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Abstract
The bottleneck in the quantitative analysis of Markov chains and Markov decision processes
against specifications given in LTL or as some form of nondeterministic Büchi automata is the
inclusion of a determinisation step of the automaton under consideration. In this paper, we
show that full determinisation can be avoided: subset and breakpoint constructions suffice. We
have implemented our approach—both explicit and symbolic versions—in a prototype tool. Our
experiments show that our prototype can compete with mature tools like PRISM.

1998 ACM Subject Classification G.3: Probability and Statistics; D.2.4: Software/Program
Verification

Keywords and phrases Markov Decision Processes; Model Checking; PLTL; Determinisation

1 Introduction

Markov chains (MCs) and Markov decision processes (MDPs) are widely used to study
systems that exhibit both, probabilistic and nondeterministic choices. Properties of these
systems are often specified by temporal logic formulas, such as the branching time logic
PCTL [11], the linear time logic PLTL [3], or their combination PCTL* [3]. While model
checking is tractable for PCTL [3], it is more expensive for PLTL: PSPACE-complete for
Markov chains and 2EXPTIME-complete for MDPs [6].

In classical model checking, one checks whether a model M satisfies an LTL formula
ϕ by first constructing a nondeterministic Büchi automaton B¬ϕ [19], which recognises the
models of its negation ¬ϕ. The model checking problem then reduces to an emptiness test
for the productM⊗B¬ϕ. The translation to Büchi automata may result in an exponential
blow-up compared to the length of ϕ. However, this translation is mostly very efficient in
practice, and highly optimised off-the-shelf tools like LTL3BA [1] or SPOT [7] are available.

The quantitative analysis of a probabilistic model M against an LTL specification ϕ

is more involved. To compute the maximal probability PM(ϕ) that ϕ is satisfied in M,
the classic automata-based approach includes the determinisation of an intermediate Büchi
automaton Bϕ. If such a deterministic automaton A is constructed for Bϕ, then determining
the probabilityPM(ϕ) reduces to solving an equation system for Markov chains, and a linear
programming problem for MDPs [3], both in the productM⊗A. Such a determinisation step
usually exploits a variant of Safra’s [16] determinisation construction, such as the techniques
presented in [15,17].

Kupferman, Piterman, and Vardi point out in [13] that “Safra’s determinization construc-
tion has been notoriously resistant to efficient implementations.” Even though analysing long
LTL formulas would surely be useful as they allow for the description of more complex re-
quirements on a system’s behaviour, model checkers that employ determinisation to support
LTL, such as LiQuor [5] or PRISM [14], might fail to verify such properties.
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In this paper we argue that applying the Safra determinisation step in full generality is
only required in some cases, while simpler subset and breakpoint constructions often suffice.
Moreover, where full determinisation is required, it can be replaced by a combination of the
simpler constructions, and it suffices to apply it locally on a small share of the places.

A subset construction is known to be sufficient to determinise finite automata, but it
fails for Büchi automata. Our first idea is to construct an under- and an over-approximation
starting from the subset construction. That is, we construct two (deterministic) subset au-
tomata Su and So such that L(Su) ⊆ L(Bϕ) ⊆ L(So) where L(Bϕ) denotes the language
defined by the automaton Bϕ for ϕ. The subset automata Su and So are the same au-
tomaton S except for their accepting conditions. We build a product Markov chain with
the subset automata. We establish the useful property that the probability PM(ϕ) equals
the probability of reaching some accepting bottom strongly connected components (SCCs)
in this product: for each bottom SCC S in the product, we can first use the accepting
conditions in Su or So to determine whether S is accepting or rejecting, respectively. The
challenge remains when the test is inconclusive. In this case, we first refine S using a break-
point construction. Finally, if the breakpoint construction fails as well, we have two options:
we can either perform a Rabin-based determinisation for the part of the model where it
is required, thus avoiding to construct the larger complete Rabin product. Alternatively,
a refined multi-breakpoint construction is used. An important consequence is that we no
longer need to implement a Safra-style determinisation procedure: subset and breakpoint
constructions are enough. From a theoretical point of view, this reduces the cost of the
automata transformations involved from nO(k·n) to O(k ·3n) for generalised Büchi automata
with n states and k accepting sets. From a practical point of view, the easy symbolic encod-
ing admitted by subset and breakpoint constructions is of equal value. We discuss that (and
how) the framework can be adapted to MDPs—with the same complexity—by analysing
the end components [3, 6].

We have implemented our approach—both explicit and symbolic versions—in our Is-
casMC tool [10], which we applied on various Markov chain and MDP case studies (for
space reasons we report on only one in this paper, cf. [9] for others). Our experimental
results confirm that our new algorithm outperforms the Rabin-based approach in most of
the properties considered. However, there are some cases in which the Rabin determinisa-
tion approach performs better when compared to the multi-breakpoint construction: the
construction of a single Rabin automaton suffices to decide a given connected component,
while the breakpoint construction may require several iterations. Our experiments also show
that our prototype can compete with mature tools like PRISM.

Due to the lack of space, detailed proofs and additional case studies are provided in [9].

2 Preliminaries

2.1 ω-Automata
Nondeterministic Büchi automata are used to represent ω-regular languages L ⊆ Σω = ω →
Σ over a finite alphabet Σ. In this paper, we use automata with trace-based acceptance
mechanisms. We denote by [1..k] the set {1, 2, . . . , k} and by j ⊕k 1 the successor of j in
[1..k]. I.e., j ⊕k 1 = j + 1 if j < k and j ⊕k 1 = 1 if j = k.

I Definition 1. A nondeterministic generalised Büchi automaton (NGBA) is a quintuple
B = (Σ, Q, I,T,Fk), consisting of a finite alphabet Σ of input letters, a finite set Q of states
with a non-empty subset I ⊆ Q of initial states, a set T ⊆ Q × Σ × Q of transitions from
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states through input letters to successor states, and a family Fk = {Fj ⊆ T | j ∈ [1..k] } of
accepting (final) sets.

Nondeterministic Büchi automata are interpreted over infinite sequences α : ω → Σ of
input letters. An infinite sequence ρ : ω → Q of states of B is called a run of B on an input
word α if ρ(0) ∈ I and, for each i ∈ ω,

(
ρ(i), α(i), ρ(i+ 1)

)
∈ T. We denote by Run(α) the

set of all runs ρ on α. For a run ρ ∈ Run(α), we denote with tr(ρ) : i 7→
(
ρ(i), α(i), ρ(i+ 1)

)
the transitions of ρ. We sometimes denote a run ρ by the associated states, that is, ρ =
q0 · q1 · q2 · . . . where ρ(i) = qi for each i ∈ ω and we call a finite prefix q0 · q1 · q2 · . . . · qn
of ρ a pre-run. A run ρ of a NGBA is accepting if its transitions tr(ρ) contain infinitely
many transitions from all final sets, i.e., for each j ∈ [1..k], Inf(tr(ρ)) ∩ Fj 6= ∅, where
Inf(tr(ρ)) = { t ∈ T | ∀i ∈ ω ∃j > i such that tr(ρ)(j) = t }. A word α : ω → Σ is accepted
by B if B has an accepting run on α, and the set L(B) = {α ∈ Σω | α is accepted by B } of
words accepted by B is called its language.

BE

x

y za, 1

c

ab, 2

Figure 1 A Büchi au-
tomaton

Figure 1 shows an example of Büchi automaton. The num-
ber j after the label as in the transition (x, a, y), when present,
indicates that the transition belongs to the accepting set Fj ,
i.e., (x, a, y) belongs to F1. The language generated by BE is a
subset of (ab|ac)ω and a word α is accepted if each b (and c) is
eventually followed by a c (by a b, respectively).

We call the automaton B a nondeterministic Büchi automaton (NBA) whenever |Fk| = 1
and we denote it by B = (Σ, Q, I,T,F). For technical convenience we also allow for finite
runs q0 · q1 · q2 · . . . · qn with T ∩ {qn} × {α(n)} × Q = ∅. In other words, a run may end
with qn if action α(n) is not enabled from qn. Naturally, no finite run satisfies the accepting
condition, thus it is not accepting and has no influence on the language of an automaton.

To simplify the notation, the transition set T can also be seen as a function T: Q ×
Σ → 2Q assigning to each pair (q, σ) ∈ Q × Σ the set of successors according to T, i.e.,
T(q, σ) = { q′ ∈ Q | (q, σ, q′) ∈ T }. We extend T to sets of states in the usual way, i.e., by
defining T(S, σ) =

⋃
q∈S T(q, σ).

I Definition 2. A (transition-labelled) nondeterministic Rabin automaton (NRA) with k

accepting pairs is a quintuple A = (Σ, Q, I,T, (Ak,Rk)) where Σ, Q, I, and T are as in
Definition 1 and (Ak,Rk) = { (Ai,Ri) | i ∈ [1..k], Ai,Ri ⊆ T } is a finite family of Rabin
pairs. (For convenience, we sometimes use other finite sets of indices rather than [1..k].)

A run ρ of a NRA is accepting if there exists i ∈ [1..k] such that Inf(tr(ρ))∩Ai 6= ∅ and
Inf(tr(ρ)) ∩ Ri = ∅.

An automaton A = (Σ, Q, I,T,ACC), where ACC is the acceptance condition (Rabin,
Büchi, or generalised Büchi), is called deterministic if, for each (q, σ) ∈ Q×Σ, |T(q, σ)| ≤ 1,
and I = {q0} for some q0 ∈ Q. For notational convenience, we denote a deterministic
automaton A by the tuple (Σ, Q, q0,T,ACC) and T: Q × Σ → Q is the partial function,
which is defined at (q, σ) if, and only if, σ is enabled at q. For a given deterministic automaton
D, we denote by Dd the otherwise similar automaton with initial state d. Similarly, for a
NGBA B, we denote by BR the NGBA with R as set of initial states.

2.2 Markov Chains and Product
A distribution µ over a setX is a function µ : X → [0, 1] such that

∑
x∈X µ(x) = 1. AMarkov

chain (MC) is a tuple M = (M,L, µ0,P), where M is a finite set of states, L : M → Σ is
a labelling function, µ0 is the initial distribution, and P: M ×M → [0, 1] is a probabilistic
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transition matrix satisfying
∑
m′∈M P(m,m′) ∈ {0, 1} for all m ∈ M . A state m is called

absorbing if
∑
m′∈M P(m,m′) = 0. We write (m,m′) ∈ P for P(m,m′) > 0.

ME

a

c b2/3

1/3

1
1

Figure 2 A MC
with L(m) = m for
each m.

A maximal path ofM is an infinite sequence ξ = m0m1 . . . satis-
fying P(mi,mi+1) > 0 for all i ∈ ω, or a finite one if the last state is
absorbing. We denote by PathsM the set of all maximal paths ofM.
An infinite path ξ = m0m1 . . . defines the word α(ξ) = w0w1 . . . ∈ Σω
with wi = L(mi), i ∈ ω.

Given a finite sequence ξ = m0m1 . . .mk, the cylinder of ξ, de-
noted by Cyl(ξ), is the set of maximal paths starting with prefix
ξ. We define the probability of the cylinder set by PM

(
Cyl(m0m1 . . .mk)

) def= µ0(m0) ·∏k−1
i=0 P(mi,mi+1). For a given MC M, PM can be uniquely extended to a probability

measure over the σ-algebra generated by all cylinder sets.
In this paper we are interested in ω-regular properties L ⊆ Σω and the probability

PM(L) for some measurable set L. Further, we define PM(B) def= PM({ ξ ∈ PathsM |
α(ξ) ∈ L(B) }) for an automaton B. We write PMm to denote the probability function when
assuming that m is the initial state. Moreover, we omit the superscript M whenever it is
clear from the context. We follow the standard way of computing this probability in the
product ofM and a deterministic automaton for L.

I Definition 3. Given a MC M = (M,L, µ0,P) and a deterministic automaton A =
(Σ, Q, q0,T,ACC), the product Markov chain is defined by M×A def= (M × Q,L′, µ′0,P′)
where L′

(
(m, d)

)
= L(m); µ′0

(
(m, d)

)
= µ0(m) if d = T(q0, L(m)), 0 otherwise; and

P′
(
(m, d), (m′, d′)

)
equals P(m,m′) if d′ = T(d, L(m′)), and is 0 otherwise.

We denote by πA((m, d), (m′, d′)) the projection on A of the given ((m, d), (m′, d′)) ∈ P′,
i.e., πA((m, d), (m′, d′)) = (d, L(m′), d′), and by πA(B) its extension to a set of transitions
B ⊆ T′, i.e., πA(B) = {πA(p, p′) | (p, p′) ∈ B }.

As we have accepting transitions on the edges of the automata, we propose product Markov
chains with accepting conditions on their edges.

I Definition 4. Given a MCM and a deterministic automaton A with accepting set ACC,
the product automaton isM⊗A def= (M×A,ACC′) where

if ACC = Fk, then ACC′ def= F′k where F′i = { (p, p′) ∈ P′ | πA(p, p′) ∈ Fi } ∈ F′k for
each i ∈ [1..k] (Generalised Büchi Markov chain, GMC); and

if ACC = (Ak,Rk), then ACC′ def= (A′k,R′k) where A′i = { (p, p′) ∈ P′ | πA(p, p′) ∈
Ai } ∈ A′k and R′i = { (p, p′) ∈ P′ | πA(p, p′) ∈ Ri } ∈ R′k for each i ∈ [1..k] (Rabin
Markov chain, RMC).

Thus, RMC and GMC are Markov chains extended with the corresponding accepting con-
ditions. We remark that the labelling of the initial states of the Markov chain is taken into
account in the definition of µ′0.

I Definition 5. A bottom strongly connected component (BSCC) S ⊆ V is an SCC in the
underlying digraph (V,E) of a MCM, where all edges with source in S have only successors
in S (i.e., for each (v, v′) ∈ E, v ∈ S implies v′ ∈ S). We assume that a (bottom) SCC does
not contain any absorbing state. Given an SCC S, we denote by PS the transitions ofM in
S, i.e., PS = { (m,m′) ∈ P | m,m′ ∈ S }.
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3 Lazy Determinisation

We fix an input MC M and a NGBA B = (Σ, Q, I,T,Fk) as a specification. Further, let
A = det(B) be the deterministic Rabin automaton (DRA) constructed for B (cf. [16–18]),
and letM⊗A = (M ×Q,L, µ0,P,ACC) be the product RMC. We consider the problem
of computing PMm0

(B), i.e., the probability that a run ofM is accepted by B.

3.1 Outline of our Methodology
We first recall the classical approach for computing PM(B), see [2] for details. It is well
known [3] that the computation of PM(B) reduces to the computation of the probabilistic
reachability in the product RMCM⊗A with A = det(B). We first introduce the notion of
accepting SCCs:

I Definition 6. Given a MCM and the DRA A = det(B), let S be a bottom SCC of the
product RMC M⊗A. We say that S is accepting if there exists an index i ∈ [1..k] such
that Ai ∩πA(PS) 6= ∅ and Ri ∩πA(PS) = ∅; we call each s ∈ S an accepting state. Moreover,
we call the union of all accepting BSCCs the accepting region.

Essentially, since a BSCC is an ergodic set, once a path enters an accepting BSCC S,
with probability 1 it will take transitions from Ai infinitely often; since Ai is finite, at least
one transition from Ai is taken infinitely often. Now we have the following reduction:

I Theorem 7 ([3]). Given a MC M and a Büchi automaton B, consider A = det(B). Let
U ⊆M ×Q be the accepting region and let ♦U denote the set of paths containing a state of
U . Then, PM(B) = PM⊗A(♦U).

When all bottom SCCs are evaluated, the evaluation of the Rabin MC is simple: we
abstract all accepting bottom SCCs to an absorbing goal state and perform a reachability
analysis, which can be solved in polynomial time [2, 3]. Thus, the outline of the traditional
probabilistic model checking approach for LTL specifications is as follows: (1.) translate the
NGBA B into an equivalent DRA A = det(B); (2.) build (the reachable fragment of) the
product automatonM⊗A; (3.) for each BSCC S, check whether S is accepting. Let U be
the union of these accepting SCCs; (4.) infer the probability PM⊗A(♦U).

The construction of the deterministic Rabin automaton used in the classical approach is
often the bottleneck of the approach, as one exploits some variant of the approach proposed
by Safra [16], which is rather involved. The lazy determinisation technique we suggest in
this paper follows a different approach. We first transform the high-level specification (e.g.,
given in the PRISM language [14]) into its MDP or MC semantics. We then employ some
tool (e.g., LTL3BA [1] or SPOT [7]) to construct a Büchi automaton equivalent to the LTL
specification. This nondeterministic automaton is used to obtain the deterministic Büchi
over- and under-approximation subset automata Su and So, as described in Subsection 3.3.
The languages recognised by these two deterministic Büchi automata are such that L(Su) ⊆
L(B) ⊆ L(So). We build the product of these subset automata with the model MDP or
MC (cf. Lemma 13). We then compute the maximal end components or bottom strongly
connected components. According to Lemma 14, we try to decide these components of the
product by using the acceptance conditions Foi and Fui of Su and So, respectively.

For each of those components where over- and under-approximation do not agree (and
which we therefore cannot decide), we employ the breakpoint construction (cf. Corollary 16),
involving the deterministic Rabin over- and under-approximation breakpoint automata BPu

and BPo, such that L(BPu) ⊆ L(B) ⊆ L(BPo). For this, we take one state of the component
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under consideration and start the breakpoint construction with this state as initial state.
This way, we obtain a product of a breakpoint automaton with parts of the model. If the
resulting product contains an accepting component (using the under-approximation), then
the original component must be accepting, and if the resulting product contains a rejecting
component (using the over-approximation), then the original component must be rejecting.

The remaining undecided components are decided either by using a Rabin-based con-
struction, restricted to the undecided component, or only by using BPu, where we start from
possibly different states of the subset product component under consideration; this approach
always decides the remaining components, and we call it the multi-breakpoint construction.

For the model states that are part of an accepting component, or from which no accepting
component is reachable, the probability to fulfil the specification is now already known to
be 1 or 0, respectively. To obtain the remaining state probabilities, we construct and solve
a linear programming (LP) problem (or a linear equation system when we start with MCs).

Note that, even in case the multi-breakpoint procedure is necessary in some places, our
method is usually still more efficient than direct Rabin determinisation, for instance based
on some variation of [18]. The reason for this is twofold. First, when starting the deter-
minisation procedure from a component rather than from the initial state of the model, the
number of states in the Rabin product will be smaller, and second, we only need the multi-
breakpoint determinisation to decide MECs or bottom SCCs, such that the computation of
transient probabilities can still be done in the smaller subset product.

In the remainder of this section, we detail the proposed approach: we first introduce the
theoretical background, and then present the incremental evaluation of the bottom SCCs.

3.2 Acceptance Equivalence
In order to be able to apply our lazy approach, we exploit a number of acceptance equiva-
lences in the RMC. Given the DRA A = det(B) and a state d of A, we denote by rchd(d)
the label of the root node ε of the labelled ordered tree associated to d (cf. [16–18]).

I Proposition 8. Given a NGBA B, a MC M, and the DRA A = det(B), (1.) a path ρ
in M⊗A that starts from a state (m, d) is accepted if, and only if, the word it defines is
accepted by Brchd(d); and (2.) if rchd(d) = rchd(d′), then the probabilities of acceptance from
a state (m, d) and a state (m, d′) are equal, i.e., PM⊗A(m,d) (B) = PM⊗A(m,d′)(B).

This property allows us to work on quotients and to swap between states with the same
reachability set. If we ignore the accepting conditions, we have a product MC, and we can
consider the quotient of such a product MC as follows.

I Definition 9 (Quotient MC). Given a MCM and a DRA A = det(B), the quotient MC
[M×A] ofM×A is the MC ([M ×Q], [L], [µ0], [P]) where

[M ×Q] = { (m, [d]) | (m, d) ∈M ×Q, [d] = { d′ ∈ Q | rchd(d′) = rchd(d) } },
[L](m, [d]) = L(m, d),
[µ0](m, [d]) = µ0(m, d), and
[P]
(
(m, [d]), (m′, [d′])

)
= P

(
(m, d), (m′, d′)

)
.

By abuse of notation, we define [(m, d)] = (m, [d]) and [C] = { [s] | s ∈ C }. It is easy to see
that, for each d ∈ Q, d ∈ [d] holds and that [P] is well defined: for (m, d1), (m, d2) ∈ [(m, d)],
P
(
(m, d1), (m′, [d′])

)
= P

(
(m, d), (m′, d′)

)
= P

(
(m, d2), (m′, [d′])

)
holds.

I Theorem 10. For a MCM and DRA A = det(B), it holds that

1. if S is a bottom SCC ofM×A then [S] is a bottom SCC of [M×A],
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2. if S′ is a bottom SCC of [M×A], then there is a bottom SCC S ofM×A with S′ = [S].

Together with Definition 6 and Proposition 8, Theorem 10 provides:

I Corollary 11. Let S be a bottom SCC of [M×A]. Then, either all states s of M⊗A
with [s] ∈ S are accepting, or all states s ofM⊗A with [s] ∈ S are rejecting.

Once all bottom SCCs are evaluated, we only need to perform a standard probabilistic
reachability analysis on the quotient MC.

3.3 Incremental Evaluation of Bottom SCCs
To evaluate each bottom SCC of the RMC, we use three techniques: the first one is based on
evaluating the subset construction directly. We get two deterministic NGBAs that provide
over- and under-approximations. If this fails, we refine the corresponding bottom SCC by a
breakpoint construction. Only if both fail, a precise construction follows.

3.3.1 Subset Construction
For a given NGBA B = (Σ, Q, I,T,Fk), a simple way to over- and under-approximate its lan-
guage by a subset construction is as follows. We build two NGBAs So = (Σ, 2Q, {I},T′,Fok)
and Su = (Σ, 2Q, {I},T′,Fuk), differing only for the accepting condition, where

T′ = { (R, σ,C) | ∅ 6= R ⊆ Q,C = T(R, σ) },
Foi = { (R, σ,C) ∈ T′ | ∃(q, q′) ∈ R× C. (q, σ, q′) ∈ Fi } ∈ Fok for each i ∈ [1..k], and
Fui = { (R, σ,C) ∈ T′ | ∀(q, q′) ∈ R× C. (q, σ, q′) ∈ Fi } ∈ Fuk for each i ∈ [1..k].

SE

{x} {y, z}ab

c

Figure 3 The sub-
set construction for
BE

Essentially, So and Su are the subset automata that we use to
over- and under-approximate the accepting conditions, respectively.
Figure 3 shows the reachable fragment of the subset construction for
the NGBA BE depicted in Figure 1. The final sets of the two subset
automata are Fo1 = {({x}, a, {yz})} and Fo2 = {({yz}, b, {x})} for So
and Fu1 = Fu2 = ∅ for Su. The following lemma holds:

I Lemma 12. L(Su[d]) ⊆ L(Ad) ⊆ L(So[d]).

The proof is easy as, in each Foi and Fui , the accepting transitions are over- and under-
approximated. With this lemma, we are able to identify some accepting and rejecting
bottom SCCs in the product.

We remark that So and Su differ only in their accepting conditions. Thus, the corre-
sponding GMCsM⊗Su andM⊗So also differ only for their accepting conditions. If we
ignore the accepting conditions, we have the following result:

I Lemma 13. LetM be a MC, B a NGBA, A = det(B), and Su as defined above; let S be
Su without the accepting conditions. Then,M×S and [M×A] are isomorphic.

The proof is rather easy—it is based on the isomorphism identifying a state (m,R) ofM×S
with the state (m, [d]) of [M×A] such that rchd(d) = R.

Considering the accepting conditions, we can classify some bottom SCCs.

I Lemma 14. Let M be a MC and B a NGBA. Let So and Su be as defined above. Let S
be a bottom SCC ofM⊗Su. Then,

S is accepting if Fui ∩ πSu(PS) 6= ∅ holds for all i ∈ [1..k];
S is rejecting if Foi ∩ πSu(PS) = ∅ holds for some i ∈ [1..k].
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ME × SE

a, {y, z}

c, {x} b, {x}2/3

1/3

1
1

Figure 4 The prod-
uct of ME and SE

The above result directly follows by Lemma 12. Figure 4 shows
the product of the MC ME depicted in Figure 2 and the subset
automaton SE in Figure 3. It is easy to check that the only bottom
SCC is neither accepting nor rejecting.

For the bottom SCCs, for which we cannot conclude whether
they are accepting or rejecting, we continue with the breakpoint
construction.

3.3.2 Breakpoint Construction
For a given NGBA B = (Σ, Q, I,T,Fk), we denote with bp(Q, k) = { (R, j, C) | C ( R ⊆
Q, j ∈ [1..k] } the breakpoint set. Intuitively, for a state d of the DRA A = det(B), the
corresponding breakpoint state is 〈d〉 = (R, j, C) where R contains the states labelling the
root ε of labelled ordered tree associated to d, C subsumes the states labelling the lower
levels of the tree, and j is the index of the accepting set Fj considered at the root of the
tree.

We build two DRAs BPo = (Σ, bp(Q, k), (I, 1, ∅),T′, {(Aε, ∅), (T′,R0)}) and BPu =
(Σ, bp(Q, k), (I, 1, ∅),T′, {(Aε, ∅)}), called the breakpoint automata, as follows.

From the breakpoint state (R, j, C), let R′ = T(R, σ) and C ′ = T(C, σ)∪Fj(R, σ). Then
an accepting transition with letter σ reaches (R′, j ⊕k 1, ∅) if C ′ = R′. Formally,

Aε = { ((R, j, C), σ, (R′, j ⊕k 1, ∅)) | (R, j, C) ∈ bp(Q, k), σ ∈ Σ,
∅ 6= R′ = T(R, σ), C ′ = T(C, σ) ∪ Fj(R, σ), C ′ = R′ }.

The remaining transitions, for which C ′ 6= R′, are obtained in a similar way, but now the
transition reaches (R′, j, C ′), where j remains unchanged; formally,

T′′ = { ((R, j, C), σ, (R′, j, C ′)) | (R, j, C) ∈ bp(Q, k), σ ∈ Σ,
∅ 6= R′ = T(R, σ), C ′ = T(C, σ) ∪ Fj(R, σ), C ′ 6= R′ }.

The transition relation T′ is just T′′ ∪Aε. Transitions that satisfy C ′ = ∅ are rejecting:

R0 = { ((R, j, C), σ, d) ∈ T′′ | T(C, σ) = ∅ }.

BPE

{x}, 2, ∅

{y, z}, 1, {y}{x}, 1, ∅

{y, z}, 2, ∅ ac

b

a
b

c

Figure 5 The breakpoint
construction for BE (fragment
reachable from ({x}, 1, ∅))

Figure 5 shows the reachable fragment of the breakpoint
construction for the NGBA BE depicted in Figure 1. The dou-
ble arrow transitions are in Aε while the remaining transitions
are in R0.

I Theorem 15. The following inclusions hold:

L(Su[d]) ⊆ L(BPu〈d〉) ⊆ L(Ad) ⊆ L(BPo〈d〉),L(So[d]).

We remark that the breakpoint construction can be refined further such that it is finer
than L(So[d]). However we leave it as future work to avoid heavy technical preparations.
Exploiting the above theorem, the following becomes clear.

I Corollary 16. Let S be a bottom SCC of the quotient MC. Let (m, d) ∈ S be an arbitrary
state of S. Moreover, let BPo, BPu be the breakpoint automata. Then,

S is accepting if there exists a bottom SCC S′ in M⊗ BPu〈d〉 with S = [S′], which is
accepting (i.e., S′ contains some transition in Aε).
S is rejecting if there exists a bottom SCC S′ in M ⊗ BPo〈d〉 with S = [S′], which is
rejecting (i.e., S′ contains no transition in Aε, but some transition in R0).
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ME ⊗ BPuE

c, ({x}, 2, ∅)

a, ({y, z}, 1, {y})b, ({x}, 1, ∅)

a, ({y, z}, 2, ∅) 1
2/3

1/3

1
1/3

2/3

Figure 6 The product of ME and
BPu

E

Note that the productsM⊗BPu〈d〉 andM⊗BPo〈d〉
are the same RMCs except for their accepting condi-
tions. Figure 6 shows the product of the MC ME
depicted in Figure 2 and the breakpoint automaton
BPuE in Figure 5. It is easy to see that the only bot-
tom SCC is accepting.

Together with Corollary 11, Lemma 14 and Corol-
lary 16 immediately provide the following result,
which justifies the incremental evaluations of the bottom SCCs.

I Corollary 17. Given a MC M, a NGBA B, and A = det(B), if [(m, d)] is a state in a
bottom SCC of the quotient MC and [d] = [d′], then

PM⊗Ad

(m,d) (B) = 1 if P
M⊗Su

[d′]
(m,[d]) (B) > 0 or P

M⊗BPu
〈d′〉

(m,〈d〉) (B) > 0, and

PM⊗Ad

(m,d) (B) = 0 if P
M⊗So

[d′]
(m,[d]) (B) < 1 or P

M⊗BPo
〈d′〉

(m,〈d〉) (B) < 1.

In case there are remaining bottom SCCs, for which we cannot conclude whether they are
accepting or rejecting, we continue with a multi-breakpoint construction that is language-
equivalent to the Rabin construction.

3.3.3 Multi-Breakpoint Construction
The multi-breakpoint construction we propose to decide the remaining bottom SCCs
makes use of a combination of the subset and breakpoint constructions we have seen
in the previous steps, but with different accepting conditions: for the subset automaton
S = S(B) = (Σ, Qss, qss,Tss,Fss), we use the accepting condition Fss = ∅, i.e., the automa-
ton accepts no words; for the breakpoint automaton BP = BP(B) = (Σ, Qbp, qbp,Tbp,Fbp),
we consider Fbp = Aε. Note that the Büchi acceptance condition Fbp = Aε is trivially
equivalent to the Rabin acceptance condition {(Aε, ∅)}, so BP is essentially BPu. We
remark that in general the languages accepted by S and BP are different from L(B):
L(S) = ∅ by construction while L(BP) ⊆ L(B), as shown in Theorem 15. To generate
an automaton accepting the same language of B, we construct a semi-deterministic automa-
ton SD = SD(B) = (Σ, Qsd , qsd ,Tsd ,Fsd) by merging S and BP as follows: Qsd = Qss∪Qbp,
qsd = qss, Tsd = Tss ∪ Tt ∪ Tbp, and Fsd = Fbp, where Tt = { (R, σ, (R′, j′, C ′)) |
R ∈ Qss, (R′, j′, C ′) ∈ Qbp, and R′ ⊆ Tss(R, σ) }. B and SD accept the same language:

I Proposition 18. Given a NGBA B, let SD be constructed as above. Then, L(SD) = L(B).

For A = det(B), it is known by Lemma 13 thatM×S andM×A are strictly related,
so we can define the accepting SCC ofM×S by means of the accepting states ofM×A.

I Definition 19. Given a MC M and a NGBA B, for S = S(B) and A = det(B), we say
that a bottom SCC S ofM×S is accepting if, and only if, there exists a state s = (m, d)
in an accepting bottom SCC S′ ofM×A such that (m, rchd(d)) ∈ S.

Note that Proposition 8 ensures that the accepting SCCs ofM×S are well defined.

I Theorem 20. Given a MC M and a NGBA B, for SD = SD(B) and S = S(B), the
following facts are equivalent:

1. S is an accepting bottom SCC ofM×S;
2. there exist (m,R) ∈ S and R′ ⊆ R such that (m, (R′, j, ∅)) belongs to an accepting SCC

ofM⊗SD(m,(R′,j,∅)) for some j ∈ [1..k];
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3. there exist (m,R) ∈ S and q ∈ R such that (m, ({q}, 1, ∅)) reaches with probability 1 an
accepting SCC ofM⊗SD(m,({q},1,∅)).

Theorem 20 provides a practical way to check whether an SCC S ofM×S is accepting:
it is enough to check whether some state (m,R) of S has R ⊇ R′ for some (m, (R′, j, ∅)) in
the accepting region ofM⊗SD, or whether, for a state q ∈ R, (m, ({q}, 1, ∅)) reaches with
probability 1 the accepting region. We remark that, by construction of SD, if we change the
initial state of SD to (R, j, C)—i.e., if we consider SD(R,j,C)—then the run can only visit
breakpoint states; i.e., it is actually a run of BP(R,j,C).

4 Markov Decision Processes

The lazy determinisation approach proposed in this paper extends to Markov decision pro-
cesses (MDPs) after minor adaptation; Markov chains have mainly been used for ease of
notation. We give here an outline of the adaptation with a focus on the differences and
particularities that need to be taken into consideration when we are dealing with MDPs.

An MDP is a tupleM = (M,L,Act, µ0,P) whereM , L, and µ0 are as for Markov chains,
Act is a finite set of actions, and P: M×Act → Dist(M) is the transition probability function
where Dist(M) is the set of distributions over M . The nondeterministic choices are resolved
by a scheduler υ that chooses the next action to be executed depending on a finite path.
Like for Markov chains, the principal technique to analyse MDPs against a specification ϕ is
to construct a deterministic Rabin automaton A, build the productM⊗A, and analyse it.
This product will be referred to as a Rabin MDP (RMDP). According to [3], for a RMDP,
it suffices to consider memoryless deterministic schedulers of the form υ : M × Q → Act,
where Q is the set of states of A. Given a NGBA specification Bϕ, we are interested in
supυPM,υ(Bϕ). In particular, one can use finite memory schedulers on M. (Schedulers
that control M can be used to control M ⊗ A for all deterministic automata A.) The
superscript M is omitted when it is clear from the context. We remark that the infimum
can be treated accordingly, as infυPυ(Bϕ) = 1− supυPυ(B¬ϕ).

As Proposition 8 operates on words, it immediately extends to MDPs. Under the corre-
sponding equivalence relation we obtain a quotient MDP. From here, it is clear that we can
use the estimation of the word languages provided in Theorem 15 to estimate supυPυ(Bϕ).

I Corollary 21. Given an MDP M and a NGBA B, let m be a state of M and d, d′ be
states of A = det(B) with [d] = [d′]. Then supυPυ

(m,[d])(Su[d]) ≤ supυPυ
(m,〈d〉)(BP

u
〈d〉) ≤

supυPυ
(m,d)(Ad) = supυPυ

(m,d′)(Ad′) ≤ supυPυ
(m,〈d〉)(BP

o
〈d〉), supυPυ

(m,[d])(So[d]) holds.

In the standard evaluation of RMDP, the end components of the product M⊗A play
a role comparable to the one played by bottom SCCs in MCs. An end component (EC) is
simply a sub-MDP, which is closed in the sense that there exists a memoryless scheduler υ
such that the induced Markov chain is a bottom SCC. If there is a scheduler that additionally
guarantees that a run that contains all possible transitions infinitely often is accepting, then
the EC is accepting. Thus, one can stay in the EC and traverse all of its transitions (that
the scheduler allows) infinitely often, where acceptance is defined as for BSCCs in MCs.

I Theorem 22. Given an MDP M and a NGBA B, for A = det(B), SD = SD(B), and
S = S(B), if C is an accepting EC ofM⊗A, then (1.) [C] is an EC ofM×S and (2.) C′ = 〈C〉
is an accepting EC ofM⊗SD. C′ contains a state (m, (R, 1, ∅)) with R ⊆ [d] and (m, d) ∈ C.

Note that, since each EC C ofM⊗A is either accepting or rejecting, finding an accepting
EC C′ = 〈C〉 ofM⊗SD allows us to derive that C is accepting as well.
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M
∀m ∈M.L(m) = m

b

c

a

1
1

1 1

B

x ya
a

b

c

a

M×S

b, {x}

c, {x}

a, {x, y}

1 1

1

1

M⊗BP

b, ({x}, 1, ∅) c, ({x}, 1, ∅) a, ({x, y}, 1, ∅) a, ({x, y}, 1, {y}) a, ({y}, 1, ∅)

a, ({x}, 1, ∅)
1 1 1

1

1

1

1
1 1

Figure 7 Finding accepting ECs in MDPs: MDP M, NGBA B, S = S(B), BP = BP(B)

For RMDPs, it suffices to analyse maximal end components (MEC). We define a MEC as
accepting if it contains an accepting EC. MECs are easy to construct and, for each accepting
pair, they are easy to evaluate: it suffices to remove the rejecting transitions, repeat the
construction of MECs on the remainder, and check if there is any that contains an accepting
transition. Once accepting MECs are determined, their states are assigned a winning prob-
ability of 1, and evaluating the complete MDP reduces to a maximal reachability analysis,
which reduces to solving an LP problem. It can therefore be solved in polynomial time.

These two theorems allow us to use a layered approach of lazy determinisation for MDPs,
which is rather similar to the one described for Markov chains. We start with the quotient
MDP, and consider an arbitrary MEC C. By using the accepting conditions of the subset
automata Su and So, we check whether C is accepting or rejecting, respectively. If this test is
inconclusive, we first refine C by a breakpoint construction, and finally by a multi-breakpoint
construction. We remark that, as for Markov chains, the breakpoint and multi-breakpoint
constructions can be considered as oracles: when we have identified the accepting MECs, a
plain reachability analysis is performed on the quotient MDP.

Theorem 22 makes clear what needs to be calculated in order to classify an EC—and
thus a MEC—as accepting, while Corollary 21 allows for applying this observation in the
quantitative analysis of an MDP, and also to smoothly combine this style of reasoning with
the lazy approach. This completes the picture of [6] for the quantitative analysis of MDPs,
which is technically the same as their analysis of concurrent probabilistic programs [6]. It
is worthwhile to point out that, in principle, the qualitative analysis from [6] could replace
Theorem 22 when starting with a Büchi automaton that recognises the complement of the
models of ϕ and minimising instead of maximising. This detour would, however, not allow
us to restrict the analysis to (M)ECs, which would, in turn, lead to a significant overhead.

For MDPs, differently from the subset and breakpoint construction, for the multi-
breakpoint case testing only one (m,R) ∈ C in general is not sufficient; consider the MDP
M and the NGBA B depicted in Figure 7. We first consider the product MDP M× S,
containing one MEC. We first try to decide whether it is accepting by considering the state
(c, {x}). The only nonempty subset of {x} is the set itself, thus we look for accepting MECs
inM⊗BP(c,({x},1,∅)). It is clear that from (c, ({x}, 1, ∅)) no accepting MECs can be reached.
In contrast to the MC setting, we cannot conclude that the original MEC is not accepting.
Instead, we remove (c, {x}) from the set of states to consider, as well as (b, {x}), from which
we cannot avoid reaching (c, {x}). The state left to try is (a, {x, y}), where we have two
transitions available. Indeed, inM⊗BP the singleton MEC {(a, ({y}, 1, ∅))} is accepting.
Thus the MEC ofM×S is accepting, though only one of its states—{(a, {x, y})}—allows
us to conclude this, and we need to select the correct subset, {y}, to start with.



12 Lazy Probabilistic Model Checking without Determinisation

Table 1 Runtime comparison for the randomised mutual exclusion protocol

time
property n BP expl. BP BDD RB expl. RB BDD PRISM Rabinizer3 scaled [4]

Pmin=?(GFp1=10 ∧ GFp2=10
∧ GF p3=10 ∧ GFp4=10) (3) 4 3 5 15 28 – 104 23

5 19 21 – 104 – 1478 380

Pmax=?((GFp1=0 ∨ FGp2 6=0)
∧(GFp2=0 ∨ FGp3 6=0)) (4)

3 1 2 2 4 138 2 1
4 3 7 4 15 – 20 18
5 19 32 35 76 – 319 299

Pmax=?((GFp1=0 ∨ FGp1 6=0)
∧(GFp2=0 ∨ FGp2 6=0)) (5)

3 2 2 2 4 41 2 1
4 3 8 4 17 336 19 18
5 19 34 45 68 – 314 289

Pmax=?((GFp1=0 ∨ FGp2 6=0)
∧(GFp2=0 ∨ FGp3 6=0)
∧(GFp3=0 ∨ FGp1 6=0))

(6)
3 1 2 2 6 – 5 4
4 3 9 7 27 – 52 47
5 29 38 99 124 – 871 762

Pmax=?((GFp1=0 ∨ FGp1 6=0)
∧(GFp2=0 ∨ FGp2 6=0)
∧(GFp3=0 ∨ FGp3 6=0))

(7)
3 1 2 2 9 – 5 5
4 3 9 12 41 – 50 49
5 29 38 – 171 – 849 792

Pmin=?((GFp1 6=10 ∨ GFp1=0 ∨ FGp1=1)
∧ GF p1 6=0 ∧ GFp1=1) (8)

3 1 2 1 3 1 1 1
4 3 6 3 10 8 13 6
5 17 25 17 41 123 208 91

Pmax=?((Gp1 6=10 ∨ Gp2 6=10 ∨ Gp3 6=10)
∧(FGp1 6=1 ∨ GFp2=1 ∨ GFp3=1)
∧(FGp2 6=1 ∨ GFp1=1 ∨ GFp3=1))

(9)
3 2 6 2 4 – 982 50
4 9 16 7 14 – 1718 440
5 136 60 91 56 – – –

Pmin=?((FGp1 6=0 ∨ FGp2 6=0 ∨ GFp3=0)
∨(FGp1 6=10 ∧ GFp2=10 ∧ GFp3=10) (10)

3 2 3 2 5 169 3 2
4 79 12 4 18 – 32 21
5 – 48 44 69 – 480 339

Note: The entries in column “scaled [4]” are the runtimes from [4] divided by 1.6 as we used an estimated 1.6 times faster machine.

5 Implementation and Results

We have implemented our approach in our IscasMC tool [10] in both explicit and BDD-
based symbolic versions. We use LTL formulas to specify properties, and apply SPOT [7]
to translate them to NGBAs. Our experimental results suggest that our technique provides
a practical approach for checking LTL properties for probabilistic systems. A web interface
to IscasMC can be found at http://iscasmc.ios.ac.cn/. For our experiments, we used
a 3.6 GHz Intel Core i7-4790 with 16GB 1600 MHz DDR3 RAM.

We consider a set of properties analysed previously in [4]. As there, we aborted tool runs
when they took more than 30 minutes or needed more than 4GB of RAM. The comparison
with the results from [4] cannot be completely accurate: unfortunately, their implementation
is not available on request to the authors, and for their results they did not state the exact
speed of the machine used. By comparing the runtimes stated for PRISM in [4] with the
corresponding runtimes we obtained on our machine, we estimate that our machine is faster
than theirs by about a factor of 1.6. Thus, we have included the values from [4] divided
by 1.6 to take into account the estimated effect of the machine. In Table 1 we provide the
results obtained. Here, “property” and “n” are as in [4] and depict the property and the
size of the model under consideration. We report the total runtime in seconds (“time”) for
the explicit-state (“BP expl.”) and the BDD-based symbolic (“BP BDD”) implementations
of the multi-breakpoint construction, as well as the explicit and symbolic (“RB expl.”, “RB
BDD”) of the Rabin-based implementation. In both BP and RB cases, we first apply the
subset and breakpoint steps. We also include the runtimes of PRISM (“PRISM”) and of the
tool used in [4] (“scaled [4]”) developed for a subclass of LTL formulas and its generalisation
to full LTL [8] implemented in Rabinizer 3 [12] (“Rabinizer 3”, for which we thank the
authors for providing the source code). We mark the best running times with bold font.

http://iscasmc.ios.ac.cn/
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The runtime of our new approaches is almost always better than the running time of
other methods. In many cases, the multi-breakpoint approach performs better than new the
Rabin-based approach (restricted to the single undecided end component), but not always.
Broadly speaking, this can happen when the breakpoint construction has to consider many
subsets as starting points for one end component, while the Rabin determinisation does not
lead to a significant overhead compared to the breakpoint construction. Thus, both methods
are of value. Both of them are faster than the specialised algorithm of [4] and Rabinizer 3.
We assume that one reason for this is that this method is not based on the evaluation of end
components in the subset product, and also its implementation might not involve some of
the optimisations we apply. In most cases, the explicit-state implementation is faster than
the BDD-based approach, which is, however, more memory-efficient.
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