
ISCASMC: A Web-Based Probabilistic Model Checker ?

Ernst Moritz Hahn1, Yi Li2, Sven Schewe3, Andrea Turrini1, and Lijun Zhang1

1 State Key Laboratory of Computer Science, Institute of Software, Chinese Academy of Sciences
2 LMAM & Department of Information Science, School of Math. Sciences, Peking University

3 Department of Computer Science, University of Liverpool

Abstract. We introduce the web-based model checker ISCASMC for probabilistic
systems (see http://iscasmc.ios.ac.cn/IscasMC). This Java applica-
tion offers an easy-to-use web interface for the evaluation of Markov chains and
decision processes against PCTL and PCTL∗ specifications. Compared to PRISM
or MRMC, ISCASMC is particularly efficient in evaluating the probabilities of
LTL properties.

1 Introduction
Markov decision processes (MDP) are widely used to model and analyse systems that
exhibit both probabilistic and nondeterministic choices. To reason about such systems,
one often specifies properties in the popular probabilistic temporal logics PCTL, PLTL,
or PCTL∗ [2]. While PCTL∗ is more expressive, it suffers from a higher complexity
compared to PCTL [4]: model checking MDPs against PCTL specifications is linear,
but against PCTL∗ specifications is 2EXPTIME complete, and the doubly exponential
cost is usually incurred through the translation of the LTL fragments to deterministic au-
tomata. Several probabilistic model checkers have been developed for verifying Markov
chains and MDPs. The state-of-the-art probabilistic model checker PRISM [10] sup-
ports both PCTL and PCTL∗. Another model checker MRMC [8] is predominantly
used for model checking PCTL properties with reward extensions. On the other side,
LIQUOR [3] is a probabilistic model checker for PLTL properties.

In this paper, we present a new model checker for probabilistic models, called IS-
CASMC. ISCASMC supports Markov chains and MDPs, and properties specified in
PCTL∗. It implements the efficient heuristics in [7] particularly tuned to handle linear
time properties. ISCASMC is written in Java, while including a few off-the-shelf com-
ponents like SPOT [5] on the server side. The web interface on the client side is written
in HTML and JavaScript, such that ISCASMC enjoys full portability: it can be run from
any machine with internet access and a browser, be it a laptop or a mobile phone.

In the web interface, one can easily import or create examples, analyse it and track
the results. The computation is performed on the server, thus making the evaluation of
Markov chains and MDPs very easy and readily available. The main features of the tool
include modularity, support of linear time properties, and specification of linear time
properties using pattern formulas.
? Supported by the National Natural Science Foundation of China (NSFC) under grant No.

61361136002, 61350110518, 61202069, the Chinese Academy of Sciences Fellowship for
International Young Scientists (Grant No. 2013Y1GB0006), Research Fund for the Doctoral
Program of Higher Education of China (Grant No. 20120001120103), and Engineering and
Physical Science Research Council (EPSRC) through the grant EP/H046623/1.

http://iscasmc.ios.ac.cn/IscasMC


engine
main

DBMS
module

result
collector

thread
data
store

w1 thread
. . .

wn thread

work task

result result

task completed

thread limit

backend

database engine SPOT

user

DBMS
module

messages

tasks

model

editor

property

options

frontend / web interface

parser model

options product

engine
model checker

high-level
description

pa
rs

er
/o

pt
io

ns
in

te
rf

ac
e

formula

au
to

m
at

on

result

Fig. 1. Architecture of ISCASMC.
Outline. We describe the architecture and usage of the tool in Section 2. The main
features of ISCASMC are given in Section 3, and Section 4 concludes the paper.

2 Architecture and Usage
The architecture and components of ISCASMC are depicted in Figure 1. It has three main
components: the frontend web interface, the backend for handling requests from the
frontend, and the model checker engine. A database engine is used to store information.
We describe these components in detail.

2.1 The Frontend Web Interface

The frontend allows for logging into the system, either as a guest or as a registered user.
Guest users can experiment with most of the features of the tool, but they have limited
resources, for instance small timeout values.

After logging into the system, it offers several views, including:

– Message Centre. The message centre provides the user recent news. Particularly,
one can post messages, send models to other users as well as receive models shared
by other users.

– Model Centre. The model management centre lists available models, their type (cur-
rently only PRISM models are supported), comments, options, last updated snap-
shot and all available operations for the model. From the menu above one can also
upload or create new models. The properties are associated to models. For each
model, one can create and analyse these properties. Currently, ISCASMC supports
Markov chains and MDPs and properties in PCTL∗. Once one clicks on one of the
models in the list, one enters the editing page.

2



In the editing page, models can be edited, and properties can be added, modified, or
removed. A model may have more than one associated properties.

– Task Centre. In the model centre, the user can choose to check selected properties or
all properties. This is referred to as a task. Note that a task is created as a snapshot of
the current model, (selected) properties and options. This allows the user to modify
the model/properties and submit several tasks without having to wait for the termi-
nation of the previous submitted tasks. The task, together with the corresponding
options, will be sent to the server side to be handled. In the task centre, one can find
a list of all submitted tasks from the user. For each task, one can track the current
status, find the final results once available, see the complete log generated by the
model checker, or remove the task.

– Option Centre. From the option centre the user can set the user level options. More-
over, for each model to be analysed, one may modify certain options and get model
level options. The model level options have higher priority and will overwrite user
level options.

– Example Centre. From the example centre, the user can directly import several ex-
amples together with associated properties into her own account.

The Interface. While the frontend does not play a role in the evaluation of the model,
it includes a fast syntax check that allows for checking the syntactical correctness of the
model while interacting with the editor. As shown in Figure 1, the parser and the options
interface are shared between the model checker and the frontend.

The part available to the frontend is a stand-alone program (on the server side)
that makes use of only a small part of the classes in the model checker engine. This
lightweight version is only used for checking the syntactical correctness of models from
the client side, while the full version on the model checker site also constructs the re-
spective models and automata. These syntactical correctness checks are simple and can
thus be done efficiently on-demand, bypassing the scheduling queue.

2.2 The Database

The database, powered by MySQLTM, contains all information needed to elaborate the
models: besides the user details, it stores the models and the relative properties
defined by the user, as well as the tasks the user creates by requiring an operation on
the model. Each task is created by the frontend DBMS module as snapshot of the model
and the corresponding properties and options, such that it is not affected by subsequent
changes. Once a task is completed, it is updated by the backend DBMS module with the
evaluation of the properties (or with an error message), according to the model checker
outcome. The tasks are kept until the user explicitly removes them via the task centre.

2.3 The Backend

The main job of the backend is to poll tasks from the database and evaluate them. It
currently adopts a FIFO approach to retrieve the tasks from the DBMS module. These
tasks are then sent to several instances of ISCASMC that run in parallel in independent
worker threads w1, . . . , wn. Once a worker wi completes her task, she sends the outcome
to the data store, whose main jobs are to keep track of busy workers and to collect the
results. Since the evaluation of a task may take some time, the worker periodically sends
status updates to the data store. The result collector retrieves the available results from
the data store and forwards them to the database via the backend DBMS module.

3



2.4 The Model Checker Engine

The model checker is the working horse of the system. Each work thread will parse
and translate the model and the specification it is going to be checked against. For com-
plex LTL subformulas (that is, for each linear part ϕ of PCTL∗ outside of the simple
PCTL operators), we first use SPOT [5] to generate the generalised Büchi automaton.
Unless this is already deterministic, we then use the layered approach from [7], which
uses first subset constructions (with an over- and underapproximation of the acceptance
condition), and subsequently refines them (where necessary) first to a breakpoint con-
struction (again with an over- and underapproximation of the acceptance condition) and
then to the deterministic Rabin automata [11]. The product of the automaton and model
is an MDP equipped with accepting conditions. These accepting conditions are used to
identify accepting states in the product, after which the problem reduces to a proba-
bilistic reachability problem for MDPs. The reachability problem is a central problem
in probabilistic model checking, and is well studied, see [1] for a survey. One can apply
value iteration or policy iteration to solve it. Currently, ISCASMC uses a value iteration
approach based on Gauss-Seidel or Jacobi method. After the evaluation, it returns the
results to the backend.

3 Main Features
ISCASMC supports models and properties described in the PRISM input language. A
nice feature of ISCASMC is that it provides a plain web interface that allows users to
easily try the probabilistic model checker. Since the computation is performed on the
server side, the user can conduct her experiments using computers, but also smart phones
and any device with a browser and internet access. Besides its performance, the main
features of ISCASMC are modularity and the handling of linear time properties.

– Modularity. The three main components of ISCASMC are essentially independent of
each other. This allows for distributing the computation, i.e., it allows for centring
the power-hungry evaluation on powerful servers, while using simple machines like
smartphones for the initiation and control of the experiments.

– Pattern formulas. ISCASMC provides pattern formula specifications. This allows
one to easily add and check PLTL properties based on the absence and response LTL
patterns proposed in [6] by simply choosing basic events among existing labels in
the model or by writing her own events. All occurrences of the same event identifier
are automatically replaced by actual content.

– Error tracking. ISCASMC being a web-based tool, we are able to keep track of all
internal assertion failures and runtime errors which occur during any model check-
ing run. This way, we are able to reproduce the according bug and thus can quickly
fix the problem.

– Comparison Platform. ISCASMC can be easily extended for providing a compar-
ing platform for off-the-shelf probabilistic model checkers. We shall leave it as our
future work.

– Linear time properties. Comparing to existing model checkers such as PRISM,
MRMC, and LIQUOR, ISCASMC builds on efficient heuristics in [7] tailored to
linear time properties.

Example 1. In Table 1, we consider a variant of the quasi birth-death process described
in [9] together with some example properties. For each of the properties, we compare

4



ISCASMC PRISM
property time (s) prod. states autom. states type time (s) prod. states autom. states

propU 1 805 2 subset 24 808 12
propGF∧ 1 825 6 breakp. 365 825 77775
propGF∨ 1 1634 8 rabin 34 823 4110

Table 1. Quasi birth-death process. The example and properties can be loaded on the webpage.

performance results of ISCASMC and PRISM. For both tools we provide the total run-
time in seconds, the number of states of the property automaton constructed for the
analysis, and the size of the product of this automaton with the model. For ISCASMC,
we also state with which method from [7] (subset, breakpoint, or Rabin construction)
the property can be decided.

For this set of properties, ISCASMC terminated considerably faster. The reason is
that the time required to construct the complete Rabin determinisation is very high. The
approach in [7] completely avoids this construction for the first two properties. In the
third one, it employs an on-the-fly implementation of the state-of-the-art Rabin deter-
minisation algorithm [11]. We can therefore restrict the use of the full Rabin construction
to refining those parts of the product, where this is required for deciding the respective
property.

4 Future Work
We plan to extend ISCASMC to support more model types such as continuous-time
Markov decision processes and Markov games, recursive Markov chains and quantum
Markov chains. On the property side, we plan to incorporate more general properties
such as reward properties and ω-regular languages. To allow handling larger models, we
plan to extend our implementation to use symbolic rather than explicit-state methods.

References
1. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press (2008)
2. Bianco, A., de Alfaro, L.: Model checking of probabalistic and nondeterministic systems. In:

FSTTCS. LNCS, vol. 1026, pp. 499–513. Springer (1995)
3. Ciesinski, F., Baier, C.: LiQuor: A tool for qualitative and quantitative linear time analysis of

reactive systems. In: QEST. pp. 131–132 (2006)
4. Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. JACM 42(4),

857–907 (1995)
5. Duret-Lutz, A.: LTL translation improvements in SPOT. In: VECoS. pp. 72–83. BCS (2011)
6. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Property specification patterns for finite-state ver-

ification. In: FMSP. pp. 7–15 (1998)
7. Hahn, E.M., Li, G., Schewe, S., Zhang, L.: Lazy determinisation for quantitative model check-

ing (2013), arXiv:1311.2928
8. Katoen, J.P., Khattri, M., Zapreev, I.S.: A Markov reward model checker. In: QEST. pp. 243–

244 (2005)
9. Katoen, J.P., Klink, D., Leucker, M., Wolf, V.: Three-valued abstraction for continuous-time

Markov chains. In: CAV. pp. 311–324 (2007)
10. Kwiatkowska, M.Z., Norman, G., Parker, D.: PRISM 4.0: Verification of probabilistic real-

time systems. In: CAV. LNCS, vol. 6806, pp. 585–591 (2011)
11. Schewe, S., Varghese, T.: Tight bounds for the determinisation and complementation of gen-

eralised Büchi automata. In: ATVA. LNCS, vol. 7561, pp. 42–56. Springer (2012)

5


