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Abstract Program synthesis can be viewed as an exploration of the
search space of candidate programs in pursuit of an implementation that
satisfies a given property. Classic synthesis techniques facilitate exhaust-
ive search, while genetic programming has recently proven the potential
of generic search techniques. But is genetic programming the right search
technique for the synthesis problem? In this paper we challenge this be-
lief and argue in favor of simulated annealing, a different class of general
search techniques. We show that, in hindsight, the success of genetic pro-
gramming has drawn from what is arguably a hybrid between simulated
annealing and genetic programming, and compare the fitness of classic
genetic programming, the hybrid form, and pure simulated annealing.
Our experimental evaluation suggests that pure simulated annealing of-
fers better results for automated programming than techniques based on
genetic programming.

1 Introduction

The development of correct code can be quite challenging, especially for con-
current systems. Classical software engineering methods, where the validation is
based on testing, do not seem to provide the right way to approach this type of
involved problems, as bugs easily elude predefined tests. Guaranteeing correct-
ness for such programs is also not trivial. Manual proof methods for verifying the
correctness of the code against a given formal specification were suggested in the
late 60s. The next step for achieving more reliable software has been to offer an
automatic verification procedure through model checking [6,2,18,1,26,3,27,15].

The holy grail of such techniques would be synthesis: the automated construc-
tion of programs that are correct by construction. Such synthesis techniques have
long been held to be impossible for reactive systems due to the complexity of
synthesis, which ranges from EXPTIME for CTL synthesis [5,25] to undecidable
for distributed systems [33,30,13,34].

This line of thought has come under attack on many fronts. On the theoretical
side, bounded [14] and succinct [11] synthesis techniques have levelled the playing
field between the verification and synthesis of reactive systems by shifting the
focus from the input complexity to the cost measured in the minimal explicit
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and symbolic solution, respectively. One could argue that this is the theoretical
underpinning of successful approaches, including implementations of bounded
synthesis [12,10] and methods based on genetic programming [20,21,22,23].

The success of genetic programming is also based on the observation that the
neighborhood of good solutions are often ‘not bad’, and would often still display
many sought after properties, such as satisfying a number of sub-specifications
fully, and others partially. Such properties are translated to a high fitness of
the candidate solution. Vice versa, the higher the fitness of a candidate, the
more likely is it to find a full solution in its proximity. This observation is also
at the heart of traditional engineering techniques: usually the elimination of a
bug does not cause errors in other places. It is also the assumption used when
applying program repair [19,36] techniques. The successive development into
correct programs is also distantly related to counter-example-guided inductive
synthesis [35] for inductive programs, where a genetic approach has also been
discussed [7].

Our work is at the same time inspired by the success of genetic programming
and driven by the doubt if genetic programming is the right generic search
technique to use. The success of genetic programming for synthesis is thoroughly
documented by a series of papers by Katz and Peled [21,22,23]. The doubts, on
the other hand, are fueled by the general observation that genetic programming
is often outperformed by simulated annealing [8,28,31].

On a conceptual level, the difference between simulated annealing and genetic
programming techniques are rather minor. These difference are threefold. The
first difference is in the number of candidates considered in each iteration. In
genetic programming, these are many. In the Katz and Peled papers [21,22,23],
for example, these are typically 150, 5 from the previous cycle and 145 mutated
programmes—numbers we have copied for our own experiments with genetic
programming. In simulated annealing, there is typically one new implementa-
tion in each iteration. The second difference is that genetic approaches may use
crossovers, a proper mix of two candidate solutions, in addition to mutations,
whereas simulated annealing only uses mutations1. The third difference is the
way the selection takes place. The rules for selection is typically static for genetic
programming, while the entropy falls over time in simulated annealing.

It is important to note that crossovers are not always used in genetic pro-
gramming, and we are not aware of any genetic programming approach that has
tried to exploit crossovers for synthesis. Personal communication with the au-
thors of [21,22,23] showed that they did not believe that crossover would be useful
in the context of synthesis. Simulated annealing has been reported [8,28,31] to
outperform genetic programming when crossovers do not provide an advantage
or are not used. Broadly speaking, this is because keeping only a single instance
increases the update speed (where the factor is roughly the number of instances),
whereas many instances reduce the search depth or increase the likelihood of suc-

1 The changes are usually not referred to as mutations, but the rules of obtaining them
are the same. We use the term mutations for simulated annealing, too, in order to
ease the comparison between simulated annealing and genetic programming.
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cess in a bounded search with a fixed number of iterations. Overall, the speed-up
of the update tends to outweigh the increase in depth, or the reduction in the
success rate, of a bounded search. This led us to the hypothesis that the same
holds when these techniques are used in synthesis.

Finally, the paper series on genetic programming by Katz and Peled [21,22,23]
has used a layered approach, where the weighing of the search function differs
over time, starting with establishing the safety properties. The effect of this dif-
ference is comparable to the effect of cooling when a stable level of quality is
reached. We took this as another hint that simulated annealing is the more ap-
propriate technique when implementing synthesis based on general search with
model checking as a fitness measure. In this work we suggest to use simulated
annealing for program synthesis and compare it to similar approaches based on
genetic programming. We use a formal verification technique, model checking,
as a way of assessing its fitness in an inductive automatic programming sys-
tem. We have implemented a synthesis tool, which uses multiple calls to the
model checker NuSMV [3] to determine the fitness for a candidate program. The
candidate programs exist in two forms. The main form is a simple imperative
language. This form is subject to mutation, but it is translated to a secondary
form, the modeling language of NuSMV, for evaluating its fitness. All choices of
how exactly a program is represented and how exactly the fitness is evaluated
are disputable. Generic search techniques are, however, usually rather robust
against changes in such details. While there has been further research on how
to measure partial satisfaction [17], we believe that the best choice for us is to
keep to the choices made for promoting genetic programming [21,22,23], as this
is the only choice that is completely free of suspicion of being selected for being
more suitable for simulated annealing than for genetic programming. A second
motivation for this selection is that it results in very simple specifications and,
therefore, in fast evaluations of the fitness. Noting that synthesis entails on av-
erage hundreds of thousands to millions of calls to a model checker, only simple
evaluations can be considered. We have implemented six different combinations
of selection and update mechanism to test our hypothesis: besides simulated
annealing, we have used genetic programming both without crossover (as dis-
cussed in [21,22,23]) and with crossover. The tests we have run confirmed that
simulated annealing performs significantly better than genetic programming. As
a side result, we found that the assumption of the authors of [21,22,23] that
crossover does not accelerate genetic programming did not prove to be entirely
correct, but the advantages we observed were minor.

2 The approach in a nutshell

In a nutshell, our synthesiser (cf. Figure 1) consists of four main compon-
ents: a modifier / seeder for programs (Program Generation), a compiler into a
model checker format (Program Translation), a quantitative extension of a model
checker, using NuSMV [3] as a back-end, and a selector that determines which
program to keep (Simulated Annealing). The specification is provided in form of
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a list of sub-specifications, which is then automatically extended to additional
weaker specifications that are used to obtain a quantitative measure for partial
satisfaction. Broadly speaking, the extension takes partial satisfaction of a spe-
cification into account by giving different weights to different weaker versions of
sub-specifications (cf. Section 4). The result can be manually modified, but the
results reported in Section 6 refer to the automatically produced extension.

Program Generation

Program Translation

NuSMV

Simulated Annealing

program tree

Model
Fitness

candidate update

Figure 1. Synthesis Tool

The internal representation of a
program is a tree. The seeder / mod-
ifier produces an initial seed. (Altern-
atively, one could start with an ini-
tial program provided by the user.)
The modifier / seeder also produces
modifications of existing programs by
changing sub-trees (cf. Section 4). The
programs are then translated to the
input language of a model checker
(NuSMV in our case), which is then
called several times to determine the level of satisfaction, which is the core of
the fitness (cf. Section 4) of a program.

Broadly speaking, the number of candidate programs kept depends on the
search technique used. We have implemented both genetic programming ap-
proaches and simulated annealing in order to obtain a clean point of comparison.

3 Background

Simulated Annealing. Simulated annealing [4,16] is a general local search
technique that is able to escape from local optima, easy to implementation, and
has good convergence properties.

When applied to an optimisation problem, the fitness function (objective)
generates values for the quality of the solution constructed in each iteration.
The fitness of this newly selected solution is then compared with the fitness of
the solution from the previous round. Improved solutions are always accepted,
while some of the other solutions are accepted in the hope of escaping local
optima in search of global optima. The probability of accepting solutions with
reduced fitness depends on a temperature parameter, which is typically falling
monotonically with each iteration of the algorithm.

Simulated annealing starts with an initial candidate solution. In each iter-
ation, a neighboring solution is generated by mutating the previous solution.
Let, for the ith iteration, Fi−1 be the fitness of the ‘old’ solution and Fi the
fitness of its mutation constructed in the ith iteration. If the fitness is not de-
creased (Fi ≥ Fi−1), then the mutated solution is kept. If the fitness is decreased
(Fi < Fi−1), then the probability p that this mutated solution is kept is

p = e
Fi−Fi−1

Ti ,
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where Ti is the temperature parameter for the ith step. The chance of changing
to a mutation with smaller fitness is therefore reduced with an increasing gap
in the fitness, but also with a falling temperature parameter. The temperature
parameter is positive and usually non-increasing (0 < Ti ≤ Ti−1). The develop-
ment of the sequence Ti is referred to as the cooling schedule and inspired by
cooling in the physical world [16].

Algorithm 1 Simulated Annealing algorithm
i := 0
loop local search with cooling
repeat
i := i+ 1
derive a neighbor x′ of x
∆F := F (x′)− F (x)
if ∆F < 0 then
x := x′

else
derive random number p[0, 1]
if p < e

∆F
T (i) then

x := x′

end if
end if

until the goal is reached or i = imax

The effect of cooling on the simulation of annealing is that the probability of
following an unfavorable move is reduced. In practice, the temperature is often
decreased in stages. During each stage the temperature is kept constant until
a balanced solution is reached. The set of parameters that determines how the
temperature is reduced (i.e., the initial temperature, the stopping criterion, the
temperature decrements between successive stages, and the number of trans-
itions for each temperature value) is called the cooling schedule. We have used
a simple cooling schedule, where the temperature is dropped by a constant in
each iteration. The algorithm is described in Algorithm 1.

Genetic programming. Genetic programming [24] is a different general search
technique that has been used for program synthesis in a similar setting [20,21,22,23].
In genetic programming, a population of λ candidate programs is first generated
randomly. In each step, a small share of the population consisting of µ candidates
(with µ� λ) is maintained based on the fitness. Usually, a random function that
makes it more likely for fitter candidate programs to be selected for spawning
the next generation is applied. The selected candidates are then mated to retain
a population of λ, and mutations are applied to a high share of the resulting
programs (e.g., on all duplicates).

We have implemented genetic programming as a comparison point, using the
values λ = 150 and µ = 5 from [21]. We also use the 2, 000 iterations suggested
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there as a cut-off point, where the algorithm is re-started. In its pure form, it uses
the sum of the partial satisfaction values of all sub-specifications as a foundation
of the fitness function.

We have additionally implemented a hybrid form that changes the selection
technique over time. This technique works in layers: it first establish the safety
properties, and then the liveness properties. Specifications with better values
for the safety properties are always given preference, while liveness properties
are—for equal values for the safety properties—used to determine the fitness.
I.e., they are merely tie-breakers.

This approach has been used in [21,22,23]. We refer to it as a hybrid approach
as it introduces a property known from simulated annealing: in the beginning,
the algorithm is applying changes more flexibly, while it becomes more rigid
later.

We have implemented the genetic approaches with and without crossover,
and used both evaluation techniques for simulated annealing, where we refer to
using the classic fitness function as a rigid evaluation, and to the hybrid approach
as flexible evaluation.

Model checking. Model checking [6,2] is a technique used to determine whether
a program satisfies a number of specifications. A model checker takes two inputs.
The first of them, the specification, is a description of the temporal behavior a
correct system shall display, given in a temporal logic. The second input, the
model, is a description of the dynamics of the system that the user wants to
evaluate. This might be a computer program, a communications protocol, a
state machine, a circuit diagram, etc.

A model checker uses a symbolic representation of the model to decide effi-
ciently if the model satisfies the specification. Standard temporal logic used in
model checking are linear-time temporal logic (LTL) [32] and computation tree
logic (CTL) [5]. We focus on the latter.

Given a finite set Π of atomic propositions, the syntax of a CTL formula is
defined as follows:

φ ::= p | ¬φ | φ ∨ φ | Aψ | Eψ,
ψ ::= Xφ | φUφ | Gφ,

where p ∈ Π. For each CTL formula φ we denote the length of φ by |φ|.
Let T = (V,E) be an infinite directed tree, with all edges pointing away

from the root. (In model checking, this is the unraveling of the model.) Let
l : V → 2Π be a labeling function. The semantics of CTL is defined as follows.
For each v ∈ V we have:

– v |= p if, and only if, p ∈ l(v).
– v |= ¬φ if, and only if, v 6|= φ.
– v |= φ ∨ ψ if, and only if, v |= φ or v |= ψ.
– v |= Aψ if, and only if, for all paths π starting at v, we have π |= ψ.
– v |= Eψ if, and only if, there exists a path π starting at v with π |= ψ.
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Let π = v1, v2, . . . be an infinite path in T . We have:

– π |= Xφ if, and only if, v2 |= φ.
– π |= φUφ′ if, and only if, there exists an i ∈ N such that vi |= φ′ and, for all
j in the range 1 ≤ j < i, we have vj |= φ.

– π |= Gφ if, and only if, vi |= φ for all i ∈ N.

Note that the φ and φ′ here are state formulas.
The pair (T, l), where T is a tree and l is a labeling function, is a model of φ

if, and only if, r |= φ, where r ∈ V is the root of the tree. If (T, l) is a model of
φ, then we write T, l |= φ.

For the candidate programs in our paper, the tree is the tree of all runs /
interleaving of the programs under asynchronous composition, and the labels are
the program states.

4 Synthesis tool architecture

Our tool consists of four main parts: a generator and mutator of abstract pro-
grams (Program Generation); a translator from abstract programs to models
(Program Translator); a model checker as a basis for determining the fitness,
and the simulated annealing mechanism for selecting the candidate program to
continue with (cf. Figure 1).

We use NuSMV [3] as a model checker. The translator therefore translates
the abstract programs into the model language of NuSMV. The other parts of
the tool are written in C++. Figure 1 gives an overview on the main components
of our tool.

When comparing simulated annealing to genetic programming, we merely re-
place the simulated annealing component by a similar component for the respect-
ive genetic programming variant and optionally add crossover to the available
mutations.

The user provides specifications for the desired properties of a system in the
form of a list of CTL specifications for the system dynamics that the program
has to satisfy. The simulated annealing component then derives the intermediate
specifications (full and partial compliance) that are used to determine the fitness
of a candidate (cf. Section 4).

If the candidate program satisfied all required properties, then the synthesiser
returns it as a correct program.

Otherwise, it will compare the fitness of the current candidate with the
(stored) fitness value of the program it is derived from by mutation. (This is the
currently stored candidate.) If the fitness is lower, then the tool will update the
stored candidate with the probability e∆F/T (i) defined by the loss∆F = Fi−Fi−1
in fitness and the current temperature T (i) taken from the cooling schedule. If
the fitness is not lower, the tool will always replaces the stored candidate by the
mutated one. When the end of the cooling schedule is reached, the tool aborts.
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The synthesis process is then re-started, either with a fresh cooling schedule (usu-
ally with a higher starting temperature or slower cooling) or with the same cool-
ing schedule. We have implemented the latter.Additional information about the
tool can be found at: http://cgi.csc.liv.ac.uk/~idresshu/index2.html.

Model checking as a fitness function. We use model checking to determine
the fitness of a candidate program in the same way as it has been used for genetic
programming [21,22,23]. Based on the model checking results, we derive a quant-
itative measure for the fitness (as a level of partial correctness) of a program.
This can be the share of properties that are satisfied so far, or mechanically
produced simpler properties. For example, if a property shall hold on all paths,
it is better if it holds on some paths, and yet better if it holds almost surely.

Our implementation considers the specification as a list of sub-specifications
and assigns full marks for each sub-specification, which is satisfied by the candid-
ate program. For cases where the sub-specification is not satisfied, we distinguish
between different levels of partial satisfaction.

We offer an automated translation of properties with up to two univer-
sal quantifiers that occur positively. 100 points are assigned when the sub-
specification is satisfied, 80 points if the specification is satisfied when replacing
one universal path quantifier by an existential path quantifier, and 10 points
are assigned if the specification is satisfied after replacing both universal path
quantifiers by existential ones. (Existential quantifiers that occur negatively are
treated accordingly.) Examples of this automated translation are shown in Sec-
tion 5.

The output of the model checker is used to evaluate the fitness of the current
candidate. The main part of the fitness is the average of the values for all sub-
specifications in the rigid evaluation and the average of all liveness specifications
in the flexible evaluation. Following [21], we apply a penalty for long programs
by deducing the number of inner nodes of a program from this average when
assigning the fitness of a candidate program. The resulting fitness value will be
used by simulated annealing to compare the current candidate with the previous
one when using rigid evaluation, and to make a decision whether the changes will
be preserved or discarded. When using flexible evaluation, this only happens if
the value for the safety specification is equal; falling resp. rising values for safety
specifications always result in discarding resp. selecting the update when using
flexible evaluation.

Programs as trees. The main form of the programs is a tree, in which each
leaf node represents a parameter or constant, while each parent node represents
an operation like assignments, comparisons, or algorithm instruction like if or
while. The candidate programs are built from the root down to the terminal
nodes (cf. [24,21]). Figure 2 shows the tree representation of the program

while (turn==me)
other=0

on the left, and two mutations of these programs in the middle and on the
right.
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Figure 2. Program tree (left) with two mutations (middle and right)

Mutations are changes in the program tree. Changes can be applied as follows:

1. Randomly select a node to be changed.
2. Apply one of the following changes:

(a) Replace a boolean comparator by a different boolean comparator. E.g.,
the middle program from Figure 2 can result from the left program when
‘==’ is replaced by ‘ !=’.

(b) Replace a leaf by a different parameter or constant from a user defined
set.

(c) Replace a sub-tree (which is no leaf) by a different sub-tree of size 3 with
the same type. E.g., the right program from Figure 2 can result from the
left program when by replacing the left sub-tree.

(d) Add a new internal node, using the node that was there as one sub-tree
and creating further offspring of minimal size (which is ≤ 3) to make the
resulting tree well typed.

Crossovers between two programs P1 and P2 randomly select nodes N1 of
P1 and N2 of P2, and swap the sub-trees rooted in N1 and N2. This way, they
produce a proper mix of the two programs.

Besides standard commands—‘while’, ‘if’, assignments, boolean connectives
and comparators—there are also variable names and constants. They have to be
provided by the user. The user also needs to specify, which variables are local
and which are global. She can provide an initial tree with nodes that the modifier
is not allowed to alter. Examples of this are provided in Section 5.

To evaluate the fitness of the produced program, it is first translated into
the language of the model checker NuSMV [3]. We have used the translation
method suggested by Clarke, Grumberg, and Peled [6]. In this translation, the
program is converted into very simple statements (similar to assembly language).
To simplify the translation, the program lines are first labeled, and this label
is then uses as a pointer that represents the program counter (PC). From this
intermediate language, the NuSMV model is then built by creating (case) and
(next) statements that use the PC. Figure 3 shows the translation of a mutual
exclusion algorithm. At first, each line in the source algorithm labelled, then a
variable pc (which is local for each MODULE) is added to represent the control
state.
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process me
while (true) do

noncritical section
while (turn==me) do

skip
end while
critical section
turn=other

end while

‘me’ and ‘other’ are (different)
variable valuations, in this ex-
ample implemented as boolean
variables. In other instances, they
might be have a different (finite)
datatype.

MODULE p(turn)
VAR
pc: {11, 12, 14,15};
ASSIGN
init(pc) := 11;
next(pc) :=
case
(pc=11) : {11, 12};
(pc=12)&(turn=me) : 14;
(pc=14) : 15;
(pc=15) : 11;
TRUE: pc;
esac;
next(turn):=
case
(pc=15): other;
TRUE :turn;
esac;

Figure 3. Translation example – source(left) and target (right)

5 Case studies

We have selected mutual exclusion [9] and leader election [29,23] as case stud-
ies, because these are the examples, for which genetic programming has been
successfully attempted.

Mutual exclusion. In mutual exclusion, no two processes are allowed to be in
the critical section at the same time. In addition, there are liveness properties
that essentially require non-starvation.

For the mutual exclusion example, we consider programs that progress through
four sections, a ‘non-critical section’, an ‘entry section’, a ‘critical section’, and
an ‘exit section’. The ‘non-critical section’ and ‘critical section’ parts are not
targets of the synthesis process. In this example, we start with a small program
tree that includes the non-critical section and the critical section as privileged
commands that cannot be changed by the modifier. Neither can any of their
ancestors in the program tree. The entry and exit sections, on the other hand,
are standard parts of the tree that can be changed.

The modifier is also provided with the vocabulary it can use. Besides the
standard commands and the privileged commands for the critical and non-critical
sections, these are the variables ‘me’ and ‘other’ that identify the two processes
involved and, depending on the benchmark, two or three global / shared boolean
variables.

The mutual exclusion example uses one safety specification: only one process
can be in the critical sections at a time. This is represented by the CTL formula

!EF (P0 in critical section & P1 in critical section ).
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When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied, and
80 points when !AF (P0 in critical section & P1 in critical section ) holds.

In addition, there is a non-starvation property that, whenever a process enters
its entry section, it will eventually enter the critical section. For process, one this
is

AG(P1 in entry section→ AFP1 in critical section).

When using this sub-specification for determining the fitness, we assign

100 points when the sub-specification is satisfied,
80 points when EG(P1 in entry section→ AFP1 in critical section) holds,
80 points whenAG(P1 in entry section→ EFP1 in critical section) holds, and
10 points when EG(P1 in entry section→ EFP1 in critical section) holds.

Leader election. As a second case study, we consider synthesising a solution for
the leader election problem [29,23]. For that purpose, we use clockwise unidirec-
tional ring networks with two different sizes, three or four nodes, respectively.

For leader election, we do not consider any privileged commands. Again, the
modifier needs to be provided with vocabulary. Besides the standard commands,
this includes

– id: a specific integer value for each node in the ring, which have the values
1, . . . , i for rings of size i.

– myval,other,leaderID: local variables; leaderID is initialized to 0.
– Send (myval): a command that refers to sending the value of ‘myval’ to the

next node in the ring. (It is placed in a variable the next process can read
using the following command.)

– Receive (other): a command that reads the last value sent by the previous
node.

The specification for leader election requires the safety specification that
there is never more than one leader, and the liveness requirement that a leader
will eventually be elected. For both requirement, we assign

100 points when the sub-specification is satisfied on all paths, and
80 points when the sub-specification is satisfied on some path.

6 Results

We have implemented the simulated annealing and genetic programming al-
gorithms as described, using NuSMV [3] as a solver when deriving the fitness of
candidate programs. For simulated annealing, we have set the initial temperat-
ure to 20, 000. The cooling schedule decreases the temperature by 0.8 in each
iteration. The schedule ends after 25, 000 iterations, when the temperature hits
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Figure 4. Average time required for synthesising a correct program

0. In a failed execution, this leads to determining the fitness of 25, 001 candidate
programs.

As described in Section 3, we have taken the values suggested in [21] for
genetic programming: λ = 150 candidate programs are considered in each step,
µ = 5 are kept, and we abort after 2, 000 iterations. In a failed execution, this
leads to determining the fitness of 290, 150 candidate programs.

For the mutual exclusion benchmark, we distinguish between programs that
use two and three shared bits, respectively. For the leader election benchmark
we use ring networks with three and four nodes, respectively. The results are
shown in Figures 4 and 5 and summarised in Table 1. The experiments have
been conducted using a machine with an Intel core i7 3.40 GHz CPU and 16GB
RAM. Figure 4 shows the average time needed for synthesising a correct program.
The two factors that determine the average running time are the success rate
and the running time for a full execution, successful or not. These values are
shown in Figure 5.

An individual execution of simulated annealing ends when a correct program
is found or when the stopping temperature is reached after 25, 000 iterations.
Similarly, the genetic programming approaches stop when they have found a
solution or when the number or iterations has reached its maximum of 2, 000
iterations. Note that, while simulated annealing incurs more iterations before
reaching its termination criterion, it needs to perform only a fraction of the
model checking tasks in each iteration. While the number of iterations is slightly
more than an order of magnitude higher, the number of programs, for which the
fitness needs to be calculated, is slightly more than an order of magnitude lower
(25, 001 vs. 290, 150).
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Figure 5. Average running time of an individual execution (left) and success rate of
individual executions (right)

For the model checking community, success rates of around 20% may sound
very low, but this is the appropriate range for such techniques. Note that it is
very simple to drive the success rate up: one can decrease the cooling speed for
simulated annealing and increase the number of iterations for genetic program-
ming, respectively. However, this also increases the running time for individual
full executions. A very high success rate is therefore not the goal when devising
these algorithms, but a low expected overall running time. A 20% success rate is
in a good region for achieving this goal. Table 1 shows the average running time
for single executions in seconds, the success rate in %, and the resulting overall
running time. The best values (shortest expected running time or highest success
rate) for each comparison printed in bold. Both simulated annealing and the hy-
brid approach significantly outperform the pure genetic programming approach.
The low success rate for pure genetic programming suggests that the number
of iterations might be too small. However, as the individual execution time is
already ways above the average time simulated annealing needs for constructing
a correct program, we did not increase the number of iterations.

The advantage in the individual execution time between the classic and the
hybrid version of genetic programming is in the range that is to be expected,
as the number of calls to the model checker is reduced. It is interesting to note
that simulated annealing, where the shift from rigid to flexible evaluation might
be expected to have a similar effect, does not benefit to the same extent. It is
also interesting to note that the execution time suggests that determining the
fitness of programs produced by simulated annealing is slightly more expensive.
This was to be expected, as the average program length grows over time. The
penalty for longer programs reduces this effect, but cannot entirely remove it.
(This potential disadvantage is the reason why an occasional re-start provides
better results than prolonging the search.)

The advantage in running of simulated annealing compared to the hybrid
approach reach from factor 4 to factor 10, and the comparison to pure genetic
programming reach from factor 35 to factor 76. It is interesting to note that
both the pure and the hybrid approach to genetic programming benefit from
crossovers, but while the benefit for the pure approach is significant, almost
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Table 1. Search Techniques Comparison

Search Technique single execution success rate overall time

2 shared bits
SA rigid 20 19 105.26

SA flexible 18 21 85.71
Hybrid w/o crossover 113 31 364.51
Hybrid with crossover 115 33 348.48
GP w/o crossover 583 7 8,328.57
GP with crossover 589 9 6,544.44

3 shared bits
SA rigid 23 23 100

SA flexible 20 22 90.9
Hybrid w/o crossover 171 17 1,005.88
Hybrid with crossover 175 19 921.05
GP w/o crossover 615 7 8,785.71
GP with crossover 620 9 6,888.88

3 nodes
SA rigid 84 19 442.1

SA flexible 81 20 405
Hybrid w/o crossover 418 15 2,786.66
Hybrid with crossover 421 16 2,631.25
GP w/o crossover 1120 3 37,333.33
GP with crossover 1123 6 18,716.66

4 nodes
SA rigid 145 17 852.94

SA flexible 138 18 766.66
Hybrid w/o crossover 536 11 4,872.72
Hybrid with crossover 541 14 3,864.28
GP w/o crossover 1311 3 43,700.00
GP with crossover 1314 5 26,280.00

halving the average time for synthesising a program in one case, the benefit for
the superior hybrid approach is small.

7 Conclusion

We have implemented an automated programming technique based on simu-
lated annealing and genetic programming, both in the pure form of [20] and the
arguably hybrid form of [21,22]. The implementations from these papers were
unavailable for comparison, but this is, in our view, a plus: the performance is
naturally sensitive to the quality of the integration, the suitability of the model
checker used, and hidden details, like how the seed is chosen or details of how
the fitness is computed. The integrated comparison makes sure that all methods
are on equal footage in these regards.

The results are very clear and in line with the expectation we had drawn
from the literature [8,28,31]. When crossovers are not used, the main difference
between the established genetic programming techniques and simulated anneal-
ing is the search strategy of using many and using a single instance, respectively.
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The data gathered confirms that an increase of the number of iterations can
easily overcompensate the broader group of candidates kept in genetic program-
ming. In our experiments, we have used an increase that fell short of creating the
same expected running time for a single full execution (with or without success),
and yet outperformed even the hybrid approach w.r.t. the success rate on three
of our four benchmarks. We have also added variations of genetic programming
that include crossover to validate the assumption that crossovers do not lead
to an annihilation of the advantage, but it proved that the hybrid approach,
and thus the stronger competitor, does not benefit much from using crossover.
The double advantage of shorter running time and higher success rate led to an
improvement of 1.5 to 2 orders of magnitude compared to pure genetic program-
ming (with and without crossover), and between half an order and one order of
magnitude when compared to the hybrid approach (with or without crossover).

It will be interesting to see if future work will show that these factors are
essentially constant, or if they depend heavily on the circumstances.
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