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Abstract
We revisit a classical problem in transportation, known as the continuous (bilevel) network design
problem, CNDP for short. Given a graph for which the latency of each edge depends on the ratio
of the edge flow and the capacity installed, the goal is to find an optimal investment in edge
capacities so as to minimize the sum of the routing cost of the induced Wardrop equilibrium
and the investment cost for installing the capacity. While this problem is considered as chal-
lenging in the literature, its complexity status was still unknown. We close this gap showing
that CNDP is strongly NP-complete and APX-hard, both on directed and undirected networks
and even for instances with affine latencies. As for the approximation of the problem, we first
provide a detailed analysis for a heuristic studied by Marcotte for the special case of monomial
latency functions (Math. Program., Vol. 34, 1986). We derive a closed form expression of its
approximation guarantee for arbitrary sets of latency functions. We then propose a different
approximation algorithm and show that it has the same approximation guarantee. However, we
show that using the better of the two approximation algorithms results in a strictly improved
approximation guarantee for which we derive a closed form expression. For affine latencies, e.g.,
this algorithm achieves a 49/41 ≈ 1.195-approximation which improves on the 5/4 that has been
shown before by Marcotte. We finally discuss the case of hard budget constraints on the capacity
investment.

1998 ACM Subject Classification F.2 Analysis of Algorithms and Problem Complexity

Keywords and phrases Bilevel optimization, Optimization under equilibrium constraints, Net-
work design, Wardrop equilibrium, Computational complexity, Approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The continuous network design problem (CNDP) introduced by Dafermos [7], Dantzig et
al. [9], and Abdulaal et al. [1] is one of the most classical network design problems in transport.
In a nutshell, given a graph in which the latency of each edge depends on the ratio of the edge
flow and the capacity installed at that edge, the goal is to find an optimal investment in edge
capacities so as to minimize the sum of the routing cost of the induced Wardrop equilibrium
and the investment cost for installing the capacity. The investment cost is assumed to be
linear in chosen capacity and comprises all monetary costs for building the streets with
the given capacity (spread over the expected lifespan of the street) and the accumulated
maintenance cost during that time. By a scaling capacity costs accordingly, an arbitrary
linear combinations of routing cost and investment cost can be minimized. Continuous
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2 Continuous Network Design Problem

network design is a fundamental problem in traffic and telecommunication networks when
new networks have to be designed from scratch, e.g., after introducing new technology or
after opening up new areas.

From a mathematical perspective, CNDP is a bilevel optimization problem (cf. [5, 16] for
an overview), where in the upper level the edge capacities are determined and, given these
capacities, in the lower level the flow will settle into a Wardrop equilibrium in which, for
each commodity, only shortest paths are used. Clearly, the lower level reaction depends on
the upper level decision because altering the capacity investment on a subset of edges may
result in revised route choices by users.

CNDP has been intensively studied since the late sixties (cf. [7, 17]) and several heuristic
approaches have been proposed since then; see Yang et al. [27] for a comprehensive survey.
Most of the proposed heuristics are numerical in nature and involve iterative computations of
relaxations of the problem (for instance the iterative optimization and assignment algorithm
as described in [19] and augmented Lagrangian methods or linearizations of the objective in
the leader and follower problem). An exception is the work of Marcotte [18] who considered
several algorithms based on solutions of associated convex optimization problems which
can be solved in polynomial time [11]. He derives worst-case bounds for his heuristics
and, in particular, for affine latency functions he devises an approximation algorithm with
an approximation factor of 5/4. For general monomial latency functions plus a constant
(including the latency functions used by the Bureau of Public Roads [25]) he obtains a
polynomial time 2-approximation. Variants of CNDP were also considered in the networking
literature, see [4, 12, 13, 14]. These works, however, consider the case where a budget capacity
must be distributed among a set of edges to improve the resulting equilibrium. Most results,
however, only work for simplified network topologies (e.g., parallel links) or special latency
functions (e.g., M/M/1 latency functions).

1.1 Our Results and Used Techniques.
Despite more than forty years of research, to the best of our knowledge, the computational
complexity status of CNDP is still unknown. We close this gap as we show that CNDP is
strongly NP-complete and APX-hard, both on directed and undirected networks and even
for instances with affine latencies of the form Se(ve/ze) = αe + βe · (ve/ze), where ve is the
flow and ze the capacity of edge e and αe, βe ≥ 0. For the proof of the NP-hardness, we
reduce from 3-SAT. The reduction has the property that in case that the underlying instance
of 3-SAT has a solution the cost of an optimal solution is equal to the minimal cost of a
relaxation of the problem, in which the equilibrium conditions are relaxed. The key challenge
of the hardness proof is to obtain a lower bound on the optimal solution when the underlying
3-SAT instance has no solution. To this end, we relax the equilibrium conditions only
partially which enables us to bound the cost of an optimal solution from below by solving an
associated constrained quadratic optimization problem. With a more involved construction
and a more detailed analysis, we can even prove APX-hardness of the problem. Here, we
reduce from a symmetric variant of MAX-3-SAT, in which all literals occur exactly twice.
While all our hardness proofs rely on instances with an arbitrary number of commodities
and respective sinks, we show that for instances in which all commodities share a common
sink, CNDP can be solved to optimality in polynomial time.

In light of the hardness of CNDP, we focus on approximation algorithms. We first
consider a polynomial time algorithm proposed by Marcotte [18]. This algorithm, which
we call BringToEquilibrium, first computes a relaxation of CNDP by removing the
equilibrium conditions. Then, it reduces the edge capacities individually such that the flow
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computed in the relaxation becomes a Wardrop equilibrium. We give a novel closed form
expression of the performance of this algorithm with respect to the set S of allowed latency
functions. Specifically, we show that this algorithm is a (1 + µ(S))-approximation, where
µ(S) = supS∈S,x≥0,γ∈[0,1] γ ·

(
1 − S(γ x)/S(x)

)
. The value µ(S) has been used before by

Correa et al. [6] and Roughgarden [21] in the context of price of anarchy bounds for selfish
routing where they showed that the routing cost of a Wardrop equilibrium is no more than a
factor of 1/(1− µ(S)) away of the cost of a system optimum. For the special case that S
is the set of polynomials with non-negative coefficients and maximal degree ∆, we derive
exactly the approximation guarantees that Marcotte obtained for monomials. As an outcome
of our more general analysis, we further derive that this algorithm is a 2-approximation for
general convex latency functions and a 5/4-approximation for concave latency functions.

We then propose a new algorithm which we call ScaleUniformly. This algorithm first
computes an optimal solution of the relaxation (as before) and then uniformly scales the
capacities with a certain parameter λ(S) that depends on the class of allowable latency
functions S. Based on well-known techniques using variational inequalities (Correa et al. [6]
and Roughgarden [21]), we prove that this algorithm also yields a (1 + µ(S))-approximation.
As our main result regarding approximation algorithms, we show that using the better
of the two solutions returned by BringToEquilibrium and ScaleUniformly yields
strictly better approximation guarantees. We give a closed form expression for the new
approximation guarantee (as a function of S) that, perhaps interestingly, depends not only
on the well-known value µ(S) but also on the argument maximum γ(S) in the definition of
µ(S). We demonstrate the applicability of this general bound by showing that it achieves a
9/5-approximation for S containing arbitrary convex latencies. For affine latencies it achieves
a 49/41 ≈ 1.195-approximation improving on the 5/4 of Marcotte. An overview of our results
compared to those of Marcotte can be found in Table 1.

Some proofs missing in this extended abstract can be found in the full version.

Table 1 Approximation guarantees of the algorithms BringToEquilibrium, ScaleUniformly,
and the best of the two for convex latency functions, concave latency functions and sets of polynomials
with non-negative coefficients depending on the maximal degree ∆. The approximation guarantees
stated for convex latency functions even hold for sets of semi-convex latency functions as in
Assumption 2.1. For BringToEquilibrium, the approximation guarantees marked with (?) have
been obtained before in [18].

Approximation guarantees
Functions BringToEquilibrium Better of the twoScaleUniformly

concave 5/4 = 1.25 49/41 ≈ 1.195
convex 2 9/5 = 1.8
polynomials ∆

0 1 1
1/4 3381/3125 ≈ 1.082 ≈ 1.064
1/3 283/256 ≈ 1.105 ≈ 1.083
1/2 31/27 ≈ 1.148 1849/1657 ≈ 1.116
1 5/4 = 1.25 ? 49/41 ≈ 1.195
2 1 + 2

9

√
3 ≈ 1.385? 311

479 + 180
479

√
3 ≈ 1.300

3 1 + 3
16

3√42 ≈ 1.472? ≈ 1.369
4 1 + 4

25
4√53 ≈ 1.535? ≈ 1.418

∞ 2 ? 9/5 = 1.8
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1.2 Further Application.
One of the most prominent and popular functions used in actual traffic models are the ones
put forward by the Bureau of Public Roads (BPR) [25]. They are of the form Se(ve) =
te ·
(
1 + be · (ve/ze)4), where ve is the edge flow, te represents the free-flow travel time, be > 0

is an edge-specific bias, and ze represents the street capacity, e.g., in terms of the number
of lanes and their width. Our best-of-two approximation algorithm yields an improved
approximation factor for functions of this type (cf. Table 1 in the appendix) and can be
employed to design road networks with a good tradeoff between construction cost and travel
times.

Our results have impact beyond this classical application of designing street capacities.
Also in telecommunication networks, Wardrop equilibria appear both in systems with source-
routing as end-users choose least-delay paths, and in systems with distributed delay-based
routing protocols such as OSPF when using the delay for setting the routing weights [26].
The latency at switches and routers depends on the installed capacity and has been modeled
by functions of the form Se(ve/ze) = ρ (1+0.15 (ve/ze))4, where ρ represents the propagation
delay and ze the installed capacity [20]. These functions fit into our framework, and our
analysis improves the state-of-the-art to a 1.418-approximation and can be applied in scenarios
where entire new networks have to be designed from scratch, e.g., after introducing new
technology such as optical fiber cables. Our 9/5-approximation also applies to Davidson
latency functions of the form Se( veze ) = ve

ze
/(1− ve

ze
) = ve/(ze − ve), where ze represents the

capacity of edge e.

1.3 Further Related Work.
Quoting [27], CNDP has been recognized to be “one of the most difficult and challenging
problems in transport” and there are numerous works approaching this problem. In light
of the substantial literature on heuristics for CNDP, we refer the reader to the survey
papers [5, 10, 17, 27].

While to the best of our knowledge prior to this work, the complexity status of CNDP was
open, there have been several papers on the complexity of the discrete (bilevel) network design
problem, DNDP for short, see [15, 22]. Given a network with edge latency functions and
traffic demands, a basic variant of DNDP is to decide which edges should be removed from
the network to obtain a Wardrop equilibrium in the resulting sub-network with minimum
total travel time. This variant is motivated by the classical Braess paradox, where removing
an edge from the network may improve the travel time of the new Wardrop equilibrium.
Roughgarden [22] showed that DNDP is strongly NP-hard and that there is no (bn/2c − ε)-
approximation algorithm (unless P = NP), even for single-commodity instances. He further
showed that for single-commodity instances the trivial algorithm of not removing any edge
from the graph is essentially best possible and achieves a bn/2c-approximation. For affine
latency functions, the trivial algorithm gives a 4/3-approximation (even for general networks)
and this is also shown to be best possible. These results in comparison to ours highlight
interesting differences. While DNDP is not approximable by any constant for convex latencies,
for CNDP we give a 9/5-approximation. Moreover, all hardness results for DNDP already
hold for single-commodity instances, while for CDNP we show that this case is solvable in
polynomial time.

In independent work, Bhaskar et al. [4] studied a variant of CNDP where initial edge
capacities are given and additional budget must be distributed among the edges to improve
the resulting equilibrium. Among other results they show that the problem is NP-complete
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in single-commodity networks that consist of parallel links in series. This again stands in
contrast to our polynomial-time algorithm for CDNP for these instances.

2 Preliminaries

Let G = (V,E) be a directed or undirected graph, V its set of vertices and E ⊆ V × V its
set of edges. We are given a set K of commodities, where each commodity k is associated
with a triple (sk, tk, dk) ∈ V × V × R>0, where sk ∈ V is the source, tk ∈ V the sink
and dk the demand of commodity k. A multi-commodity flow on G is a collection of
non-negative flow vectors (vk)k∈K such that for each k ∈ K the flow vector vk = (vke )e∈E
satisfies the flow conservation constraints

∑
u∈V :(sk,u)∈E v

k
sk,u

=
∑
u∈V :(u,tk)∈E v

k
u,tk

= dk
and

∑
u∈V :(u,w)∈E v

k
(u,w) −

∑
u∈V :(w,u)∈E v

k
(w,u) = 0 for all w ∈ V \ {sk, tk}. Whenever we

write v without a superscript k for the commodity, we implicitly sum over all commodities,
i.e., ve =

∑
k∈K v

k
e and v = (ve)e∈E . We call ve an edge flow. The set of all feasible edge

flows will be denoted by F .
The latency of each edge e depends on the installed capacity ze ≥ 0 and the edge flow

ve on e, and is given by a latency function Se : R≥0 → R≥0 ∪ {∞} that maps ve/ze to a
latency value Se(ve/ze), where we use the convention that Se(ve/ze) =∞ whenever ze = 0.
Throughout this paper, we assume that the set of allowable latency functions is restricted to
some set S and we impose the following assumptions on S.

I Assumption 2.1. The set S of allowable latency functions only contains continuously
differentiable and semi-convex functions S such that the functions x 7→ S(x) and x 7→ x2S′(x)
are strictly increasing and unbounded.

Assumption 2.1 is more general than requiring that all latency functions are stricly
increasing and convex. For instance, the function S(x) :=

√
x satisfies Assumption 2.1

although it is concave.
Given a vector of capacities z = (ze)e∈E , the latency of each edge e only depends on the

edge flow ve. Under these conditions, there exists a Wardrop flow v = (ve)e∈E , i.e., a flow in
which each commodity only uses paths of minimal latency. It is well known (cf. [3, 8, 24]) that
each Wardrop flow is a solution to the optimization problem minv∈F

∑
e∈E

∫ ve
0 Se(t/ze) dt,

and satisfies the variational inequality∑
e∈E

S(ve/ze)(ve − v′e) ≤ 0 (2.1)

for every feasible flow v′ ∈ F . For a vector of capacities z we denote by W(z) the
corresponding set of Wardrop flows v(z). Beckmann et al. [3] showed that Wardrop flows
and optimum flows are related:

I Proposition 2.1 (Beckmann et al. [3]). Let S∗e (x) = (xSe(x))′ = Se(x) + xS′e(x) be the
marginal cost function of edge e ∈ E. Then v∗ is an optimum flow with respect to the latency
functions (Se)e∈E if and only if it is Wardrop flow with respect to (S∗e )e∈E .

In the continuous (bilevel) network design problem (CNDP) the goal is to buy capacities ze at a
price per unit `e > 0 so as to minimize the sum of the construction cost CZ(v, z) =

∑
e∈E ze `e

and the routing cost CR(v, z) =
∑
e∈E Se(ve/ze) ve of a resulting Wardrop equilibrium v.

Observe that CR(v, z) is well defined as, by (2.1), it is the same for all Wardrop equilibria
with respect to z. Denote the combined cost by C(v, z) = CR(v, z) + CZ(v, z). We would
like to reiterate that other linear combinations can be handled by scaling the capacity prizes
accordingly.
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I Definition 1 (Continuous network design problem (CNDP)). Given a directed graph G =
(V,E) and for each edge e a latency function Se and a construction cost `e > 0, the continuous
network design problem (CNDP) is to determine a non-negative capacity vector z = (ze)e∈E
that minimizes

min
z≥0

min
v∈W(z)

∑
e∈E

(
Se(ve/ze) ve + ze `e

)
. (CNDP)

Relaxing the condition that v is a Wardrop equilibrium in (CNDP), we obtain the following
relaxation of the continuous network design problem:

min
z≥0

min
v∈F

∑
e∈E

(
Se(ve/ze) ve + ze `e

)
. (CNDP’)

Marcotte [18] showed that for convex and unbounded latency functions, the relaxed
problem (CNDP’) can be solved efficiently by performing |K| independent shortest path
computations on the graph G, one for each commodity k ∈ K. The following proposition
slightly generalizes his result to arbitrary, not necessarily convex latency functions that
satisfy Assumption 2.1.
I Proposition 2.2 (Marcotte [18]). The relaxation (CNDP’) can be solved by performing |K|
shortest path computations in polynomial time.
I Remark. To speak about polynomial algorithms and hardness, we need to specify how the
instances of CNDP, in particular the latency functions, are encoded, cf. [2, 11, 22]. While our
hardness results hold even if all functions are linear and given by their rational coefficients,
for our approximation algorithms, we require that we can solve (symbolically) equations
involving a latency function and its derivative, e.g., Equation (4.4). Without this assumption,
we still obtain the claimed approximation guarantees within arbitrary precision by polynomial
time algorithms.

3 Hardness

As the main result of this section, we show that CNDP is APX-hard both on directed
and undirected networks and even for affine latency functions. The proof of this result
is technically quite involved, and we first show the weaker result that CNDP on directed
networks is NP-complete.

I Theorem 2. The continuous network design problem (CNDP) on directed networks is
NP-complete in the strong sense, even if all latency functions are affine.

Proof. CNDP lies in NP as a vector of capacities z is a polynomial certificate. Given z, we
can compute in polynomial time a corresponding Wardrop equilibrium and the total cost
C(v, z).

To show the NP-hardness of the problem, we reduce from 3-SAT. Let φ be a Boolean
formula in conjunctive normal form. We denote the set of variables and clauses of φ with
V (φ) and K(φ), respectively, and set ν = |V (φ)| and κ = |K(φ)|. The set L(φ) of literals of
φ contains for each variable xi ∈ V (φ) the positive literal xi and the negative literal x̄i, i.e.,
L(φ) = {xi ∈ V (φ)} ∪ {x̄i : xi ∈ V (φ)}. In the following, we will associate clauses with the
set of literals that they contain.

We now explain the construction of a continuous network design problem based on φ that
has the property that, for some ε ∈ (0, 1/8), an optimal solution has total cost less or equal
to (4 + ε)κ+ 2κν if and only if φ has a solution. Let ε ∈ (0, 1/8) be arbitrary. For each clause
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sjx1
tjx1

sjx2
tjx2 . . .

sjxν
tjxν

sj1 tj1
sj2 tj2 . . . sjκ tjκ

Figure 1 Network used to show the hardness of the continuous network design problem. Clause 1
is equal to x1 ∨ x̄2 ∨ xν . Dashed edges have zero latency.

k ∈ K(φ), we introduce a clause edge ek with latency function Sek(vek/zek) = 4 + vek/zek
and construction cost `ek = (ε/2)2. For each literal l ∈ L(φ) and each clause k ∈ K(φ),
we introduce a literal edge el,k with latency function Sel,k(vel,k/zel,k) = vel,k/zel,k and cost
`el,k = 1. We denote the set of clause edges and literal edges by EK and EL, respectively.

For each variable xi ∈ V (φ), there is a variable commodity jxi with source sjxi , sink tjxi
and demand djxi = 1. This commodity has two feasible paths, one path uses exclusively the
literal edges {exi,k : k ∈ K(φ)} that correspond to the non-negated variable xi, the correspond
to the negated variable x̄i. In that way, each feasible path of the variable commodity jxi
corresponds to a true/false assignment of the variable xi. For each clause k = lk ∨ l′k ∨ l′′k ,
we introduce a clause commodity jk with source sjk , sink tjk and demand djk = 1. The
clause commodity may either choose its corresponding clause edge ek or the corresponding
literal edges that occur in k, i.e., elk,k, el′k,k, and el′′k ,k. For notational convenience, we set
Ek = {elk,k, el′k,k, el′′k ,k}. We add some additional edges with latency 0 to obtain a network;
see Fig. 1 where these edges are dashed. Note that the problem remains NP-hard, even if we
do not allow edges with zero latency, see the full version of this paper.

First, we show that an optimal solution of the so-defined instance of the continuous
network design problem P has total cost less or equal to (4 + ε)κ+ 2κν, if φ has a solution.
To this end, let y = (yxi)xi∈V (φ) be a solution of φ. Then, a feasible solution of P is as
follows: For each positive literal xi that is selected in the solution yi, we buy capacity 1 for
the corresponding negative literal edges {ex̄i,k : k ∈ K(φ)}, and vice versa. Formally, we set

zal,k =


1, if l = xi and yxi = false,

1, if l = x̄i and yxi = true,

0, otherwise.

For each clause edge ek, k ∈ K(φ), we buy capacity 2/ε. This particular capacity vector
z = (ze)e∈E implies that each variable commodity jxi has a unique path of finite length,
i.e., the path using the edges corresponding to the negation of the corresponding literal in y.
Using that y is a solution of φ, we further obtain that for each clause commodity jk at least
one of the edges in Ek has capacity zero and, thus, infinite latency. This implies that, in the
unique Wardrop equilibrium, the demand of each clause commodity jk is routed along the
corresponding clause edge ek. For the total cost of this solution, we obtain

C(v, z) =
∑
e∈EK

(
(4 + ve/ze)ve + (ε/2)2ze

)
+
∑
e∈EL

(
(ve/ze)ve + ze

)
=
∑
e∈EK

(
(4 + ε/2) + (ε/2)

)
+ 1

2
∑
e∈EL

(
1 + 1

)
= (4 + ε)κ+ 2κν. (3.1)

Hence, an optimal solution has cost not larger than (3.1) if φ has a solution.
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We proceed to prove that the total cost of an optimal solution are strictly larger than
(3.1) if φ does not admit a solution. Let z = (ze)e∈E be an optimal solution of P and let
v = (ve)e∈E be a corresponding Wardrop flow. We distinguish two cases.

First case: vek > 0 for all k ∈ K(φ), i.e., each clause commodity jk sends flow over the
corresponding clause edge ek.

Before we prove the thesis for this case, we need some additional notation. For the
Wardrop flow ve on edge e ∈ E, let vVe and vKe denote the flow on e that is due to the
variable commodities and the clause commodities, respectively. We claim that there is a
clause k̃ ∈ K(φ), k̃ = lk̃ ∨ l′k̃ ∨ l

′′
k̃
such that the flow of the variable commodities on each of

the corresponding literal edges in Ek̃ = {elk̃,k̃, el′k̃,k̃, el′′k̃ ,k̃} is at least 1/2, i.e.,

vVel
k̃
,k̃
≥ 1/2, vVel′

k̃
,k̃
≥ 1/2, and vVel′′

k̃
,k̃
≥ 1/2. (3.2)

For a contradiction, let us assume that for each clause k = lk ∨ l′k ∨ k′′k there is a literal
l∗k ∈ {lk, l′k, l′′k} such that vVel∗

k
,k
< 1/2. As each variable xi ∈ V (φ) splits its unit demand

between the path consisting of the positive literal edges {exi,k : k ∈ K(φ)} and the path
consisting of the negative literal edges {ex̄i,k : k ∈ K(φ)}, at most one of these two paths is
used with a flow strictly smaller than 1/2. Thus, the assignment vector y defined as

yxi =


true, if vVe < 1/2 for all e ∈ {exi,k : k ∈ K(φ)},
false, if vVe < 1/2 for all e ∈ {ex̄i,k : k ∈ K(φ)},
true, otherwise,

is well-defined. By construction, y satisfies all clauses, which is a contradiction to the
assumption that no such assignment exists. We conclude that there is a clause k̃ such that
(3.2) holds.

We proceed to bound the total cost of a solution. As v is a Wardrop equilibrium in which
the clause commodity jk̃ uses at least partially the clause edge ek̃, we further derive that∑
e∈Ek̃

ve/ze ≥ vek̃/zek̃ > 4. We bound the total cost of the solution (v, z) by observing

C(v, z) =
∑
e∈EL

(
v2
e/ze + ze

)
+
∑
e∈EK

(
(4 + ve/ze)ve + (ε/2)2ze

)
≥
∑
e∈EL

minze≥0
(
v2
e/ze + ze

)
+
∑
e∈EK

minze≥0
(
(4 + ve/ze)ve + (ε/2)2ze

)
,

where we slightly abuse notation by writing minze≥0 shorthand for minze≥0:v∈W(z). We
obtain an upper bound by relaxing minze≥0 to minze≥0 for the edges in EL \ Ek̃ and EK .
Hence,

C(v, z) ≥
∑

e∈EL\Ek̃

min
ze≥0

(
v2
e/ze + ze

)
+
∑
e∈Ek̃

min
ze≥0

(
v2
e/ze + ze

)
+
∑
e∈EK

min
ze≥0

(
(4 + ve/ze)ve + (ε/2)2ze

)
.

Calculating the respective minima, we obtain

C(v, z) ≥
∑

e∈EL\Ek̃

2ve +
∑
e∈Ek̃

min
ze≥0

(
v2
e/ze + ze

)
︸ ︷︷ ︸

≥2ve

+
∑
e∈EK

(4 + ε)ve. (3.3)
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Each clause commodity jk can route its demand either over the clause edge ek or over
the three literal edges in Ek. Every fraction of the demand routed over the clause edge
contributes 4 + ε to the expression on the right hand side of (3.3) while it contributes at
least 6 when routed over the literal edges. Thus, the right hand side of (3.3) is minimized
when the clause commodities do not use the literal edges at all. We then obtain

C(v, z) ≥
∑

e∈EL\Ek̃

2vVe +
∑
e∈Ek̃

min
ze≥0

(
(vVe )2/ze + ze

)
+ (4 + ε)|EK |

= 2
(
κν −

∑
e∈Ek̃

vVe

)
+ (4 + ε)κ+

∑
e∈Ek

min
ze≥0

(
(vVe )2/ze + ze

)
,

= 2κν + (4 + ε)κ+
∑
e∈Ek̃

min
ze≥0

(
(vVe )2/ze + ze − 2vVe

)
,

> 2κν + (4 + ε)κ+Q,

where Q is the solution to the constrained minimization problem

Q = min
vVe ,ze>0
e∈Ek̃

∑
e∈Ek̃

(
(vVe )2/ze + ze − 2vVe

)
s.t.:

∑
e∈Ek̃

vVe /ze ≥ 4 (3.4)

vVe ≥ 1/2 for all e ∈ Ek̃. (3.5)

Side constraint (3.4) is a relaxation of the requirement that v is a Wardrop equilibrium as
the latency of the literal edges is strictly larger than 4. Side constraint (3.5) is due to the
fact that for clause k̃ the three corresponding literal edges elk̃,k̃, el′k̃,k̃, and el′′k̃ ,k̃ are used with
a flow of at least 1/2 by the variable commodities. The optimal solution to the constraint
optimization problem Q is equal to Q = 1/8 and is attained for vVe = 1/2 and ze = 3/8 for all
e ∈ Ek̃. This implies that the total cost of a solution is not smaller than (4 + ε)κ+ 2κν+ 1/8,
which finishes the first case of this proof.

Second case: There is a clause commodity jk̃ that does not use its clause edge ek̃, i.e.,
vek̃ = 0. As for first case, we observe

C(v, z) =
∑
e∈EL

(
v2
e/ze + ze

)
+
∑
e∈EK

(4ve + v2
e/ze + (ε/2)2ze) ≥

∑
e∈EL

2ve +
∑
e∈EK

(4 + ε)ve.

Using that jk̃ does not use its clause edge, we derive that the flow on the literal edges
amounts to νκ+ 3 and we obtain

C(v, z) ≥ 2(κν + 3) + (4 + ε)(κ− 1) = 2κν + (4 + ε)κ+ 2,

which concludes the proof. J

With a more involved construction and a more detailed analysis, we can show that CNDP
is in fact APX-hard. For this proof, we use a similar construction as in the proof of Theorem 2
but reduce from a specific variant of MAX-3-SAT, which is NP-hard to approximate. Due
to space constraints we defer the details to the full version of this paper.

I Theorem 3. The continuous network design problem (CNDP) on directed networks is
APX-hard, even if all latency function are affine.
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With a similar construction, we can also show APX-hardness for CNDP on undirected
networks as well, see the full version of this paper. For our hardness results, we use instances
with different sinks. In contrast, CNDP can be solved efficiently for networks with a single
sink.

I Proposition 3.1. In networks with only one sink vertex t, the continuous network design
problem (CNDP) can be solved in polynomial time.

4 Approximation

Given the APX-hardness of the problem, we study the approximation of CNDP. We first
provide a detailed analysis of the approximation guarantees of two different approximation
algorithms. Then, as the arguably most interesting result of this section, we provide
an improved approximation guarantee for taking the better of the two algorithms. The
approximation guarantees proven in this section depend on the set S of allowable cost
functions and are in fact closely related to the anarchy value value α(S) introduced by
Roughgarden [21] and Correa et al. [6]. Intuitively, the anarchy value of a set of latency
functions S is the worst case ratio between the routing cost of a Wardrop equilibrium and
that of a system optimum of an instance in which all latency functions are contained in S.
Roughgarden [21] and Correa et al. [6] show that α(S) = 1/(1− µ(S)), where

µ(S) = sup
S∈S

sup
x≥0

max
γ∈[0,1]

γ ·
(

1− S(γ x)
S(x)

)
. (4.1)

For a set S of latency functions, we denote by γ(S) the argmaximum γ in (4.1) for which
µ(S) is achieved. The following lemma gives an alternative representation of µ(S).

I Lemma 4. For a latency function S,

sup
x≥0

max
γ∈[0,1]

{
γ
(

1− S(γ x)
S(x)

)}
= sup

x≥0

{
γ · S′(x)x

S(x) + S′(x)x : S(x) + S′(x)x = S(x/γ)
}
.

Proof. The expression supx≥0 maxγ∈[0,1] γ
(
1− S(γ x)

S(x)
)
is non-negative and strictly positive

for γ ∈ (0, 1), thus, the inner maximum is attained for γ ∈ (0, 1). Hence, γ satisfies the first
order optimality conditions

0 =
(

1− S(γ x)
S(x)

)
− γ x · S

′(γ x)
S(x)

⇔ S(x) = S(γ x) + γ xS′(γ x)

By substituting y = γ x, we obtain

sup
x≥0

max
γ∈[0,1]

γ
(

1− S(γ x)
S(x)

)
= sup

y≥0

{
γ
(

1− S(y)
S(y/γ)

)
: γ ∈ [0, 1] with S(y/γ) = S(y) + S′(y) y

}
= sup

y≥0

{
γ · S′(y) y

S(y) + S′(y) y : γ ∈ [0, 1] with S(y/γ) = S(y) + S′(y) y
}
,

which proves the lemma. J
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Algorithm 1 BringToEquilibrium
1: (v∗, z∗)← solution to (CNDP’).
2: for all e ∈ E do
3: δe ← v∗e/z

∗
e

4: γe ←solution to Se(δe)+S′e(δe)δe=Se( δeγe )
5: ze ← γez

∗
e

6: end for
7: return (v∗, z)

Algorithm 2 ScaleUniformly
1: (v∗, z∗)← solution to (CNDP’).
2: p← CR(v∗, z∗)/C(v∗, z∗)
3: λ← µ(S) +

√
µ(S) p

1−p
4: Compute Wardrop equilibrium v

with respect to scaled capacities λz∗.
5: return (v, λz∗)

4.1 Two Approximation Algorithms

The first algorithm that we call BringToEquilibrium (cf. Algorithm 1) was already
proposed by Marcotte [18, Section 4.3] and analyzed for monomial latency functions. Our
contribution is a more general analysis of BringToEquilibrium that works for arbitrary
sets of latency functions S, requiring only Assumption 2.1. The second algorithm, that we
call ScaleUniformly (cf. Algorithm 2), is a new algorithm that we introduce in this paper.

For both approximation algorithms, we first compute an optimum solution (v∗, z∗) to a
relaxation of CNDP without the equilibrium constraints, i.e., we compute a solution (v∗, z∗)
to the problem minz≥0 minv∈F

∑
e∈E

(
Se(ve/ze) ve+ze `e

)
, which can be done in polynomial

time (Proposition 2.2). Then, in both algorithms, we reduce the capacity vector z∗, and
determine a Wardrop equilibrium for the new capacity vector. The algorithms differ in
the way we adjust the capacity vector z∗. While in BringToEquilibrium, we reduce the
edge capacities individually such that the optimum solution to the relaxation (CNDP’) is a
Wardrop equilibrium, in ScaleUniformly, we scale all capacities uniformly by a factor λ
(cf. line 2-3) and compute a Wardrop equilibrium for the scaled capacities.

We first show that the approximation guarantee of BringToEquilibrium is at most
(1 + µ(S)). For the proof of this result, we use the first order optimality conditions for
the vector of capacities v∗ obtained as a solution to the relaxed problem (CNDP’) in
combination with the variational inequalities technique used in the price of anarchy literature
(e.g. Roughgarden [21] and Correa et al. [6]).

I Theorem 5. The approximation guarantee of BringToEquilibrium is at most 1 + µ(S).

Proof. Let (v∗, z∗) be the relaxed solution computed in the first step of BringToEqui-
librium. By the necessary Karush-Kuhn-Tucker optimality conditions, (v∗, z∗) satisfies

`e = S′e(v∗e/z∗e )(v∗e/z∗e )2, for all e ∈ E with z∗e > 0 . (4.2)

Eliminating `e in the statement of the relaxed problem (CNDP’) we obtain the following
expression for the total cost of the relaxation:

C(v∗, z∗) =
∑
e∈E

(
Se(v∗e/z∗e ) + S′e(v∗e/z∗e )(v∗e/z∗e )

)
v∗e . (4.3)

For each e ∈ E let δe = v∗e/z
∗
e , if z∗e > 0, and δe = 0, otherwise. We define a new vector of

capacities z by ze = γe · z∗e , e ∈ E, where γe ∈ [0, 1] is a solution to the equation

Se(δe) + S′e(δe) δe = Se(δe/γe). (4.4)

By Proposition 2.1, the flow v∗ is a Wardrop flow with respect to z. We are interested in
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bounding C(v∗, z). To this end, we calculate

C(v∗, z) =
∑
e∈E

(Se(δe/γe)v∗e + `e ze)
(4.4)=

∑
e∈E

((
Se(δe) + S′e(δe) δe

)
v∗e + γe `e z

∗
e

)
(4.2)=

∑
e∈E

((
Se(δe) + S′e(δe) δe

)
v∗e + γe S

′
e(δe) δe v∗e

)
. (4.5)

By (4.1),(4.4), and Lemma 4, we have γe S′e(δe) δe ≤ µ(S) (Se(δe) + S′e(δe) δe). Combining
this inequality with (4.5), gives

C(v∗, z) ≤ (1 + µ(S))
∑
e∈E

((
Se(δe) + S′e(δe) δe

)
v∗e

(4.3)= (1 + µ(S))C(v∗, z∗),

which completes the proof of the theorem. J

We proceed by showing that ScaleUniformly achieves the same approximation guaran-
tee of 1 + µ(S). Recall that ScaleUniformly first computes a relaxed solution (v∗, z∗).
Then, this relaxed solution is used to compute an optimal scaling factor λ ≤ 1 with which all
capacities are scaled subsequently. The algorithm then returns the scaled capacity vector
λz∗ together with a corresponding Wardrop equilibrium v ∈ W(λz∗).

An (worse) approximation guarantee of 2 can be inferred directly from a bicriteria result
of Roughgarden and Tardos [23] who showed that for any instance the routing cost of a
Wardrop equilibrium is not worse than a system optimum that ships twice as much flow.
This implies that for λ = 1/2 we have C(v, λz∗) ≤ 2C(v∗, z∗), as claimed.

For the proof of the following result, we take a different road that allows us to express
the approximation guarantee of ScaleUniformly as a function of the parameter p defined
as the fraction of the total cost C(v∗, z∗) of the relaxed solution allotted to the routing costs
CR(v∗, z∗). This is an important ingredient for the analysis of the best-of-two algorithm.

I Theorem 6. The approximation guarantee of ScaleUniformly is at most (1 + µ(S)).

Proof. The algorithm first computes an optimum solution (v∗, z∗) of the relaxed problem
(CNDP’). Then p ∈ [0, 1] is defined as the fraction of C(v∗, z∗) that corresponds to the
routing cost CR(v∗, z∗), i.e., CR(v∗, z∗) =

∑
e∈E Se(v∗e/z∗e ) v∗e = pC(v∗, z∗). Now, we define

λ = µ(S) +
√
µ(S) p

1−p and consider the capacity vector λz∗, in which the capacities of the
optimal solution to the relaxation are scaled uniformly by λ. Finally, we compute a Wardrop
equilibrium with respect to capacities λz∗. Let v the corresponding equilibrium flow. We
now bound the routing and installation cost of (v, λz∗) separately. For the installation cost,
we obtain

CZ(v, λz∗) =
∑
e∈E

λ `e ze = λ(1− p)C(v∗, z)

and for the routing cost

CR(v, λz∗) =
∑
e∈E

Se

( ve
λz∗e

)
ve ≤

∑
e∈E

Se

( ve
λz∗e

)
v∗e

= pC(v∗, z∗) +
∑
e∈E

(
Se

( ve
λz∗e

)
v∗e − Se

(v∗e
z∗e

)
v∗e

)
, (4.6)

where the first inequality uses the variational inequality (2.1). We proceed to bound
Se( ve

λz∗e
) v∗e − Se(

v∗e
z∗e

) v∗e in terms of the routing cost Se( ve
λz∗e

) ve for that edge e. To this end,
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note that for each edge e ∈ E we have

Se( ve
λz∗e

)v∗e − Se
( v∗e
z∗e

)
v∗e

Se( ve
λz∗e

)ve
≤ sup
S∈S

sup
x,y,z≥0

S( y
λz )x− S(xz )x
S( y

λz )y (4.7)

= sup
S∈S

sup
x,y≥0

S( yλ )x− S(x)x
S( yλ )y = sup

S∈S
sup
x,y≥0

S(y)x− S(x)x
S(y)λy . (4.8)

This implies y ≥ x and we may substitute x = γ y with γ ∈ [0, 1]. We then obtain for each
edge e ∈ E that

Se( ve
λz∗e

)v∗e − Se
( v∗e
z∗e

)
v∗e

Se( ve
λz∗e

)ve
≤ sup
S∈S

sup
y≥0

max
γ∈[0,1]

γS(y)− γS(γ y)
λS(y) (4.9)

= sup
S∈S

sup
y≥0

max
γ∈[0,1]

γ

λ

(
1− S(γ y)

S(y)

)
= µ(S)

λ
. (4.10)

Combining (4.10) and (4.6), we obtain CR(v, λz∗) ≤ pC(v∗, z∗) + µ(S)
λ CR(v, λz∗) or,

equivalently, CR(v, λz∗) ≤ p
1−µ(S)/λC(v∗, z∗). Thus, we can bound the total cost of the

outcome of ScaleUniformly by

C(v, λz∗) = CR(v, λz∗) + CZ(v, λz∗) ≤ p

1− µ(S)/λC(v∗, z∗) + λ(1− p)C(v∗, z∗)

= λ
( p

λ− µ(S) + 1− p
)
C(v∗, z∗).

Since λ = µ(S) +
√
µ(S) p

1−p , we obtain

C(v, λz∗)
C(v∗, z∗) ≤ p+ 2

√
p(1− p)µ(S) + µ(S)(1− p) =

(√
p+

√
µ(S)(1− p)

)2
. (4.11)

Elementary calculus shows that
(√
p+

√
µ(S)(1− p)

)2 attains its maximum at p = 1
1+µ(S) .

Substituting this value into (4.11) gives C(v, λz∗)/C(v∗, z∗) ≤ 1 + µ(S), as claimed. J

For particular sets S of latency functions, we compute upper bounds on µ(S) in order to
obtain an explicit upper bound on the approximation guarantees of BringToEquilibrium
and ScaleUniformly. We then obtain the following corollary of Theorem 5 and Theorem 6.

I Corollary 7. For a set S of latency functions satisfying Assumption 2.1, the approximation
guarantee of BringToEquilibrium and ScaleUniformly is at most

(a) 2, without further requirements on S.
(b) 5/4, if S contains concave latencies only,
(c) 1+ ∆

∆+1
( 1

∆+1
)1/∆, if S contains only polynomials with non-negative coefficients and degree

at most ∆, i.e., each S∈S is of the form S(x) =
∑∆
j=0ajx

j with aj≥0 for all j.

4.2 Best-of-Two Approximation
In this section we show that although both BringToEquilibrium and ScaleUniformly
achieve an approximation guarantee of (1 + µ(S)) taking the better of the two algorithms we
obtain a strictly better performance guarantee.

The key idea of the proof is to extend the analysis of the BringToEquilibrium algorithm
in order to express its approximation guarantee as a function of the parameter p that measures
the proportion of the routing cost in the total cost of a relaxed solution. This allows us to
determine the worst-case p for which the approximation guarantee of the both algorithm is
maximized.
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I Theorem 8. Taking the better solution of BringToEquilibrium and ScaleUniformly
has an approximation guarantee of at most (γ(S)+µ(S)+1)2

(γ(S)+µ(S)+1)2−4µ(S)γ(S) , which is strictly smaller
than 1 + µ(S).

Proof. Recall from (4.11) that the approximation guarantee of the algorithm ScaleUni-
formly is

(√
p+

√
µ(S)(1− p)

)2, where p = CR(v∗, z∗)/C(v∗, z∗). We extend our analysis
of BringToEquilibrium using this parameter p. With the notation in Theorem 5, by (4.5),
BringToEquilibrium returns a feasible solution (v∗, z) with

C(v∗, z) =
∑
e∈E

((
Se(δe) + S′e(δe) δe

)
v∗e + γe S

′
e(δe) δe v∗e

)
= pC(v∗, z∗) +

∑
e∈E

S′e(δe) δe v∗e(1 + γe)

≤ pC(v∗, z∗) + (1 + γ(S))
∑
e∈E

S′e(δe) δe v∗e

= pC(v∗, z∗) + (1 + γ(S))(1− p)C(v∗, z∗)
=
(
1 + γ(S)(1− p)

)
C(v∗, z∗).

Thus, by taking the best of the two heuristics, we obtain an approximation guarantee of

max
p∈(0,1)

min
{

1 + γ(S)(1− p),
(√

p+
√
µ(S)(1− p)

)2
}
.

The maximum of this expression is attained for

p = p∗ := (γ(S)− µ(S) + 1)2

(γ(S)− µ(S) + 1)2 + 4µ(S) (4.12)

which yields the claimed improved upper bound. J

It is not necessary to run both approximation algorithms to get this approximation
guarantee. After computing the optimum solution to the relaxation (CNDP’), we can
determine the value for p = CR(v∗, z∗)/C(v∗, z∗) and proceed with ScaleUniformly if
p ≤ p∗ (cf. (4.12)) and with BringToEquilibrium otherwise.

For particular sets S of latency functions, we evaluate µ(S) and γ(S) and obtain the
following corollary of Theorem 8.

I Corollary 9. For a set S of latency functions satisfying Assumption 2.1, the approximation
guarantee in Theorem 8 is at most

(a) 9/5, without further requirements on S,
(b) 49/41 ≈ 1.195, if S contains concave latencies only.
(c) 1 + 4∆(∆+1)

2(2∆+1)(∆+1)1+1/∆+(∆+1)2(1+1/∆)+1 , if S contains only polynomials with non-negative
coefficients and degree at most ∆, i.e., every S ∈ S is of the form S(x) =

∑∆
j=0 ajx

j with
aj ≥ 0 for all j.

5 Conclusion

We reconsidered the classical continuous network design problem (CNDP) and established
the first hardness result for CNDP. Further, we provided a general approximation guarantee
for an algorithm studied by Marcotte [18] depending on the set of allowed cost functions
which is related to the anarchy value of the set of cost functions. We then showed that the
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approximation of the problem can improved by taking the best of that algorithm and another
approximation algorithm that we propose.

In the transportation literature, further variants of CNDP have been investigated. One
such example are situations in which the network designer is only interested in minimizing
total travel time but investments are restricted, e.g., by budget constraints. More generally,
suppose there is a convex function g : Rm → Rk, k ∈ N such that for any feasible solution
z the condition g(z) ≤ 0 must be satisfied. The function g, for instance, can represent
edge-specific budget constraints `eze ≤ Be for e ∈ E and/or a global budget constraint∑
e∈E `eze ≤ B. We arrive at the following budgeted continuous network design problem

(bCNDP):

min
z≥0

min
v∈W(z)

∑
e∈E

Se(ve/ze) ve s.t. : g(z) ≤ 0. (bCNDP)

Using existing results from the literature [6, 21], we can show a 4/3-approximation for affine
latencies, and that there is there is no polynomial (4/3− ε)-approximation algorithm with
ε > 0 unless P = NP, see the full version of this paper. For proving the lower bound, we use
edge-specific budget constraints and mimic a construction from Roughgarden [22]. It is an
interesting open problem whether such a lower bound can also be achieved if we allow only a
global budget constraint.
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