or ψ′ distinguishes

between Nx
2 , wk and Nx

3 , wk. This would contradict the induction hypoth-

esis, so the models are AAUL-equivalent.

It then follows from the induction hypothesis that ϕ′ does not distinguish

between Nx
2 ∗ U,wi and Nx

3 ∗ U,wi, which implies that ϕ does not distin-

guish between Nx
2 , wi and Nx

3 , wi.

• Suppose ϕ = [l]ϕ′. Every world in Nx
2 can be uniquely identified by a

combination of p and x, as can every world in Nx
3 . This implies that for

every U ∈ LAUL there is some U ′ ∈ LAUL such that Nx
2 ∗U and Nx

3 ∗U ′ are

AAUL-equivalent, and that for every U ′ ∈ LAUL there is some U ∈ LAUL
such that Nx

2 ∗ U and Nx
3 ∗ U ′ are AAUL-equivalent.

By the induction hypotheses ϕ′ cannot distinguish between Nx
2 ∗U,wi and

Nx
3 ∗U ′, wi if Nx

2 ∗U and Nx
3 ∗U ′ are AAUL-equivalent. This means that

Nx
2 , wi 6|= [l]ϕ′ if and only if Nx

3 , wi 6|= [l]ϕ′.
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For each of the possible forms of ϕ we have shown that it does not distinguish

between Nx
2 , wi and Nx

3 , wi. This completes the induction step and thereby the

proof.

Using the three lemmas we can easily show that APAL and AAUL are in-

comparable in expressivity.

Theorem 1. LAPAL ‖ LAAUL.

Proof. Recall that φ1 = �ap ∧ ♦a¬�ap. Suppose towards a contradiction that

there is some ψ ∈ LAPAL that is equivalent to 〈l〉φ1. This ψ contains a finite

number of propositional variables and P is infinite, so take an x ∈ P \ {p} that

does not occur in ψ.

By Lemma 5 we know that 〈l〉φ1 distinguishes between Mx
1 , w1 and Mx

2 , w1.

By Lemma 6 we know that ψ does not distinguish between Mx
1 , w1 and Mx

2 , w1.

This contradicts the assumption that ψ is equivalent to 〈l〉φ1. It follows that

there is no ψ ∈ LAPAL that is equivalent to 〈l〉φ1 and therefore that LAAUL 6�

LAPAL.

Now suppose towards a contradiction that there is some ψ ∈ LAAUL that

is equivalent to 〈!〉φ1. Again, take an x ∈ P \ {p} that does not occur in ψ.

By Lemma 5 we know that 〈!〉φ1 distinguishes between Mx
2 , w1 and Mx

3 , w1 and

by Lemma 7 we know that ψ does not. This contradicts our assumption, so

there is no ψ ∈ LAAUL that is equivalent to 〈!〉φ1. We therefore have LAPAL 6�

LAAUL, which together with the previous conclusion LAAUL 6� LAPAL shows

that LAPAL ‖ LAAUL.

Because LEL ⊂ LAPAL and LEL ⊂ LAAUL we also get the following, rather

unsurprising, corollary.

Corollary 1. LEL ≺ LAPAL and LEL ≺ LAAUL.

4.2. Expressivity on smaller classes of models

Above we chose a finite set A of agents and a countably infinite set P of

propositional variables. Furthermore, we allowed all Kripke models. We con-

sider these choices to be reasonable: if we model a real-life situation we expect
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w1

x

Figure 10: The one-world, one agent S5 model Mx
4 .

the number of agents (represented by A) that are involved to be finite13, whereas

the number of potential facts (represented by P ) might be infinite. Furthermore,

the class of all Kripke models seems to be the “natural habitat” or arrow up-

dates, since most of the smaller classes (such as S4, KD45 and S5) are not

preserved under arrow updates.

Still, it is interesting to know the relative expressivity of APAL and AAUL

if we use smaller A and P , or a smaller class of models. There are a lot of

different combinations of A, P and a class of models. So we cannot feasibly give

expressivity results for every one of them. Instead we only present a few salient

results. Furthermore, for reasons of brevity, we only sketch most of the proofs.

First, let us consider the case where A = {a} is a singleton, P is infinite and

we use the class of S5 models.

Definition 12. Let x ∈ P . Consider the one-world one-agent model Mx
4 =

(W4, R4, V
x
4 ) given by

• W4 = {w1},

• R4(a) = W4 ×W4,

• V x4 (x) = {w1},

• V x4 (p) = ∅ for p 6= x.

The model Mx
4 is shown in Figure 10.

Definition 13. Let x ∈ P . Consider the two-world one-agent model Mx
5 =

(W5, R5, V
x
5 ), given

13Note that the proofs given so far do not depend on A being finite. So we could safely

allow an infinite set of agents.
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x
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Figure 11: The two-world, one agent S5 model Mx
5 .

• W5 = {w1, w2},

• R5(a) = W5 ×W5,

• V x5 (x) = {w1},

• V x5 (p) = ∅ for p 6= x.

The model Mx
5 is shown in Figure 11

Theorem 2. If A = {a} and P is countable infinite, then LEL(A,P ) ≺S5

LAAUL(A,P ).

Sketch of proof. No formula in the language of EL distinguishes Mx
4 , w from

Mx
5 , w for all x ∈ P , since any epistemic formula only involves finitely many

propositional variables.

If we execute the arrow update (x, a,¬x) in Mx
5 , the result is a model where

the only remaining arrow is from w1 to w2. A picture of the updated model is

given in Figure 12. The AAUL formula 〈l〉♦a�a⊥ therefore holds in Mx
5 , w1.

It clearly does not hold in Mx
4 , w, so 〈l〉♦a�a⊥ can distinguish between Mx

4 , w

and Mx
5 , w for all x ∈ P .

This implies that there is no single EL formula that is equivalent to the

AAUL formula 〈l〉♦a�a⊥, so LAAUL(A,P ) 6� LEL(A,P ). We trivially have

LEL(A,P ) � LAAUL(A,P ), so it follows that LEL(A,P ) ≺S5 LAAUL(A,P ).

Corollary 2. If A = {a} and P is countably infinite, then LAPAL(A,P ) ≺S5

LAAUL(A,P ).

Proof. In [5, Proposition 3.12], it is proven that single-agent arbitrary announce-

ment logic is equally expressive as epistemic logic over S5, irrespective of the

size of P . Hence the corollary follows.
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x
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Figure 12: The updated model Mx
5 ∗ {(x, a,¬x)}.

The difference in expressivity for one-agent S5 relies on the set of proposi-

tional variables being infinite. When this set is finite it is in fact the case that

quantifying over arrow updates does not add any expressivity.

Theorem 3. If A = {a} and P is finite, then LEL(A,P ) ≡S5 LAAUL(A,P ).

Proof. In single agent S5 with a finite number of atoms, we can use a finite set

Φ ⊂ LEL of characteristic formulas to identify each model up to bisimilarity.

AAUL is invariant under bisimulation, so for each AAUL formula ψ and every

χ ∈ Φ we have either |=S5 χ → ψ or |=S5 χ → ¬ψ. As a result, |=S5 ψ ↔∧
χ∈Φ χ→ δχ, where δχ = > if |=S5 χ→ ψ and δχ = ⊥ if |=S5 χ→ ¬ψ.

But now suppose that we have not one agent but two. We show that then

arbitrary arrow updates add expressivity, even if P is a singleton. Consider the

following set of models:

Definition 14. Let m,n ∈ N \ {0} be two positive integers. We now define the

model Mmn = (Wmn, Rmn, Vmn) as follows:

• Wmn = {si | 0 ≤ i ≤ m} ∪ {ti | 0 ≤ i ≤ n},

• Rmn(a) = ({(s0, t0)} ∪ {(si, si+1) | i is odd} ∪ {(ti, ti+1) | i is odd})∗,

• Rmn(b) = ({(si, si+1) | i is even} ∪ {(si, si+1) | i is even})∗,

• Vmn(p) = {sm, sn},

where ∗ is a transitive reflexive closure operator. The model Mmn is shown in

Figure 13.

Theorem 4. If A = {a, b} and P = {p}, then LEL ≺S5 LAAUL.
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Figure 13: The model Mmn.

Sketch of proof. Let χ := ♦a�a⊥, ξ0 := ¬p and ξk+1 = �aξk ∧ �bξk for every

k ∈ N \ {0}. So ξk means that there is no p world reachable in k or fewer steps.

Take any m,n ∈ N \ {0} such that m 6= n. If m > n, then Mmn, s0 |=

〈(ξn, a,>)〉χ. Likewise, if m < n, then Mmn, s0 |= 〈(¬ξm, a,>)〉χ. So if m 6= n

we have Mmn, s0 |= 〈l〉χ.

If m = n on the other hand, then there is no way to distinguish between s0

and t0. This implies that Mmn, s0 6|= 〈l〉χ. So 〈l〉χ distinguishes between the

models with m = n and the models with m 6= n.

Every ψ ∈ LEL is of finite modal depth dψ. If m and n are both greater

than dψ, then ψ cannot distinguish between the cases m = n and m 6= n. This

implies that LEL(A,P ) 6� LAAUL(A,P ).

APAL with two agents is more expressive than EL [5, Proposition 3.14], so

Theorem 4 does not give us a counterpart to Corollary 2. We can, however, use a

separate proof to show that, if A = {a, b} and P = {p}, then LAAUL(A,P ) 6�S5

LAPAL(A,P ).

Theorem 5. If A = {a, b} and P = {p}, then LAAUL(A,P ) 6�S5 LAPAL(A,P ).

Sketch of proof. Recall that 〈l〉χ ∈ LAAUL distinguishes between the models

Mmn with m = n and those with m 6= n.

Now suppose there is a formula ψ ∈ LAPAL that distinguishes those models

where m = n from those where m 6= n. This formula ψ is of depth dψ. Take

m and n to be larger than dψ. It is clear that no epistemic formula will reach

sm or tn, and after a public announcement that changes the model this remains

the case, since public announcements preserve S5. Hence ψ will not be able
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to distinguish the cases above dψ where m = n from m 6= n. This implies

that ψ is not equivalent to 〈l〉χ, since that formula does distinguish the models

with m = n from those with m 6= n. This is true for any ψ ∈ LAPAL, so

LAAUL(A,P ) 6�S5 LAPAL(A,P ).

The question whether LAPAL(A,P ) ≺S5 LAPAL(A,P ) or LAPAL(A,P ) ‖S5

LAPAL(A,P ) if A = {a, b} and P = {p} remains open, although we suspect the

latter to be the case.

4.3. Comparisons to other logics

In the preceding sections we compared LEL, LAPAL and LAAUL to each

other. In this section we compare LAAUL to three different logics.

From a technical perspective the comparisons made in this section are rather

trivial. Our reason for presenting the results anyway is that they point to

interesting differences between different types of quantification. For reasons of

brevity we do not give full definitions of the logics considered here; instead we

provide references to publications that do contain definitions.

First, let us compare LAAUL to epistemic logic with common knowledge

(ELC)14. In AAUL the operator [l] quantifies over an infinite number of updates.

As a result, [l]ϕ could be seen as an infinite conjunction
∧
U∈LAUL

[U ]ϕ. In ELC

the operator CA likewise represents an infinite quantification; a formula CAϕ

can be seen as an infinite conjunction
∧
i∈NE

i
Aϕ (where EA is an “everybody

knows” operator).

We can use the models Mmn to show that LAAUL ‖S5 LELC . As can be seen

in Figure 13 at sm and tn either �ap is true or �bp is true. Using a common

knowledge formula one can express what happens at the end, yet there is no

formula in AAUL (or APAL for that matter) that is able to express this.

Theorem 6. LAAUL ‖S5 LELC .

14See for example [20].

36



Sketch of proof. Like LEL, the language LELC cannot distinguish those pointed

models Mmn, s0 where m = n from those where m 6= n.15 This can be seen

with model comparison games as they are for instance discussed in [16]. For any

depth d, one can choose m and n sufficiently large, such that any C-move in

such a game by spoiler can be matched by duplicator by choosing a world that

is equivalent up to depth d. Hence ELC is not at least as expressive as AAUL.

Consider the formula Ĉab�ap. This formula is true in all models Mmn where

either m or n is odd and false in all models where both m and n are even. Yet,

there is no formula in AAUL that distinguishes these. The quantifier in AAUL

cannot distinguish between updates with formulas that depend on �ap being

true at the final worlds or any other formula.

Corollary 3. LAPAL ‖S5 LELC .

Sketch of proof. The proof of Theorem 6 can be adapted to show that the APAL

is not comparable to ELC by slightly adapting the valuation of p in the models

Mmn to include s0 and t0. If m 6= n, there is some public announcement that

detects the difference in length between the two sides. This announcement can

then be used to remove one of s1 and t1 but not the other. If m = n, on the

other hand, then s0 and t0 are bisimilar and so are s1 and t1. The formula

〈!〉(�bp ∧ ♦a¬�bp) therefore distinguishes the cases where m = n from those

where m 6= n. ELC still cannot distinguish between m = n and m 6= n, so

LAPAL 6� LELC .

Like AAUL, APAL cannot distinguish the cases where m and n are even from

those where they are not. ELC can do this, so LELC 6� LAPAL, completing the

proof.

Let us consider two more logics, refinement modal mogic (RML) [12] and

arbitrary action model logic (AAML) [19].

15LELC can distinguish the pointed models Mmn, s0 where m = n mod 2 from those where

m 6= n mod 2, but that is not sufficient to distinguish m = n from m 6= n.

37



Corollary 4. LRML ≺S5 LAAUL.

Proof. RML is equally expressive as EL (see [12, Proposition 36]). It therefore

follows from LEL ≺S5 LAAUL that LRML ≺S5 LAAUL.

Corollary 5. LAAML ≺S5 LAAUL.

Proof. [19, Corollary IV.5] shows that AAML is equally expressive as EL. It

follows that LAAML ≺S5 LAAUL.

An overview of the expressivity results discussed so far can be seen in Figure

14. The interesting thing about these different expressivity results is that they

show that changing the scope of quantification can have wildly different effects.

Let X and Y be two different operators that quantify over some sets SX and

SY . Then, in general, we would expect that logics using X to be incomparable

to logics using Y (unless SX = SY ).

After all, if SX 6⊆ SY and SY 6⊆ SX then X and Y seem unrelated so we

should expect logics using them to be incomparable. But if SX ⊂ SY then, by

the reasoning presented in Section 4.1 we expect there to be worlds that can be

distinguished by Xϕ but not Y ϕ as well as worlds that can be distinguished by

Y ϕ but not Xϕ.

Some of the logics studied and mentioned in this paper follow this expected

pattern. The logics ELC, APAL and AAUL are indeed incomparable in expres-

sivity. But, somewhat surprisingly, RML and AAML are equally expressive as

EL and therefore less expressive than ELC, APAL and AAUL.

It therefore seems an interesting question for further research to ask why

going from APAL to AAUL is so different to going from AAUL to AAML.

Additionally, we could wonder whether there is any interesting set S larger

than the set of arrow updates but smaller than the set of action models, with

the property that quantification over S adds expressivity to EL.
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Figure 14: A comparison of the expressivity of several logics, when considered over the class

of all Kripke models. An arrow from one logic to another means that the second logic is at

least as expressive as the first. The “at least as expressive as” relation is transitive, so for

reasons of clarity we omit some arrows that follow from transitivity. Borders around sets of

logics indicate equivalence classes of equi-expressive logics.

5. Model Checking for AAUL

Here we show that the model checking problem for AAUL is PSPACE-

complete. This is as expected, considering that the model checking problems

for APAL and Group Announcement Logic are known to be PSPACE-complete

as well [2]. Indeed, the proofs presented in this section are inspired by the

ones given in [2]. Recall that, as shown in [25], the model checking for AUL is

in PTIME. So the [l] operator significantly increases the complexity of model

checking.

In order to show that the model checking problem for AAUL is PSPACE-

complete we have to show that it is PSPACE-hard and that it is in PSPACE.

We start by proving that it is PSPACE-hard.

5.1. Model Checking for AAUL is PSPACE hard

We show that the QBF-SAT problem can be reduced to the model checking

problem for AAUL. Since QBF-SAT is known to be PSPACE-complete, this

shows that AAUL model checking is PSPACE-hard.

Let us start by very briefly describing the QBF-SAT problem. Let n ∈

N be given, as well as Q1, · · · , Qn ∈ {∀,∃} and let Φ = Φ(p1, · · · , pn) be a

Boolean formula containing n propositional variables. The QBF-SAT problem
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Figure 15: The model Mn
Ha used to show PSPACE-hardness.

for n,Q1, · · · , Qn and Φ is to determine whether Q1p1 · · ·Qnpn : Φ(p1, · · · , pn)

is true.16 A simple instance of the problem would be ∀p1∃p2 : (p2 → p1). The

propositional variables are considered as Boolean variables here, so this instance

could also be denoted ∀p1 ∈ {>,⊥}∃p2 ∈ {>,⊥} : (p2 → p1), which happens to

be true.

In order to reduce QBF-SAT to the model checking of AAUL, we need to

create a corresponding model and an AAUL formula for each instance of QBF-

SAT, with both this model and the formula having size polynomial in that of

the instance. We start by constructing the model. The model, Mn
Ha , depends

only on n, and is shown in Figure 15. The idea is that we will force a number

of arbitrary arrow updates to choose between a world w+
i (corresponding to the

choice pi = >) and a world w−i (corresponding to the choice pi = ⊥).

We will now define the formula corresponding to a QBF-SAT instance. First,

in order to force the arbitrary arrow updates to choose one of the worlds, let us

define a number of useful subformulas. For 1 ≤ m ≤ n let

γm :=
∧

1≤i≤m

((♦pi ∨ ♦qi) ∧ ¬(♦pi ∧ ♦qi)) ∧
∧

m<j≤n

(♦pj ∧ ♦qj).

In other words, γm holds if and only if for every 1 ≤ i ≤ m the arrow to exactly

one of w+
i and w−i is eliminated, while for every m < j ≤ n both w+

j and

w−j are still reachable. This means that the values of all pi with i ≤ m have

16We could equivalently ask whether Q1p1 · · ·QnpnΦ(p1, · · · , pn) is satisfiable, the formula

has no free variables so truth and satisfiability coincide.
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been chosen, but the values of all pj with j > m have not. Now, consider the

following, recursively defined, formula.

Ψn+1 := Φ(♦p1, · · · ,♦pn)

Ψm :=

 [l](γm → Ψm+1) if Qm = ∀

〈l〉(γm ∧Ψm+1) if Qm = ∃

for 1 ≤ m ≤ n

Ψ := Ψ1

For our example formula ∀p1∃p2 : (p2 → p1) we obtain, writing ♦pi ↔ ¬♦qi for

(♦pi ∨ ♦qi) ∧ ¬(♦pi ∧ ♦qi) the following formula Ψ:

[l] (((♦p1 ↔ ¬♦q1) ∧ (♦p2 ∧ ♦q2))→

〈l〉((♦p1 ↔ ¬♦q1) ∧ (♦p2 ↔ ¬♦q2) ∧ (♦p2 → ♦p1)))

We leave it to the reader to verify that Ψ holds in M2
Ha , w.

Lemma 8. Mn
Ha , w |= Ψ iff Q1p1 · · ·Qnpn : Φ(p1, · · · , pn) is true.

Proof. Recall that γm holds at w in any submodel of Mn
Ha if and only if for

all 1 ≤ i ≤ m exactly one of w+
i and w−i remains reachable, and for every

m < i ≤ n both w+
i and w−i remain reachable. This means we can interpret

any submodel satisfying γm as a choice for the values of p1, · · · , pm, where pi

takes value > if and only if the arrow to w+
i is retained (so if and only if ♦pi

holds in w). The arbitrary updates [l] and 〈l〉 can therefore be seen as universal

and existential quantifiers for the choice of pi. Finally, Ψn+1 checks whether

Q(p1, · · · , pn) holds for the chosen values of the pi.

Corollary 6. The model checking problem for AAUL is PSPACE-hard.

5.2. Model Checking for AAUL is in PSPACE

Left to show is that the model checking problem for AAUL is in PSPACE.

We do this by presenting an algorithm MCheck(M,w,ϕ) that returns true if and

only if M,w |= ϕ and false if and only if M,w 6|= ϕ. MCheck(M,w,ϕ) works by
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a case distinction on the main connective of ϕ. Most cases are exactly as one

would expect; MCheck(M,w,ϕ1 ∨ ϕ2) returns true if either MCheck(M,w,ϕ1)

or MCheck(M,w,ϕ1) does, and so on. For reasons of brevity we only consider

the interesting cases, and omit the trivial ones. Let M = (W,R, V ) and w ∈W .

The two cases that we consider in detail are ϕ = [U ]χ and ϕ = [l]χ. We

start with the case ϕ = [U ]χ, where U = (ϕ1, a1, ψ1), · · · , (ϕn, an, ψn). In order

to solve MCheck(M,w,ϕ) we simply have to call MCheck(M ∗ U,w, χ); the

difficult part is to compute M ∗ U . We can do so as follows.

1. for every w′ ∈ W and 1 ≤ i ≤ n, label w′ with ϕi iff MCheck(M,w′, ϕi)

returns true, and with ψi iff MCheck(M,w′, ψi) does.

2. for every a ∈ A, (w1, w2) ∈ R(a) and (ϕi, a, ψi) ∈ U , if w1 is labeled ϕi

and w2 is labeled ψi, then label (w1, w2) with “keep.”

3. for every a ∈ A and (w1, w2) ∈ R(a), if (w1, w2) is not labeled “keep,”

then remove it.

The other non-trivial case is ϕ = [l]χ. We would like to solve this us-

ing “brute force,” so for every U we would like to check whether [U ]χ holds.

Unfortunately, there are infinitely many different arrow updates, so we cannot

check them all. But while there are infinitely many different updates U , there

are only finitely many different updated models M ∗ U . So instead of running

MCheck(M,w, [U ]χ) for every U , we run MCheck(M ∗ U,w, χ) for all different

M ∗ U .

It is not the case that every submodel of M is of the form M ∗ U for some

U , so we need to determine which submodels can be represented as M ∗ U . In

order to do this, we use the definitions and results about bisimilarity that were

introduced in Section 3. In particular, we use the bisimulation contraction MBC

of M (see Definition 5).

For any state w, the pointed model M,w is bisimilar to MBC , [w] and AAUL

is bisimulation invariant, as discussed in Section 3, so we are free to work with

MBC instead ofM . InMBC no two different worlds are bisimilar, which, because

we are working with finite models, means that every two sets of worlds are
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distinguishable. As such, every submodel (WBC , R
′, VBC) of MBC is of the

form MBC ∗ U for some U . The [l]χ case in MCheck(M,w,ϕ) is therefore as

follows.

1. compute MBC = (WBC , RBC , VBC).

2. for every submodel M ′ = (WBC , R
′, VBC), if MCheck(M ′, [w], χ) returns

false, then return false

3. return true

We consider the correctness of MCheck(M,w,ϕ) to be immediately clear,

but it remains to show that it requires at most polynomial space. So let us do

some complexity analysis. In the [U ]χ case we need to run MCheck(M,w′, ϕi)

and MCheck(M,w′, ψi) for all w′ ∈W , but we can do those one at a time, so we

need to keep only one in memory. We do need to keep O(|U |·|M |) ≤ O(|ϕ|·|M |)

different labels in memory, as well as the submodel M ∗ U which is of size at

most O(|M |). The total space requirement for MCheck(M,w, [U ]χ) is therefore

O(|ϕ| · |M |) plus the maximum space requirement of MCheck(M ∗ U,w, χ),

MCheck(M,w′, ϕi) and MCheck(M,w′, ψi) for every i, w′.

In the [l]χ case we first need to compute MBC . This can be done in poly-

nomial time and O(|M |) space, by using the Paige-Tarjan algorithm [27]. If we

use depth-first search we need to store only two additional models at a time,

namely MBC and M ′. Both are of size at most O(|M |). Finally, we need the

space required to run MCheck(M ′, [w], χ).

So the [U ]χ and [l]χ cases take at most O(|ϕ| · |M |) space, plus whatever is

required to do the model checking for their subformulas. All other cases take less

space. This means that every connective adds at most O(|ϕ| · |M |) to the space

requirement. There are at most O(|ϕ|) connectives in ϕ, so MCheck(M,w,ϕ)

requires at most O(|ϕ|2 · |M |) space. This means we have the following lemma.

Lemma 9. Model checking for AAUL is in PSPACE.

Corollary 7. Model checking for AAUL is PSPACE-complete.
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6. Proof system

In this section we introduce an infinitary proof system for AAUL. This sys-

tem is a conservative extension of the proof system for AUL given in [22]. The

axiom and rule for the arbitrary arrow update are very similar to the axiom

and rule for APAL given in [6]. The completeness proof we give for it, is very

closely related to the proof system for APAL given in [6]. Before introducing

the proof system, we need an auxiliary definition.

Definition 15. Let x 6∈ P be a new atom. The set NF of formulas that are in

necessity form is generated by the following normal form:

ξ(x) ::= x | ϕ→ ξ(x) | �aξ(x) | [U ]ξ(x)

where ϕ ∈ LAAUL and U ∈ LAAUL. Given a formula ψ and a formula ξ(x) ∈ NF

in necessity form, we use ξ(ψ) to denote the result of replacing the unique

occurrence of x in ξ(x) by ψ.

Lemma 10. If ϕ = ξ([l]ψ) for some ξ(x) ∈ NF then this representation of ϕ

is unique, i.e. if ϕ = ξ′([l]ψ′) then ξ′(x) = ξ(x) and ψ′ = ψ.

Proof. For given χ,U ∈ LAAUL, we can consider χ→, �a and [U ] to be unary

operators. The symbol x can only occur inside the scope of such unary operators.

These three operators do not include [l], so the [l] operators in ξ([l]ψ) and

ξ′([l]ψ′) must both be the outermost [l] operator.

Now, we can consider the proof system LAAUL.

Definition 16. The proof system LAAUL is given by the following eight axiom

schemata and four rules.
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(A1) All instances of propositional tautologies

(A2) �a(ϕ→ ψ)→ (�aϕ→ �aψ)

(A3) [U ]p↔ p

(A4) [U ]¬ϕ↔ ¬[U ]ϕ

(A5) [U ](ϕ ∧ ψ)↔ ([U ]ϕ ∧ [U ]ψ)

(A6) [U ]�aϕ↔
∧

(ψ,a,χ)∈U (ψ → �a(χ→ [U ]ϕ))

(A7) [U ][U ′]ϕ↔ [U × U ′]ϕ where U × U ′ =

{(ψ1 ∧ [U ]ψ2, a, χ1 ∧ [U ]χ2) | (ψ1, a, χ1) ∈ U, (ψ2, a, χ2) ∈ U ′}

(A8) [l]ϕ→ [U0]ϕ where U0 ∈ LAUL
(R1) From ϕ→ ψ and ϕ, infer ψ.

(R2) From ϕ, infer �aϕ.

(R3) From ϕ, infer [U ]ϕ.

(R4) From {ξ([U0]ϕ) | U0 ∈ LAUL}, infer ξ([l]ϕ), where ξ(x) ∈ NF .

A formula ϕ can be derived in LAAUL if it is a member of the smallest set of

formulas that contains all instances of (A1) – (A8) and that is closed under (R1)

– (R4). If ϕ can be derived in LAAUL we call ϕ a theorem (of LAAUL) and write

` ϕ.

Axioms (A1), (A2) and rules (R1) and (R2) together are the basic multi-

agent modal system K. Axioms (A3), . . . , (A7) are all so-called reduction

axioms for the arrow update, i.e. going from left to right the number of arrow

updates reduces ((A3) and (A7)) or the complexity of the formulas to which the

arrow update is applied reduces ((A4), (A5) and (A6)). This means one can

effectively translate any formula without arbitrary arrow updates to a provably

equivalent formula of multi-agent modal logic, as was shown in [22]. Axioms

(A8) and rule (R4) deal with arbitrary arrow updates, and given their presence

in the proof system, one also needs (R3) for completeness. Note that while a

rule “From ϕ, infer [l]ϕ” is not included in the proof system, it is derivable.

After all, if ` ϕ then (R3) allows us to derive [U ]ϕ for all U ∈ LAUL. Since

x ∈ NF , this allows us to derive [l]ϕ by (R4). Before proving the soundness of

LAAUL, let us consider one lemma.
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Lemma 11. Rule (R4) is truth preserving. That is, if ξ(x) ∈ NF , ϕ ∈ LAAUL
and M,w are such that M,w |= ξ([U0]ϕ) for all U0 ∈ LAUL, then we have

M,w |= ξ([l]ϕ).

Proof. By induction on the construction of ξ(x). As base case, suppose ξ(x) = x.

If M,w |= [U0]ϕ for all U0 ∈ LAUL it follows immediately from the semantics of

AAUL that M,w |= [l]ϕ. So (R4) is sound for ξ(x) = x.

Suppose then as induction hypothesis that ξ(x) 6= x and that the lemma

holds for every ξ′(x) that precedes ξ(x) in the recursive definition of NF. There

are three possibilities for the form of ξ(x).

The first possibility is that ξ(x) = ψ → ξ′(x). Fix any M,w and ϕ, and

suppose that that M,w |= ψ → ξ′([U0]ϕ) for all U0 ∈ LAUL. If M,w 6|= ψ

then, trivially, M,w |= ψ → ξ′([l]ϕ). If, on the other hand, M,w |= ψ then

M,w |= ξ′([U0]ϕ) for all U0 ∈ LAUL and therefore, by the induction hypothesis,

M,w |= ξ′([l]ϕ). This implies that M,w |= ψ → ξ′([l]ϕ). In either case, from

M,w |= ξ([U0]ϕ) for all U0 ∈ LAUL it follows that M,w |= ξ([l]ϕ).

The second possibility is that ξ(x) = �aξ′(x). Fix any M,w and ϕ, and

suppose that M,w |= �aξ′([U0]ϕ) for all U0 ∈ LAUL. Let w′ be any world that

is a-accessible from w in M . We have M,w′ |= ξ′([U0]ϕ) for all U0 ∈ LAUL and

therefore, by the induction hypothesis, M,w′ |= ξ′([l]ϕ). This holds for every

a-successor of w, so M,w |= �aξ′([l]ϕ).

The third and final possibility is that ξ(x) = [U ]ξ′(x). Again, fix any M,w

and ϕ, and suppose that M,w |= [U ]ξ′([U0]ϕ) for all U0 ∈ LAUL. Then (M ∗

U), w |= ξ′([U0]ϕ) for all U0 ∈ LAUL and therefore, by the induction hypothesis,

(M ∗ U), w |= ξ′([l]ϕ). This, in turn, implies that M,w |= [U ]ξ′([l]ϕ).

We have treated all possible forms of ξ(x). This completes the induction

step and thereby the proof.

Theorem 7 (Soundness of LAAUL). Let ϕ ∈ LAAUL. If ` ϕ, then |= ϕ.

Proof. The soundness of the axioms (A1) – (A5) and (A8) follows immediately

from the semantics of AAUL, as does the soundness of the rules (R1) – (R3).
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The soundness of the non-straightforward axioms (A6) and (A7) follows from

Lemma 1. The soundness of (R4) follows from Lemma 11.

6.1. Completeness of LAAUL: preliminaries

The completeness of ` is, unfortunately but not unusually, harder to prove

than the soundness. Before getting to the main proof we will need a number of

definitions and lemmas. Firstly, we need definitions for the depth and size of

formulas.

Definition 17. Let ϕ ∈ LAAUL. The [l]-depth d(ϕ) of ϕ is given inductively

by

d(p) = 0

d(¬ϕ) = d(ϕ)

d(ϕ1 ∧ ϕ2) = max(d(ϕ1), d(ϕ2))

d(�aϕ) = d(ϕ)

d(U) = max{d(ϕ1), d(ϕ2) | (ϕ1, a, ϕ2) ∈ U}

d([U ]ϕ) = max(d(U), d(ϕ))

d([l]ϕ) = d(ϕ) + 1

The size s(ϕ) of ϕ is a more complicated measure, given inductively by

s(p) = 1

s(¬ϕ) = s(ϕ) + 1

s(ϕ1 ∧ ϕ2) = s(ϕ1) + s(ϕ2) + 1

s(�aϕ) = s(ϕ) + 1

s([l]ϕ) = s(ϕ) + 1

s([U ]ϕ) = s(U)s(ϕ)

s(U) = (|U |+ 2)(9 + 2 · smax(U))

where |U | is the number of clauses in U and

smax(U) = max{s(ψ), s(χ) | (ψ, a, χ) ∈ U}

We write ϕ1 <
s
d ϕ2 if either d(ϕ1) < d(ϕ2) or d(ϕ1) = d(ϕ2) and s(ϕ1) < s(ϕ2).

The measure d(ϕ) is simply the nesting depth of [l] in ϕ. The measure s(ϕ)

does not have such a simple description, it is designed purely to provide us with
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a well-ordering we can do induction on. Specifically, we need it for the following

lemma.

Lemma 12. Let ϕ,ψ, U, U ′ ∈ LAAUL. Then

p <sd [U ]p,

¬[U ]ϕ <sd [U ]¬ϕ,

[U ]ϕ ∧ [U ]ψ <sd [U ](ϕ ∧ ψ),∧
(ψ,a,χ)∈U (ψ → �a(χ→ [U ]ϕ)) <sd [U ]�aϕ and

[U × U ′]ϕ <sd [U ][U ′]ϕ.

Proof. In all five cases, the formulas on the left and right side of the inequality

have the same [l]-depth. It therefore suffices to show a difference in size. The

first three cases are relatively easy to prove.

Every U contains at least one clause (see Definition 1), so |U | ≥ 1 and

smax(U) ≥ 1. We therefore have

s(U) = (|U |+ 2)(9 + 2 · smac(U)) ≥ 3 · 11 = 33.

It follows that

s(p) = 1 < 33 ≤ s(U)1 = s([U ]p),

and

s(¬[U ]ϕ) = s([U ]ϕ) + 1 < 33 · s([U ]ϕ) ≤ s([U ]¬ϕ).

Furthermore, for every x1 ≥ 2 and x2, x3 ≥ 1, we have xx2
1 + xx3

1 + 1 < xx2
1 ·

xx3
1 · x1 = xx2+x3+1

1 . This implies that

s([U ]ϕ ∧ [U ]ψ) = s(U)s(ϕ) + s(U)s(ψ) + 1 < s(U)s(ϕ)+s(ψ)+1 = s([U ](ϕ ∧ ψ)).

Proving the inequality for the last two cases is simple but requires a lot of

bookkeeping. Recall that ψ1 → ψ2 is an abbreviation for ¬(ψ1 ∧ ¬ψ2), so

s(ψ → �a(χ → [U ]ϕ)) = s(ψ) + s(χ) + 3 + 3 + 1 + s([U ]ϕ). Furthermore,
∧

represents a number of conjunction symbols equal to its number of conjuncts
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minus one. We therefore have

s

 ∧
(ψ,a,χ)∈U

(ψ → �a(χ→ [U ]ϕ))

 =
∑

(ψ,a,χ)∈U

s(ψ) + s(χ) + 7 + s([U ]ϕ) + 1

≤ |U |(8 + 2 · smax(U) + s([U ]ϕ)).

Furthermore, for every x1, x2 ≥ 2 we have x1 + x2 ≤ x1 · x2. So 2 · smax(U) +

s([U ]ϕ) ≤ 2s([U ]ϕ) · smax(U). Additionally, 8 < 9s([U ]ϕ). As a result,

|U |(8 + 2 · smax(U) + s([U ]ϕ)) < |U |(9s([U ]ϕ) + 2s([U ]ϕ) · smax(U))

= |U |(9 + 2 · smax(U))s([U ]ϕ)

< (|U |+ 2)(9 + 2 · smax(U))s([U ]ϕ)

= s(U)s([U ]ϕ) = s(U)s(U)s(ϕ)

= s(U)s(ϕ)+1 = s(U)s(�aϕ)

= s([U ]�aϕ).

Left to show is that [U×U ′]ϕ <sd [U ][U ′]ϕ. Recall that U×U ′ is an abbreviation

for

{(ψ1 ∧ [U ]ψ2, a, χ1 ∧ [U ]χ2) | (ψ1, a, χ1) ∈ U, (ψ2, a, χ2) ∈ U ′}.

This gives us |U × U ′| = |U | · |U ′|. Furthermore, since s(ψ1 ∧ [U ]ψ2) = s(ψ1) +

s(U)s(ψ2) + 1, we also have smax(U × U ′) ≤ smax(U) + s(U)smax(U ′) + 1. We

now want to compare s(U × U ′) to s(U)s(U
′). On the one hand,

s(U × U ′) = (|U × U ′|+ 2)(9 + 2 · smax(U × U ′))

≤ (|U | · |U ′|+ 2)(9 + 2(smax(U) + s(U)smax(U ′) + 1)).

On the other hand, we have

s(U)s(U
′) = s(U)(|U ′|+2)(9+2·smax(U ′))

(By the definition of s(U ′))

≥ s(U)(|U ′|+2)+(9+2·smax(U ′))

(Because x1 · x2 ≥ x1 + x2 for x1, x2 ≥ 2)
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= s(U)|U
′|+2s(U)9+2·smax(U ′)

= ((|U |+ 2)(9 + 2 · smax(U)))|U
′|+2s(U)9+2·smax(U ′)

(By the definition of s(U))

> (|U |+ 2)|U
′|+2s(U)9s(U)2·smax(U ′)

= (|U |+ 2)|U
′|+2((|U |+ 2)(9 + 2 · smax(U)))9s(U)2·smax(U ′)

(By the definition of s(U))

> (|U |+ 2)|U
′|+2(9 + 2 · smax(U))9s(U)2·smax(U ′)

≥ (|U |+ 2)(|U ′|+ 2)(9 + 2smax(U))9s(U)2·smax(U ′)

(Because xx2
1 ≥ x1 · x2 for x1, x2 ≥ 2)

> (|U | · |U ′|+ 2)(9 + 2smax(U))9s(U)2·smax(U ′)

> (|U | · |U ′|+ 2)(9 + 2(smax(U) + 1 + 1))s(U)smax(U ′)

> (|U | · |U ′|+ 2)(9 + 2(smax(U) + s(U)smax(U ′) + 1)),

Putting these inequalities together, we get s(U × U ′)s(ϕ) <
(
s(U)s(U

′)
)s(ϕ)

,

and therefore

s([U ×U ′]ϕ) = s(U ×U ′)s(ϕ) <
(
s(U)s(U

′)
)s(ϕ)

≤ s(U)(s(U
′)s(ϕ)) = s([U ][U ′]ϕ).

The relevance of Lemma 12 is that, for each of (A3) – (A7), the formula on

the right side of the equivalence is smaller than the formula on the left side.

6.2. Completeness of LAAUL: Lindenbaum lemma

We will now define theories, and work towards a Lindenbaum lemma, which

states that every theory can be extended to a maximal consistent theory.

Definition 18. A set Φ ⊆ LAAUL of formulas is a theory if it contains all

theorems and is closed under rules (R1) and (R4).

We do not require Φ to be closed under (R2) and (R3) because, unlike (R1)

and (R4), these rules preserve only validity, not truth. For example, M,w |= ϕ
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does not guarantee M,w |= [U ]ϕ, but M,w |= ϕ → ψ and M,w |= ϕ do

guarantee that M,w |= ψ.

Definition 19. A theory Φ is consistent if there is a ϕ ∈ LAAUL such that

ϕ 6∈ Φ. A theory Φ is maximal if for every formula ϕ ∈ LAAUL either ϕ ∈ Φ or

¬ϕ ∈ Φ.

Lemma 13. Fix any ψ ∈ Φ. The following are equivalent:

1. Φ is inconsistent,

2. there is a ϕ such that ϕ ∈ Φ and ¬ϕ ∈ Φ,

3. ψ ∧ ¬ψ ∈ Φ.

The proof is trivial and left to the reader. We also need some more notation

to define sets of formulas.

Definition 20. Let Φ be a theory and ϕ,U ∈ LAAUL. Then

Φ + ϕ := {ψ | ϕ→ ψ ∈ Φ}

�aΦ := {ψ | �aψ ∈ Φ}

[U ]Φ := {ψ | [U ]ψ ∈ Φ}

First, let us show that Φ+ϕ is an appropriate notation for {ψ | ϕ→ ψ ∈ Φ}.

Lemma 14. If Φ is a theory, then ϕ ∈ Φ + ϕ and Φ ⊆ Φ + ϕ.

Proof. Firstly, we have ` ϕ → ϕ and therefore ϕ → ϕ ∈ Φ. This implies that

ϕ ∈ Φ + ϕ. Now, note that ` ψ → (ϕ → ψ) and therefore ψ → (ϕ → ψ) ∈ Φ.

Since Φ is closed under (R1), this implies that if ψ ∈ Φ, then ϕ → ψ ∈ Φ. We

therefore have ψ ∈ Φ + ϕ for all ψ ∈ Φ.

Next, we need two relatively simple lemmas about theories.

Lemma 15. If Φ is a theory, then so are Φ + ϕ, KaΦ and [U ]Φ.

Proof. If ` ψ then also ` ϕ → ψ, ` �aψ and ` [U ]ψ. The set of theorems is

therefore a subset of Φ + ϕ, �aΦ and [U ]Φ. It remains to be shown that the

three sets are closed under (R1) and (R4).
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Suppose ψ → χ ∈ Φ + ϕ and ψ ∈ Φ + ϕ. Then, by definition, ϕ → (ψ →

χ) ∈ Φ and ϕ → ψ ∈ Φ. By (A1) and (R1) this implies that ϕ → χ ∈ Φ and

therefore χ ∈ Φ + ϕ. So Φ + ϕ is closed under (R1).

Similarly, (A2) and (R1) guarantee that if �a(ψ → χ) ∈ Φ and �aψ ∈ Φ

then �aχ ∈ Φ. Furthermore, (A4), (A5) and (R1) guarantee that if [U ](ψ →

χ), [U ]ψ ∈ Φ then [U ]χ ∈ Φ. The sets �aΦ and [U ]Φ are therefore also closed

under (R1).

Now suppose that for some ξ(x) ∈ NF , we have {ξ([U ]ψ) | [U ] ∈ LAUL} ⊆

Φ + ϕ. By the definition of Φ + ϕ, we have {ϕ → ξ([U ]ψ) | [U ] ∈ LAUL} ⊆ Φ,

which implies that ϕ → ξ([l]ψ) ∈ Φ, since ϕ → ξ(x) ∈ NF and Φ is closed

under (R4). Similarly, from �aξ(x) ∈ NF and [U ]ξ(x) ∈ NF it follows that

�aΦ and [U ]Φ are closed under (R4).

Lemma 16. Φ + ϕ is consistent if and only if ¬ϕ 6∈ Φ.

Proof. We prove that if ¬ϕ ∈ Φ then Φ + ϕ is inconsistent and that if Φ + ϕ is

inconsistent then ¬ϕ ∈ Φ.

Suppose ¬ϕ ∈ Φ. Then, by Lemma 14 we have ¬ϕ ∈ Φ + ϕ and ϕ ∈ Φ + ϕ.

So Φ + ϕ is inconsistent.

Suppose then that Φ + ϕ is inconsistent. Then Φ + ϕ contains all AAUL

formulas, so in particular p ∧ ¬p ∈ Φ + ϕ. This implies that ϕ→ (p ∧ ¬p) ∈ Φ.

Since (ϕ → (p ∧ ¬p)) → ¬ϕ is a propositional tautology and Φ is closed under

modus ponens this implies that ¬ϕ ∈ Φ.

We now have all we need to prove our Lindenbaum lemma.

Lemma 17 (Lindenbaum lemma). Every consistent theory can be extended to

a maximal consistent theory.

Proof. Let Φ be a consistent theory. The set of all AAUL formulas is countably

infinite, so we can enumerate it as {ϕ0, ϕ1, · · · }. Define the sequence Φn of

theories inductively as follows.
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Φ0 = Φ

Φn+1 = Φn + ϕn if ¬ϕn 6∈ Φn

Φn+1 = Φn if ¬ϕn ∈ Φn and ϕn is not of the form ξ([l]ψ)

Φn+1 = Φn + ϕj if ¬ϕn ∈ Φn and ϕn is of the form ξ([l]ψ)

where ϕj is the lowest numbered formula that is of the form ϕj = ¬ξ([U ]ψ)

with U ∈ LAUL, and such that ¬¬ξ([U ]ψ) 6∈ Φn.

First, let us show that such ϕj is well defined. The first important obser-

vation here is that, by Lemma 10, the representation ξ([l]ψ) is unique. The

second important observation is that (assuming that it is defined) each Φn+1

is a consistent theory, since they are of the form Φn + ψ with ¬ψ 6∈ Φn. So

if ¬ξ([l]ψ) ∈ Φn then there must be some ξ([U ]ψ) 6∈ Φn, as otherwise clo-

sure under (R4) would imply that ξ([l]ψ) ∈ Φn. If ξ([U ]ψ) 6∈ Φn then also

¬¬ξ([U ]ψ) 6∈ Φn. The lowest numbered formula with this property is ϕj .

Now let Ψ =
⋃∞
n=0 Φn. We claim that Ψ is a maximal consistent theory

that contains Φ. To this end, first note that {Φn} is an increasing sequence:

Φn ⊆ Φn+1 for all n ∈ N. Now, consider the following.

1. Ψ contains the theory Φ, so it contains all theorems.

2. Take any ϕn ∈ LAAUL. We have either ¬ϕn ∈ Φn ⊆ Ψ or ¬ϕn 6∈ Φn and

therefore ϕn ∈ Φn + ϕn = Φn+1 ⊆ Ψ.

3. If ϕ→ ψ ∈ Ψ and ϕ ∈ Ψ then there is some n ∈ N such that ϕ→ ψ ∈ Φn

and ϕ ∈ Φn. This implies that ψ ∈ Φn, and therefore also ψ ∈ Ψ.

4. If ϕ ∈ Ψ then ¬ϕ 6∈ Ψ. By contradiction: suppose ϕ,¬ϕ ∈ Ψ. Then there

is an n ∈ N such that ϕ,¬ϕ ∈ Φn. That contradicts Φn being a consistent

theory.

5. Ψ is closed under (R4). Proof: suppose ϕn is of the right form to be a

conclusion of (R4), so ϕn = ξ([l]ψ). If ¬ϕn 6∈ Φn then ϕn ∈ Φn+1 ⊆ Ψ,

so Ψ is closed with respect to this instance of (R4). Suppose then that

¬ϕn ∈ Φn. Then ϕj = ¬ξ([U ]ψ) ∈ Φn+1 ⊆ Ψ. By point 4, this implies

that ξ([U ]ψ) 6∈ Ψ, so one of the premises of (R4) is not satisfied. Again,

Ψ is closed with respect to this instance of (R4).
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From points 1, 3 and 5 it follows that Ψ is a theory. From point 1 it follows that

Ψ is an extension of Φ. From 4 it follows that Ψ is consistent. Finally, from 2

it follows that Ψ is maximal.

6.3. Completeness of LAAUL: truth lemma

We can now define the canonical model, and prove a truth lemma for this

model.

Definition 21 (Canonical model). The canonical model Mc = (Wc, Rc, Vc) is

given as follows:

Wc = {Φ | Φ is a maximal consistent theory}

Rc(a) = {(Φ,Ψ) | �aΦ ⊆ Ψ}

Vc(p) = {Φ | p ∈ Ψ}

Before considering the truth lemma, let us consider two more small lemmas.

Lemma 18. Let Φ be a theory. If �aϕ 6∈ Φ, then there is a maximal consistent

theory Ψ such that �aΦ ⊆ Ψ and ϕ 6∈ Ψ.

Proof. By assumption, �aϕ 6∈ Φ and therefore ϕ 6∈ �aΦ. This implies that

¬¬ϕ 6∈ �aΦ, since �aΦ contains the tautology ¬¬ϕ → ϕ and is closed under

(R1). As such, �aΦ + ¬ϕ is a consistent theory, which can be extended to

a maximal consistent theory Ψ. This Ψ contains ¬ϕ and is consistent, so in

particular ϕ 6∈ Ψ.

Lemma 19. Let Φ be a maximal consistent theory. Then [U ]Φ is also a maximal

consistent theory.

Proof. We know from Lemma 15 that [U ]Φ is a theory. Suppose towards a

contradiction that [U ]Φ is inconsistent. Then p,¬p ∈ [U ]Φ and therefore

[U ]p, [U ]¬p ∈ Φ. But then, using (A4), we have ¬[U ]p ∈ Φ. So Φ is inconsistent,

contradicting our assumptions. The theory [U ]Φ must therefore be consistent.

Suppose then, towards a contradiction, for some ϕ we have ϕ 6∈ [U ]Φ and

¬ϕ 6∈ [U ]Φ. Then [U ]ϕ 6∈ Φ and [U ]¬ϕ 6∈ Φ. By (A4), this implies that
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¬[U ]ϕ 6∈ Φ. But then Φ is not complete, contradicting out assumptions. The

theory [U ]Φ must therefore be complete.

Now, finally, we arrive at the truth lemma.

Lemma 20 (Truth lemma). For every maximal consistent theory Φ and every

ϕ ∈ LAAUL, we have ϕ ∈ Φ if and only if Mc,Φ |= ϕ.

Proof. The proof is by induction on <sd. As base case, suppose d(ϕ) = 0 and

s(ϕ) = 1. Then ϕ = p for some p ∈ P , so it follows immediately from the

definition of Vc(p) that Mc,Φ |= ϕ if and only if p ∈ Φ.

Suppose then as induction hypothesis that d(ϕ) > 0 or s(ϕ) > 1, and that

the lemma holds for all ψ with ψ <sd ϕ. The proof continues with a case

distinction. Note that for every strict subformula ψ of ϕ we have ψ <sd ϕ.

Case 1. Suppose ϕ = ¬ψ. By the induction hypothesis, ψ 6∈ Φ⇔ Mc,Φ 6|= ψ.

By the semantics of AAUL we have Mc,Φ 6|= ψ ⇔ Mc,Φ |= ¬ψ. By

maximality and consistency of Φ we have ψ 6∈ Φ ⇔ ¬ψ ∈ Φ. The three

equivalences together show that ϕ ∈ Φ⇔Mc,Φ |= ϕ.

Case 2. Suppose ϕ = ψ1 ∧ ψ2. By the induction hypothesis we have Mc,Φ |=

ψi ⇔ ψi ∈ Φ, i ∈ {1, 2}. By the semantics of AAUL we have Mc,Φ |=

ψ1 ∧ ψ2 ⇔Mc,Φ |= ψ1 and Mc,Φ |= ψ2. Finally, because Φ is a maximal

consistent theory we have ψ1 ∧ ψ2 ∈ Φ ⇔ ψ1 ∈ Φ and ψ2 ∈ Φ. Together,

these equivalences show that ϕ ∈ Φ⇔Mc,Φ |= ϕ.

Case 3. Suppose ϕ = �aψ. We have Mc,Φ |= �aψ ⇔ Mc,Ψ |= ψ for all Ψ

such that �aΦ ⊆ Ψ. By the induction hypothesis, the latter is equivalent

to ψ ∈ Ψ for all Ψ such that �aΦ ⊆ Ψ.

If �aψ ∈ Φ then ψ ∈ Ψ for all Ψ such that �aΦ ⊆ Ψ. So �aψ ∈ Φ ⇒

Mc,Φ |= �aψ. Furthermore, by Lemma 18, if �aψ 6∈ Φ then there is

some maximal consistent theory Ψ such that ψ 6∈ Ψ and �aΦ ⊆ Ψ. By

contraposition, this implies that if ψ ∈ Ψ for all Ψ such that �aΦ ⊆ Ψ

then �aψ ∈ Φ. So Mx,Φ |= �aψ ⇒ �aψ ∈ Φ.
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Case 4. Suppose ϕ is of the form [U ]p, [U ]¬ψ, [U ](ψ1∧ψ2), [U ]�aψ or [U ][U ′]ψ.

Then ϕ occurs on the left side of one of the axioms (A3) – (A7). Let ϕ′

be the corresponding formula on the right side.

The set Φ is a theory, so it contains (A3) – (A7) and is closed under modus

ponens. So ϕ ∈ Φ ⇔ ϕ′ ∈ Φ. Furthermore, by the semantics of AAUL

(see Lemma 1), we have Mc,Φ |= ϕ ⇔ Mc,Φ |= ϕ′. Finally, ϕ′ <sd ϕ

(see Lemma 12), so by the induction hypothesis ϕ′ ∈ Φ ⇔ Mc,Φ |= ϕ′.

Together, these three equivalences imply that ϕ ∈ Φ⇔Mc,Φ |= ϕ.

Case 4. Suppose ϕ = [U ][l]ψ. We treat the two directions of the bi-implication

separately. Firstly, suppose that [U ][l]ψ ∈ Φ. Observe that [U ]([l]ψ →

[U0]ψ) ∈ Φ and [U ]([l]ψ → [U0]ψ) → ([U ][l]ψ → [U ][U0]ψ) for every

U0 ∈ LAUL, since both formulas are derivable in LAAUL. Furthermore, Φ

is closed under (R1), so [U ][U0]ψ ∈ Φ.

The update U0, being an element of LAUL, does not contain any [l] op-

erators. As such, the [l]-depth of [U ][U0]ψ is strictly lower than that

of [U ][l]ψ. We therefore have [U ][U0]ψ <sd [U ][l]ψ, so by the induction

hypothesis our assumption that [U ][U0]ψ ∈ Φ yields the conclusion that

Mc,Φ |= [U ][U0]ψ. By the semantics of AAUL, the latter is equivalent

to Mc ∗ U,Φ |= [U0]ψ. Note that this holds for all U0 ∈ LAUL, so

Mc ∗ U,Φ |= [l]ψ and therefore Mc,Φ |= [U ][l]ψ. We have shown that

[U ][l]ψ ∈ Φ⇒Mc,Φ |= [U ][l]ψ.

Suppose then that Mc,Φ |= [U ][l]ψ. By the induction hypothesis, this

implies that [U ][U0]ψ ∈ Φ for all U0 ∈ LAUL. Taking ξ = [U ]x ∈ NF we

have {ξ([U0]ψ) | U0 ∈ LAUL} ⊆ Φ which, since Φ is closed under (R4),

gives us ξ([l]ψ) = [U ][l]ψ ∈ Φ. We have now shown that Mc,Φ |= [U ][l

]ψ ⇒ [U ][l]ψ ∈ Φ. Together with our previous conclusion, this shows that

[U ][l]ψ ∈ Φ⇔Mc,Φ |= [U ][l]ψ.

Case 5. Suppose ϕ = [l]ψ. We have [l]ψ ∈ Φ ⇔ ([U0]ψ ∈ Φ for all U0 ∈

LAUL); where ⇒ is due to (A8) and ⇐ is due to (R4). Furthermore,
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since [U0]ψ <sd [l]ψ, so we can use the induction hypothesis to obtain

[U0]ψ ∈ Φ⇔Mc,Φ |= [U0]ψ. Finally, by the semantics of AAUL, we have

(Mc,Φ |= [U0]ψ for all U0 ∈ LAUL) ⇔ Mc,Φ |= [l]ψ. Together, these

equivalences imply that [l]ψ ∈ Φ⇔Mc,Φ |= [l]ψ.

Cases 1 – 5 are exhaustive, and in each case ϕ ∈ Φ ⇔ Mc,Φ |= ϕ. This

completes the induction step and thereby the proof.

6.4. LAAUL is sound and complete for |=

The hard parts of the proof are done, now we can quickly prove that LAAUL
is complete.

Theorem 8 (Completeness of LAAUL). For all ϕ ∈ LAAUL, if |= ϕ then ` ϕ.

Proof. By contraposition. Suppose 6` ϕ. Let Φ be the set of theorems, and note

that we have ϕ 6∈ Φ and, since Φ is a theory, ¬¬ϕ 6∈ Φ. This means Φ + ¬ϕ

is a consistent theory, so there is a maximal consistent theory Ψ that contains

Φ + ¬ϕ. We have ϕ 6∈ Ψ and therefore, by Lemma 20, Mc,Ψ 6|= ϕ. As such,

6|= ϕ.

Together with the soundness Theorem 7 this shows that the proof system

LAAUL is sound and complete for arbitrary arrow update logic.

If a finitary axiomatization of a logic exists, it follows that the set of va-

lidities of that logic is recursively enumerable. The axiomatization of AAUL

is infinitary, however, so no such conclusion can be drawn. In fact, it is not

currently known whether the set of validities of AAUL is RE, and therefore

whether the satisfiability problem for AAUL is co-RE. It was shown in in [17]

that the satisfiability problem of AAUL, like that of APAL [18], can encode the

tiling problem. So while we do not know whether the satisfiability problem of

AAUL is co-RE, we do know that is is not RE. In particular, this means that

the satisfiability problem of AAUL is undecidable.
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7. Conclusion

In this paper we introduced arbitrary arrow update logic where one can

quantify over arrow updates. We investigated its expressivity relative to other

logics in the family of dynamic epistemic logics, including epistemic logic with

common knowledge. For a finite set of agents and a countably infinite set of

propositional variables we managed to completely chart the expressivity land-

scape over the class of all Kripke models. For one agent and countably many

propositional variable we also completely charted the landscape, mostly because

in S5 all related systems boil down to epistemic logic. For two agents and one

propositional variable, there is only one question remaining and that is one half

of the relative expressivity of APAL and AAUL, and we conjecture that the

logics have non-comparable expressivity.

We also showed that the model checking problem for arbitrary arrow update

logic is PSPACE-complete, and we introduced a sound and complete infinitary

axiomatization for arbitrary arrow update logic.

As far as future research is concerned there are other arbitrary variants

of dynamic modal logics to consider and investigate their relative expressivity

to AAUL, moreover we can further develop variants of APAL present in the

literature and investigate what happens if we replace public announcements by

arrow updates.

Another interesting question for future research is whether we can char-

acterize for which dynamic operators “arbitrary version” are incomparable in

expressivity. As mentioned in Section 4.3, we would generally expect any two

logics using different “arbitrary operators” to be incomparable in expressivity.

Yet the logics RML and AAML turn out to be only as expressive as basic epis-

temic logic, and therefore less expressive than the logics APAL and AAUL. It

would be interesting to know exactly why RML and AAML deviate from the

expected pattern.

Finally, we could add more temporal connectives to AAUL, and study their

interaction with the [l] operator. In particular, if we add CTL-connectives like
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AG and AE we could use AAUL (with the normative interpretation) to study

concepts like liveness, fairness and safety.
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