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        Artificial Neural Network (ANNs) are largely used to replace computational expensive models. However, these 

surrogate models can introduce additional uncertainty and variability on the output of interest. In particular, when it is used 

to estimate the sensitivity of a model, the result obtained might give a false confidence, when the analyst is not aware of the 

uncertainty introduced. Hence, it is of fundamental importance to first check the validity of the ANN, and then quantify the 

uncertainties associated with the point estimates of the model. In this paper, an ANN is constructed based on selected data 

representative of the input/output non-linear relationship of an underlying waste management model (SIXEP). Once 

constructed, the ANN is used for performing sensitivity analysis in reasonable computational time. Finally, the bootstrapped 

technique is adopted to quantify the uncertainty introduced by the surrogate model in terms of bias corrected confidence 

intervals. 

 

 

I. INTRODUCTION 

Various mathematical models use a large number of uncertain parameters as inputs. The impact of input parameter 

uncertainty leads to variability in the model output quantity of interest. A user of the underlying model of interest might want 

to identify the contributions of each uncertain input parameter to the variability in the output. This can be achieved by first 

modelling the uncertain input parameters as random variables, whose probability distribution characterizes the uncertainty in 

the parameter values. Using Sobol’ approach to sensitivity analysis, the variance in the output of interest is decomposed into 

components, and apportioned to each uncertain input parameter (i.e. sensitivity indices). The sensitivity indices measure the 

fractional contribution of the input parameters to the variability in the output. 

 

 Nevertheless, the computational costs required to compute sensitivity indices are in huge order of magnitude. 

Specifically, when estimating the Sobol’ indices using the variance based method, the number of model runs follows the 

mathematical relationship EM = (p+2) × N, where p represents the number of model uncertain parameters, and N the number 
of samples required. The number of samples N is usually proportional to the dimension of the model being analysed. For 

instance, Patelli et al., (2012) [1] required ≤ 105 samples to correctly estimate the sensitivity indices of the Gravity Field and 

Steady-State Ocean Circulation Explorer (GOCE) satellite due to the complexity of the finite element (FE) model used (i.e. p 

> 3000). On the contrary, Baroni et al., (2014) [2] found out that the sensitivity indices convergence was reached using N = 

1024 samples for a model of p = 5 uncertain parameters. Generally speaking, the computational cost required for performing 

sensitivity analysis can vary amongst different sets of models. This is due to the complexity of the model (i.e. large 

parameters), and the time required for a single deterministic simulation in each model. Hence, in order to tackle these huge 

computation restrictions, alternative methods that significantly reduce the computational burden must be sourced out. 

 

 In the last few decades, the use of meta-modelling tools such as Artificial Neural Networks (ANNs) have emerged 

and proven to be advantageous in terms of reducing the computational effort required for computing sensitivity indices. For 
example, Patelli et al., (2012) [1] have used ANNs as substitutes to replace an expensive FE model to speed up their analysis. 

The ANN used in their work was constructed based on a few data representatives of the input-output nonlinear relationships 

of the FE model. Once constructed, these fast-running meta-models are used for performing the numerous model evaluations 

required for estimating sensitivity indices. The main advantage of using an ANN for this application is its ability to capture 
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and learn functional relationships contained within a set of training data, such that it can generalise the non-linear model 

relationship, and make predictions about the population from which the training data set originated from. The generalisability 

of a trained ANN, is measured by the predictive performance on samples not contained within the training data set. 

 

 Although ANN have good generalisability from a small set of training data, these models can introduce additional 

uncertainty and variability in the output quantity of interest.  For example, when used in sensitivity indices of a model, the 
value(s) obtained might not be accurate as a result of these uncertainties present within the ANN. Hence, it is of fundamental 

importance to first check the validity of the ANN and then quantify the uncertainty associated with the model. Therefore, in 

this paper, an ANN is adopted to replicate a radioactive waste management model to reduce the computational burden 

required to efficiently compute the sensitivity indices of the model. Furthermore, the bootstrap approach [3] for propagating 

the uncertainties in the point estimate of a model will be applied to the constructed ANN, in order to quantify the 

uncertainties in the sensitivity indices estimates using confidence intervals. This paper is organized as follows: In Section 2 a 

succinct theory of global sensitivity analysis is introduced. In Section 3, the bootstrap technique used in quantifying 

uncertainties associated to the sensitivity indices estimates from the ANN will be discussed. This is followed by an 

application of the bootstrap technique in a real case study concerning the SIXEP in section 4. Section 5 presents the results 

obtained from this analysis. Finally, section 6 concludes the paper.  

 

II. GLOBAL SENSITIVITY ANALYSIS 
Global sensitivity analysis methods are based on the analysis of variance (ANOVA), which estimates the fractional 

contribution of each uncertain input parameter to the variance of the output quantity of interest [4]. The first order and total 

effect indices [5] are mostly used in this regard, where each index is computed by evaluating a multidimensional integral via 

Monte Carlo. The variance approach to sensitivity analysis decomposes the variance of the model’s output into fractions that 

can be attributed to the uncertain input parameters of the model [5]. The total variance of the model’s output is expressed as:  

  

         (1) 

  

where p denotes number of uncertain parameters, Vi the partial variance for single parameters and, Vij represents interactions 

between parameters. Mathematically, Vi and Vij are expressed as: 

 

)           (2) 

 

 

)           (3) 

  

The first order sensitivity measure is defined as: 
 

 

             (4) 

 

Eq.4 measures the effect of varying the input parameters of the model, without considering interactions between parameters 

of the model. Similarly, the second order sensitivity measure that measures the sensitivity due to interactions between 

parameters of the model is defined as:   

 
 

             (5) 

 

On the other hand, the total effect sensitivity measure Ti that measures the contribution of a single parameter as well as 

interactions between parameters in the model is mathematically defined as: 

 
 

           (6)  
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As stated previously, when estimating Si and Ti, the number of model evaluations follows the relationship EM = (p+2) × N, 

where N is the number of samples required and p the number of uncertain input parameters. For a robust estimate of the 

sensitivity measures, N should be greater than 105. However, this is computationally expensive, therefore, fast-running meta-

models such as Artificial Neural Networks can be used to reduce the computational burden. 

 

III. BOOTSTRAP ARTIFICIAL NEURAL NETWORKS 

 

III.A. Artificial Neural Network Modelling 

In this paper, we consider an ANN with n number of hidden layers to be built for performing a task of nonlinear 

regression such as estimating a nonlinear relationship between state variables  and a vector of output 

quantities of interest  on the basis of a finite training data set  provided from the original model 

[6]. The ANN has been constructed in the OpenCossan software developed by the COSSAN working group at the Institute 

for Risk and Uncertainty, University of Liverpool [7-8]. It is assumed that the input vector x is related to the target vector y 

by a nonlinear deterministic function  corrupted by a white Gaussian noise . For simplicity, it is assumed that the 

noise  is represented by a normal distribution with a mean equal to zero [9]. Hence, the aim of constructing the 

regression model is to estimate  by the means of a regression function, which depends on set of weight parameters to be 

determined based on the finite training data set . The algorithm used to adjust/train the set of parameters is dependent 
on the type of surrogate-model being constructed. Specifically, for Artificial Neural Networks, the training algorithm 

minimizes the error between the output of the expensive model and that of the ANN by adjusting the weight parameters. The 
error is expressed mathematically as: 

 
 

          (7)   

 

Once constructed, the ANN is used in place of the expensive model to estimate any quantity of interest U such as the 

sensitivity measures Si and Ti.  

 

III.B. The Bootstrap Technique  

The procedures for using the bootstrap method to assess the uncertainty initiated by the use an ANN are reported in 

the following steps [6]. First, generate a set of training data Dtrain of input/output data by assigning uniform distributions to 
the uncertain input parameters of the model and sampling each of the input parameters  Ntrain number of times using the 

Latin-Hypercube sampling algorithm to obtain the input vectors xk, k=1,2,...,Ntrain, then evaluate the model with all the 

sample realizations obtained. Second, construct an ANN on the basis of the entire data set Dtrain= {x, y} obtained in the first 

step in order to obtain a fast-running meta-model represented by µy(x). Third, use the ANN constructed in step 2 to estimate 

quantities of interest Ȗ of the quantity U. Specifically, draw samples of NT new input vectors xr, r = 1,2,…, NT, from the 

corresponding probability distributions, and feed the ANN with the sampled values to obtain output vectors yr, r = 1,2,…, NT  

for computing the estimate Ȗ for U. Since ANNs are fast running models, the computational cost is less than the expensive 

model, even with large number of samples NT. This is followed by constructing a group of B (typically in the order of 500-

1000) ANN models by randomly sampling the values with replacement from Dtrain, and using each of the bootstrapped ANN 

models to calculate an estimate Ȗb, b = 1,2,…,B, for the quantity of interest U. By doing so, a bootstrap-based empirical 

probability distribution for the quantity U is produced which is used for calculating the confidence interval. In particular, 

repeat steps for b = 1,2,…,B. Fifth, generate a bootstrap data set Dtrain, b = {(xk,b, yk,b), k = 1,2,…,Ntrain}, b=1,2,…,B by random 
sampling with replacement from the original training data set Dtrain. The data set in Dtrain, b will constitute of the same number 

of data as Dtrain. Although due to the sampling of data with replacement, some patterns in Dtrain, b will appear more than once 

as in Dtrain and some patterns in Dtrain will not appear at all in Dtrain, b. Then, construct B number of ANNs and train each ANN 

model  with the bootstrap data set Dtrain, b = {(xk,b, yk,b), k = 1,2,…,Ntrain}, b=1,2,…,B. Compute the point estimates such as 

sensitivity indices Ȗb, b=1,2,…,B from each bootstrapped ANN. Calculate the Bootstrap Bias Corrected (BBC) point 

estimate UBBC for U as: 

 
 

            (8)  
 

where Ȗ is the estimate obtained from ANN trained with training data set Dtrain and Ȗboot is the average of the B estimates Ȗb 

obtained from the B bootstrapped ANNs. Its relationship is given as: 
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            (9) 

 

ȖBBC in Eq. (8) is used as the point estimate of U, this is due to the fact that if a bias exists in the estimate Ȗboot compared 

with Ȗ, then the same bias exists in the estimate Ȗ when compared to the true estimate U for the quantity of interest. Finally, 
calculate the confidence interval for ȖBBC using the following steps: 

Firstly, order the point estimates form each bootstrapped ANN Ȗb, b=1,2,…,B in increasing order of magnitude Ȗ1 <  Ȗ2 < … 

<Ȗb < … ȖB. Second, identify the 100.α/2th and 100. (1-α/2)th  quantiles of the bootstrapped empirical probability distribution 

of U as the B.α/2th and B. (1-α/2)th elements in the ordered list as the Ȗ([B.α/2]) and Ȗ([B.(1-α/2)]) respectively. Then, calculate the 

confidence interval of  ȖBBC as; [ȖBBC-(Ȗboot- Ȗ([B.α/2])), ȖBBC+( Ȗ([B.(1-α/2)]) - Ȗboot)].  

 

IV. CASE STUDY 

The case study considered in this work uses a model of the Site Ion Xchange Effluent Plant (SIXEP) [10], a plant 

which is situated on the nuclear fuel reprocessing and decommissioning site at Sellafield, U.K. Since its introduction in the 

mid 1970’s, it has been integral in reducing discharges form the site, to less than 1% of the discharges prior to it coming on-

line. Discharge predictions underpinned by this model are used in the real-world to underpin discharges for site data that is 
publicly available from the UK environmental agency. However, the model used in this case study uses a reduced data set 

that has been desensitised relevant to the real-world application. The SIXEP manages effluent produced by a number of 

plants across Sellafield, removing radioactivity from liquid feeds. A schematic diagram of the SIXEP process is shown in 

Figure 1.  

 

 
Fig 1. SIXEP Process Diagram [10] 

 

The feeds into the SIXEP contain particulate materials, and a number of soluble radioactive isotopes which are 

predominantly, Caesium-137 and Strontium-90. These soluble radioactive species are removed from the liquid effluent using 

an ion exchange media loaded in 2 ion exchange beds which operates in series (one lead bed and one lag bed). The lead bed 

is replaced with fresh media when it is exhausted, and the bed that previously operated in the lag position is promoted to the 

lead position. The filtration and carbonation steps are present to protect the Xchange beds and have a secondary benefit of 

removing actinides. In order to ensure continued removal of these two key radioactive isotopes, the plant is routinely 

operated on the basis of feeds meeting a set of Conditions for Acceptance (CfA). These CfA define the feed envelop in terms 
of the acceptable concentrations of inactive species which affect the efficiency of the process. The SIXEP model is being 

used to test new feed compositions to prove assurance that the plant can continue to operate effectively, i.e. ensuring the 

discharges of Caesium-137 and Strontium-90 are kept within the required limit. 

 

IV.A. Uncertainties Affecting the SIXEP 

Conversely, there is uncertainty of the future feeds composition arising from the Sellafield site, leading to variability 

in the activity levels of Caesium-137 and Strontium-90 and other soluble species that affect the removal of these isotopes. 

This variability can lead to undesirable consequences (i.e. the discharges of the two afore-mentioned radionuclides exceeds 

their desired levels). Hence, we wish to evaluate if it is practical to incorporate this uncertainty into studies when using the 

SIXEP model to assess the risk involved, and identify the parameters that contribute significantly to this variability. It is to be 

noted that the uncertainty considered to affect the plant feeds are aleatory (i.e. random) in nature [11]. The consideration of 

these type of uncertainty in the SIXEP model leads to defining of a state vector x of 18 uncertain inputs of the SIXEP model 
x = {xn: n = 1, 2,..,18}, which are assumed to be described by the distributions given in Table.1. These uncertain inputs map 



13th International Conference on Probabilistic Safety Assessment and Management (PSAM 13) 

2~7 October, 2016 • Sheraton Grande Walkerhill • Seoul, Korea • www.psam13.org 

 

5 

out two output quantities of interest defined by the vector y ={yz: z=1,2}.The outputs of interest represents the maximum 

concentration of Caesium-137 and Strontium-90 respectively after approximately 540 days. Fig.2. shows a deterministic 

simulation from the SIXEP model using a set of representative mean values specified in Table.1. 
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Fig. 2. Deterministic Simulation from the SIXEP Model 

The results from the deterministic evaluation of the SIXEP model shown in Fig.2 illustrates the activity levels of Caesium-

137 and Strontium-90 with respect to time. From Fig.2 it can be see that there is a rise and drop in the activity levels of the 

Caesium-137 and Strontium-90 caused by the ion exchange bed change cycle. In these simulations, an ion exchange bed 
change occurs every 77 days (i.e. every 11 weeks). When a new ion exchange bed comes online, the activity discharges are 

low, and as the ion exchange media becomes saturated, activity breaks through the bed and thus produces a rising discharge 

profile which drops again following the next bed change (shown as the peaks in Fig.2).   

 

TABLE 1. Normal Distribution Hyper-Parameters of SIXEP Model Input Parameters 

Parameter ID Mean s.t.d. Lower Bound Upper Bound 

1 0.50E+3 0.66E+3 0.01E+2 6.63E+3 

2 39.0E+3 37.0E+3 1.00E+3 210E+3 

3 1.05E+3 359E+3 0.11E+3 3.00E+3 

4 0.03E+3 0.02E+3 0.01E+4 0.13E+4 

5 46.0E-6 36.0E-6 3.00E-6 494E-6 

6 6.13E-3 1.83E-3 1.14E-3 1.42E-3 

7 1.59E-5 1.28E-5 0.25E-5 14.7E-5 

8 9.40E-6 1.05E-5 2.50E-7 1.06E-4 

9 15.9E+4 7.10E+4 1.90E+4 4.81E+5 

10 0.45E+2 0.49E+2 0.2E+1 0.24E+3 

11 2.00E+3 0.62E+3 0.73E+3 4.00E+3 

12 0.33E+2 0.39E+2 4.00E-2 5.30E+2 

13 0.14E+1 0.30E+1 3.00E-2 0.37E+2 

14 3.84E-6 1.22E-5 0.40E-12 1.06E-4 

15 3.5E-3 2.82E-4 2.74E-3 4.61E-3 

16 3.2E-6 3.28E-6 2.56E-7 3.58E-5 

17 2.38E-6 2.93E-6 2.50E-11 2.50E-5 

18 2.00E+6 2.79E+5 7.03E+5 3.00E+6 
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It should be noted that the scalar quantities of interest from the output result shown in Fig.2 is the maximum activity of 

both radionuclides on the final day of an ion exchange bed life, i.e. 616 days. Propagating the input parameter uncertainties 

via Monte Carlo (MC) simulation through the SIXEP model gives rise to variability in the maximum concentration of 

Caesium-137 and Strontium-90 at this point. It should be noted that the simulation shown in Fig.2, the SIXEP model has 
been started from a saved state representing steady state operation with the mean parameter values. When the parameter 

values are changed using the MC, it will take the model up to a maximum of 8 ion exchange bed change cycles to reach a 

new steady state, hence the scalar quantities of interest are taken at the end of 8 bed change cycles. 

 

The global sensitivity analysis technique discussed in section 2 is used to identify the contributions of the uncertain 

parameters to the variability in the outputs of interest. However, as further discussed in section 2, computing the sensitivity 

indices of an expensive model such as the SIXEP requires numerous model evaluations for robust estimates, which is 

computationally infeasible. In fact, for this present case study, a single evaluation of the SIXEP model requires 

approximately 20 minutes for a single deterministic evaluation. Thus, an ANN has been used as a substitute for the SIXEP 

model to speed up the computation of the sensitivity indices. The use of an ANN as a substitute introduces additional 

uncertainty in the analysis. Hence, the bootstrap technique discussed in section 3 is incorporated into the global sensitivity 

analysis for the quantification of the uncertainties introduced by the use of an ANN. 
 

 

V. Results   

 

V.A. CONSTRUCTION OF ANNs 
The ANN used in this paper has been constructed with input/output training sets Dtrain,  = {(xk, yk), k = 1,2,…,Ntrain} 

where Ntrain = 1020. Specifically, the training data set Dtrain have been obtained by assigning uniform distributions to the 

uncertain parameters of the model given in Table.1. This was done in order to cover the admissible range of variability in the 

uncertain parameters. This is followed by the use of the Latin Hypercube sampling technique to draw samples out from these 

distributions, with each sample drawn being used to evaluate the SIXEP model to obtain output training data yk = [yk1, yk2]. 

The architecture the ANN (i.e. number of hidden layer and, number of nodes) was critical for the network accuracy. In 
particular, a 3 hidden layer configuration with 18, 7, 2 neurons respectively has been used within each ANN to optimally fit 

the complicated, nonlinear input/output data. The error back propagation algorithm (see Rumelhart et al., (1986) [12]) has 

been used to adjust the weight parameters in the ANN. Specifically, 80% of training samples in Dtrain have been used to 

calibrate the ANN, while the remaining 20% have been used to validate it. To monitor the performance of the ANN, the 

regression error R² has been used. Mathematically, the R2 is defined as: 

       

          

          (10) 

 

where yi represents the output of the original model, ŷi represents the output of the ANN. Regression errors in the range of 

0.8-1 are considered acceptable. The R2 error of the ANN constructed is shown in Table. 2 
 

TABLE 2: Artificial Neural Network Performance Measure 

Neural Network Output Regression Error 

Maximum Caesium-137 0.929 

Maximum Strontium-90 0.959 
 

 

V.B. Sensitivity Indices Estimation 

 Here, the bootstrapped approach explained in section 3.2 is used to estimate the sensitivity indices from the ANN 

constructed. The result of the Bootstrap Bias Corrected (BBC) estimate of the sensitivity indices are shown in Fig. 5 (a), (b) 

and 6 (a), (b). 
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Figure 3. Quantified BBC Sensitivity Indices with respect to Caesium-137 
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Figure 4: Quantified BBC Sensitivity Indices with respect to Strontium-90 

 

These results have been estimated from 2.00E+6 model evaluations of B = 1000 ANNs. The red line in the figures shows the 

BBC estimate of the sensitivity indices, which is assumed to be the true estimate if the real model (SIXEP model) was used. 

The corresponding confidence intervals of the BBC is also reported in the figures. From the results obtained, the 7th 

parameter has the largest contribution to the variance in the outputs of interest. Also, the width of the confidence interval of 
the 7th parameter is the largest. This reflects that there is a high uncertainty associated in estimating the parameter. This huge 

uncertainty could be as a result of the number of bootstrapped ANNs constructed. Hence, future research would investigate 

how the number of bootstrapped ANNs affects the width of the BBC intervals. It is to the noted that although this analysis is 

computationally expensive, parallelization strategies have been employed. Specifically, 20 CPU cores have been used to split 

the jobs amongst the workers on the computer grid, hence, reducing the computational time by 95%.  

 

VI. CONCLUSIONS 

In this paper, we have presented a case study concerning a radioactive waste management plant (SIXEP) used for 

cleaning up radioactive effluents arising from the Sellafield, UK nuclear fuel reprocessing site. Due to the uncertainties 

affecting the feed composition used as inputs to the plant, the output performance of the plant can be 

overestimated/underestimated. Therefore, a numerical model of the SIXEP has been developed to understand the response of 

the plant with respect to different feed compositions. To understand how the model inputs contributes to the variability in the 
responses of interest, a sensitivity analysis was required. Consequently, due to the high computational cost involved in 

computing the sensitivity measures directly from the model, ANNs have been constructed and used as substitutes in order to 

reduce the computational expenditure. However, the use of ANNs adds extra uncertainties to the estimated quantity of 

interest. Hence, bootstrapped ANNs have been constructed to quantify the uncertainties originating from the use of an ANN. 

Although the computational cost required using the bootstrap technique is expensive, parallelization strategies have been 

employed to cut down the computational time. On the basis of the results obtained, the 7th parameter was found to have the 
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greatest contribution to the variance of Caesium-137 and Strontium-90 discharges and was also found to have the highest 

margin of uncertainty determined using the bootstrap technique. The reason for this large margin of uncertainty in this 

parameter could be as a result of the number of bootstrap models constructed. Hence, the effect of the number of bootstrap 

models constructed on the margin of uncertainties would be investigated in the future.      
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