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Abstract We investigate the computational complexity of the empire colour-
ing problem (as defined by Percy Heawood in 1890) for maps containing em-
pires formed by exactly r > 1 countries each. We prove that the problem can be
solved in polynomial time using s colours on maps whose underlying adjacency
graph has no induced subgraph of average degree larger than s/r. However,
if s ≥ 3, the problem is NP-hard even if the graph is a for forests of paths of

arbitrary lengths (for any r ≥ 2, provided s < 2r−
√

2r + 1
4 + 3

2 ). Furthermore
we obtain a complete characterization of the problem’s complexity for the case
when the input graph is a tree, whereas our result for arbitrary planar graphs
fall just short of a similar dichotomy. Specifically, we prove that the empire
colouring problem is NP-hard for trees, for any r ≥ 2, if 3 ≤ s ≤ 2r − 1 (and
polynomial time solvable otherwise). For arbitrary planar graphs we prove
NP-hardness if s < 7 for r = 2, and s < 6r − 3, for r ≥ 3. The result for pla-
nar graphs also proves the NP-hardness of colouring with less than 7 colours
graphs of thickness two and less than 6r− 3 colours graphs of thickness r ≥ 3.
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1 Introduction

Let r and s be fixed positive integers. Assume that a partition is defined on the
n vertices of a planar graph G. In this paper we usually call the blocks of such
partition the empires of G and we assume that each block contains exactly
r vertices. The graph G along with a partition of this type will be referred
to as an r-empire graph. The (s, r)-colouring problem (s-COLr) asks for a
colouring of the vertices of G that uses at most s colours, never assigns the
same colour to adjacent vertices in different empires and, conversely, assigns
the same colour to all vertices in the same empire, disregarding adjacencies.

For r = 1, the problem coincides with the classical vertex colouring problem
on planar graphs. The generalization for r ≥ 2 was defined by Heawood [11]
in the same paper in which he refuted a previous “proof” of the famous Four
Colour Theorem. It has since been shown that 6r colours are always sufficient
and in some cases necessary to solve this problem [13].

In [19] (also see [18]), we proved that 2r colours suffice and are sometimes
needed to colour a collection of empires defined in an arbitrary tree. We also
looked at the proportion of (s, r)-colourable trees on n vertices. We showed
that, as n tends to infinity, for each r there exists a value sr such that al-
most no tree can be coloured with at most sr colours and, conversely, for s
sufficiently larger than sr, s colours are sufficient with (at least) constant pos-
itive probability. Later on [6] we improved on this showing that, as n tends to
infinity, the minimum value s for which a random tree is (s, r)-colourable is
concentrated in a very short interval with high probability.

Although our investigation considerably expanded the state of knowledge
on s-COLr, it failed to shed light on its computational complexity. Heawood
[11] was the first to argue that there is a simple algorithm that can find a
(6r, r)-colouring in any planar graph G in polynomial time. The same process
uses at most 2r colours if G is a tree. But what if we only have r available
colours? How difficult is it to decide whether G has an (r, r)-colouring? In
this paper we show that s-COLr can be solved in polynomial time on planar
graphs containing no induced subgraph of average degree greater than s/r.
This implies that, for instance, (2r − 1)-COLr (resp. (6r − 1)-COLr) can be
solved in polynomial time on forests consisting of paths of length at most 2r−1
(resp. planar graphs with components of size at most 12r). Unfortunately, the
outcome of our investigation seems to indicate that such algorithmic results
cannot be extended much further. If r ≥ 2 and s ≥ 3, we prove that s-COLr
NP-hard on linear forests if s < 2r−

√
2r + 1

4 + 3
2 . Furthermore, the hardness

extends to s < 6r − 3 (resp. s < 7) when r ≥ 3 (resp. for r = 2) on arbitrary
planar graphs. Finally, for trees, our argument entails a nice dichotomy: s-
COLr is NP-hard for any fixed r ≥ 2, if s ∈ {3, . . . , 2r − 1} and solvable in
polynomial time for any other positive value of s.

The hardness proofs mentioned above hinge on the fact that the connectiv-
ity within empires has no effect on the graph colourability. Essentially, to find
an (s, r)-colouring in a planar graph G, it suffices to be able to colour with
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at most s distinct colours (in such a way that no two distinct vertices con-
nected by an edge receive the same colour) its reduced graph Rr(G). This is a
(multi)graph obtained by contracting each empire to a distinct pseudo-vertex
and adding an edge between a pair of pseudo-vertices u and v for each edge
connecting two vertices in the original graph, one belonging to the empire rep-
resented by u, the other one to that represented by v. The algorithmic results
are based on the use of simple minimum degree greedy colouring strategies
[11] or more refined heuristics providing algorithmic proofs (see [10, Theorem
7.9] or [15, Exercises 9.12, 9.13]) of the well-known Brooks theorem [4] on such
reduced graphs.

The reader at this point may question the reasons for studying this type
of colourings. Our main interest in the problem comes from its relationship
with other important colouring problems. Each instance of s-COLr can be
translated to an instance of the classical colouring problem, but it is not clear
to what extent the two problems are equivalent. The empire colouring problem
is also related to the problem of colouring graphs of given thickness (a graph
has thickness t [12,20,17], if t is the minimum integer such that its edges can
be partitioned into at least t planar graphs). Bipartite graphs can have high
thickness [3] but only need two colours, and on the other hand a graph of
thickness t may have chromatic number as larger as 6t. Theorem 12 in this
paper implies that deciding whether a graph of thickness t ≥ 3 can be coloured
with s < 6t− 3 colours is NP-hard.

The rest of the paper is organized as follows. In Section 2 we present our
positive results concerning sparse planar graphs. We then move on (Section
3) to describe a new reduction from the well-known satisfiability problem to
the problem of colouring a particular type of graph. Hardness results for the
colourability of these graphs will be instrumental to our main results. The next
Section is devoted to the definition and analysis of a number of gadgets that
will be used in the subsequent reductions. Section 5 deals with the hardness
result for forests of paths. The last two sections deal with the hardness results
for trees and arbitrary planar graphs.

Let k and s be positive integers greater than two. In what follows k-SAT
(resp. s-COL) denotes the well known [9,14] NP-complete problem of check-
ing the satisfiability of a k-CNF boolean formula (resp. deciding whether the
vertices of a graph G can be coloured using at most s distinct colours in such
a way that no edge of G connects two vertices of the same colour). Also, if
Π is a decision problem and I is a particular set of instances for it, then
Π(I) will denote the restriction of Π to instances belonging to I. If Π1 and
Π2 are decision problems, then Π1 ≤p Π2 will denote the fact that Π1 is
polynomial-time reducible to Π2. Unless otherwise stated we follow [8] for all
our graph-theoretic notations.
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2 Algorithms

The main outcome of our work is that the empire colouring problem is much
harder than the problem of colouring planar graphs in the classical sense.
However there are cases where things are easy. Let σ be an arbitrary positive
real number. In the following result SPARSE(σ) denotes the class of planar
graphs G containing no induced subgraph of average degree larger than σ.

Theorem 1 Let r be an arbitrary positive integer and σ be a positive real num-
ber such that rσ is a whole number. The decision problem rσ-COLr(SPARSE(σ))
can be solved in polynomial time.

Proof Let r and σ be two positive numbers satisfying the assumptions above,
and assume that G ∈ SPARSE(σ), and its vertex set is partitioned into empires
of size r.

If Rr(G) contains a copy of Krσ+1 then there can be no (rσ, r)-colouring
of G. We now argue that if Rr(G) does not contain a copy of Krσ+1 then it is
rσ-colourable (and therefore G admits an (rσ, r)-colouring).

Let S be a connected component of Rr(G). In what follows we denote by
GS the subgraph of G such that Rr(GS) ≡ S. Because all edges of S are edges
in GS , the average degree of this graph satisfies

|E(S)| = |E(GS)| = d(GS) · |V (GS)|
2

.

From this, using the fact that |V (S)| = |V (GS)|/r and the definition of
SPARSE(σ), we have

|E(S)| ≤ rσ

2
· |V (S)|.

This implies that the average degree of S is at most rσ. It follows that S is
either a regular graph of degree rσ or it must contain at least a vertex of degree
less than rσ. In the former case S can be coloured with rσ colours using, say,
the algorithm in the proof of Brooks’ Theorem described in [10]. If S contains
a vertex of degree less than rσ we argue that, in fact, the assumptions about
the average degree of all subgraphs of G imply that any induced subgraph of
S is either rσ-regular or, in turn, contains a vertex of degree at most rσ − 1.
Assume that some induced subgraph of S, S′ is not rσ-regular and its minimum
degree is at least rσ. This implies that in particular d(S′) ≥ rσ. But, by
the assumptions on G the average degree of S′ cannot exceed rσ. Therefore
d(S′) = rσ and this implies S′ must contain a vertex of degree less than rσ.

ut
The result above has a number of interesting consequences. Let k be a

positive integer. Any induced subgraph on n vertices of a forest of paths of
length at most k cannot span more than kn/(k + 1) edges. Hence Theorem 1
implies, for instance, that

⌈
2kr
k+1

⌉
-COLr can be decided in polynomial time for

forests of paths of length at most k. Similarly (6r−1)-COLr can be decided in



The Complexity of the Empire Colouring Problem 5

polynomial time for graphs G formed by arbitrary planar components of size
at most 12r.

Theorem 1 also implies that the minimum s for which G admits an (s, r)-
colouring can be determined in polynomial time for any G ∈ SPARSE(σ), with
rσ ≤ 3.

3 A Useful Reduction

Let s and k be positive integers with s > max(2, k). Also, let n and m be
positive integers. An (s, k)-formula graph is an undirected graph Φ such that
V (Φ) = T ∪ C ∪ A where T = {T, F,X1, . . . , Xs−2}, C contains m groups of
vertices {c1,1, . . . , c1,s−1}, {c2,1, . . . c2,s−1}, . . . , {cm,1, . . . , cm,s−1} and A is a
set of 2n vertices paired up in some recognizable way. In particular, in what
follows we will denote the elements of A by a1, . . . , an, a1, . . . , an, and we will
say that for each i ∈ {1, . . . , n}, ai and ai are a pair of complementary vertices.
Set T spans a complete graph; for each pair of complementary vertices a and
a, {a, a,Xj} spans a complete graph for each j ∈ {1, . . . , s − 2}; for each i ∈
{1, . . . ,m}, {T, ci,1, . . . , ci,s−1} spans a complete graph and if j ∈ {1, . . . , k}
then there is a single edge connecting ci,j to some vertex in A, else if j ≥ k+1
then {ci,j , F} ∈ E(Φ). Figure 1 gives a simple example of a (5, 3)-formula
graph.

Fig. 1 A small formula graph

Let FG(s, k) denote the class of all (s, k)-formula graphs. We will now
describe a reduction from k-SAT to the problem of colouring using at most
s distinct colours the vertices of a given (s, k)-formula graph. The reduction
shows the NP-hardness of s-COL(FG(s, k)) for any k ≥ 3 and s > k. This in
turn will be used repeatedly to prove our hardness results on s-COLr.

Theorem 2 Let s be an integer with s ≥ 3. Then k-SAT ≤p s-COL(FG(s, k))
for any positive integer k < s.

Proof Given a k-CNF formula φ ≡ C1 ∧ . . . ∧ Cm where Ci is the disjunction
of k literals ci,1, . . . , ci,k for each i ∈ {1, . . . ,m}, we devise an (s, k)-formula
graph Φ that admits an s-colouring if and only if φ is satisfiable. The graph
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Φ will consist of one truth gadget, one variable gadget for each variable in φ,
and one clause gadget for each clause in φ.

The truth gadget is a complete graph on s vertices labelled T , F , and
X1, . . . , Xs−2. Note that every vertex in this gadget must be given a differ-
ent colour in any s-colouring. Hence w.l.o.g. we call these colours “TRUE”,
“FALSE”, “OTHER1”, . . ., “OTHERs−2” respectively. For each variable a of
φ the variable gadget consists of two complementary vertices labelled a, and a,
connected by an edge and also adjacent to X1, . . . , Xs−2. There are therefore
only two ways to colour a and a: either a is TRUE and a is FALSE or a is
FALSE and a is TRUE. Thus the two colourings of a and a encode the two
truth-assignments of the variable a. Each clause ci,1 ∨ . . . ∨ ci,k will be repre-
sented by s+k+1 vertices of Φ. Of these, k will correspond to the clause literals
and will be labelled ci,1, . . . , ci,k, s − 1 − k will be labelled ci,k+1, . . . , ci,s−1,
and the remaining k + 2 will be k vertices from variable gadgets and the ver-
tices T and F from the truth gadget. Vertices T, ci,1, . . . , ci,s−1 form a clique
and, furthermore, for each j ∈ {1, . . . , k}, the vertex ci,j is connected to the
corresponding literal in a variable gadget. For k ≤ s − 2 vertices ci,j , for
j ∈ {k + 1, . . . , s − 1}, are adjacent to F . Note that, in any colouring of a
clause gadget, vertices ci,j , for j ≤ k, cannot have the same colour of vertex
T , and vertices ci,j for j ≥ k cannot be coloured like F either. The reader can
readily verify that Φ ∈FG(s, k). The graph in Figure 1 is the (5, 3)-formula
graph corresponding to the formula φ consisting of the single clause a1∨a2∨a3.

If φ is satisfiable, the elements of A in Φ can be assigned a colour in
{TRUE, FALSE} so that, for each i ∈ {1, . . . ,m} at least one of the ci,j

(say for j = j∗) is adjacent to some literal coloured TRUE. This implies that
ci,j
∗

can be coloured FALSE, while all other ci,j for j ∈ {1, . . . , s − 1} \ {j∗}
can be assigned a distinct colour in {OTHER1, OTHER2, . . . , OTHERs−2}.
Conversely if there is no way to colour A so that for each i ∈ {1, . . . ,m} at
least one of the ci,j is adjacent to some literal coloured TRUE, then the clause
gadget will need s+ 1 colours as the s− 1 vertices ci,j only have s− 2 colours
available (as TRUE and FALSE are used up by T , F , and the corresponding
literals). From this we can see that Φ admits an s-colouring if and only if there
is some way to assign the variables of φ as TRUE or FALSE in such a way
that every clause contains at least one TRUE literal. ut

4 Gadgetry

Before moving to our hardness results it is convenient to introduce a number
of gadgets.

Clique Gadgets. Let r and s be positive integers with s < 2r. In what follows
the clique gadget Br,s is an r-empire graph satisfying the following properties.

B0 Br,s has r(s+ 1) vertices partitioned into s+ 1 empires of size r.
B1 The graph Br,s is a forest consisting of r paths.
B2 No path in the graph Br,s contains two vertices from the same empire.
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B3 The reduced graph of Br,s contains a copy of Ks+1. Hence Br,s admits an
(s+ 1, r)-colouring and cannot be coloured with fewer colours.

Fig. 2 Top row: Decomposition of K9 into Hamiltonian cycles. Middle row: B4,7. Bottom
row: B4,5.

Theorem 3 Let r and s be positive integers with s < 2r. Then there exists an
r-empire graph Br,s satisfying properties B0, B1, B2, B3. Furthermore Br,s
can be constructed in time polynomial in r.

Proof For any positive integer r, the clique K2r+1 can be decomposed into r
edge-disjoint Hamiltonian cycles. The result, reported in [5, p. 71], is attributed
to Walecki (see [16]). A dummy ∞ is added to the vertex set of K2r+1. The
sequence

0, 1, 2r − 1, 2, 2r − 2, 3, 2r − 3, . . . , r − 1, r + 1, r,∞

can be seen as a Hamiltonian cycle of K2r+1 after label “∞” is identified with
vertex 2r. The remaining cycles are obtained as cyclic rotations of the first
one.

Given one such decomposition (see top row in Figure 2) we define Br,2r−1

(see middle part of Figure 2) by copying cycle i from the decomposition onto
vertices 0i, . . . , (2r)i, and then taking the induced graph formed by deleting
the vertex 0i from the cycle on 0i, . . . , (2r)i. Also, if r > 1, for any s ∈
{1, . . . , 2r − 2} graph of Br,s is obtained from that of Br,s+1, by removing all
vertices in the empire labelled s + 2 and adding an edge {u, v} whenever u
and v are the only two neighbours of (s+ 2)i. ut
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11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B3,5

t t t t t t
t t t t t t
t t t t t t

A
A
A

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B+
3,5(1)

t t t t t t
t t t t t t
t t t t t t

11 51 21 41 31 61

22 12 62 42 52 32

43 13 33 23 63 53

B−3,5(1,5)

t t t t t t
t t t t t t
t t t t t t

Fig. 3 Examples of clique gadgets.

Our results on trees will also need variants of these gadgets having par-
ticular connectivity features. Thus if r > 1 and v ≡ {v1, . . . , vr} is some set
of r vertices, the connected clique gadget rooted at v, B+

r,s(v), is formed from
Br,s, as defined in Theorem 3, by adding edges {vi, vi+1} for all i such that
1 ≤ i ≤ r−1. Note that the graph of such gadget is a tree. Furthermore B+

r,s(v)
still satisfies B0, and B3. Finally, if u and v are two empires, the (u,v)-colour
constraining gadget B−r,s(u,v) is an r-empire graph obtained from Br,s, with-
out loss of generality, by removing a single edge connecting the end-point u1 of
a path to its neighbour v1. Thus u1 becomes isolated in the graph of B−r,s(u,v).
The graph Rr(B−r,s(u,v)) contains a copy of Ks−1 in which every vertex is also
adjacent to the vertices corresponding to u and v. Thus any (s, r)-colouring of
B−r,s(u,v) must give u and v the same colour. Figure 3 gives a few examples.
In the remainder of the paper we will often need to describe schematically
the colour constraining gadgets. Figure 4 gives an example of the graphical
notation that will be used.

Fig. 4 A schematic representation of a (u,v)-colour constraining gadget. the diagram
shows the isolated vertex in empire u. The two dashed blobs denote, respectively, the other
vertices in u and the vertices in v. The thick black line stands for the part of the gadget
constraining the colour of u and v: the two empires must be given the same colour in any
s-colouring of B−r,s(u,v).

Connectivity Gadgets. For positive integers r, s and m with r ≥ 2 and s ≥ 3,
the connectivity gadget, denoted by Ar,s,m, is an r-empire graph satisfying the
following conditions:

A0 The graph Ar,s,m contains O(r2sm) vertices split into empires of size r.
A1 The graph Ar,s,m is a linear forest.
A2 There is a set of at least m isolated vertices in the graph of Ar,s,m and such

vertices must be given the same colour in any (s, r)-colouring of Ar,s,m.
These vertices define the so called monochromatic set of the gadget and
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Fig. 5 The graph E5,4,2. Vertices in the monochromatic set are greyed, the cliques con-
necting the colour constraining vertices are shown as dashed shapes, whereas the edges
connecting a clique to the plug vertex or socket vertices used in its place are shown as thick
lines.

will collectively be denoted by Z. The elements of such set will be generally
denoted by z.

Let q and t be arbitrary positive integers. In what follows Es,q,t is a (non-
empire) graph satisfying the following properties:

E0 Es,q,t contains (s+ q − 1)t+ 1 vertices.
E1 Es,q,t contains a set of qt+ 1 monochromatic vertices. Each of these must

be given the same colour in any proper s-colouring of the graph. Among
these we identify a plug vertex which we denote by u0, and q socket ver-
tices denoted by u1, . . . , uq, all of degree exactly s− 1. The other q(t− 1)
monochromatic vertices are termed internal monochromatic vertices. The
remaining (s− 1)t vertices in Es,q,t are called colour constraining vertices,
and usually denoted by the letter w, appropriately indexed.

E2 The maximum degree of Es,q,t is at most s+ q − 1.
E3 When s−1 and q are both even, every vertex in the graph has even degree.

Figure 5 shows the graph E5,4,2. Graphs Es,q,t will “guide” the constrution of
gadgets Ar,s,m in the sense that for each r, s, and m there will be values of q
and t such that Es,q,t will be the reduced graph of Ar,s,m.

Lemma 1 Let s, q and t be positive integers such that s ≥ 3, and q ≥
√
s− 1.

Then there exists a graph Es,q,t satisfying conditions E0, E1, E2, and E3.

Proof The graph Es,q,1 consists of a plug vertex u0, s− 1 colour constraining
vertices w1, . . . , ws−1, and q socket vertices u1, . . . , uq. We can see immediately
that condition E0 is satisfied. The edges of Es,q,1 are defined as follows: there
is a clique on the s − 1 vertices w1, . . . , ws−1, also for every i ∈ {0, . . . , q}
and j ∈ {1, . . . , s − 1} there is an edge {ui, wj}. In any proper s-colouring of
Es,q,1 the vertices u0, . . . , uq must use a colour not used by the s−1 vertices in
the clique, condition E1 follows from this. The vertices w1, . . . , ws−1 all have
degree s+ q − 1 while the vertices u0, . . . , uq all have degree s− 1, conditions
E2 and E3 follow from this.

For t > 1, assume that we already have a graph Es,q,t−1 satisfying all
the required conditions. To create the graph Es,q,t, we add Es,q,1, with its
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plug vertex removed, to Es,q,t−1, and we use the socket vertices of Es,q,t−1 to
connect the two graphs. More precisely, the vertices of Es,q,t are

V (Es,q,t−1) ∪
(
V (Es,q,1)\{u0}

)
.

Note that E0 is satisfied and Es,q,t contains a single plug vertex and s − 1
socket vertices. In what follows w1, . . . , ws−1 are the s− 1 colour constraining
vertices belonging to the copy of Es,q,1 used to define Es,q,t. The edge set of
Es,q,t contains all the edges of Es,q,t−1 and Es,q,1−u0 plus s−1 additional edges
to connect the socket vertices of Es,q,t−1 to the colour constraining vertices
of Es,q,1. Each of the colour constraining vertices in Es,q,1 is connected to a
socket vertex of Es,q,t−1, in such a way that, after this, the total degree of the
socket vertices is (q + 1)(s− 1). The assumption q ≥

√
s− 1 is needed at this

point, for otherwise the average degree of the socket vertices would be

(q + 1)(s− 1)
q

= s− 1 + (s− 1)/q > s− 1 +
√
s− 1 > s− 1 + q

where the expression on the right-hand side is the claimed bound on the max-
imum degree of Es,q,t. Thus, if q <

√
s− 1 at least one of the sockets would

have degree larger than s− 1 + q (thus contradicting E2).
In details, for s odd, we add edges {ui mod q, w2i−1}, and {ui mod q, w2i}

for i ∈ {1, . . . , (s − 1)/2}. Note that we connect an even number of vertices
to each socket vertex thus preserving condition E3. For s even, we first add
the edge {ui, wi} for i ∈ {1, . . . ,min(s − 1, q)}. If s − 1 < q some sockets are
not used by any of these edges and this completes the construction of Es,q,t.
Otherwise for 1 ≤ i ≤ (s − 1 − q)/2 we also add edges {ui mod q, wq+2i−1},
{ui mod q, wq+2i}. Finally, if q is even, we add {uq, ws−1}.

As each of the colour constraining vertices of Es,q,1 is adjacent to a socket
vertex of Es,q,t−1, the clique on these vertices must use all of the s− 1 other
colours in any proper s-colouring. The socket vertices of Es,q,1 must therefore
use the one remaining colour and hence are in the monochromatic set, condi-
tion E1 follows. ut

Theorem 4 Let m, r, and s be positive integers, with r ≥ 2, and s satisfying

3 ≤ s < 2r −
√

2r +
1
4

+
3
2
.

Then there exists a graph Ar,s,m satisfying conditions A0, A1, and A2. Fur-
thermore Ar,s,m can be constructed in time polynomial in r, s and m.

Proof For m ≤ r a single empire of size r with no edges satisfies all conditions
defining Ar,s,m. If m > r, we define Ar,s,m in such a way that Rr(Ar,s,m)
coincides with Es,q,t, where q = 2r − (s − 1) and t is the smallest positive
integer such that

r − 1 + t

(
qr − (q + 1)(s− 1)

2

)
≥ m.
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Note that the stated bounds on s imply that q satisfies the conditions of
Lemma 1.

In what follows the empires of Ar,s,m will be denoted by bold type-face
letters corresponding to the labels used to denote the vertices of Es,q,t.

When s is odd, q is even and hence by condition E3 every vertex in Es,q,t
has even degree. By a well-known result of Euler the graph contains an Euler
tour, and one such tour can be found in time polynomial in the size of the graph
(see for instance [10, Chapter 6]). Given one such tour T we can construct the
graph Ar,s,m as follows. Let Ar,s,m be the edgeless graph on (s + q − 1)t + 1
empires of r vertices, we visit the edges of T and add corresponding edges to
Ar,s,m keeping the invariant that one of the two end-points of the latest added
edge has degree one in Ar,s,m. Without loss of generality we first add the edge
{u0

1, w
1
1}. Then, assuming we have visited the first i − 1 edges of T and vk

is the vertex of degree one incident to the latest added edge, we connect vk to
an isolated vertex of empire u, if {v, u} is the next edge we visit in T .

The edge set of graph Ar,s,m consists of a single long path, and hence
condition A1 is satisfied. The degree distribution of Ar,s,m is described in the
following table.

vertex set degree two degree one degree zero
u0 s−1

2 − 1 two r − s−1
2 − 1

an empire corresponding to a

colour constraining vertex

r

one of the t−1 groups of q em-

pires corresponding to internal

monochromatic vertices

(q + 1) s−1
2 qr − (q + 1) s−1

2

ui for i > 0 s−1
2 r − s−1

2

Thus Ar,s,m has

r − 1 + t

(
qr − (q + 1)(s− 1)

2

)
isolated vertices within the monochromatic set. Increasing the value of t will
increase this number provided that

qr >
(q + 1)(s− 1)

2
. (1)

When s is even, q = 2r−(s−1) is odd. As before, we define Ar,s,m using the
graph Es,q,t. However this time Es,q,t is not Eulerian. In particular, all colour
constraining vertices have even degree s+ q− 1. However, by the construction
used in Lemma 1, in each set of internal monochromatic vertices there are
min{s− 1, q} of even degree. Denote by u1, ..., uq−s−1 the odd degree vertices
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in that set. Furthermore, the plug vertex u0, and the final set of q socket
vertices are all of odd degree. To understand the definition of Ar,s,m we define
a subgraph H of Es,q,t. The edge set of H are defined as follows.

1. H contains a long path P0 starting at u0 and passing through ws−1 and
uq of each set of colour constraining and internal monochromatic vertices.

2. When s − 1 < q, for each set of internal monochromatic vertices and for
all i ∈ {1, . . . , (q − s− 1)/2}, H contains a path {u2i−1, wi mod(s−1), u2i}.

3. Finally, for all i such that i ≤ (q − 1)/2, there is a path {u2i−1, wi, u2i},
where u1, . . . , uq are the socket vertices of Es,q,t.

Note that Es,q,t −H is Eulerian. We construct Ar,s,m in two stages. We first
use the edges of an Euler tour of Es,q,t −H as we did in the case s odd. Then
we define edges corresponding to the edges of H. This second type of edges
involve different vertices from those used to deal with the Euler tour. Finally,
if u0

1 and u0
s/2 are the start and the end point of the long path in Ar,s,m

corresponding to Es,q,t − H Euler tour, and u0
s/2+1 is the starting point of

the path P0 in H, then we can actually attach the edge from u0
s/2+1 to u0

s/2.
By doing this vertex u0

s/2+1 becomes isolated, we lose a vertex of degree one,
and gain a vertex of degree two.

The degree distribution of Ar,s,m is given in the following table.

vertex set degree two degree one degree zero
u0 s

2
− 1 one r − s

2

an empire correspond-
ing to a colour con-
straining vertex

r

one of the t − 1
groups of q empires
corresponding to in-
ternal monochromatic
vertices

(q + 1) s−1
2
−max(q − s− 1, 0) max(q − s− 1, 0) qr − (q + 1) s−1

2
−max(q − s− 1, 0)

ui for i > 0 s
2
− 1 one r − s

2

In total this gives us

(q + 1)
(
r − s

2

)
+ (t− 1)

(
qr − (q + 1)(s− 1)

2
−max(q − s− 1, 0)

)
isolated vertices within the monochromatic set. Increasing t will increase this
number provided that

qr >
(q + 1)(s− 1)

2
+ max(q − s− 1, 0) > 0. (2)

When s < r+ 1 and hence max(q− s− 1, 0) = r− s+ 1, the above inequality
is always true. We therefore need only consider the case for larger r, in this
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case the bound (1) on graphs where s is even is the same as the bound when
s is odd. The bound can be rewritten as

(s− 1)2

2
−
(

2r +
1
2

)
(s− 1) + 2r2 > 0.

This inequality is satisfied for

s < 2r −
√

2r +
1
4

+
3
2
,

and hence for any m and any s and r satisfying the above inequality, there
exists some Ar,s,m satisfying conditions A0, A1, and A2. ut

Let r be a positive integer. Given an r-empire graph G, and an empire
v in G, the r-degree of v is simply the degree of vertex v in the reduced
graph of G (of course the 1-degree of a vertex in a graph is just its (ordinary)
degree). Let r′, s, and m be positive integers as specified at the beginning
of this section. Gadgets Ar′,s,m will be used in the forthcoming reductions to
replace particular empires with high r-degree by an array of vertices of degree
one or two, chosen among the monochromatic vertices of the gadget. Let m
be an integer at least as large as the r-degree of v. The linearization of v in
G is the process of replacing v in G with a copy of Ar′,s,m attaching each
edge incident with some element of v to a distinct element of Z in Ar′,s,m.
We will say that these chosen elements of Z simulate the empire v. Note that,
in general, r′ may be different from r. Thus repeated linearizations may be
used to introduce larger empires in a given r-empire graph or even transform
a standard graph into an r′-empire graph, for some fixed r′ > 1.

Planar Gadgets. Let u and v be given set of r vertices and denote by δx,y
the Kroeneker delta function. For positive integers r, and s with r ≥ 2 and
s < 6r−3−2δr,2, it is possible to define a family of r-empire graphs Dr,s(u,v)
satisfying the following properties:

D0 The graph Dr,s(u,v) has r(s + 1) vertices partitioned into s + 1 empires
all of size r.

D1 The graph Dr,s(u,v) is planar and it contains an isolated vertex v1.
D2 No connected component of the graph Dr,s(u,v) contains two vertices from

the same empire.
D3 The graph Ks+1 minus the edge {u,v} is a subgraph of Rr(Dr,s(u,v)).

Dr,s(u,v) will serve a similar purpose in Theorem 13 to that of B−r,s(u,v) in
Theorem 11.

Theorem 5 Let r and s be positive integers with r ≥ 2 and s < 6r−3−2δr,2.
Let u and v be two disjoint sets of r vertices. There exists an r-empire graph
Dr,s(u,v) satisfying conditions D0, D1, D2, and D3. Furthermore Dr,s(u,v)
can be constructed in time polynomial in r.
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Fig. 6 The graph D2,6(u,v)

Proof For r = 2, s = 6 a suitable graph is shown in Figure 6. For r ≥ 3, we
can derive Dr,6r−4(u,v) from the proof in [2] that the thickness of K6r−3 is
equal to r. In what follows we describe Beineke’s construction highlighting a
few points that are important to prove properties D0, D1, D2, and D3.

Beineke’s construction starts by showing that there is a graph of thickness
r − 1 on 6(r − 1) vertices labelled u(i), v(i), w(i), u′(i), v′(i), w′(i) for all
i ∈ {1, . . . , r − 1} in which there are edges connecting every pair of vertices
except {u(i), u′(i)}, {v(i), v′(i)} and {w(i), w′(i)} for each i ∈ {1, . . . , r − 1}.

To do this, he defines D′r to be a graph consisting of r − 1 connected
components G1, . . . , Gr−1 (see Figure 7), such that for each i ∈ {1 . . . r − 1}
Gi consists of 6(r−1) vertices labelled u(j)i, v(j)i, w(j)i, u′(j)i, v′(j)i, w′(j)i
for all j ∈ {1, . . . , r − 1}. Vertices u(i)i, v(i)i, w(i)i, u′(i)i, v′(i)i, w′(i)i will
be called external, all others internal (as they are part of a copy of graph H).
This satisfies property D2.

If corresponding vertices in distinct copies of Gi are grouped into empires
of size r − 1, the reduced graph of D′r is a graph meeting Beineke’s initial
claim. It has 6(r− 1) vertices labelled u(i), v(i), w(i), u′(i), v′(i), w′(i) for all
i ∈ {1, . . . , r − 1} in which there are edges connecting every pair of vertices
except {u(i), u′(i)}, {v(i), v′(i)} and {w(i), w′(i)} for each i ∈ {1, . . . , r − 1}.

Three more empires a, b and c, each of size r − 1 are added to D′r and
connected to it in the following way:

v
(⌊
r−1
2

⌋)
1
, v
(⌊
r−1
2

⌋
+ 1
)
1

are adjacent to a1

u(i)i, u′(i+ 1)i, v(i)i are adjacent to ai(i > 1),

v(1)1, v(2)1, u′(1)1 are adjacent to b1
u(1)d r−1

2 e+1, u
′(2)d r−1

2 e+1 are adjacent to bd r−1
2 e+1

v′(i)i, v(i+ 1)i, u(i)i are adjacent to bi(i ∈ {1, . . . , d
r − 1

2
e})

v(i)i, v′(i+ 1)i, u′(i)i are adjacent to bi(i ∈ {d
r − 1

2
e+ 2, . . . , r − 1}),
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Fig. 7 The graphs Hi and Gi, the triangles labelled 1, . . . 6 in Gi contain copies of Hi in
which the vertex vi corresponds to v(i)i, u′(i)i, w(i)i, v′(i)i, u(i)i, w′(i)i respectively. The
labelling of the interior vertices of the Hi subgraphs is described in [2].

w′(2)1 is adjacent to c1
w(i)i, w′(i+ 1)i are adjacent to ci(i > 1).

As each vertex from empires a, b and c was added to a single component of
D′r, property D2 is still satisfied. Let Gr be the complement of Rr−1(D′r +
{a,b, c}). It is not difficult to see that Gr is planar. Therefore by adding the
vertices u(j)r, v(j)r, w(j)r, u′(j)r, v′(j)r, w′(j)r for all j ∈ {1, . . . , r−1} with
the same edge set as Gr we have a graph consisting of r planar components
(that’s Gr along with the components of the augmented graph D′r + {a,b, c})
that reduces to K6r−3.

G1 contains a vertex c1 of degree one which is adjacent to w′(2)1. We can
now form the graph Dr,6r−4(u,v) from Gr along with the components of the
augmented graph D′r + {a,b, c} by renaming empires c and w′(2) as v and u
respectively and removing all edges between u and v. Dr,6r−4(u,v) satisfies
property D0, D1 (as the only edge incident to v has been deleted), D2 and
D3 as the graph reduces to K6r−3 minus the edge {u, v}. For s < 6r− 4, note
that the induced graph formed by removing any empire other than u or v from
Dr,s+1(u,v) is an example of Dr,s(u,v). As the size of the graph Dr,s(u,v)
depends only on r and s, the graph can be constructed in polynomial time. ut
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5 Linear Forests

In Section 2 we showed (amongst other things) that there are specific values
for s such that s-COLr becomes easy if the input graph is a collection short
paths. Here we argue that if the paths are allowed to have arbitrary length
(let LFOREST denote the set of all forests of this form) then the problem
becomes NP-hard. We will prove the following result.

Theorem 6 Let r and s be positive integers with r ≥ 2 and 3 ≤ s < 2r −√
2r + 1

4 + 3
2 . Then the s-COLr(LFOREST) problem is NP-hard.

Note that it follows from results in [18] that any r-empire graph defined
on a linear forest can be coloured in polynomial time using 2r colours. Thus
Theorem 6 is, at least for large values of r, close to best possible, in the sense
that the largest values of s for which it holds are 2r − 1 + o(r).

The proof is split into two parts. The argument for s = 3 is based on a
direct construction which is reminiscent of a well-known hardness proof for
3-COL [7, p.1103]. For s > 3, the hardness of s-COLr(LFOREST) will then
follow from that of s-COL(FG(s, s− 1)).

We start from the case s = 3.

Theorem 7 Let r be an integer with r ≥ 2. Then 3-SAT≤p 3-COLr(LFOREST).

Proof The proof construction is reminiscent of that used to show that 3-COL
is NP-hard [7, p.1103].

Given an instance φ of 3-SAT we can produce a linear forest P (φ) and a
partition of V (P (φ)) into empires of size r such that P (φ) admits a (3, r)-
colouring if and only if φ is satisfiable. P (φ) consists of one truth gadget, one
variable gadget for each variable used in φ, and one clause gadget for each
clause in φ.

To define the truth gadget, we start by adding r−2 distinct isolated vertices
to each empire in B2,2. The empires in the resulting graph (which we denote
by B+r

2,2) will be labelled T, F and X. Then, if φ uses n different variables and
m clauses, we linearize T and X in B+r

2,2, using one copy of Ar,3,deg(T)+2m,
and one copy of Ar,3,deg(X)+n (here deg(v) is the degree of empire v in B+r

2,2),

Fig. 8 The shape of a variable gadget for s = 3.
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respectively. We denote such gadgets by A(T) and A(X) respectively. This
completes the definition of the truth gadget. Since T, F and X are all adja-
cent (in B+r

2,2) and the linearization preserves colour constraints (because of
property A2), the vertices of the truth gadget simulating the three empires
of B+r

2,2 must have different colours in any 3-colouring of the truth gadget.
Without loss of generality we call TRUE, FALSE and OTHER respectively
such colours.

For each variable a in φ, P (φ) contains a variable gadget. Let occ(·) be a
function taking as input a literal of φ and returning the number of occurrences
of its argument in the given formula. The variable gadget for a is defined as the
graph formed by the two connectivity gadgets Ar,3,occ(a)+2 and Ar,3,occ(a)+2,
along with a single monochromatic vertex z in A(X) (a distinct monochromatic
vertex is used for each variable of φ). The edges in the variable gadgets will be
those of Ar,3,occ(a)+2 and Ar,3,occ(a)+2 plus three further edges: {z, za}, {z, za},
and {z′a, z′a}. Here za and z′a (resp. za and z′a) are monochromatic vertices in
Ar,3,occ(a)+2 and Ar,3,occ(a)+2. Figure 8 gives a schematic view of the variable
gadget for an arbitrary variable a. Since X has colour OTHER, there are only
two possible colourings for the vertices corresponding to a and a — either all
vertices for a are coloured TRUE and those for a are coloured FALSE, or the
vertices for a are coloured FALSE and those for a TRUE.

Finally, for each clause in φ, P (φ) contains a gadget like the one depicted
in Figure 9. This is connected to the rest of the graph via four connectivity
gadgets. More specifically, the two vertices labelled T1 and T2 (in the Figure)
are two monochromatic vertices in A(T) (a distinct pair of such monochro-
matic vertices for each case clause gadget). Also, vertices labelled a, b and c̄ in
the Figure belong to the monochromatic set of three connectivity gadgets of
the form Ar,3,occ(`)+2 where ` is a literal (` = a, b, and c̄ in the given example).
Since the vertices of A(T) corresponding to T will always be coloured TRUE,
it can be shown that each clause gadget admits a proper (3, r)-colouring if and
only if at least one of the empires corresponding to a literal in the clause is
coloured TRUE.

Note that P (φ) is (3, r)-colourable if and only if φ is satisfiable. This follows
from the properties of the well known reduction 3-SAT ≤p 3-COL, as the graph

Fig. 9 The clause gadget for the clause (a∨ b∨ c), for r = 2. Each dashed curve encloses a
pair of vertices belonging to the same empire. The vertices labelled T1 and T2 are in Z(T),
while vertices labelled a, b and c are in Z(a), Z(b) and Z(c) respectively.
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obtained from P (φ) by shrinking each connectivity gadget first and then each
remaining empire in P (φ) to a distinct (pseudo-)vertex coincides with that
created from φ using the classical 3-COL reduction. ut

For s > 3 the NP-hardness of s-COLr(LFOREST) follows from that of s-
COL(FG(s, s− 1)). The argument is much simpler than in the case described
above. Given an (s, s − 1)-formula graph Φ, the r-empire graph obtained by
linearizing all vertices of Φ is an instance of s-COLr(LFOREST). This imme-
diately gives the following result.

Theorem 8 Let r and s be fixed positive integers with r ≥ 3, and 3 < s <

2r −
√

2r + 1
4 + 3

2 . Then s-COL(FG(s, s− 1)) ≤p s-COLr(LFOREST).

6 Trees

The result on linear forests of Section 5 already proves that s-COLr is NP-hard
on planar graphs if s ≥ 3 is sufficiently small. In this section we investigate
the effect of connectedness on the computational complexity of the s-COLr
problem. The outcome of our investigation is the following dichotomy result
(in the next theorem TREE is the class of all trees).

Theorem 9 Let r and s be fixed positive integers with r ≥ 2, then the s-
COLr(TREE) problem is NP-hard if 2 < s < 2r, and polynomial time solvable
otherwise.

The proof of Theorem 9 is split into two parts. The argument for s = 3
is very similar to the one we used for forests of paths, but simpler, as trees
are allowed to have vertices of arbitrary large degree. We present the proof
in some details only for the case r = 2 (see Theorem 10 below). For r > 2
note that a tree T1 with empires of size r1 can be translated into a tree T2

with empires of size r2 > r1 by simply attaching r2 − r1 new leaves to a fixed
element in each empire of T1. For s > 3 we argue as in Section 5, translating
formula graphs into pairs formed by a tree and a partition of its vertices into
empires. The hardness of s-COLr(TREE) follows from Theorem 2. Details in
Theorem 11 below.

Theorem 10 3-SAT ≤p 3-COL2(TREE).

Proof (Sketch) Given an instance φ of 3-SAT we define a tree T (φ) and a
partition of its vertices into empires such that T (φ) admits a (3,2)-colouring if
and only if φ is satisfiable. T (φ) will consist of one truth gadget, one variable
gadget for each variable used in φ, and one clause gadget for each clause in φ.

The truth gadget is a copy of B+
2,2(T). Since empires T, F and X are

adjacent to each other (in the gadget’s reduced graph) w.l.o.g. we assume
they are coloured TRUE, FALSE and OTHER respectively. For each variable
a in φ, T (φ) contains a copy of B2,2 spanned by empires labelled a, a, and X.
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Fig. 10 The gadget for the complementary pair a and a when r = 3, s = 5. The dashed
blobs represent either empires, or part of them. The diagram clearly shows all copies of
B−3,5(Wi(`),Xi), following the graphical notation introduced in Figure 4.

The construction forces empires a, a to be coloured differently from X (and
each other). Finally, for each clause in φ, we use a clause gadget like the one
in Figure 9.

Arguing like in the proof of Theorem 7 it is easy to see that T (φ) is (3, 2)-
colourable if and only if there is some way to assign the variables of φ as TRUE
or FALSE so that every clause contains at least one TRUE literal. ut

Theorem 11 s-COL(FG(s, s − 1)) ≤p s-COLr(TREE), for any r ≥ 3 and
3 < s < 2r.

Proof As in the proof of Theorem 8 we give a set of replacement rules that
translate an (s, s − 1)-formula graph Φ into a tree T (Φ) and a partition of
V (T (Φ)) into empires of size r such that T (Φ) is (s, r)-colourable if and only
if the formula graph is s-colourable. This time there is no need to use the
connectivity gadgets Ar,s,m as the vertices of T (Φ) can have arbitrarily large
degrees. However some care is needed to make sure that the resulting graph
is in fact a tree.

In details, the complete graph on {T, F,X1, . . . , Xs−2} is replaced by a
copy of B+

r,s−1(T) with empires labelled T, F, and X1, . . . ,Xs−2. Note that,
as discussed in Section 4, this graph is in fact a tree (Figure 3 displays the
connected clique gadget for r = 3 and s = 5). Also, because of constraint B3 in
the definition of Br,s, w.l.o.g. we may assume that colours “TRUE”, “FALSE”,
“OTHER1”, . . ., “OTHERs−2” are assigned to empires T, F, X1 . . . ,Xs−2

respectively.
For each complementary pair a, a of V (Φ) we create 2s−5 empires W2(a), . . . ,Ws−2(a)

and W1(a), . . . ,Ws−2(a). These are then connected to B+
r,s−1(T) using the
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graphs B−r,s(W
i(a),Xi), and B−r,s(W

i(a),Xi) for all i ∈ {1, . . . , s−2}. For each
a ∈ A the subgraph of Φ spanned by

⋃
i{a, a,Xi} is represented by a graph like

the one sketched in Figure 10 for r = 3 and s = 5. This graph involves empires
a, a, X1, . . . ,Xs−2, W2(a), . . . ,Ws−2(a) and W1(a), . . . ,Ws−2(a). Empires
a, and a, each span a tree with one vertex, w.l.o.g. a1 (resp. a1) of degree r−1
and r−1 vertices of degree one, all adjacent to it. These two trees are connected
by the edge {a1, a1}. Vertex a1 (resp. a1) is also connected to the vertex in
W2(a), . . . ,Ws−2(a) left isolated in the graph B−r,s(W

i(a),Xi) (resp. to the
isolated vertex in W1(a)1, . . . ,Ws−2(a)1 belonging to B−r,s(W

i(a),Xi)). Fi-
nally a1 is connected to X1

1 . The edge {a1, X
1
1} ensures that the union of

B+
r,s−1(T) and the graph spanned by empires a, a, X1, W2(a), . . . ,Ws−2(a)

and W1(a), . . . ,Ws−2(a) is just a single tree. The edges connecting empires a,
a, with W2(a), . . . ,Ws−2(a) and W1(a), . . . ,Ws−2(a), because of the prop-
erties of the (Wi(`),Xi)-colour constraining gadgets, prevent a and a from
being able to use the colours of the Xi in any colouring of T (Φ).

Each group {c1, . . . , cs−1} in C is replaced by empires c1, . . . , cs−1 (dif-
ferent groups replaced by different sets of empires). The complete graph on
{T, c1, . . . , cs−1} is replaced by a copy of Br,s−1 on the corresponding empires
(this ensures that the union of B+

r,s−1(T) and such Br,s−1 form a single tree).
We then attach to this graph s− 1 graphs B−r,s(b

j , cj), for j ∈ {1, . . . , s− 1}.
Empire bj must have the same colour as cj and it has, in B−r,s(b

j , cj), an iso-
lated vertex, bj1. If ` is the unique element of A adjacent to cj in the formula
graph then {bj1, `1} is an edge of T (Φ). A schematic representation of the sub-
graph induced by T, empires c1, . . . , cs−1, along with the copies of B−r,s(b

j , cj)
is given in Figure 11.

Fig. 11 A schematic representation of T, empires c1, . . . , cs−1, all edges among these
along with the copies of B−r,s(bj , cj).

The overall construction is such that for each vertex in V (Φ) there is an
equivalent empire in V (T (Φ)), and for each edge in E(Φ) there is an edge
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{u, v} ∈ E(T (Φ)) that either connects the corresponding empires u and v or
connects u to an empire that must be given the same colour as v in any (s, r)-
colouring of T (Φ). From this we can see that T (Φ) admits an (s, r)-colouring
if and only if Φ admits an s-colouring. ut

7 General Planar Graphs

Theorem 9 of last section does not exclude the possibility that s-COLr be
solvable in polynomial time for arbitrary planar graphs provided s ≥ 2r. Here
we show that in fact this is not the case. The main result of this section is the
following:

Theorem 12 Let r and s be fixed positive integers with r ≥ 2, then the s-
COLr problem is NP-hard if 3 ≤ s < 6r−3−2δr,2, and solvable in polynomial
time if s = 2 or s ≥ 6r.

Note that s-COLr can be solved in polynomial time for s = 2 (as checking if
the reduced graph of a planar graph is bipartite is easy) and for s ≥ 6r (because
of Heawood’s result). Also, Theorem 9 proves the case s < 2r. Therefore only
the case s ≥ 2r needs further discussion. The bulk of the argument is similar to
that of Theorem 8 and 11 with a couple of differences. First, this time we only
need the graph resulting from the transformation of the initial formula graph to
be planar (note that the formula graph in general is NOT planar). On the other
hand, we want the transformation to work for much larger values of s. Our
solution hinges on proving that all complete subgraphs of the starting formula
graph and a number of other gadgets attached to them have sufficiently large
thickness. For the complete graphs we may use well-known results [1], whereas
for the specific gadgets we need a bespoke construction.

Using the gadgets described above we can prove the following result, which
completes the proof of Theorem 12.

Theorem 13 s-COL(FG(s, s − 1)) ≤p s-COLr, for any r ≥ 2 and 2r ≤ s <
6r − 3− 2δr,2.

Proof The proof mirrors that of Theorem 11. We once again give a set of
replacement rules to convert a (s, s− 1)-formula graph Φ into a planar graph
G(Φ) that is (s, r)-colourable if and only if Φ is s-colourable.

The copy of Ks induced by the vertex set T in Φ is replaced by r edge dis-
joint subgraphs of Ks. For s ≤ 6r−4 the existence of such graphs is granted by
known results on the thickness of Ks [1]. W.l.o.g. we may assume that the em-
pires of the resulting graph (which, as usual, we label T, F, and X1,X2, . . .) are
coloured “TRUE”, “FALSE”, “OTHER1”, . . ., “OTHERs−2” respectively. The
graph is then expanded, for each a, a ∈ A using empires W2(a), . . . ,Ws−2(a)
and W1(a), . . . ,Ws−2(a) and the graphs Dr,s(Wi(a),Xi) for all i such that
2 ≤ i ≤ s − 2, and Dr,s(Wi(a),Xi) for all i such that 1 ≤ i ≤ s − 2. The
graphs Φ[

⋃
{a, a,Xj}] and Φ[{T} ∪ C] are subject to transformations similar
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to those in Theorem 11 but using the planar decomposition of the complete
graph instead of copies of Br,s and graphs Dr,s(u,v) instead of B−r,s(u,v).

As in Theorem 11, every vertex in V (Φ) has a corresponding empire in
V (G(Φ)), and every edge {u, v} ∈ E(Φ) has a corresponding edge in E(G(Φ))
that connects either the empires u and v or empires that must be given the
same colour as them in any proper (s, r)-colouring. It follows that G(Φ) admits
a proper (s, r)-colouring if and only if Φ admits a proper s-colouring. ut

The reduction in the proof of Theorem 13 shows that for any given formula
graph Φ one can define a planar graph G(Φ) which is formed by (at least) r
connected components and reduces to Φ. Thus the proof is actually showing,
for s ≥ 2r, the NP-hardness of colouring, in the traditional sense, graphs of
thickness r. The following result can be obtained extending the proof to any
s > 3 and using a more direct reduction from 3-SAT for s = 3.

Theorem 14 It is NP-hard to decide whether a graph of thickness r > 1 can
be coloured with s < 6r − 3− 2δr,2 colours.

An obvious way to improve Theorem 13 (and perhaps close the small gap
between NP-hard and polynomially decidable cases) would be to use differ-
ent gadgets to replace the complete subgraphs of Φ. However, it seems diffi-
cult to devise a graph with high thickness that shares the colour constraining
properties of the complete graph. Perhaps, a more direct reduction from the
satisfiability problem may provide a handle on the remaining open cases.
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