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Highlights

• A fundamental analysis of a recent algorithm for Bayesian updating is provided.
• This algorithm is reformulated such that it always generates posterior samples.
• An inner–outer reliability strategy is key for estimation and optimal stopping.
• The reformulated algorithm fundamentally connects reliability analysis and Bayesian updating.

Abstract

Identifying the parameters of a model and rating competitive models based on measured data has been among the most important
and challenging topics in modern science and engineering, with great potential of application in structural system identification,
updating and development of high fidelity models. These problems in principle can be tackled using a Bayesian probabilistic
approach, where the parameters to be identified are treated as uncertain and their inference information are given in terms of
their posterior probability distribution. For complex models encountered in applications, efficient computational tools robust to
the number of uncertain parameters in the problem are required for computing the posterior statistics, which can generally be
formulated as a multi-dimensional integral over the space of the uncertain parameters. Subset Simulation has been developed
for solving reliability problems involving complex systems and it is found to be robust to the number of uncertain parameters.
An analogy has been recently established between a Bayesian updating problem and a reliability problem, which opens up the
possibility of efficient solution by Subset Simulation. The formulation, called BUS (Bayesian Updating with Structural reliability
methods), is based on the standard rejection principle. Its theoretical correctness and efficiency require the prudent choice of a
multiplier, which has remained an open question. This paper presents a fundamental study of the multiplier and investigates its
bias effect when it is not properly chosen. A revised formulation of BUS is proposed, which fundamentally resolves the problem
such that Subset Simulation can be implemented without knowing the multiplier a priori. An automatic stopping condition is also
provided. Examples are presented to illustrate the theory and applications.
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1. Introduction

Making inference about the parameters of a mathematical model based on observed measurements of the real
system is one of the most important problems in modern science and engineering. The Bayesian approach provides a
fundamental means to do this in the context of probability logic [1–3], where the parameters are viewed as uncertain
variables and the inference results are cast in terms of their probability distribution after incorporating information
from the observed data. In engineering dynamics, for example, vibration data from a structure is collected from
sensors and used for identifying the modal properties (e.g. natural frequencies, damping ratios, mode shapes) and
structural model properties (e.g. stiffness, mass) [4,5]. This has been formulated in a Bayesian context [6,7], which
resolved a number of philosophically challenging issues of the inverse problem, such as the treatment of multiple sets
of parameters giving the same model fit to the data, an issue known as identifiability.

Let θ ∈ Rn be a set of parameters of a model M, based on which a probabilistic prediction of the data D can
be formulated through the likelihood function P(D|θ , M). Clearly, the probability distribution of θ depends on the
available information. Based only on knowledge in the context of M, this is described by the prior distribution
P(θ |M). When data about the system is available, it can be used to update this distribution. Using Bayes’ Theorem,
the posterior distribution that incorporates the data information in the context of M is given by

P(θ |D, M) = P(D|M)−1 P(D|θ , M) P(θ |M), (1.1)

where

P(D|M) =


Θ

P(D|θ , M) P(θ |M) dθ , (1.2)

is a normalizing constant. Future predictions of a response quantity of interest, say r(θ), can be updated by
incorporating data information, through the posterior expectation [8]:

E[r(θ |D, M)] =


r(θ) P(θ |D, M) dθ . (1.3)

As far as the posterior distribution of θ for a given model M is concerned, the constant in Eq. (1.2) is immaterial
because it does not change the distribution. However, it is the primary quantity of study in Bayesian model class
selection problems where competing models are compared based on the value of P(M)P(D|M) [9–11]. In that
context, P(D|M) is often called the evidence (the higher the better).

Capturing efficiently essential information about the posterior distribution, i.e. posterior statistics, and calculating
the posterior expectation is a non-trivial problem, primarily resulting from the complexity of the likelihood function.
In many applications, the likelihood function is only implicitly known, i.e. its value can be calculated point-wise but
its dependence on the model parameters is mathematically intractable. This renders analytical solutions infeasible
and conventional numerical techniques inapplicable. In this case, Markov Chain Monte Carlo (MCMC) [12–15] is
found to provide a powerful computational tool. MCMC allows the samples of an arbitrarily given distribution to be
generated as the samples of a specially designed Markov chain. In MCMC, candidate samples are generated by a
proposal distribution (chosen by the analyst) and they are adaptively accepted based on ratios of the target distribution
value at the candidate and the current sample.

While MCMC in principle provides a powerful solution for Bayesian computation, difficulties are encountered in
guaranteeing application robustness, motivating different variants of the algorithm. For example, in problems with a
large amount of data, the posterior distribution takes on significant values only in a small region of the parameter space,
whose size generally shrinks in an inverse square root law with the data size. Depending on sufficiency or relevance of
the data for the model parameters, the regions of significant probability content can be around a set of isolated points
(globally or locally identifiable) or a lower dimensional manifold (unidentifiable) with non-trivial geometry [16,17].
To the least extent this causes efficiency problems, making the choice of the proposal distribution difficult and leading
to high rejection rate of candidates and hence poor efficiency. When the issue is not managed, significant bias can
result in the statistical estimation based on the samples. Strategies similar to simulated annealing have been proposed
to convert the original difficult updating problem effectively into a sequence of more manageable problems with less
data, thereby allowing the samples to adapt gradually [18–22]. Another issue is dimension sustainability, i.e. whether
the algorithm remains applicable when the number of variables (i.e. dimension) of the problem increases. This imposes
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restrictions on the design of MCMC algorithms so that quantities such as the ratio of likelihood functions involved in
the simulation process do not degenerate as the dimension of the problem increases.

Application robustness and dimension sustainability are well-recognized in the engineering reliability literature
[23–25]. In this area, the general objective is to determine the failure probability that a scalar response of interest
exceeds a specified threshold value, or equivalently to determine its complementary cumulative distribution function
(CCDF) near the upper tail (i.e. large thresholds). Subset Simulation (SuS) [26,27] has been developed as an advanced
Monte Carlo strategy that is efficient for small failure probabilities (rare events) but still retains a reasonable robustness
similar to the Direct Monte Carlo method. In SuS, samples conditional on a sequence of intermediate failure events
are generated by MCMC and they gradually populate towards the target failure region. These conditional samples
provide information for estimating the whole CCDF of the response quantity of interest. SuS typically does not make
use of any problem-specific information, treating the input–output relationship between the response and the uncertain
parameters as a black box. Based on an independent-component MCMC strategy, SuS is applicable for an arbitrary
(potentially infinite) number of uncertain variables in the problem.

By establishing an analogy with the reliability problem that SuS is originally designed to solve, it is possible to
adapt SuS to provide an efficient solution for other classes of problems. For example, by considering an augmented
reliability problem where deterministic design parameters are artificially considered as uncertain, SuS has been
applied to investigate the sensitivity of the failure probability with respect to the design parameters and their optimal
choice without repeated simulation runs [28–31]. Another example can be found in constrained optimization, where
an analogy was established between rare failure events in reliability problems and extreme events in optimization
problems, allowing SuS to be applied to solving complex problems with nonlinear objective functions and potentially
a large number of inequality constraints and optimization variables [32,33].

In view of the application robustness and dimension sustainability, it would be attractive to adapt SuS for Bayesian
computations. This is not trivial since the problem contexts are different. One major difference is that in the reliability
problem the uncertain parameters follow standard classes of distributions (e.g. Gaussian, exponential) specified by
the analyst; while in the Bayesian updating problem the uncertain parameters follow the posterior distribution, which
generally does not belong to any standard distribution because the likelihood function is problem-dependent.

Recent developments have shown promise for adapting SuS to Bayesian updating problems. In the context of
Approximate Bayesian Computation (ABC), Chiachio et al. [34] built an analogy with the reliability problem so
that the posterior samples in the Bayesian updating problem can be obtained as the conditional samples in SuS at
the highest simulation level determined by a tolerance parameter that gradually diminishes. The latter controls the
approximation of the likelihood function through a proximity model (a feature of ABC) between the measured and
simulated data for a given value of model parameter.

Along another line of thought, Straub and Papaioannou [35] recently provided a formulation called BUS (Bayesian
Updating using Structural reliability methods) that opens up the possibility of Bayesian updating using SuS. It
combined an earlier idea [36] with the standard rejection principle to establish an analogy between a Bayesian updating
problem and a reliability problem, or more correctly a probabilistic failure analysis problem [23,37,27]. Through the
analogy, the samples following the posterior distribution in the Bayesian updating problem can be obtained as the
conditional samples in the reliability problem. Unlike ABC, the formulation is exact as it respects fully the original
likelihood function; and in this sense it is more fundamental. One outstanding problem, however, is the choice of
the likelihood multiplier, or multiplier in short, in the context of rejection principle. To guarantee the theoretical
correctness of the analogy, it must be less than the reciprocal of the maximum value of the likelihood function,
which is generally unknown especially before the problem is solved. Some suggestions have been given in Straub and
Papaioannou [35] based on inspection of the likelihood function. An adaptive choice was suggested based empirically
on the generated samples [38]. It is more robust to applications as it does not require prior input from the analyst. It
offers no guarantee on correctness, however, due to the incomplete nature of finite sampling information which seems
inevitable. The problem with the choice of the multiplier remains open.

This work is motivated by the choice of the multiplier and more fundamentally its mathematical and philosophical
role in the BUS formulation. A rigorous mathematical study is carried out to provide fundamental understanding of
the multiplier, which leads to a revised BUS formulation allowing SuS to be implemented independently of the choice
of the multiplier and convergence of results to be checked formally. Essentially, by defining the failure event in the
BUS formulation, we show that SuS can in fact be implemented without the multiplier and the samples beyond a
certain simulation level all have the same target posterior distribution.
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This paper is organized as follows. In Sections 2 and 3 we first give an overview of SuS and the original BUS
formulation. The mathematical role of the multiplier and its bias effect arising from inappropriate choice are then
investigated in Section 4. A revised formulation is proposed in Section 5, and associated theoretical issues are
investigated in Sections 6 and 7. An automatic stopping condition is proposed in Section 8. Examples are presented
in Section 9 to explain the theory and illustrate its applications. Conclusions are offered in Section 10.

2. Subset simulation

We first briefly introduce Subset Simulation (SuS) to facilitate understanding its application in the context of
Bayesian model updating and model class selection later. SuS is an advanced Monte Carlo method for reliability and
failure analysis of complex systems, especially for rare events. It is based on the idea that a small failure probability
can be expressed as a product of larger conditional failure probabilities, effectively converting a rare simulation event
into a series of more frequent ones.

2.1. Reliability and failure analysis problem

Despite the variety of failure events in applications, they can often be formulated as the exceedance of a critical
response over a specified threshold. Let Y = h(θ), be a scalar response quantity of interest that depends on the
set of uncertain parameters θ distributed as the parameter probability density function (PDF) q(θ). The function h(·)

represents the relationship between the uncertain input parameters and the output response. The parameter PDF q(·) is
specified by the analyst from standard distributions. Without loss of generality, the uncertain parameters are assumed
to be continuous-valued and independent, since discrete-valued variables or dependent variables can be obtained by
mapping continuous-valued independent ones.

The primary interest of reliability analysis is to determine the failure probability P(Y > b) for a specified threshold
value b ∈ R:

P(Y > b) =


q(θ) I (θ ∈ F) dθ , (2.1)

where

F = {Y > b} = {θ ∈ Rn
: h(θ) > b}, (2.2)

denotes the failure event or the failure region in the parameter space, depending on the context; I (·) is the indicator
function, equal to 1 if its argument is true and zero otherwise. Probabilistic failure analysis on the other hand is
concerned with what happens when failure occurs, which often involves investigating the expectation of some response
quantity r(θ) (say) conditional on the failure event, i.e.

E[r(θ)|F] =


r(θ) q(θ |F) dθ , (2.3)

where

q(θ |F) = P−1
F q(θ) I (θ ∈ F), (2.4)

is the PDF of conditional on failure.
When the relationship between Y and θ , i.e. the function h(·), is complicated, analytical or conventional numerical

integration is not feasible for computing P(Y > b) or E[r(θ)|F] and thus advanced computational methods
are required for their efficient determination. SuS offers an efficient solution by generating a sequence of sample
populations of θ conditional on increasingly rare failure events {Y > bi }, where {bi : 1, 2, . . .} is an increasing
sequence of threshold values adaptively determined during the simulation run. These conditional samples provide
information for estimating the CCDF of Y , i.e. P(Y > b) versus b from the frequent (left tail) to the rare (right tail)
regime. When the right tail covers the threshold value associated with the target failure event, the required failure
probability can be obtained from the estimate of the CCDF. The conditional samples can also be used for estimating
the conditional expectation in probabilistic failure analysis, a feature not shared by conventional variance reduction
techniques. As we shall see in the next section, the conditional samples provide the posterior samples required for
Bayesian model updating. The failure probability provides the information for estimating the evidence for Bayesian
model class selection.
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2.2. Subset simulation procedure

A typical SuS algorithm is presented as follows [26,27]. Two parameters should be set before starting a simulation
run: (1) the level probability p0 ∈ (0, 1) and (2) the number of samples per level N . It is assumed that p0 N and p−1

0
are positive integers. As will be seen shortly, these are respectively equal to the number of chains and the number of
samples per chain at a given simulation level. In the reliability literature, a prudent choice is p0 = 0.1. The number
of samples N controls the statistical accuracy of results (the higher the better), generally in an inverse square root
manner. Common choice ranges from a few hundreds to over a thousand, depending on the target failure probability.

A simulation run starts with Level 0 (unconditional), where N i.i.d. (independent and identically distributed)
samples of θ are generated from q(·), i.e. direct Monte Carlo. The corresponding values of Y are computed and
arranged in ascending order, giving an ordered list denoted by {b(0)

k : k = 1, . . . , N }. The value b(0)
k gives the estimate

of b corresponding to the exceedance probability p(0)
k = P(Y > b) where

p(0)
k =

N − k

N
, k = 1, . . . , N . (2.5)

The next level, i.e. Level 1, is conditional on the intermediate failure event {Y > b1}, where b1 is determined as the
(p0 N + 1)-th largest sample value of Y at Level 0, i.e.

b1 = b(0)
N (1−p0)

. (2.6)

By construction, the p0 N samples of θ corresponding to {b(0)
N (1−p0)+ j : j = 1, . . . , p0 N } are conditional on {Y > b1}.

These conditional samples are used as seeds for generating additional samples conditional on {Y > b1} by means of
MCMC. A MCMC chain of p−1

0 samples is generated from each seed, giving a total population of p0 N × p−1
0 = N

samples conditional on {Y > b1} at Level 1.
During MCMC the values of Y of the conditional samples at Level 1 have been calculated. They are arranged in

ascending order, giving the ordered list denoted by {b(1)
1 : k = 1, . . . , N }. The value b(1)

k gives the estimate of b

corresponding to exceedance probability p(1)
k = P(Y > b) where

p(1)
k = p0

N − k

N
, k = 1, . . . , N . (2.7)

The next level, i.e. Level 2, is conditional on {Y > b2} where b2 is determined as the (p0 N + 1)th largest sample
value of Y at Level 1, i.e.

b2 = b(1)
N (1−p0)

. (2.8)

The above process of generating additional MCMC samples and moving up simulation levels is repeated until the
target threshold level or probability level has been reached. In general, at Level i (i = 1, . . . , N ), in the ordered list
of sample values of Y denoted by {b(i)

k : k = 1, . . . , N }, the value b(i)
k gives the estimate of b corresponding to

exceedance probability p(i)
k = P(Y > b) where

p(i)
k = pi

0
N − k

N
, k = 1, . . . , N . (2.9)

Several features of SuS are worth-mentioning. It is population-based in the sense that the samples at a given level
are generated from multiple (p0 N ) chains, making it robust to ergodic problems. An independent-component MCMC
algorithm is used, which is the key to be sustainable for high dimensional problems [26,24,39]. The conditional
samples at each level all have the target conditional distribution and there is no burn-in problem commonly discussed
in the MCMC literature. This is because the MCMC chains are all started with a seed distributed as the target
distribution (conditional on that level), and so they are stationary right from the start.

Variants of the SuS algorithm have been proposed to improve efficiency, i.e. Papadopoulos et al. [40–42]. See also
the review in Section 5.9 of Au and Wang [27]. The algorithm can even be implemented as a VBA (Visual Basic for
Applications) Add-In in a spreadsheet [43,44].
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3. BUS formulation

In this section we briefly review the BUS formulation [35,45] that builds an analogy between the Bayesian updating
problem and a reliability problem, thereby allowing SuS to be applied to the former. For mathematical clarity and to
simplify notation, in the Bayesian updating problem we use q(θ) to denote the prior PDF, L(θ) to denote the likelihood
function p(θ |D, M), PD to denote the normalizing constant P(D|M), and pD(θ) to denote the posterior PDF. The
same symbol q(θ) is used for the prior PDF in the Bayesian updating problem and the parameter PDF in the reliability
problem, as it has the same mathematical property (chosen from standard distributions by the analyst) and role (the
distribution to start the SuS run) in both problems. In a Monte Carlo approach the primary target in Bayesian model
updating is to generate samples according to the posterior PDF pD(θ) (rewritten from (1.1)):

pD(θ) = P−1
D q(θ) L(θ). (3.1)

3.1. Rejection principle

The BUS formulation is based on the conventional rejection principle. Let c, called the likelihood multiplier in this
work, or simply multiplier, be a scalar constant such that for all θ the following inequality holds:

c L(θ) ≤ 1. (3.2)

Also, assume that i.i.d. samples can be efficiently generated from the prior PDF q(θ). This is a reasonable assumption
because the prior PDF is often chosen from a standard class of distributions (e.g. Gaussian, exponential). In the above
context, a sample θ distributed as the posterior PDF pD(θ) ∝ q(θ)L(θ) in (3.1) can be generated from the following
straightforward application of the rejection principle:

Step 1. Generate U uniformly distributed on [0, 1] and θ distributed with the prior PDF q(θ).
Step 2. If U < cL(θ), return θ as the sample. Otherwise go back to Step 1.

It can be shown [35] that the sample θ returned from the above algorithm is distributed as pD(θ), that is by
marginalizing as

pΘ (θ) =

 1

0
pΘ,U (θ , u) du ∝ pD(θ). (3.3)

Although the above rejection algorithm is theoretically viable, the acceptance probability and hence efficiency are
often very low in typical updating problems with a reasonable amount of data. This is because a sample drawn from
the prior PDF q(θ) often has a low likelihood value L(θ) when the data is informative about the uncertain parameters,
leading to significant change from the prior to the posterior PDF.

3.2. Equivalent reliability problem

Recognizing the high rejection rate when the rejection principle is directly applied, BUS transforms the problem
into a reliability problem. The premise is that this will allow the existing algorithms developed in the reliability method
literature to be applied to Bayesian updating problems, especially those that are capable of generating samples from
the frequent (safe) region to the rare (failure) region, such as SuS. The reliability problem analogy of the Bayesian
updating problem is constructed as follows. Consider a reliability problem with uncertain parameters (θ , U ) having
the joint PDF q(θ) I (0 ≤ u ≤ 1), where the failure event is defined as

F = {U < c L(θ)}. (3.4)

Suppose that by some means (e.g. SuS) we can obtain a failure sample distributed as q(θ) I (0 ≤ u ≤ 1) conditional
on the failure event F . The PDF of the failure sample, denoted by (θ ′, U ′), is given by

pθ ′,U ′(θ , u) = P−1
F q(θ) I (0 ≤ u ≤ 1) I (u < cL(θ)), (3.5)

where

PF =

 
q(θ) I (0 ≤ u ≤ 1) I (u < cL(θ)) du dθ , (3.6)

is the failure probability of the reliability problem.



1108 F.A. DiazDelaO et al. / Comput. Methods Appl. Mech. Engrg. 317 (2017) 1102–1121

In the above formulation, the driving response variable can be defined as

Y = c L(θ) − U, (3.7)

so that the failure event corresponds to

F = {Y > 0}. (3.8)

Populations of failure samples conditional on the intermediate failure events Fi = {Y > bi } for adaptively increasing
bi (i = 1, 2, . . .) are then generated until they pass the target failure event F = {Y > 0}, from which the samples
conditional on F are collected as the posterior samples.

Note that in the original formulation the driving response variable was in fact defined as Y = U − c L(θ). The
presentation in (3.7) is adopted so that it is consistent with the conventional SuS literature, where the intermediate
threshold levels increase rather than decrease as the simulation level ascends.

4. Likelihood multiplier

One issue of concern in the BUS formulation is the choice of the multiplier c satisfying the inequality in (3.2), which
is not always trivial. Some suggestions have been given, by inspecting the mathematical structure of the likelihood
function [35]; or by adaptively using empirical information from the generated samples [38]. The latter is more robust
as it does not require preliminary analysis, but, as stated by the authors, in order to guarantee that it satisfies the
inequality, more theoretical analysis is needed. In this section we rigorously investigate the role of the multiplier and
its effect on the results if it is not properly chosen. The investigation leads to a reformulation of BUS, to be proposed
in the next section.

In the context of BUS, the multiplier needs to be chosen before starting a SuS run as it affects the definition of the
driving variable Y in (3.7). Clearly, the multiplier affects the distribution of the driving variable as well as the generated
samples. Recall that only those samples conditional on Y = c L(θ)−U > 0 are collected as the posterior samples. The
larger the value of c the more efficient the SuS run, because this will increase Y and the failure probability P(Y > 0),
thereby reducing the number of simulation levels required to reach the target failure event.

From the inequality in (3.2), the choice of the multiplier is governed by the region in the parameter space of θ

where the value of L(θ) is large. The largest admissible value of c is given by

cmax =


max

θ
L(θ)

−1

. (4.1)

This result is well-known in the rejection sampling literature. Clearly, this value is not known before computation.
While using a value smaller than cmax will be less efficient but still give the correct distribution in the samples, using a
value larger than cmax will lead to bias in the distribution of the samples. In some problems it is possible to investigate
the mathematical structure of L(θ) and derive inequalities to propose a choice of c that guarantees cL(θ) ≤ 1. In such
cases, it is computationally beneficial to use that value. However, in general it is difficult by numerical means to have
a choice of c that guarantees the inequality.

When an inadmissible (too large) value of the multiplier is used, the resulting distribution of the failure samples
will be truncated, leading to bias in the posterior statistical estimates based on them. To see this, suppose inequality
(3.2) is violated, say, within some region B:

B = {θ ∈ Rn
: cL(θ) > 1}. (4.2)

Then for any θ ∈ B, I (u < c L(θ)) = 1 for u ∈ (0, 1) and so (3.3) implies

pΘ (θ) = P−1
F q(θ)

 1

0
I (u < cL(θ))du = P−1

F q(θ). (4.3)

For those θ not in B, the inequality is satisfied and the PDF value pΘ (θ) remains to be the correct posterior PDF
pD(θ) as in (3.3):

pΘ (θ) = P−1
F q(θ) cL(θ) ∝ pD(θ). (4.4)
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Fig. 1. Truncation of distribution in rejection algorithm. Center line—resulting distribution (short of the constant P−1
F ); shaded interval—truncation

region B where cL(θ) > 1.

Thus, an inadmissible (too large) value of c introduces bias in the problem by truncating the posterior PDF to be
the prior PDF in the region of θ where the inequality is violated. Intuitively, in the context of rejection principle, if the
multiplier is not small enough, the samples drawn from the prior PDF are accepted (incorrectly) too often, rendering
their distribution closer to the prior PDF than they should be.

The truncation effect is illustrated in Fig. 1, where the shaded interval denotes the region B. The prior PDF q(θ)

is taken to be constant and so pD(θ) ∝ cL(θ). Instead of the target posterior PDF, the resulting distribution of the
sample takes the shape of the center line. Within the region B it is truncated to the shape of q(θ).

As long as the multiplier satisfies the inequality in (3.2), it is completely arbitrary and it does not affect the
distribution of the resulting samples, which is equal to the correct posterior PDF. This observation is trivial but has
important implications. In the original BUS context, for example, it implies that the samples generated in different
simulation runs with different admissible values of the multiplier can be simply averaged for estimating posterior
statistics, because they all have the same correct posterior distribution. This fact shall also be used later when
developing the proposed algorithm in this work.

5. Alternative BUS formulation

Having clarified the role of the multiplier, we now present a modification of the original BUS formulation that
isolates the effect of the multiplier in a fundamental manner. This leads to a formulation where SuS can be performed
without having to choose the multiplier before the simulation run; and where the effect of the multiplier appears clearly
in the accuracy of the posterior distribution. The modification is based on the simple observation that the failure event
in (3.4) can be rewritten as

F =


ln


L(θ)

U


> − ln c


. (5.1)

This means that the driving variable in SuS can be defined as

Y = ln


L(θ)

U


, (5.2)

and the target failure event can now be written as

F = {Y > b}, (5.3)

where

b = − ln c. (5.4)

The base of the logarithm is arbitrary but we choose to use natural logarithm here to facilitate the analysis.
Despite the apparently slight change in definition of the driving variable, the setup above changes the philosophy

behind the multiplier and the way SuS is implemented to produce the posterior samples. The driving variable no longer
depends on the multiplier and so the choice of the latter is no longer needed to start the SuS run. The multiplier only
affects the target threshold level b beyond which the samples can be collected as posterior samples. As remarked at the
end of the last section, as long as the multiplier is sufficiently small to satisfy the inequality in (3.2), the distribution
of the samples conditional on the failure event F = {U < cL(θ)} is invariably equal to the posterior distribution.
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This implies that in the proposed formulation the distribution of the samples conditional on {Y > b} will settle
(remain unchanged) for sufficiently large b. In the original BUS formulation where the driving variable is defined as
Y = cL(θ) − U for a particular value of c (assumed to be admissible), only the samples conditional on the failure
event F = {Y > 0}, i.e. for a threshold value of exactly zero, have the posterior distribution.

Substituting b = − ln c from (5.4) into (3.2) and rearranging, the inequality constraint in terms of b is given by, for
all θ ,

b ≥ ln L(θ). (5.5)

From (4.1), the maximum admissible value of c is cmax = [maxθ L(θ)]−1. Correspondingly the minimum value of b
beyond which the distribution of samples will settle at the posterior PDF is

bmin = − ln cmax = ln


max
θ

L(θ)


. (5.6)

Similar to cmax, the value of bmin is generally unknown but this does not affect the SuS run. Under the proposed
formulation, one can simply perform SuS with increasing levels until one determines that the threshold level of the
highest level has passed bmin. Despite not knowing bmin, this turns out to be a more well-defined task as it is shown
later that the CCDF of Y , i.e. P(Y > b) versus b, has characteristic behavior for b > bmin.

The logarithm in the above formulation is introduced for analytical and computational reasons, so that the driving
variable is a well-defined random variable. In particular

Y = ln


L(θ)

U


= ln L(θ) + ln(U−1). (5.7)

For U uniformly distributed on [0, 1], ln(U−1) is exponentially distributed with mean 1. For a well-posed likelihood
function L(θ) one can expect that ln L(θ) is a well-defined random variable when θ is distributed as q(·), and so is
the driving variable Y . In particular, if the first two moments of ln L(θ) are bounded, then the same is also true for the
first two moments of Y because

E[Y ] = E[ln L(θ) + ln U−1
]

= E[ln L(θ)] + 1, (5.8)

E[Y 2
] = E{[ln L(θ) + ln U−1

]
2
}

= E{[ln L(θ)]2
} + 2E[ln L(θ)]E[ln U−1

] + E{[ln U−1
]
2
}

= E{[ln L(θ)]2
} + 2E[ln L(θ)] + 2, (5.9)

since E[ln U−1
] = 1 and E{[ln U−1

]
2
} = 2 (properties of the exponential variable ln U−1).

The authors believe that, while respecting the originality of BUS, the proposed formulation resolves the issue with
the multiplier, as the requirement of choosing it a priori in the original formulation has been eliminated. The theoretical
foundation of the proposed formulation is encapsulated in the following theorem.

Theorem 1. Let θ ∈ Rn be a random vector distributed as q(θ) and U be a random variable uniformly distributed
on [0, 1]; with θ and U independent. Let L(θ) be a non-negative scalar function of θ . Define Y = ln[L(θ)/U ] and
b = − ln c, for c ∈ R. Then, for any b > ln[maxθ L(θ)]:

1. The distribution of θ conditional on {Y > b} is pD(θ) = P−1
D q(θ) L(θ) where PD =


q(z) L(z) dz is a

normalizing constant;

2. PD = eb P(Y > b).

Proof. In order to prove the first part of the above theorem, first note that events {Y > b} and {cL(θ) > U }

are equivalent. Integrating out the uniform random variable from the PDF of the failure sample given by Eq. (3.5)



F.A. DiazDelaO et al. / Comput. Methods Appl. Mech. Engrg. 317 (2017) 1102–1121 1111

gives:

pθ ′(θ) =

 1

0
pθ ′,U ′(θ , u) du

= p−1
F q(θ)

 1

0
I (0 ≤ u ≤ 1) I (u < c L(θ)) du

= p−1
F q(θ) cL(θ)

∝ pD(θ). (5.10)

The result will be valid for any c < [maxθ L(θ)]−1, or equivalently for any b > ln[maxθ L(θ)].

For the second part of the theorem, since Y = ln[L(θ)/U ] and (θ , U ) has a joint PDF q(θ)I (0 < u < 1), P(Y > b)

is given by

P(Y > b) =

 
q(θ) I (0 < u < 1) I


ln


L(θ)

u


> b


du dθ

=


q(θ)

 1

0
I (u < e−b L(θ)) du dθ

= e−b


q(θ)L(θ) dθ , (5.11)

since
 1

0 I (u < e−b L(θ)) du = e−b L(θ) when e−b L(θ) < 1 for all θ (b is admissible). Observe, from the definition
of the posterior (3.1), that

PD = eb P(Y > b) b > bmin. (5.12)

That is, when b > bmin, PD can be obtained as a product of eb and the failure probability P(Y > b) it corresponds
to. �

6. Bayesian model class selection

In addition to providing the posterior distribution and estimating the updated expectation in (1.3), the posterior
samples can be used for estimating the normalizing constant PD . This is the primary target of computation in Bayesian
model class selection problems, where competing models are rated. In this section we show how this can be done using
the conditional samples generated by SuS in the context of the proposed formulation.

Let b be an admissible threshold level, i.e. b > bmin, so that the samples conditional on {Y > b} have the correct
posterior distribution pD(θ). Consider the failure probability P(Y > b), which can be estimated using the samples in
SuS.

Note that Eq. (5.12) can be rewritten as

P(Y > b) = e−b PD b > bmin. (6.1)

Since PD is constant for a given problem, this suggests that for sufficiently large b, P(Y > b) will decay exponentially
with b. Interpreting P(Y > b) as the CCDF of Y , this exponential decay gives a picture similar to a typical CCDF
encountered in reliability analysis. This is another (though secondary) merit of introducing the logarithm in the
definition of the driving variable Y in (5.2).

7. Characteristic trends

As shown in the last section, when b > bmin the failure probability P(Y > b) is theoretically related to the
evidence PD through (5.12). In the actual implementation, bmin is not known and so it is necessary to determine
whether b > bmin so that the samples conditional on {Y > b} can be confidently collected as posterior samples. We
argue that the variation of P(Y > b) with b takes on different characteristics on two different regimes of b. This
can be used to tell whether the threshold value of a particular simulation level has already passed bmin in a SuS run,
thereby suggesting a stopping criterion.
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Fig. 2. Characteristic trends of ln P(Y > b) and V (b).

First, note that P(Y > b) is a non-increasing function of b. When b is at the left tail of the CCDF, P(Y > b) ≈ 1
and it typically decreases with b, being equal to PD at b = bmin. When b > bmin, we know from (6.1) that
P(Y > b) = PD e−b and so it decays exponentially with b. We can thus expect that, as b increases from the left
tail and passes bmin, the CCDF of Y typically changes from a decreasing function to a fast (exponentially) decaying
function. Correspondingly, the function ln P(Y > b) changes from a slowly decreasing function to a straight line with
a slope of −1.

On the other hand, consider the following function:

V (b) = b + ln P(Y > b). (7.1)

This function can be used for computing the log-evidence ln PD as it can be readily seen that

V (b) = ln PD b > bmin. (7.2)

When b is at the left tail of the CCDF, ln P(Y > b) ≈ 0 and so V (b) ≈ b increases linearly with b. The above means
that as b increases from the left tail of the CCDF of Y the function V (b) increases linearly, going through a transition
until it settles (remains unchanged) at ln PD after b > bmin. The characteristic behavior of ln P(Y > b) and V (b) are
depicted in Fig. 2.

Strictly speaking, the above arguments only apply to the theoretical quantities. In a SuS run the quantities
ln P(Y > b) and V (b) as a function of b can only be estimated on a sample basis. The resulting estimated counterparts
will exhibit random deviation from the theoretical trends due to statistical estimation error, whose extent depends
on the number of samples used in the simulation run (the larger the number of samples, the smaller the error).
Nevertheless, the above arguments and Fig. 2 provide the basis for determining the simulation level to stop and to
collect the posterior samples, that is, once the transition in the slope of ln P(Y > b) and V (b) is complete. On this
basis, we present an automatic stopping condition that is enforced once the algorithm detects that the transition has
occurred.

8. Automatic stopping strategy

In the proposed context, the posterior samples can be obtained from the conditional samples in a straightforward
manner from a SuS run. No modification of SuS is necessary. Below we outline how this can be done, focusing only
on issues directly related to the Bayesian updating problem.

The primary target of the Bayesian updating problem is to generate samples distributed as the posterior PDF
pD(θ) ∝ q(θ)L(θ), where q(θ) is the prior distribution assumed to be chosen from a standard class of distributions
(e.g., Gaussian, exponential); and L(θ) is the likelihood function for a given set of data. As reviewed in Section 2, a
SuS run produces the estimate of the CCDF of the driving variable Y , i.e. P(Y > b) versus b. The posterior samples
for Bayesian model updating can be obtained as the conditional samples in a SuS run for the reliability problem with
driving variable Y = ln[L(θ)/U ], where θ is distributed as q(θ) and U is uniformly distributed on [0,1]; with θ and
U independent. The conditional samples are collected from the level whose threshold level is determined to be greater
than bmin.

8.1. Stopping criterion

From the discussion in Section 7 and the definition of SuS, it is clear that the number of intermediate failure levels
will increase as the algorithm progresses. For a given level k where bk is an admissible value for the failure event, the
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samples generated will eventually be distributed as desired. The following theorem establishes theoretical guarantees
that such failure level can be achieved in a finite number of iterations, given some regularity assumptions. Moreover,
it provides a stopping criterion to terminate the algorithm and prevent the generation of unnecessary SuS levels.

Theorem 2. Let the Bayesian inference problem be defined by an upper-bounded likelihood function L(θ), a prior
density q(θ) and associated posterior p(θ |D). The marginal distribution of θ conditional on the intermediate failure
levels, denoted by p(θ |Fk), converges to the posterior. Moreover, there exist constants e−bk and a monotone decreasing
sequence ak , such that

lim
k→∞

ak = 0 (8.1)

where ak is the prior probability of the set Bk = {θ : e−bk L(θ) > 1}.

Proof. In Theorem 1, it was proved that as long as the j th failure level satisfies b j > bmin, any sample generated will
be distributed according to the target posterior distribution. The level b j is said to be a terminal level since any value
of b j+1 is, by definition, b j+1 > b j . Hence, the samples will be distributed as desired for any terminal level.

To prove the theorem, let us characterize a non-terminal level k such that bk < bmin. For the optimal threshold level
bmin, the inequality

u < e−bmin L(θ) < 1, (8.2)

is guaranteed for any value of a failure sample (θ , u) being distributed jointly as Eq. (3.5). In contrast, a non-terminal
level satisfies e−bmin L(θ) < e−bk L(θ) and it is not possible to determine an analogous right-hand side of inequality
(8.2). Let an inadmissible set be defined as Bk = {θ : e−bk L(θ) > 1}. It follows that the marginal distribution of the
target variable is given by

p(θ |Fk) ∝


q(θ) if θ ∈ Bk

e−bk q(θ) L(θ) if θ ∈ Bc
k .

(8.3)

Note that for all samples in the inadmissible set Bk , the marginal is proportional to the prior distribution, whilst for
the samples in the admissible set Bc

k the target density is proportional to the posterior distribution. Marginalizing in
order to compute the normalizing constant results in

PFk =


Θ


q(θ) I (θ ∈ Bk) + e−bk q(θ) L(θ) I (θ ∈ Bc

k )


dθ

=


Bk

q(θ) dθ + e−bk


Bc

k

q(θ) L(θ) dθ

= Pθ (Bk) + e−bk PD Pθ |D(Bc
k ), (8.4)

where Pθ (Bk) denotes the probability of event Bk under the prior distribution and Pθ |D(Bc
k ) denotes the probability

of event Bc
k under the posterior distribution. Note that Eq. (8.4) is consistent with the case where bk is a terminal level.

If that is the case, the pair (θ , u) satisfies u < e−bk L(θ) by the definition of the driving variable Y and thus Bk = ∅.
Let us rewrite the inadmissible set as

Bk = {θ : L(θ) > ebk }. (8.5)

Given an increasing sequence of failure levels, it can be seen that the sequence of inadmissible sets is monotone
decreasing, namely

Bk ⊃ Bk+1 ⊃ · · · ⊃ ∅. (8.6)

This fact is depicted in Fig. 3.
Additionally, since the prior distribution is a probability measure, it satisfies the monotonicity property, namely

P(Bk+1) ≤ P(Bk) for all k. Let us define the sequence ak as the prior probability of the inadmissible sets,
i.e. ak = Pθ (Bk). As a consequence of the monotonicity property, it follows that ak is a monotone decreasing sequence
of values converging to zero from above, denoted by

ak ↘ 0. (8.7)
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Fig. 3. Increasing failure levels and likelihood.

Moreover, since the sets Bk are monotone decreasing, then the sequence of complements is increasing, that is

Bc
k ⊂ Bc

k+1 ⊂ · · · ⊂ Θ . (8.8)

Let mk denote the posterior probability of the set Bc
k . Analogous to ak , the sequence mk is monotone increasing

converging to 1 from below. This is denoted by

mk ↗ 1. (8.9)

Expressions (8.7) and (8.9) allow to establish that for a sufficiently large value of k

pFk = e−bk PD, (8.10)

is satisfied and the result is established. �

The preceding theorem allows us to propose a stopping criterion for the BUS algorithm with driving variable
Y = log[L(θ)/U ] using SuS. The value of ak can be made arbitrarily small by means of the failure level bk , which is
learnt automatically during the algorithm. The computation of ak is challenging, since it involves a multiple integral.
Note that the prior probability can be written as

ak = Pθ (Bk) = Pθ (L(θ) > ebk ) (8.11)

which is in itself a reliability problem, where the likelihood L(θ) takes the role of a driving variable and ebk takes
the role of the corresponding threshold. Since the prior distributions are chosen from a standard catalogue of density
functions and the probability is assumed to be small, it turns out that such integral can be computed by means of SuS.
In this setting, computing Eq. (8.11) can be regarded as performing an inner level SuS. The sampling of the expanded
variables (θ , u) from the failure levels in Eq. (3.5), is regarded as outer level SuS.

8.2. Posterior statistical estimation

The posterior samples {θ
(m)
k : k = 1, . . . , N } obtained from simulation level m for which bm > bmin can be used

for estimating posterior statistics in Bayesian updating problem and the evidence for Bayesian model class section.
For the former, the posterior expectation in (1.3) is estimated by simple averaging:

E[r(θ)|D, M] ≈
1
N

N
k=1

r(θ
(m)
k ). (8.12)

On the other hand, based on (5.12), the evidence can be estimated by

P(D|M) = PD ≈ P̂D = ebm pm
0 . (8.13)

Taking logarithm, the log-evidence is estimated by

ln P(D|M) = ln PD ≈ ln P̂D = bm + m ln p0. (8.14)

8.3. Statistical error assessment

Some comments are in order regarding the statistical error of the results, in terms of the quality of the posterior
samples and the statistical variability of the log-evidence estimator. Provided that the threshold value of the simulation
level is greater than bmin, its conditional samples are always distributed as the target posterior PDF pD(θ). However,
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Table 1
Comparison of original BUS and proposed reformulation. Note that the original definition of
the driving variable in BUS is Y = U − cL(θ). For consistency with SuS literature, it has been
reexpressed as shown here.

BUS Proposed

Driving variable Y = cL(θ) − U Y = ln[L(θ)/U ]

for any c < [maxθ L(θ)]−1

Target failure event F = {Y > 0} F = {Y > b}

for any b > ln[maxθ L(θ)]

Evidence calculation PD = cP(Y > 0) PD = eb P(Y > b)

for any b > ln[maxθ L(θ)]

Stopping criterion When threshold value of After inner–outer SuS procedure
simulation level is equal automatically determines that the
to zero. threshold bmin has been crossed by

driving the sequence ak ↘ 0.

being MCMC samples, they are correlated. When used for statistical estimation they will give less information than
if they were independent. Typically their correlation tends to increase with the simulation level. In view of this, it
is not necessary to perform more simulation levels than necessary. Fortunately, the stopping criterion based on the
inner–outer procedure discussed above guards against this scenario.

For the evidence estimate in (8.13), it should be noted that its statistical variability arises from bm . By taking small
random perturbation of the estimation formula, it can be reasoned that c.o.v.(ln PD) ≈ std(ln PD) ≈ std(bm), where
std is an abbreviation for standard deviation. An estimation formula for the c.o.v. of bm based on samples in a single
SuS run is not available, however. Conventionally only the c.o.v. of the estimate P̂b (say) for P(Y > b) for fixed
b is available, rather than the c.o.v. of the b quantile value bm for fixed exceedance probability. It can be reasoned,
however, that the c.o.v. of P̂D (where bm is random) can be approximated by the c.o.v. of eb P̂b for fixed b (then taking
b = bm obtained in a simulation run). The latter is equal to the c.o.v. of P̂b, for which a standard estimation formula
is available [26,27].

8.4. Comparison with original BUS formulation

Table 1 provides a comparison between the original BUS and the proposed formulation. Implementing SuS under
the proposed framework has several advantages over the original BUS, stemming mainly from the treatment of the
multiplier. First of all, there is no need to determine the appropriate value of the multiplier to start the simulation
run. The definition of the driving variable is more intrinsic as it only depends on the likelihood function and not on
the multiplier. In the BUS context, if the chosen value of the multiplier is not small enough, it will lead to bias in
the distribution of the samples, unfortunately in the high likelihood region of the posterior distribution that is most
important. If it is chosen too small it will result in lower efficiency, as it requires more simulation levels to reach the
target event from which the samples can be taken as posterior samples. In both cases if it is found after a SuS run that
the choice of the multiplier is not appropriate, one needs to perform an additional run with a (hopefully) better choice
of the multiplier. These issues are all irrelevant in the proposed context because the problem specification of the SuS
run does not depend on the multiplier.

On the other hand, in the BUS context the posterior samples must be obtained as those conditional on the target
failure event {Y > 0} where Y = cL(θ) − U . For example, samples conditional on Y > 0.1 cannot be directly
used. Since the threshold values b1, b2, . . . generated adaptively in different simulation levels of SuS are random, they
generally do not coincide with 0, i.e. the target threshold value of interest. In this case, not all samples can be used
directly as conditional samples. In the original BUS algorithm if the threshold of the next level determined adaptively
from the samples of the current level is greater than zero, it is set equal to zero so that the next (and final) level is
exactly conditional on {Y > 0}. In the proposed context, the posterior samples can be directly collected from the
samples generated in SuS. This is because any sample conditional on {Y > b} with b > bmin can be taken as a
posterior sample. The value of bmin is unknown but b > bmin can be determined from the inner–outer procedure
discussed in Section 8.
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9. Illustrative examples

We now present two examples that illustrate the applicability of the proposed methodology. The first one is the
locally identifiable case of a two-degree-of-freedom shear building model originally presented in Beck and Au [18].
The second example is the unidentifiable case of the same model.

9.1. Example 1. Two-DOF shear frame: locally identifiable case

Consider a two-storied building structure represented by a two-degree-of-freedom shear building model. The
objective is to identify the interstory stiffnesses which allow the structural response to be subsequently updated.
The first and second story masses are given by 16.5 × 103 kg and 16.1 × 103 kg respectively. Let θ = [θ1, θ2] be the
stiffness parameters to be identified. The interstory stiffnesses are thus parameterized as k1 = θ1k1 and k2 = θ2k2,
where the nominal values for the stiffnesses are given by k1 = k2 = 29.7 × 106 N/m. The joint prior distribution
q(·) for θ1 and θ2 is assumed to be the product of two Lognormal distributions with most probable values 1.3 and 0.8
respectively and unit standard deviations. For further details on the assumptions behind the parameterization and the
choice of nominal values, refer to Beck and Au [18]. Let D = { f̃1, f̃2} be the modal data used for the model updating,
where 3.13 Hz and 9.83 Hz are the identified natural frequencies. The posterior PDF is formulated following Vanik
et al. [46] as

pD ∝ exp[−J (θ)/2ϵ2
] q(θ), (9.1)

where ϵ is the standard deviation of the prediction error and J (θ) is a modal measure-of-fit function given by

J (θ) =

2
j=1

λ2
j [ f 2

j (θ)/ f̃ 2
j − 1]. (9.2)

Here, λ1 and λ2 are weights and f1(θ) and f2(θ) are the modal frequencies predicted by the corresponding finite
element model.

For the implementation of SuS, a conventional choice of algorithm parameters in the reliability literature is adopted
in this study. The level probability is chosen to be p0 = 0.1 and the number of samples per level N is fixed at 10,000.
In the standard Gaussian space, the one-dimensional proposal PDF is chosen to be uniform with a maximum step
width of 1. A relatively large number of samples per level is chosen in this study to illustrate the theoretical aspects
of the proposed method. Strategies for efficiency improvement such as adaptive proposal PDF or likelihood function
can be explored but are not further investigated here.

Fig. 4 shows the Markov chain samples for θ = [θ1, θ2] at six consecutive simulation levels. The results are shown
in the Lognormal space after the application of the relevant transformation. Level 0 corresponds to the unconditional
case (i.e. Direct Monte Carlo), that is, the joint prior PDF. As the simulation level ascends, the distribution of the sam-
ples evolves from the prior distribution to the target posterior distribution, which is bimodal in the present example.

Fig. 5 shows the marginal histograms for θ1 and θ2 corresponding to those samples in Fig. 4. For comparison,
the solid lines show the target marginal posterior distributions obtained by numerically integrating the expression for
the posterior PDF, which is still feasible for this two-dimensional example. It is apparent that the distribution of the
samples has settled either in Level 4 or Level 5. In reality, the exact target PDF is not available and so alternative
means must be employed to determine whether the distribution of the samples has settled at the target one. Within the
context of the current methodology, this is done through the proposed automatic stopping strategy and confirmed by
the plots of the log-failure probability and log-evidence versus the threshold level.

Fig. 6 plots the estimate of the log-CCDF of Y , i.e. ln P(Y > b) versus b. The general shape of the resulting
simulated curve coincides with the characteristic trend predicted by the theory (see Fig. 2), that is, there is a transition
from a slowly decreasing function to a line with slope equal to −1. When zooming in, the figure shows the boundaries
of each level computed via SuS. Additionally, the log-evidence is shown in Fig. 6. As with the log-CCDF, the
theoretical prediction of the characteristic trend is also verified for this case, whereby the curve flattens when the
transition is complete. Table 2 shows the evolution of the threshold (columns 2 and 3). The transition is complete
after Level 4, where the probability of inadmissibility ak converges to zero (as defined in Section 8). For a tolerance
of ak = 10−8, the fourth column in Table 2 shows that the posterior samples should be collected from Level 5. This
corresponds with the clearly bimodal distributions in Figs. 4 and 5. It is guaranteed that the samples in the subsequent
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Fig. 4. Markov chain samples in the Lognormal space for the stiffness parameters θ = [θ1, θ2] from Level 0 (prior distribution) to Level 5.

Fig. 5. Posterior marginal PDF for θ2 at different simulation levels. The target marginal posteriors were obtained numerically and are shown for
comparison.

Table 2
Evolution of the threshold and the probability of
inadmissibility.

Level bk ck ak

0
1 −4.291e+02 2.325e+186 5.3300e−01
2 −6.237e+01 1.221e+27 1.3800e−01
3 −9.331e+00 1.128e+04 2.8700e−02
4 2.203e+00 1.105e−01 4.0400e−03
5 5.780e+00 3.088e−03 0.0000e+00
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Fig. 6. Log-CCDF computed through SuS (left plot) for the identifiable case. The curve slowly transitions into a straight line with negative unit
slope. Correspondingly, the log-evidence (right plot) flattens as the threshold exceeds bmin. The dotted lines show the thresholds for different
simulation levels.

Fig. 7. Markov chain samples in the Lognormal space for the stiffness parameters θ1 and θ2 of the unidentifiable case at simulation levels 0 (prior
distribution) to level 5.

Sus levels would all be distributed according to the target posterior PDF. However, for statistical estimation their
quality deteriorates as the simulation level ascends because their correlation tends to increase. Thus, the algorithm
stops in Level 5.

9.2. Example 2. Two-DOF shear frame: unidentifiable case

The exercise was repeated for the case where the story masses are also unknown and need to be updated. The
problem is characterized as unidentifiable, since there is an infinite number of combinations of parameter values that
can explain the measured modal frequencies. In addition to the stiffnesses, the masses are parameterized as m1 = θ3m1
and m2 = θ4m2, where the nominal values for the are given by m1 = 16.5 × 103 kg and m2 = 16.1 × 103 kg. Thus,
for this case, θ = [θ1, θ2, θ3, θ4] where the marginal prior distributions for θ1 and θ2 are the same Lognormals as in
the previous example. The prior marginal distributions for θ3 and θ4 are both assumed to be Lognormals with most
probable values equal to 0.95 and standard deviation of 0.1. The joint prior PDF is therefore taken as the product of the
four Lognormals. Fig. 7 shows the Markov chain samples for θ (θ1 versus θ2 for visualization purposes) at simulation
levels 0 through 5. Again, the updated distribution results in a bimodal posterior PDF.

Analogously, Fig. 8 shows the samples for θ3 and θ4 in the Lognormal space. There is no noticeable pattern in the
distribution of the masses, consistent with the findings in Beck and Au [18]. The characteristics of this example are
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Fig. 8. Markov chain samples in the Lognormal space for the mass parameters θ3 and θ4 of the unidentifiable example at simulation levels 0 to
level 5.

Fig. 9. Ratio of evidence of the identifiable model to the evidence of the locally unidentifiable model. Since this ratio converges to 1, there is no
preference of either model over each other, given the available data.

very similar to the ones displayed by the locally identifiable case. The automatic stopping condition is also reached
when ak ≤ 10−8, for which the posterior samples are also collected in Level 5. We omit the characteristic trend plots
and corresponding table for brevity.

9.3. Example 3. Model class selection

Following the two preceding examples, we can estimate the log-evidence corresponding to each model according
to Eq. (8.14). Fig. 9 shows the ratio of the evidence for the identifiable case to the evidence of the locally unidentifiable
case. Discounting the random deviation due to simulation error, the ratio of evidence seems to converge to 1, which
suggests that, given the available data, there is no reason to prefer the unidentifiable model over the more parsimonious
one.

10. Conclusions

We have presented a fundamental analysis of BUS, a recently proposed framework that establishes an analogy
between the Bayesian updating problem and the engineering reliability problem. This work was motivated by the
question of choosing the correct likelihood multiplier and it has led to an improved formulation which resolves this
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question. By redefining the target failure event, we have expressed the driving variable in the equivalent reliability
problem using the likelihood function alone, without the multiplier. This redefinition provides the key advantage over
the original BUS, since our implementation no longer requires a predetermined value for the multiplier in order to start
the SuS runs. This immediately eliminates the need to perform additional runs in case an inadmissible or inefficient
value for the multiplier is chosen. Moreover, it was shown that the samples generated at different levels of SuS can
be used directly as posterior samples as long as their threshold is greater than the minimum admissible value and
the probability of inadmissibility is zero. We have proposed an inner–outer SuS procedure that provides an automatic
stopping condition for the algorithm. The theoretical predictions of our study have been verified by applying our
proposed strategy to illustrative examples.
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