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This paper presents improved and extended results of our previous study on corrections for conventional neutron dose meters
used in environments with high-energy neutrons (En > 10MeV). Conventional moderated-type neutron dose meters tend to
underestimate the dose contribution of high-energy neutrons because of the opposite trends of dose conversion coefficients and
detection efficiencies as the neutron energy increases. A practical correction scheme was proposed based on analysis of hun-
dreds of neutron spectra in the IAEA-TRS-403 report. By comparing 252Cf-calibrated dose responses with reference values
derived from fluence-to-dose conversion coefficients, this study provides recommendations for neutron field characterization
and the corresponding dose correction factors. Further sensitivity studies confirm the appropriateness of the proposed scheme
and indicate that (1) the spectral correction factors are nearly independent of the selection of three commonly used calibration
sources: 252Cf, 241Am-Be and 239Pu-Be; (2) the derived correction factors for Bonner spheres of various sizes (6”−9”) are
similar in trend and (3) practical high-energy neutron indexes based on measurements can be established to facilitate the
application of these correction factors in workplaces.

INTRODUCTION

High-energy neutrons (En > 10MeV) are relatively
penetrating and usually give a substantial dose con-
tribution behind thick shields due to their high
fluence-to-dose conversion coefficients. The accuracy
of neutron dose evaluation largely depends on the
knowledge of neutron energy distributions at loca-
tions of concern. However, it is generally difficult to
determine the spectrum over the entire energy range
from thermal up to GeV neutrons. Depending on
the desired energy range and resolution, various neu-
tron detectors may have to be used in combination
to achieve this goal. In radiation environments with
high-energy neutrons, such as at high-energy acceler-
ator facilities, determining the relative contribution
to the total dose or dose rate from high-energy neu-
trons and low-energy neutrons is of great interest
because high-energy neutrons may have significant
contribution, but only resulting in small or negligible
responses in conventional-type neutron monitors.

Moderated-type neutron dose meters tend to
underestimate the dose contribution of high-energy
neutrons because of the opposite trends of dose con-
version coefficients and detection efficiencies as the
neutron energy increases. The phenomenon is well

known to many health physics practitioners, espe-
cially those working at high-energy accelerator facil-
ities. Improved detector designs, such as the so-
called extended-range neutron dose meters, or sug-
gested corrections for the responses of conventional
neutron dose meters have been discussed in several
studies(1–5). For example, Klett et al.(1) showed that
the response of the standard LB6411 neutron dose
meter was only 68.9% of the reference value at
the CERN/CERF field with high-energy neutrons(6).
Fassò et al.(2) demonstrated that, at high-energy elec-
tron accelerators fields, the responses of the
Andersson–Braun rem meter calibrated with 252Cf
or Am-Be neutron sources underestimated ambient
dose equivalent by ~30–60% for concrete of thick-
nesses varying from 60 to 120 cm. Regarding the
development of extended-range neutron dose meters,
Olsher et al.(3) introduced an improved neutron rem
meter called WENDI and Berthold Technologies(1)

presented a new version of LB6411 neutron dose
monitor. Both detectors are capable of detecting
neutrons with energies up to GeV by the use of lead
or tungsten in moderator as a neutron multiplier.
These extended-range neutron dose meters are rela-
tively expensive and considerably heavy compared
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with the original designs due to the embedded heavy
metal inside the detectors.

To have proper dose estimation in high-energy
neutron environments, in addition to using the
extended-range neutron dose meters, it is possible
and of interest to correct the underestimated
responses of conventional detectors. As an example,
according to the characteristics of neutron spectra
behind thick shields at high-energy electron accelera-
tors(2), a practical approach adopted at SLAC was
simply doubling the rem meter readings in neutron
measurements. Jagerhofer et al.(4) demonstrated that
the WEND-II rem meter is an appropriate device to
monitor ambient dose equivalent rates in high-
energy neutron dominated fields. In addition, Monte
Carlo simulations were used to determine field-
specific correction factors for the 252Cf-calibrated
WEND-II, which resulted in a better agreement
between calculations and measurements. In our pre-
vious study(5), the effect of the neutron spectrum on
the accuracy of dose measurements was systematic-
ally investigated by considering a set of 10 selected
neutron spectra representing various neutron envir-
onments. A simple correction scheme was provided
for users to correct the dose underestimation of con-
ventional neutron dose meters used in radiation
fields with high-energy neutrons. The magnitude of
correction is spectrum dependent and described as a
function of the estimated flux percentage of high-
energy neutrons in the spectrum of workplace or a
spectral index based on in situ measurements of two
designated Bonner spheres. However, neutron spec-
tra typically span several orders of magnitude and
vary widely from place to place. A serious concern
about the validity of the correction scheme mainly
originated from the 10 selected neutron spectra,
where the correction factors and fitting formulas
were derived. In addition, the neutron detector and
calibration source adopted in the previous study
might have certain effect on the estimation of dose
responses and the corresponding correction factors.
Can the derived correction scheme be universally
extended to environments having completely differ-
ent neutron spectra? To address these issues and pre-
clude the subjective selection of neutron spectra for
analysis, this study presented improved and extended
results based on a complete survey of over 200 neu-
tron spectra collected in the IAEA Technical
Reports Series No. 403 (IAEA-TRS-403)(7) and a
series of sensitivity studies.

MATERIALS AND METHODS

Bonner spheres and neutron dose meters

Conventional neutron dose meters such as popular
9-inch rem balls and Andersson–Braun rem meters
are widely used for neutron surveillance or area

monitoring in workplaces. These moderated-type
devices present a reasonable fit between the detection
efficiency and the fluence-to-dose conversion coeffi-
cients over a wide range of neutron energies. It has
been well known that the detectors based solely on
moderating or absorbing materials to shape the
response function suffer from no effective response
to high-energy neutrons. By embedding heavy metals
in neutron moderators, the effective detector
response can be extended to the GeV range, such as
the two extended-range neutron rem meters
WENDI(3) and LB6411(1) that mentioned previously.
However, these commercial neutron dose meters,
either conventional or extended-range types, were
not selected for being the targets of this study
because we did not have enough details in their
designs including dimensions and material composi-
tions. These details are necessary for detector model-
ing in numerical simulations to have an accurate
prediction of the detector response function, one of
the key ingredients in this study.

The Bonner sphere spectrometer is widely used in
neutron spectrum determination because of several
advantages including a wide energy range, isotropic
angular response, reasonable detection sensitivity
and excellent neutron-gamma discrimination.
Intermediate-sized Bonner spheres are in principle
similar to the design of most conventional neutron
dose meters. More importantly, the specification of
the spectrometer provides detailed information for
high-fidelity response function calculations. The
PTB neutron multi-sphere spectrometer (NEMUS)(8)

was used in this study, consisting of 11 standard
polyethylene spheres of various diameters and 4
extended-range spheres. The four extended-range
spheres were labeled 4C5_7, 3P5_7, 4P5_7 and
4P6_8; the three numbers in the label indicate,
respectively, the diameters of the three spherical
layers in inches: the inner polyethylene sphere, the
embedded copper (C) or lead (P) shell and the outer
polyethylene sphere. Among the Bonner spheres of
various sizes and designs, two spheres were selected
(the standard 9” sphere and the 4P6_8 lead-
embedded sphere) representing the conventional and
extended-range neutron dose meters, respectively. In
addition, standard Bonner spheres of diameters of
6”, 7” and 8” were considered as alternative candi-
dates of conventional-type neutron dose meters in
order to investigate the effect of various choices of
neutron dose meters on the resulting correction fac-
tors. The response functions of Bonner spheres were
calculated using the continuous-energy Monte Carlo
transport code MCNPX(9). For more details on the
response function calculations and validation, please
refer to our previous papers(5, 10). Figure 1 shows the
calculated response functions of five standard
Bonner spheres of diameters ranging from 5” to 9”
and two extended-range spheres 3P5_7 and 4P6_8.
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These detectors were used in this study as possible
candidates of neutron dose meters or as instruments
to construct a spectral indicator of neutron field.

Neutron spectra and dose correction factors

Reliable neutron dose measurement is difficult
because of the wide range of neutrons and the imper-
fect response of most detectors. Thus, an instrument
calibration is important, which requires a calibration
field of similar characteristics and appropriate cali-
bration procedure(11). In practice, neutron dose
meters used for radiation protection purpose are
commonly calibrated with 252Cf or other standard
sources and then used in various workplaces.
However, because of the limited energy range of a
calibration source, calibrated dose meters are actu-
ally not recommended for use in neutron fields exhi-
biting characteristics that differ substantially from
the calibration source. If so, one should be cautious
in the detector response and a workplace-specific or
spectrum-dependent correction factor may be neces-
sary, especially for the problem of dose underestima-
tion caused by high-energy neutrons.

The approach adopted in this study for the estima-
tion of spectral correction factors focused on three
aspects of neutron dose measurement: detector cali-
bration, response function and dose evaluation.
First, the Bonner sphere chosen as the dose meter
was irradiated in a well-defined neutron field pro-
duced by a traceable standard source 252Cf. The dose
calibration factor of the detector expressed in unit of

μSv/h/cps can be determined by dividing the known
dose rate at the location by the recorded net count-
ing rate. The term dose or dose rate in this paper
refers to the operational quantity of the ambient
dose equivalent, H*(10). Second, by folding the neu-
tron spectrum under consideration with the detector
response function, the neutron counting rate of the
detector can be estimated and further converted into
the neutron dose rate. This dose rate was denoted as
H*(10)cf252 because the conversion was based on the
detector calibration using a 252Cf neutron source.
Third, the neutron dose rate at the location of inter-
est can be evaluated by a parallel and more rigorous
process, which is a direct folding of the fluence-to-
dose conversion factors with the spectrum. This dose
rate denoted as H*(10)spe directly corresponds to the
neutron spectrum under consideration. The ICRP-
74(12) conversion coefficients for the ambient dose
equivalent were adopted for neutron energies below
180MeV, and the high-energy extensions calculated
by Pelliccioni(13) were concatenated to cover neu-
trons of higher energies. A comparison of the dose
rates derived from the two processes leads to a
spectrum-dependent correction factor for the neu-
tron dose meter, defined as the ratio of H*(10)spe to
H*(10)cf252. By this definition, the correction factors
for neutron spectra similar to that of 252Cf must be
close to 1.0.

For an ideal neutron dose meter, the correction
factor for any given spectrum always approaches to
1.0. No spectrum-dependent correction is needed
because of a perfect match between the detector
response function and fluence-to-dose conversion
coefficients over the entire neutron energy range.
The condition obviously does not hold in reality,
and in particular for high-energy neutrons.
Therefore, any deviation of the calculated correction
factor from the ideal value of 1.0 indicates certain
spectral effect on the response of a 252Cf-calibrated
neutron dose meter. Through a systematic study of
this effect, the relationship between the neutron field
characterization and the dose response of a 252Cf-
calibrated detector can be derived accordingly.
Compared with our previous result(5), the value of
this work lies in providing an in-depth analysis of
spectral correction factors based on a much larger
database and sensitivity studies of key parameters.
The result leads to a more rigorous and useful cor-
rection scheme than that previously provided. This
study examined the spectral effect through a com-
plete survey of all neutron spectra in the IAEA-
TRS-403 report(7), rather than limited to the 10 neu-
tron spectra that were selected subjectively.

The IAEA report contains a large number of neu-
tron spectra collected from various literature sources,
including neutron spectra in natural environments,
neutron spectra used for instrument calibration and
neutron spectra that are representative of fields in

10–2 10–1
10–1

109108107106105104103102101

101

100

100

R
e
s
p

o
n

s
e

 f
u

n
c
ti
o

n
 (

c
m

2
)

Neutron energy (eV)

5" 6" 7" 8"

9" 3P5_7 4P6_8

Figure 1. Response functions of five standard Bonner
spheres (5”–9”) and two extended-range spheres (3P5_7

and 4P6_8).
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various facilities involving neutron sources or
neutron-generating devices, such as nuclear power
plants, medical accelerators and high-energy accel-
erators. Among the total 243 neutron spectra being
investigated, a total of 146 spectra in the database
contains certain portions of high-energy neutrons
(En > 10MeV), ranging from a small flux percentage
to 70%. Among these spectra with high-energy neu-
trons, 31 of them are of the most interest in the ana-
lysis because an appreciable portion of high-energy
neutrons, say ≥10%, is involved in radiation fields.
In addition to that, thousands of new spectra were
generated by a random linear combination of those
spectra in the database in order to test and verify the
suggested correction scheme. The correction, in
essence, largely depends on the characteristics of
neutron energy distribution. A systematic analysis of
all these neutron spectra was performed on the basis
of the detector response function and neutron field
characterization.

RESULTS AND DISCUSSION

Neutron field characterization

The field characterization attempted to reasonably
account for the contribution of high-energy neutrons
that cannot be properly reflected by conventional
neutron dose meters. If the spectrum at the location
of interest is known, it is straightforward to charac-
terize the field in terms of the flux percentage of neu-
trons with energies >10MeV. However, if the
spectrum is unknown, which is usually the case in
most situations, performing radiation transport cal-
culations or in situ measurements are inevitable to be
able to grasp some information about neutron
energy distribution at the location. Alternative spec-
tral indices that replace the flux percentage of
high-energy neutrons have to be established. In our
previous study(5), the pair of an extended-range
sphere 4P6_8 and a standard 6” sphere was selected
for the purpose of constructing a spectral index,
indicating the significance of high-energy neutrons in
workplaces. The selection was based on an observa-
tion that the response functions of the 4P6_8 and 6”
spheres are nearly overlap for low-energy neutrons
and deviate substantially for neutron energies
>10MeV (see Figure 1). After exploring the
response functions of all Bonner sphere configura-
tions, another pair of Bonner spheres were identified,
the extended-range 3P5_7 and standard 5”, which
shows similar characteristics in their response func-
tions (Figure 1). Therefore, the ratio between the
measured counting rates of this pair of spheres could
also be served as a reasonable indicator of high-
energy neutrons in radiation field.

Among available configurations in the NEMUS
spectrometer, further study summarized three

requirements for being a good pair of Bonner
spheres that can be used to construct a practical
index for high-energy neutron characterization. The
first requirement is straightforward that the
extended-range sphere must have the same thickness
of polyethylene as that of the standard-type sphere,
ensuring a similar response for neutron energies
<10MeV. Second, the extended-range spheres
should have lead embedded in the moderator rather
than copper because of its insufficiency in neutron
multiplicity. This can be observed by comparing the
response functions of lead- and copper-embedded
Bonner spheres, confirming that copper is not a
good material for neutron multiplication to properly
reflect the dose contribution of high-energy neutrons.
The third requirement is about the thickness of the
embedded lead in neutron moderator. It cannot be
too thin, according to our study, 1-inch-thick lead is
suggested in order to have sufficient response to
high-energy neutrons. The combinations 4P6_8/6”
and 3P5_7/5” were found available and suitable for
this purpose, while other combinations fail these
requirements and are not suggested.

General trends of spectral correction factors

Following the dose comparison procedure described
previously, a correction factor can be obtained for
each neutron spectrum in the environment where the
252Cf-calibrated neutron dose meter is to be used.
This spectrum-dependent correction factor, denoted
as H*(10)spe/H*(10)cf252, is the ratio of the ambient
dose equivalent rate calculated by folding the spec-
trum directly with the fluence-to-dose conversion
coefficients to that delivered by the detector cali-
brated with 252Cf. Considering the standard 9”
sphere as a neutron dose meter, Figure 2 shows the
distribution of dose correction factors as a function
of the flux percentage of high-energy neutrons in the
spectrum. Each data point in the figure represents a
specific neutron spectrum collected from the IAEA-
TRS-403 report. For those spectra without high-
energy neutrons, the dose correction factors are all
<1.0 to varying extents. This reflects a well-known
phenomenon that the response functions of conven-
tional neutron dose meters tend to overestimate the
magnitude of fluence-to-dose conversion coefficients
for neutrons in intermediate energy range. A conser-
vative estimate of the neutron dose in workplace is
acceptable for radiation protection purposes.
However, as shown in Figure 2, the dose correction
factors for the standard 9” sphere used in radiation
fields with high-energy neutrons may range from 1.0
up to >3.0, indicating significant dose underestima-
tion that cannot be ignored. On the other hand, a
repeated analysis was performed by replacing the
standard 9” sphere with the extended-range 4P6_8
sphere. The result is shown in Figure 3. As expected,
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most of the dose correction factors are close to or
<1.0, indicating a satisfactory performance or at
least conservative responses of this extended-range

dose meter when exposed in various radiation fields
with high-energy neutrons.

The dose correction factors in Figure 2 in general
show a monotonically increasing trend as a function
of the flux percentage of high-energy neutrons, which
enables us to propose a practical correction scheme
for conventional neutron dose meters used in high-
energy neutron environments. Base on the method of
least squares, a curve fitting by a second-order poly-
nomial was performed to establish the relationship
between the dose correction factor and the high-
energy neutron percentage in a spectrum. Only those
spectra in IAEA-TRS-403 with appreciable compo-
nent of high-energy neutrons, say ≥10% in flux per-
centage, were considered in the curve fitting process.
The equation of the curve was forced to pass
through the given point (0,1) in order to meet the
purpose of the correction factor in the context of
phenomena discussed in this paper. The resulting
equation obtained is shown in Figure 2 and com-
pared with our previous work(5), which was obtained
based on an analysis of 10 selected neutron spectra
representing various workplaces of interest. The dif-
ference of the two fitting curves is relatively small
when compared with the overall magnitude of cor-
rection. For example, the difference between two
derived correction factors is only ~2% for a case of
neutron field having 50% high-energy neutrons,
which overall corresponds to a factor of 2 correction
in neutron dose estimation. Nevertheless, the new fit-
ting curve is suggested for practical use because it
was derived from an enlarged collection of neutron
spectra at various workplaces.

Before applying the correction scheme in Figure 2
to determine a dose correction factor for the 9”-
sphere responses, it is necessary to have an estimate
of the flux percentage of high-energy neutrons in the
neutron field. This is impractical without the infor-
mation of neutron energy distribution at the loca-
tion. Neutron spectrum determination in workplaces
is a difficult task, time-consuming and needs expert-
ise. In our previous study(5), we proposed a practical
approach as an alternative to estimate the dose cor-
rection factor based on the ratio of the measured
responses of two Bonner spheres (4P6_8 sphere ver-
sus 6”). Comparing the characteristics of their
response functions, this ratio can provide an indica-
tion of the significance of high-energy neutrons in a
neutron field. Figure 4, which is similar to Figure 2,
presents the dose correction factors for the 9” sphere
when used as a neutron dose meter in various neu-
tron environments. The spectrum index in the
abscissa, rather than the flux percentage of high-
energy neutrons, has been replaced by the ratio
between measured responses of the 4P6_8 and 6”
spheres. The larger the ratio between the two detec-
tors’ responses, the more high-energy neutrons at the
location. As expected, the dose correction factors
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exhibit a gradually increasing trend as a function of
the new spectral index. A linear curve fitting was
suggested by observing the distribution of these cor-
rection factors. If necessary, the resulting equation in
Figure 4 can provide guidance to health physicists
on the proper correction of the responses of conven-
tional neutron dose meters. Note that a linear fitting
equation was used in this case instead of a second-
order polynomial that we proposed in our previous
study(5). As compared in Figure 4, the difference
between the two fitting curves is within ±10% in the
whole range of the spectral indexes from 1.0 to 3.1,
representing all the neutron spectra in the IAEA-
TRS-403 report.

Neutron calibration sources and spectral correction
factors

The proposed correction scheme in Figures 2 and 4
was obtained assuming that the dose meters were
calibrated by a 252Cf neutron source. The energy
spectrum of spontaneous fission neutrons from a
252Cf source can be characterized by a Maxwellian
distribution and peaks at ~2MeV. 241Am-Be and
239Pu-Be are also commonly used neutron sources in
detector calibration. Note that the two Be(α,n)
sources exhibit complicated spectra with multiple
peaks at ~3.5, 5 and 8MeV and have higher average
energies of ~3−4MeV. An important question arose
as to what would happen to the suggested correction

factors if one used different neutron sources to cali-
brate the dose meters.

To answer this question, the procedure previously
described to determine the spectral correction factors
was additionally repeated twice but using 241Am-Be
and 239Pu-Be, respectively, in place of the original
calibration source 252Cf. Considering the same 9”
sphere as a neutron dose meter, Figure 5 shows a
comparison of three fitting curves of dose correction
factors corresponding to three different calibration
sources (252Cf, 241Am-Be and 239Pu-Be). These
curves represent the suggested dose correction factors
as a function of the flux percentage of high-energy
neutrons in the spectrum. The data points in Figure 5
are spectral correction factors calculated for a 252Cf-
calibrated detector (same as those in Figure 2). The
other two sets of spectral correction factors calcu-
lated for the detector calibrated by 241Am-Be and
239Pu-Be, respectively, are similar and omitted here,
only the resulting curves are presented in the figure
for clear comparison. The result in Figure 5 indicates
that the dose correction factors are mainly a property
of neutron field and not sensitive to the selection of
these three commonly used calibration sources,
which is a favorable outcome in practical application
of these spectral correction factors.

Neutron dose meters and spectral correction factors

The spectral correction factors in Figures 2 and 4
were generated using the 9” Bonner sphere as a neu-
tron dose meter. However, there are many moderated-

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

C
o
rr

e
c
ti
o
n

 f
a

c
to

r:
 H

*(
1

0
) s

p
e
/H

*(
1

0
) c

f2
5

2

Ratio of readings (4P6_8/6")

Spectra in IAEA -TRS - 403

y = 1 + 0.965 (x–1),

R2 = 0876 (This study)

y = 1– 0.2594x + 0.3247x2,

R2 = 0.951 (RPDv164p210)

Figure 4. Approximation of the spectrum-dependent dose
correction factors for the 9” Bonner sphere (calibrated with
252Cf) using the ratio between the responses of two Bonner
spheres (4P6_8 versus 6”) and a comparison with our previ-

ous result (RPDv164p210).

0 10 20 30 40 50 60 70
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Spectra in IAEE - TRS - 403

Cf-252: y = 1 + 0.0065x + 0.00030x2, R2 = 0.922

Am-Be: y = 1 + 0.0033x + 0.00032x2, R2 = 0.919

Pu-Be: y = 1 + 0.0056x + 0.00031x2, R2 = 0.921

C
o
rr

e
c
ti
o
n
 f
a

c
to

r:
 H

*(
1

0
) s

p
e
/H

*(
1

0
) c

f2
5

2

Flux percentage (En>10 MeV, %)

Figure 5. Comparison of the spectrum-dependent dose cor-
rection factors for the 9” Bonner sphere calibrated with

252Cf, 241Am-Be and 239Pu-Am neutron sources.

6

U. OPARAJI ET AL.

 at N
ational T

sing H
ua U

niversity L
ibrary on Septem

ber 21, 2016
http://rpd.oxfordjournals.org/

D
ow

nloaded from
 

http://rpd.oxfordjournals.org/


type neutron dose meters commercially available and
widely used in numerous facilities. What if one uses
another dose meter with a somewhat different
response function from that of the 9” sphere? Is the
proposed correction scheme still suitable in practice?
To partly address this issue, the previous procedure
used to determine the spectral correction factors was
repeated for neutron dose meters showing different
response functions. In addition to the popular 9”
sphere, three medium-sized Bonner spheres (6”, 7”
and 8”) were purposely selected to represent neutron
dose meters of similar type but with different response
functions (Figure 1). The resulting dose correction
factors were analyzed and compared. As a function
of the defined spectral index of high-energy neutrons
in workplaces, Figure 6 gives a comparison of four fit-
ting curves corresponding to four neutron dose meters
(6”, 7”, 8” and 9”) under consideration. Again, the
data points in the figure are spectral correction factors
of the 9” sphere, the rest of the data points are omit-
ted for clarity.

The four fitting curves in Figure 6 are similar in
trend with slopes varying from 0.816 to 1.010.
Except for the 6” sphere, the spectral correction
curves of the 7”, 8” and 9” spheres are almost con-
sistent with each other. Comparing with the overall
magnitude of the dose correction, one can conclude
that the differences in these correction curves are
relatively minor. For example, the difference between
the resulting correction factors of two extreme
spheres (6” versus 9”) is only ~10% even for a neu-
tron field with a high spectral index of 3.0, indicating

a significant flux percentage, ~65%, of high-energy
neutrons. This observation to some extent confirmed
the dose correction scheme proposed for accounting
for the contribution of high-energy neutrons is dom-
inantly a property of neutron field under consider-
ation and only shows minor dependencies on the
calibration sources and dose meters used in practical
measurements. This is why sometimes we call it the
‘spectral correction factor’ in this study.

Verification of the proposed correction scheme

Although the IAEA-TRS-403 report contains a large
collection of neutron spectra available in the litera-
ture, it still does not exhaust the possibility of neu-
tron spectra in workplaces. To verify the universal
validity of the proposed correction scheme, artificial
spectra were generated by an algorithm and then the
corresponding correction factors derived. Artificial
spectra are created by randomly selecting two neu-
tron spectra ϕ ( )Ei and ϕ ( )Ej with appreciable flux
percentage (≥10%) of high-energy neutrons from the
IAEA-TRS-403 collection. The two spectra are nor-
malized and then superimposed by applying a ran-
domly generated weighting factor w and its additive
inverse ( − )w1 , respectively. By this way, all the gen-
erated new spectra could be considered at least phys-
ically meaningful and are suitable for testing the
appropriateness of the proposed correction scheme.

Figures 7 and 8 verify the validity of the proposed
curve fitting in Figures 2 and 4, respectively. The
verification process of both curves was carried out
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calibrated with a 252Cf neutron source.
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by generating randomly 1000 neutron spectra repre-
senting various workplaces. Each spectrum can
derive a spectral correction factor used to correct the
underestimated dose response of a 252Cf-calibrated
9” Bonner sphere to high-energy neutrons. From the
results shown in Figures 7 and 8, there is a consistent
trend between the predicted curve and the spectral
correction factors corresponding to those randomly
generated neutron spectra. The margin of error of
the proposed fitting curve in Figure 7 is within ±10%
as 90% of the randomly generated spectral correc-
tion factors fall within the error range, while the
margin of error of the proposed fitting curve in
Figure 8 is slightly larger but still within ±15%.
Hence, we can conclude that the proposed correction
scheme matches specifications and assumptions con-
sidered acceptable for the given purpose of
application.

CONCLUSION

For radiation protection purpose, moderated-type
neutron dose meters are routinely calibrated with
standard neutron sources such as 252Cf and used in
various locations or environments. A well-known
issue regarding conventional designs based solely on
neutron moderation is the dose underestimation in
the presence of high-energy neutrons, resulting from
the intrinsic inconsistency between the low detection
efficiency and high dose contribution of high-energy
neutrons. This paper presents a practical scheme for

correcting the dose underestimation of conventional
neutron detectors in radiation environments with
high-energy neutrons and additionally confirms a
satisfactory performance of extended-range neutron
dose meters in similar conditions. The necessary cor-
rection could be significant, ranging from 1 (no cor-
rection) to more than a factor of 3 depending on the
extent to which high-energy neutrons are present in
radiation fields. The correction requires first a proper
neutron field characterization, either in terms of the
flux percentage or some spectral indexes based on in
situ measurements, accounting for the significance of
high-energy neutrons at the location. Fitting curves
of the dose correction factors for a 252Cf-calibrated
9”-sphere dose meter were reported, as a function of
the flux percentage of high-energy neutrons in the
spectrum and as a function of the ratio between the
measured responses of two Bonner spheres (4P6_8
versus 6”).

In addition to improved fitting results based on a
large collection of neutron spectra, this study
addressed two important questions associated with
the applications of this correction scheme in prac-
tical situations where different calibration sources or
dose meters are used. The sensitivity study found
that different choices among three commonly used
calibration sources 252Cf, 241Am-Be and 239Pu-Be
only have little effect on the values of the correction
factors and the correction factors for Bonner spheres
of different sizes (6”, 7”, 8” and 9”) do not change
substantially, which implies that the correction fac-
tor tends to be a property of the neutron field rather
than a property that strongly depends on the details
of a moderated-type neutron dose meter. These
observations practically facilitate the implementation
and application of the suggested spectrum-
dependent dose correction factors in workplaces.
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