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Abstract—This paper studies optimal time-bounded control in
a simple subclass of linear hybrid systems, which consists of
one continuous variable and global constraints. Each state has
a continuous cost attached to it, which is linear in the sojourn
time, while a discrete cost is attached to each transition taken. We
show the corresponding decision problem to be NP-complete and
develop an FPTAS for finding an approximate solution. We have
implemented a small prototype to compare the performance of
these approximate and precise algorithms for this problem. Our
results indicate that the proposed approximation schemes scale.
Furthermore, we show that the same problem with infinite time
horizon is in LOGSPACE.

I. INTRODUCTION

We study a simple subclass of linear hybrid systems [1]
extended with weights, which consist of one variable and
global constraints for the values that the variable is allowed
to take during a run of the system. The aim is to minimise
the total cost over a finite-time horizon or a long-time average
cost over an infinite time horizon. The cost is composed of
discrete and continuous parts. In our model, each state and
transition is assigned a fixed cost. Every time a transition is
taken (i.e. the current state changes), a cost assigned to this
transition is incurred. The continuous cost is the sum of the
products of the sojourn time in each state and the cost assigned
to this state. We exemplify this by applying this model to the
optimal control of heating, ventilation, and air-conditioning
(HVAC) systems. HVAC systems account for about 50% of
the total energy cost in buildings [2], so a lot of energy can be
saved by optimising their control. Many simulation programs
have been developed to analyse the influence of control on the
performance of HVAC system components such as TRNSYS
[3], EnergyPlus [4], and the Matlab’s IBPT [5]. Our approach
has the advantage over the existing control theory techniques
that it provides guarantees. We also study the computational
complexity of the underlying decision problems. We show that
the existence of a control with a cost lower than a given con-
stant is NP-complete. At the same time we develop a simple
constant factor approximation algorithm, which is then used
as the basis for a fully-polynomial-time approximation scheme
(FPTAS) for finding a solution with a relative performance
ρ for any ρ > 0. Moreover, we have implemented a small
prototype to compare the performance of these approximate
and precise algorithms for this problem. Our results indicate
that the proposed approximation schemes scale. Furthermore,
we show the limit-average cost optimisation problem over
infinite time horizon to be in LOGSPACE.

Related work. Our model can be seen as a weighted extension
of the linear hybrid automata model ([6], [7]), but with global
constraints only. Even basic questions for the general linear
hybrid automata model are undecidable already for three
variables and not known to be decidable for two variables [8].
Most of the research for this model has focused on qualitative
objectives such as reachability. Various subclasses of hybrid
systems with a decidable reachability problem were consid-
ered, see e.g. [8] for an overview. In particular, reachability
in linear hybrid systems, where the derivative of each variable
in each state is constant, can be shown to be decidable for
one continuous variable by using the techniques from [9]. In
[10], it has been shown that reachability is decidable for timed
automata, which are a particular subclass of hybrid automata
for which all the variables have slope equal to 1.

In this paper, we study the quantitive objective of cost
optimisation for a linear hybrid automaton model with one
variable, where each state and each transition is assigned a
weight. [11] studies a similar model with multiple variables,
but with no switching costs and only for the infinite time
horizon. [12] studies a hybrid automaton model, where the
dynamics are governed by linear differential equations, but
again without switching costs and only with an infinite time
horizon. Both of these papers show that, for any number of
variables, a schedule with the optimal long-time average cost
can be computed in polynomial time. In [13], [14], the same
models without switching costs have been studied over the
infinite time horizon, with the objective of minimising the
peak cost, rather than the long-time average cost. In [15],
long-time average and total cost games have been shown to be
decidable for hybrid automata with strong resets, in which all
variables are reset to 0 after each discrete transition. The long-
time average and total cost optimisation for the weighted timed
automata model have been shown to be PSPACE-complete (see
e.g. [16] for an overview).

There are many practical approaches to the reduction of
energy consumption and peak demand in buildings. One
particularly popular one is model predictive control (MPC)
[17]. In [18], stochastic MPC was used to minimise the energy
consumption in a building, while [19] studies the reduction of
the peak electricity demand. In [20], On-Off optimal control
was considered for air conditioning and refrigeration. The
drawback of using MPC is its high computational complexity
and the fact that it cannot provide any worst-case guarantees.
UPPAAL Stratego [21] supports the analysis of the expected
cost in linear hybrid systems, but uses a stochastic semantics
of these models [22], [23]. I.e. a control strategy induces



a stochastic model where the time delay in each state is
uniformly or exponentially distributed. This is different to the
standard nondeterministic interpretation of the model, which
we use in this paper.
Structure of the paper. The paper is organised as follows. We
introduce all necessary notation and formally define the model
in Section II. In Section III we prove the existence of optimal
schedules of a particular structure and that the infinite time
horizon decision problem is in LOGSPACE. In Section IV we
show that the cost optimisation decision problem for finite
time horizons is NP-complete. In Section V we introduce
a constant factor approximation algorithm for our problem.
In Section VI we extend this algorithm to an FPTAS by
a reduction to the 0-1 knapsack problem. In Section VII
we compare the performance of our algorithms on randomly
generated instances. Finally, we conclude in Section VIII.

II. PRELIMINARIES

A. Motivation

Our simple linear hybrid automata are motivated by the
following application. Suppose we would like to keep the
temperature in a room in a comfort zone, e.g. between Vmin
= 18◦C and Vmax = 22◦C. We have multiple heaters at our
disposal, each with a different running cost per time unit and
initial set up cost. The set up cost is paid every time the heater
is switched on, which models wear and tear of its multiple
elements. The aim is to find a schedule with the minimum
total average cost per time unit that keeps the temperature
within the comfort zone at all times for a given finite or infinite
time horizon. Note that, in the case of a finite time horizon,
the problem is the same as minimising the total cost incurred
during that finite time. As we will show later this problem is
NP-complete for the finite time horizon and so we will focus
later on finding an approximately optimal schedules instead.

Let V (t) be the function describing the temperature in the
room at time t and V (0) = V0 be the initial temperature
satisfying Vmin ≤ V0 ≤ Vmax. The equation below, taken
from [13], [14], describes the change of temperature in a room
with one heater:

C
dT

dt
+ λV = Q

where C is the thermal capacity of the room (kJ/K), λ is the
thermal conductance between the room and the ambient air
(kW/K), and Q is the heat input rate of the heater (kW). If
the heater is switched off then Q = 0. Solving this first order
differential equation gives us the following formula for V (t).

V (t) =
Q

λ
+

(
V0 −

Q

λ

)
e−

λ
C t

We can write down this equation as:

V (t) = K1e
−at +K2

where K1 = V0−Q
λ , K2 = Q

λ , and a = − λ
C . Under the natural

assumptions that the heater output is much higher than the heat
loss and the comfort zone is quite narrow, this exponential
behaviour can be approximated well by a linear behaviour.

This is because the slope of V (t) at t = 0 is aK1 and the
most extreme value of the slope of V (t) before the boundary
of the comfort zone is reached is aK1(1+(Vmax−Vmin)/K1).

B. Formal definition of Simple Linear Hybrid Automata

Motivated by our application, we define a
simple linear hybrid automaton A as a tuple
(M,A, πc, πd, [Vmin, Vmax], V0, tmax) where:
• M = {0, 1, . . . ,K} is the set of modes, where 0 is a

special idle mode; we use M+ to refer to the set of non-
idle modes, i.e. {1, . . . ,K}.

• A : M → Q is the slope of the variable in a given mode,
where A(m) > 0 for all m ∈M+ and A(0) < 0;

• πc : M → Q≥0 is the cost per time unit in a given mode,
where πc(0) = 0;

• πd : M → Q≥0 is the cost of switching to a given mode,
where πd(0) = 0;

• Vmin and Vmax are the minimum and maximum allowed
value of the variable, respectively;

• V0 ∈ [Vmin, Vmax] is the initial value of the variable;
• tmax ∈ Q ∪ {∞} is the end of the time horizon.
The definition of our model is motivated by the special

properties idle systems have. (In our motivating example, a
heating system is idle when all heaters are switched off.)
Switching to the idle state is free, while changing into a mode,
where the dynamics of the system are actively influenced—
in our example, by switching heaters on—incurs costs. These
costs come in two flavours: initial costs for starting such a
mode, and continuous costs for staying in it. Investing through
these ‘active’ states into influencing the dynamics of the sys-
tem leads to the continuous variable—the temperature in our
motivating example—to develop into the opposite direction
compared to the idle system.

As we will show in Observation 1 and Observation 2, the
decision problems for simple linear hybrid automata that we
study in this paper can easily be reduced to the same ones
for structurally equivalent simple linear hybrid automata with
Vmin = V0 = 0.

Running example. Suppose we need to keep the temperature
inside an office between 18◦C and 22◦C for tmax = 7 hours,
and the initial temperature inside of it is 18◦C. (As we will see
later, we can reduce this problem to keeping the temperature
inside between Vmin = V0 = 0◦C and Vmax = 4◦C.) We have
two heaters, i.e. K = 2, at our disposal: gas (mode 1) and
electric (mode 2). Their parameters are A(1) = 4/3 [◦C/h],
A(2) = 2 [◦C/h], and A(0) = −4 [◦C/h], i.e. it takes 3 hours
for the office to reach the maximum allowable temperature
of 22◦C when using the gas heater, but just 2 hours using
the electric one. It takes 1 hour for the office to cool from
22◦C to 18◦C, when both of the heaters are off (mode 0). The
running costs of the heaters are πc(1) = 10 [£/h] and πc(2) =
20 [£/h], and the initial costs of switching each heater are
πd(1) = 30 [£] and πd(2) = 10 [£]. That is, the gas heater is
cheaper to run, but more expensive to turn on, e.g. due to a
need for regular inspections. /
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C. Schedules, leaps, and their cost

A timed action is a pair (m, t) ∈M×R+ of a mode m and
time delay t > 0. A finite schedule σ is a finite sequence of
timed actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉, such that∑k
i=1 ti = tmax. An infinite schedule σ is an infinite sequence

of timed actions σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk), . . .〉,
such that

∑∞
i=1 ti =∞.

The run of a finite schedule σ is a sequence of states and
timed actions run(σ) = 〈V0, (m1, t1), V1, ..., (mk, tk), Vk〉
such that for all 0 ≤ i ≤ k − 1, we have that Vi+1 =
Vi + tiA(mi). A schedule and its run are called safe if
Vmin ≤ Vi ≤ Vmax holds for all 1 ≤ i ≤ k. The run of
an infinite schedule and its safety is defined accordingly.

The cost of a finite schedule σ =
〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 is defined as
π(σ) =

∑k
i=1 πd(mi) + πc(mi)ti. The limit-average

cost of an infinite schedule σ = 〈(m1, t1), (m2, t2), . . .〉 is
defined as

πavg(σ) = lim sup
k→∞

(
k∑
i=1

πd(mi) + πc(mi)ti

)
/

k∑
i=1

ti

A safe finite schedule σ is ε-optimal if, for all safe finite
schedules σ′, we have that π(σ′) ≥ π(σ) − ε. A safe finite
schedule is optimal if it is 0-optimal. A safe infinite schedule
σ is optimal if, for all safe infinite schedules σ′, we have that
πavg(σ

′) ≥ πavg(σ).

Running example continues. For instance σ1 = 〈(1, 3),
(0, 1), (2, 2), (0, 1)〉 and σ2 = 〈(1, 1), (2, 1), (0, 1

2 ), (1, 1),
(0, 1

2 ), (1, 1), (2, 1), (0, 1)〉 are both safe finite runs that last
for 7 hours. By summing up the contribution of each mode
to the overall cost, we get π(σ1) = (1 · 30 + 3 · 10) +
(1 · 10 + 2 · 20) = 110 [£] and π(σ2) = (3 · 30 +
3 · 10) + (2 · 10 + 2 · 20) = 180 [£]. Moreover, σ3 =
〈(1, 3), (0, 1), (2, 2), (0, 1), (1, 3), (0, 1), (2, 2), (0, 1), . . .〉 is a
safe infinite run with the average cost πavg(σ3) =
110/7 [£/h]. /

Given a simple linear automaton A = (M,A, πc, πd,
[Vmin, Vmax], V0, tmax) with Vmin > 0, consider automaton
A′ := (M,A, πc, πd, [0, Vmax−Vmin], V0−Vmin, tmax). Note
that any finite (infinite) safe schedule σ in A is also safe in
A′ and its cost (limit-average cost, respectively) is the same.
As a result we have the following observation which allows
us to assume Vmin = 0 from now on.

Observation 1: Any decision problem regarding (ε-)optimal
(finite or infinite) schedules for simple linear hybrid automata,
can be easily reduced to the same decision problem for simple
linear hybrid automata with Vmin = 0.

A leap is a sequence of two pairs (mk, tk), (mk+1, tk+1)
in a schedule such that mk+1 = 0, A(mk)tk ≤ Vmax, and
A(mk)tk + A(mk+1)tk+1 = 0. A leap is of type i ∈ M+ iff
mk = i. A complete leap is a leap such that A(k)tk = Vmax.
By ∆ti and ∆πi we denote the time duration and the cost
of a complete leap of type i ∈ M+, respectively. Note that
∆ti = Vmax/A(i) − Vmax/A(0) and ∆πi = πd(i) + πc(i) ·

Vmax/A(i). We also introduce πe(i) = (∆πi− πd(i))/∆ti to
be the effective continuous cost rate per time unit of using
mode i as part of a leap. Note that a leap of type i that lasts
for time t has the total cost of πd(i) + πe(i) · t.
Running example continues. For instance (1, 3), (0, 1) is a
complete leap of type 1 and (2, 1), (0, 1

2 ) is an incomplete leap
of type 2. Their costs are (30 + 3 · 10) + (0 + 1 · 0) = 60 [£]
and (10 + 1 · 20) + (0 + 1

2 · 0) = 30 [£], respectively. We
can calculate that ∆t1 = 3 [h], ∆t2 = 2 [h], ∆π1 = 60 [£],
and ∆π2 = 50 [£]. Moreover, πe(1) = 7 1

2 [£/h] and πe(2) =
13 1

3 [£/h]. Note that the cost of this example incomplete leap
of type 2 is πd(2) + πe(2) · (1 + 1

2 ) = 30 [£], which matches
the cost that we computed earlier. /

D. Approximation algorithms

We study approximation algorithms for the minimisation
cost problem in simple linear hybrid automata. An algorithm
has a relative performance ρ iff for all inputs x the cost of the
solution that it computes, f(x), satisfies OPT (x) ≤ f(x) ≤
(1 + ρ) · OPT (x), where OPT (x) is the optimal cost for
the input x. We are particularly interested in polynomial-time
approximation algorithms. A polynomial-time approximation
scheme (PTAS) is an algorithm that, for every ρ > 0, runs in
polynomial-time and has relative performance ρ. Note that the
running time of a PTAS may depend in an arbitrary way on
ρ. Therefore, we typically strive to find a fully polynomial-
time approximation scheme (FPTAS) which is an algorithm
that runs in polynomial-time in the size of the input and 1/ρ.

In particular, the following two well-known optimisations
problems have a FPTAS: the 0-1 Knapsack problem and the
Unbounded Knapsack problem (see e.g. [24]). In the 0-1
Knapsack problem, we are given a knapsack with a fixed
volume and a list of items, each with an integer volume and
value. The aim is to pick a subset of these items that together
do not exceed the volume of the knapsack and have the
maximum total value. In the Unbounded Knapsack problem,
the setting is the same, but there are unlimited number of
copies of each item. Both problems are well-known to be NP-
complete [25], but possess pseudo-polynomial algorithms and
FPTASes (see e.g. [24]).

III. OPTIMAL SCHEDULES

We start with considering the easy case of infinite time
horizons, before turning to the interesting case of finite time
horizons.

A. Infinite time horizon

Let j = argmini∈M+ ∆πi/∆ti. Obviously, at all times
t = k ·∆tj where k ∈ N, using only complete leaps of type j
is the cheapest finite schedule. Consequently, the limit superior
of the average cost cannot be smaller than ∆πj/∆tj . At the
same time, the simple schedule that only uses complete leaps
of type j realises this long-time average. Taking into account
that argmini∈M+ ∆πi/∆ti can be computed using logarith-
mic space, because multiplication, division and comparison
can be [26], we get the following theorem.
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Theorem 1: An optimal safe infinite schedule can be com-
puted in deterministic LOGSPACE.
Running example continues. It is easy to check that σ4 =
〈(1, 3), (0, 1), (1, 3), (0, 1), . . .〉 is an optimal safe infinite run
whose long-time average cost is πavg(σ4) = 15 [£/h]. /

B. Finite time horizon

Vmax

Vmin
5

tmax

1

2

3

4

Fig. 1: Any optimal schedule can be assumed to reach value
Vmin = 0 at the end. Replacing timed actions 1 → 2 → 3 in
a finite safe schedule with timed actions 1 → 4 → 5 reduces
the cost of this schedule within its time horizon tmax.

We start with the following observation.
Proposition 1: For every safe schedule σ there exists a safe

schedule σ′ with the same or a lower cost and the value of
the variable at the end of run(σ′) equal to Vmin = 0.

Proof: We can see this illustrated in Figure 1. Let t be
the first point of time during the execution of σ that the value
of the variable equals A(0) · (t − tmax). (Note that such a
t ∈ [0, tmax] exists.) We then construct σ′ from σ by changing
the behaviour in the last tmax− t time units, choosing the idle
mode there. As choosing the idle mode incurs no costs, this
can only reduce the overall costs.

In the remainder of this paper, we assume that all schedules
have the property as stated in Proposition 1. In fact, we can
show that there exists an optimal schedule of a very special
form as stated by the following theorem.

Theorem 2: For every safe schedule σ there exists a safe
schedule σ′ consisting of a sequence of leaps where all but
possibly the last one are complete and such that the cost of
σ′ is the same or lower than σ.

Vmax

Vmin
1

2

3

4

5

6

Fig. 2: Two incomplete leaps 1 → 2 → 3 and 3 → 4 → 5
being combined into one leap 1→ 6→ 5.

Proof: Let σ = 〈(m1, t1), (m2, t2), . . . , (mk, tk)〉 be any
safe schedule. Define Tσ(m) :=

∑
1≤i≤k:mi=m

ti to be the

Vmax

Vmin
1

2

3

4

5

6

7

8

Fig. 3: Two incomplete leaps 1 → 2 → 3 and 3 → 4 → 5
being combined into one complete leap 1 → 6 → 7 and one
incomplete one 7→ 8→ 5.

total time mode m ∈ M+ is used for in σ. We define a
schedule σ′′ as follows: it starts with bTσ(m)A(m)/Vmaxc
complete leaps of type m for each mode m ∈M+. At the end
we add for each m ∈ M+ an incomplete leap starting with
a timed action (m,Tσ(m) − A(m)bTσ(m)A(m)/Vmaxc) if
Tσ(m)A(m)/Vmax is not an integer. It is easy to see that σ′′ is
safe and no more expensive than σ, because each mode is used
the same amount of time as in σ and the number of switches to
any mode m ∈M+ is the same or smaller. To construct σ′ we
iterate the following until there is at most one incomplete leap
left: take the first two incomplete leaps in σ′′: (m1, t1), (0, t01)
and (m2, t2), (0, t02). W.l.o.g. the continuous cost for mode
m1 is lower, i.e. πc(m1)·t1/(t1+t01) ≤ πc(m2)·t2/(t2+t02).
We can then replace these two incomplete leaps by
• (m1, (t1 + t2 + t01 + t02) · t1/(t1 + t01)), (0, (t1 + t2 +
t01 + t02) · t01/(t1 + t01)) if it is a leap, i.e. (t1 + t2 +
t01 + t02) · t1/(t1 + t01) ≤ Vmax, see Figure 2

• one complete leap for m1 and a shorter leap for m2 such
that the time delay of the two leaps is t1 + t2 + t01 + t02,
see Figure 3

This operation cannot increase the cost of the schedule,
because the continuous cost of m1 is the same or lower and
the number of mode switches is the same or lower. At the
same time the number of incomplete leaps is strictly reduced.

From Theorem 2, an optimal schedule exists, because for
any fixed time horizon tmax there are only finitely many
schedules of the form stated and no other schedule can have
a better cost than all of them.

When we allow the initial value, V0, of the variable to
be non-zero at the beginning, then we can exploit a similar
argument to show that it is safe to initially stay in the idle
mode until either tmax is reached or the value of the variable
has fallen to Vmin = 0, whatever happens first.

Observation 2: For simple linear hybrid automata with
V0 > Vmin the following holds. For every safe schedule σ
there exists a safe schedule σ′ where initially the idle mode
is active until the value of the variable is Vmin = 0 (or, if
this is earlier, for the complete duration tmax), followed by
a sequence of leaps, where all but possibly the last one are
complete and such that the cost of σ′ is the same or lower
cost than σ.
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IV. NP-COMPLETENESS OF FINITE TIME HORIZON
OPTIMAL CONTROL

In this section, we study the complexity of the optimal
control problem for a finite time horizon. As usual, we analyse
the complexity of the related decision problem:

For a given cost C, is there a way to control the
system in such a way that the total cost incurred for
keeping the system in the safe zone for time tmax
is at most C?

We show that this optimal control decision problem is
NP-complete. We start by showing its hardness by a reduc-
tion from the Unbounded Knapsack problem, which is NP-
complete [25]. For this reduction, it suffices to use a simpler
problem, where all continuous costs πc are 0. We refer to this
problem as 0-cost rate optimal control decision problem.

Theorem 3: The 0-cost rate optimal control decision prob-
lem is NP-hard.

Proof: For the 0-cost rate optimal control problem, cost is
only incurred when switching to a non-idle mode. This reduces
our continuous optimisation problem to a discrete one, which
is easier to relate to the Unbounded Knapsack problem.

In this setting, the natural constraint of the decision problem
would be that the time horizon needs to be covered completely,
which is reflected by ∑

i∈M+

ni∆ti ≥ tmax

This constraint says that the sum of the time of leaps is at least
tmax. This includes the—possibly incomplete—last leap. Note
that, in our discrete setting where the length of the leap does
not influence the cost, the question of whether or not this cycle
is complete is irrelevant for the total cost. For this reason, the
ni in this proof refer to all leaps, including the incomplete
one.

Under this constraint, we would ask if there are natural
numbers (ni)i∈M+ such that

∑
i∈M+ niπd(i) ≤ C. These

two constraints together are precisely the constraints used in
the Unbounded Knapsack problem, where C represents the
volume of the knapsack, πd(i) is the volume of item i—such
that

∑
i∈M+ niπd(i) ≤ C reflects the constraint volume of the

knapsack—∆πi the value of item i, and tmax the lower bound
on the overall value—such that

∑
i∈M+ ni∆πi ≥ tmax refers

to the (decision version of) the optimisation criterion.
The inclusion in NP of the general cost optimisation de-

cision problem is straightforward, as the problem can be re-
written as an integer linear program. Assume that we know
the type, j, of the incomplete leap at the end of the schedule.
We can then solve the decision cost optimisation problem by
solving the following integer linear constraint system.∑
i∈M+

ni∆πi +
(
tmax −

∑
i∈M+

ni∆ti
)
πe(j) + πd(j) ≤ C

The first term in this expression is the total cost of the complete
leaps and the other one is the total cost of the last (possibly

incomplete) leap, whose duration is tmax −
∑
i∈M+ ni∆ti.

Additionally we need the following constraints.∧
i∈M+

ni ∈ Z ∧
∧

i∈M+

ni ≥ 0 ∧

tmax ≥
∑
i∈M+

ni∆ti ≥ tmax −∆tj

A solution to such a system of integer linear constraints, if it
exists, can be guessed and verified in polynomial-time, which
shows that the problem is in NP for a fixed j. Furthermore, j
can be guessed at the same time, which gives us the following
theorem.

Theorem 4: The finite time horizon optimal control deci-
sion problem is NP-complete.

V. CONSTANT FACTOR APPROXIMATION ALGORITHM

We show here an approximation algorithm with a constant
relative performance ≤ 2 for the cost minimisation problem in
simple linear hybrid automata. We prove that it suffices to pick
the cheapest schedule among the ones that only use one of the
modes. Building on this constant approximation algorithm, we
will show FPTAS for the same problem in the next section.

Algorithm 1 Constant factor approximation algorithm com-
puting a finite schedule with the total cost at most twice the
optimal one.

1: MinCost :=∞; m := 0;
2: for i := 1 to K do
3: Cost := πe(i) · tmax + πd(i) · ki
4: if Cost < MinCost then
5: MinCost := Cost; m := i;
6: end if
7: end for
8: return schedule consisting of btmax/∆tmc complete

leaps of type m followed by at most one more leap of
type m for the remaining time tmax−btmax/∆tmc ·∆tm

Let ki := dtmax/∆tie denote the minimum number of leaps
of type i that have to be used to cover the whole time horizon
tmax by themselves. Let us introduce the following constant
α := max{1,max{i∈M+|ki≥2} ki/(ki − 1)}, where as usual
max ∅ = −∞. Note that α ≤ 2, because ki/(ki−1) decreases
with ki and ki ≥ 2.

Theorem 5: Algorithm 1 runs in deterministic LOGSPACE
and returns an α-approximate schedule.

Proof: It is straightforward to see that the algorithm can
be made to run in deterministic LOGSPACE, because it suffices
to only store m inside the for loop and outputting the value and
comparisons between arithmetic expressions can be performed
in deterministic LOGSPACE [26].

To prove that the schedule returned has relative performance
at most α, we first introduce some useful notation. Let Xj be
the value of the Cost variable for i = j, i.e. Xj = πe(j) ·
tmax + πd(j)kj for all j ∈ M+, which is the minimum cost
of a schedule that only uses leaps of type j. Let us assume
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w.l.o.g. that the mode picked by Algorithm 1 is 1. Thus, for all
i ∈M+ we have X1 ≤ Xi. Let σ be an optimal finite schedule
of the form as described in Theorem 2. For any i ∈ M+ let
ni ∈ N be the number of complete leaps of type i in σ. Let the
last leap in σ be of type m and 0 ≤ L ≤ ∆tk be the time that
it lasts for. Note that L = tmax −

∑
i∈M+ ni∆ti. From the

definition of ki we know that ki∆ti ≥ tmax ≥ (ki−1)∆ti. It
follows that ∆ti/tmax ≤ 1/(ki−1) for ki ≥ 2. If ni ≥ 1 then
obviously ∆ti/tmax ≤ 1, because otherwise we would have
L < 0. Based on these, we note the following estimations:

1− L

tmax
=
∑
i∈M+

ni∆ti
tmax

=
∑

{i∈M+|ni≥1}

ni∆ti
tmax

=

∑
{i∈M+|ni≥1&ki=1}

ni∆ti
tmax

+
∑

{i∈M+|ni≥1&ki≥2}

ni∆ti
tmax

≤

∑
{i∈M+|ni≥1&ki=1}

ni
ki

+
∑

{i∈M+|ni≥1&ki≥2}

ni
ki

ki
ki − 1

≤

max{1, max
{i∈M+|ki≥2}

ki
ki − 1

}
∑
i∈M+

ni
ki

= α
∑
i∈M+

ni
ki

Moreover, we have the following. If km ≥ 2 then kmL
tmax

≤
km∆tm
tmax

≤ km
km−1 ≤ α. If km = 1 then kmL

tmax
≤ 1 ≤ α, so in

fact in both cases kmL
tmax

≤ α.
We are now ready to give a lower bound on the total cost

of the optimal schedule σ in terms of X1. The total cost of σ
is equal to the following expression.∑

i∈M+

(niπd(i) + ni∆tiπe(i)) + πd(m) + Lπe(m) =∑
i∈M+

ni
ki

(kiπd(i) + ki∆tiπe(i)) + πd(m) + Lπe(m) ≥∑
i∈M+

ni
ki

(kiπd(i) + tmaxπe(i)) + πd(m) + Lπe(m) =∑
i∈M+

ni
ki
Xi + πd(m) + Lπe(m) ≥∑

i∈M+

ni
ki
X1 + πd(m) + Lπe(m) ≥

X1

α

(
1− L

tmax

)
+

kmL

αtmax
πd(m) +

L

α
πe(m) ≥

X1

α

(
1− L

tmax

)
+

L

αtmax
(kmπd(m) + tmaxπe(m)) =

X1

α

(
1− L

tmax

)
+

L

αtmax
Xk ≥

X1

α

(
1− L

tmax

)
+

L

αtmax
X1 =

X1

α

This shows that the cost of X1 is at most α times the optimal
cost, which concludes the proof.
Running example continues. It is easy to check that
σ5 = 〈(1, 3), (0, 1), (2, 2), (0, 1)〉 is an optimal safe run
whose cost is π(σ5) = 110 [£]. At the same time,
a cheapest safe schedule consisting of leaps of type 1
is σ6 = 〈(1, 3), (0, 1), (1, 9

4 ), (0, 3
4 )〉 and of type 2 is

σ7 = 〈(2, 2), (0, 1), (2, 2), (0, 1), (2, 2
3 ), (0, 1

3 )〉. Their costs
are π(σ6) = 2 · 20 + (3 + 9

4 ) · 10 = 112.5 and π(σ7) =
3 · 10 + 4 2

3 · 20 = 1231
3 . Hence, Algorithm 1 will return σ6

and the approximation ratio of this solution is 1.022. /

From the proof of Theorem 5 we can easily deduce the
following corollary.

Corollary 1: Algorithm 1 returns an optimal schedule if
πd(i) = 0 for all i ∈M+.

Proof: Analysing the proof of Theorem 5 we can make
the following observations. If πd(1) = πd(i) = 0 then the
condition X1 ≤ Xi implies that πe(1) ≤ πe(i). The cost of
an optimal schedule σ is

∑
i∈M+ ni∆tiπe(i) + Lπe(m) ≥∑

i∈M+ ni∆tiπe(1) + Lπe(1) = tmaxπe(1) = X1.

VI. FPTAS ALGORITHM

We show here that the cost minimisation problem for simple
linear hybrid automata is in FPTAS by a polynomial time
reduction to the 0-1 Knapsack problem, for which many
FPTAS algorithms are available (see e.g. [24]).

Let c∗ be the α-approximation, which can be computed
using Algorithm 1, of the optimal cost o∗. Since α ≤ 2,
to get an approximation to our optimal cost problem with
a relative performance ρ, it suffices to find a solution with
c∗ρ/2 absolute performance. We split this into two equal
parts of ε = c∗ρ/4. An optimal solution to the knapsack
instance that we produce will provide us with a schedule
with cost no greater than ε over the optimal one. Moreover,
a solution to the knapsack instance with δ absolute error will
provide a schedule with an ε + δ absolute error. Therefore,
it suffices to set δ = ε to find a schedule with ρ relative
performance. In our reduction, the value of the resulting
knapsack problem is at most 4|M | times the optimal cost
for safe schedules, so by using ρ′ = ρ/(8|M |), for the
resulting knapsack problem we will find a near optimal
solution with a relative performance ρ for simple linear
hybrid automata. The running time of this procedures is in
O(poly(1/ρ)poly(|M |)poly(size of the knapsack instance)).
This suffices to establish the inclusion of the cost minimisation
problem for simple linear hybrid automata in FPTAS.

Let σ be an optimal safe schedule consisting of a sequence
of leaps where all but possibly the last one are complete, which
has to exist due to Theorem 2. Let m∗ ∈ M+ be the mode
used in the last leap in σ. Note that we can try all modes
as candidates for m∗. For each mode m ∈ M+ we build
the following items for this knapsack problem instance: {(2i ·
∆tm, 2

i · ∆πm) | i ∈ N ∧ 2i · ∆πm ≤ c∗ ∧ 2i · ∆tm ≤
tmax}. Let i∗ ∈ N be smallest such that 2−i

∗ · (∆πm∗ −
πd(m

∗)) ≤ ε. For m∗ we add the following extra multiset
of items: {(2−i ·∆tm∗ , 2−i · (∆πm∗ − πd(m∗))) | i ∈ Z+ ∧
i ≤ i∗ ∧ 2−i · (∆πm∗ − πd(m

∗)) ≤ c∗} and additionally
(2−i

∗ ·∆tm∗ , 2−i
∗ · (∆πm∗ − πd(m∗))), which is a copy of

an element already in the multiset. Let tΣ be the time span of
all items in this knapsack instance. We set the volume of this
0-1 knapsack instance to be tΣ − tmax.

The just produced knapsack problem has the following
properties:
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• the size of its description is polynomial in the size of the
original problem including the relative performance

• if there is an incomplete leap of m∗ in σ, it can be
overestimated by stringing together the fractional copies
of leaps (without start-up cost), so that we do not exceed
the volume by 2−i

∗ · ∆tm∗ or more, and if there is no
incomplete leap in σ, one complete leap of m∗ of σ can
be replaced by all of these fractional copies of leaps of
m∗; the remaining complete leaps can be replaced by
sums of complete leaps of the respective type.

• The volume of these items is ≥ tmax. Let v∗ be the value
of these items. Then v∗+πd(m∗)−ε ≤ o∗ ≤ v∗+πd(m∗).

• Let VΣ be the value of all items in the multiset. For any
solution to the knapsack problem with value V we get a
schedule σ′ with cost ≤ VΣ − V + πd(m

∗).
Lemma 1: Solving this knapsack instance with a relative

performance of ρ/(8|M |) gives us a safe schedule with relative
performance of ρ.

Corollary 2: Solving the optimal control problem for sim-
ple linear hybrid automata with relative performance ρ takes

O(poly(1/ρ)poly(size of the instance))

time and is therefore in FPTAS.

VII. EXPERIMENTAL RESULTS

In this section, we compare the performance of the several
algorithms that we devised for the optimal finite time horizon
control problem for simple linear hybrid automata. Namely,
we compare the constant factor approximation algorithm from
Section V, an algorithm based on the integer programming
formulation of our optimisation problem stated explicitly in
this section as Algorithm 2, and the FPTAS from Section VI.
All algorithms were implemented in Matlab version 2016a
and all tests were run on a HP DV6-6199ee with Intel core i7
2GHz CPU and 8GB of RAM. For integer linear programming
(ILP) we used the standard library provided in Matlab. For
larger instances the Matlab’s ILP library was running out of
memory and crashing. However, it was running very fast (in
less than 2 seconds) for the instances it did not crash on, which
shows that the library may have some memory management
issues.

We tested our algorithms on randomly generated instances
with strongly correlated coefficients as defined in Section 5.5
of [24] for the 0-1 knapsack problem. As tested in [24], such
instances are some of the hardest to solve for most algorithms
for the 0-1 knapsack problem. In our setting, an instance of
this type is defined as follows. First, for all i ∈M+, we pick
∆ti uniformly at random from the interval [1, R], where R is
some constant. We then assign ∆πi = ∆ti+

R
10 for i ∈M+ as

well as πd(i) = γ∆πi, where γ is picked uniformly at random
from the [0.1, 0.4] interval. We also set Vmin = 18◦C, Vmax =
22◦C, and A(0) = −1. Based on this information, we can
reverse engineer all the other parameters A(i) and πc(i) for all
i ∈ M+ of this simple linear hybrid automaton instance. For
each instance we consider various lengths of the time horizon
tmax = h ·

∑
i∈M+ ∆ti, where h = {0.2, 0.4, 0.6, 0.8, 1}. We

Algorithm 2 Integer Linear Programming algorithm for the
optimal cost problem.

1: Solve the following ILP for all possible j ∈M+:

Min
∑
i∈M+

ni∆πi+
(
tmax−

∑
i∈M+

ni∆ti
)
πe(j)+πd(j)

Subject to the following constraints:∧
i∈M+

ni ∈ Z ∧
∧

i∈M+

ni ≥ 0 ∧

tmax ≥
∑
i∈M+

ni∆ti ≥ tmax −∆tj

2: Pick j∗ and the corresponding solution (ni)i∈M+ with
the minimum value of the objective function.

3: return schedule consisting of ni complete leaps of type
i for all i ∈ M+ followed by a leap of type j∗ and
duration tmax −

∑
i∈M+ ni∆ti

tested our algorithm for different values of R, but since there
was no significant difference in the relative performance of the
algorithms, we only include the running times for R = 6000.

∀i∆ti ∈ [1, 6000]
tmax 0.2

∑
i ∆ti 0.4

∑
i ∆ti 0.6

∑
i ∆ti 0.8

∑
i ∆ti

∑
i ∆ti

K=2 20.3 29.3 21.3 31.7 19.1
K=4 41.4 57.6 45.5 70.4 43
K=6 79 93.7 — — —
K=8 — 123.3 — — —

K=10 128.4 — 101.7 — —
K=20 — — — — —
K=30 — — — — —
K=40 — — — — —
K=50 — — — — —

TABLE I: Average running time over 1000 random instances
each for the Mixed Integer Linear Programming algorithm (in
milliseconds), where K is the number of modes.

Table I shows the average execution time of the optimal
integer linear programming (ILP) algorithm in milliseconds.
The dashed cells mean that the algorithm failed to give an
answer and the system crashed. We can conclude that the
algorithm performs very well and, if it does not crash, it returns
the optimal schedule quickly (in less than 2 seconds). We plan
to use a different ILP library in the future to check whether the
crashes are just due to MatLab’s ILP library implementation.

Table II shows the average execution time of the constant
factor approximation algorithm in milliseconds. As the algo-
rithm is really simple, the execution time is really small for
all the instances that we tried it on. Although this algorithm
in general can return a solution with twice the optimal cost
in the worst-case, by comparing its solutions with the optimal
ones found by the ILP algorithm, we found that for all these
instances the relative performance was below 10%. Moreover,
as we showed in Section V, the longer the time horizon is,
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∀i∆ti ∈ [1, 6000]
tmax 0.2

∑
i ∆ti 0.4

∑
i ∆ti 0.6

∑
i ∆ti 0.8

∑
i ∆ti

∑
i ∆ti

K=2 0.012 0.012 0.012 0.012 0.012
K=4 0.012 0.012 0.012 0.012 0.012
K=6 0.012 0.012 0.014 0.014 0.014
K=8 0.012 0.013 0.013 0.015 0.015
K=10 0.013 0.013 0.014 0.014 0.015
K=20 0.021 0.021 0.025 0.024 0.023
K=30 0.022 0.024 0.025 0.025 0.025
K=40 0.022 0.025 0.026 0.025 0.025
K=50 0.023 0.024 0.023 0.024 0.024

TABLE II: Average running time over 1000 random instances
each for the constant factor approximation algorithm (in mil-
liseconds), where K is the number of modes.

the better are the worst-case guarantees that this algorithm
provides. So if each heater has to be used at least 11 times
by itself to cover the whole time horizon (i.e. ki ≥ 11 for all
i ∈ M+), the cost of the solution returned by this algorithm
is at most 1/10 = 10% higher than the optimal one.

∀i∆ti ∈ [1, 6000]
tmax 0.05

∑
i ∆ti 0.1

∑
i ∆ti 0.2

∑
i ∆ti {0.4, . . . , 1}

∑
i ∆ti

K=2 21.61 84.55 332.28 —
K>2 — — — —

TABLE III: The average running time over 1000 random
instances each for the FPTAS algorithm (in seconds), where
K is the number of modes.

Finally, Table III shows the average execution time in
seconds for the FPTAS approximation algorithm with ρ =
10%. The dashes mean that the algorithm took too much
time to produce an answer (with a one hour timeout). We
found FPTAS to perform poorly on these very hard instances.
However, on uncorrelated instances this algorithm performs
very well. We leave as future work the development of an
FPTAS that works well in practice for all kind of instances.

Based on these tests we can conclude that, for simple linear
hybrid automata with a small number of modes, it is best to use
the optimal integer programming algorithm as it runs quickly
and gives the exact optimal schedule. In all other instances, the
constant factor approximation algorithm is the best choice as it
runs really quickly and most of the time gives a near-optimal
answer.

VIII. CONCLUSIONS

Linear hybrid systems are computationally challenging. In
particular, safety and reachability are undecidable already for
three variables. We have identified the class of simple linear
hybrid systems as a class that arises naturally when studying
the optimal control of heating or cooling systems: there is
only one continuous variable (the temperature in our setting)
in addition to the time. Although it was to be expected that the
optimal control for this model is decidable, the fact that this
problem is both NP-complete and admits an FPTAS was not.
Only a small number of NP-hard problems admit a FPTAS, i.e.
can be approximated with relative precision ρ, in polynomial

time in the size of the input and 1/ρ. Most NP-hard problems
can be shown to be inapproximable within a constant relative
performance in polynomial time unless P=NP. The existence
of FPTAS, besides offering a cheap approximation in every
desired precision, often indicates that good standard solvers
will normally behave well. In our example, this may be viewed
as a reason why the ILP solver performs so well on our
benchmark. (That is, when it did not crash, which was most
likely due to MatLab’s ILP library that we used.)

Summing up, we have identified a simple subclass of
linear hybrid automata with an easy (LOGSPACE) optimal
control problem over an infinite time horizon, and a control
problem over a finite time horizon which is fast to approximate
(FPTAS). We believe that this class is of interest because,
broadly speaking, it is just tractable enough. Adding to the
collection of classes with de-facto efficient algorithms expands
the set of problems that we can handle. As the next step, we
plan to analyse the model where there can be multiple modes
with negative slopes (i.e. A(i) < 0) apart from the idle mode.
Such a generalisation, however, breaks down the existence of
an optimal schedule consisting of leaps, which was crucial for
the development of an FPTAS algorithm for this problem. We
conjecture that the optimal control problem for such a model
is still decidable, but with a higher computational complexity.
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