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Exploring the Measurement Properties of the eHEALS eHealth Literacy Scale Among Baby 

Boomers: A Multinational Test of Measurement Invariance. 

 

Abstract  
Background: The eHealth Literacy Scale, or ‘eHEALS’, is one of only a few available 

measurement scales to assess eHealth literacy. Perhaps due to the relative paucity of such 

measures and the rising importance of eHealth literacy, the eHEALS scale is increasingly a 

choice for inclusion in a range of studies across different groups, cultures, and nations. 

However, despite its growing popularity, there have been questions raised over its theoretical 

foundations and the factorial validity and multi-group measurement properties of the scale are 

yet to be investigated fully. The current study fills that gap in knowledge.  

Objective: This study examines the factorial validity and measurement invariance of the 

eHEALS scale among Baby Boomers (born between 1946 and 1964) in the US, UK, and 

New Zealand who had used the Internet to search for health information in the last six 

months. 

Methods: Online questionnaires collected data from a random sample of Baby Boomers from 

the 3 different countries. The theoretical underpinning to eHEALS comprises social cognitive 

theory and self-efficacy theory. Close scrutiny of eHEALS with analysis of these theories 

suggests a three factor structure to be worthy of investigation, which has never before been 

explored. Structural equation modeling tested a three-factor structure based on the theoretical 

underpinning to eHEALS, and investigated multi-national measurement invariance of the 

eHEALS scale. 

Results: Responses (n = 996) were collected using random samples from the three countries. 

Results suggest the eHEALS scale comprises a three factor structure with a measurement 
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model that falls within all relevant fit indices (RMSEA = .041, CFI=.986). Additionally, the 

scale demonstrates metric invariance (RMSEA = .040, CFI=.984, Δ CFI=.002) and even 

scalar invariance (RMSEA = .042, CFI=.978, Δ CFI=.008). 

Conclusions: This is the first study to demonstrate multi-group factorial equivalence of the 

eHEALS scale, and does so using three diverse nations and random samples drawn from an 

increasingly important cohort. The results give increased confidence to researchers using the 

scale in a range of eHealth assessment applications from primary care to health promotions. 

 

Keywords: Health literacy; eHealth literacy; eHEALS; Baby Boomers; Health Information; 

Measurement Invariance 

 

 

 

Introduction 

The importance of health literacy for health status is well recognized. The American Medical 

Association found health literacy has a stronger impact on health status than a number of 

sociodemographic variables [1], and is crucial in empowering patients to play a more active 

role in their own healthcare [2, 91, 94]. The Alliance for Health and the Future describes 

health literacy as an essential life skill for individuals, a public health imperative, an essential 

part of social capital, and a critical economic issue [3]. 

 

Health information is one of the most frequently sought topics on the Internet [4-5, 92] hence 

electronic health resources are becoming increasingly vital in terms of overall health literacy 
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[6, 95]. New technologies that open up a myriad of eHealth applications and communications 

channels are revolutionizing the ways in which health information is accessed and used by 

both providers and patients, promising enhancement of quality of care [7] and marking a shift 

as patients convert from passive recipients to active consumers [5]. eHealth literacy, which is 

“the use of emerging information and communication technology, especially the Internet, to 

improve or enable health and health care” [8, p.267], is therefore a crucial area of study in 

order to understand and enhance the ways in which patients access and use eHealth 

information.  

 

One measurement tool currently receiving increasing attention is the eHealth Literacy Scale, 

or eHEALS [9]. A recent systematic review of eHealth literacy measures found forty five of 

the fifty three published articles used eHEALS [102], illustrating the fact that it is rapidly 

becoming the accepted standard way to measure eHealth literacy. Despite this widespread 

use, the eHealth literacy construct and its psychometric properties remain understudied [13-

14, 93], leading to the conclusion that “limited empirical evidence exists on the reliability and 

construct validity of health literacy measures. This raises uncertainty about the accuracy of 

data being produced in relation to health literacy levels at an individual and population level” 

[15, p.367].  

 

A further noteworthy omission from current knowledge pertaining to eHEALS is the lack of 

established measurement invariance. Measurement invariance, which simply means 

equivalence of measures, is a prerequisite before making any meaningful comparisons 

between different groups [48]. Too often researchers assume that an instrument developed for 

one culture or population automatically measures the same construct across another culture or 

population. However, without the establishment of measurement invariance, group 



5 
 

comparisons are not valid or meaningful [103]. Hence it is crucial for any scale used 

extensively across different nations, cultures, and groups, to demonstrate measurement 

invariance. Developed in Canada, the scale has since been used extensively in studies with 

very different samples and in different cultures, including North America [10], Europe [11], 

and Asia [12].   

 

Ebbinghaus [56] contends that nation-state formation, international co-operation, and ease of 

availability of data has resulted in some countries being over (or indeed under) represented in 

many analyses. Consequently, research conducted in one country (usually a North American 

country) is assumed to be relevant to other countries, irrespective of differences in cultural 

and social forces. This study is part of a larger piece of research into eHealth in the US, the 

UK, and New Zealand (NZ). The choice of countries emerged from consideration of their 

very different rankings on healthcare system performance and their systems of healthcare 

provision, in the expectation that patients experiencing these different levels of services, 

choice, and standards would have different eHealth behaviors. Using the Commonwealth 

Fund [57] ranking system, which comprises major performance indicators on multiple health 

care dimensions, the UK was an obvious choice as it ranks first overall. While there are still 

major crisis points with the UK National Health Service [58-59] nevertheless the UK is 

ranked first across eight of the eleven performance areas, including all of the quality of care 

indicators and the efficiency indicator. At the other extreme, ranking bottom overall, is the 

US. The US differs most notably from other industrialized nations because of its lack of 

universal health coverage, but also ranks behind most other countries on key performance 

indicators pertaining to health outcomes, quality of care, and efficiency of healthcare 

delivery.  Between these two extremes lies NZ, a country where residents benefit from a 

public health system that is free or low cost due to heavy Government subsidies [108], and 
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where performance rankings range from high for health measures such as effective care and 

coordinated care, but lags behind many other countries in safety and equity. Notably, NZ is a 

country where eHEALS has never before been utilized. Hence, the inclusion of such 

disparate nations in the current study is an important contribution to knowledge. Table 1 

provides the rankings for each country against the major dimensions and sub-dimensions of 

health care provision provided by the Commonwealth Fund [57]. 

 

 

Table 1. Commonwealth Fund rankings of health care provision by country. 

 NZ UK US 

    

Quality care 4 1 5 

Effective care 2 1 3 

Safe care 9 1 7 

Co-ordinated care 2 1 6 

Patient-centered care 6 1 4 

Access 7 1 9 

Cost-related problems 6 1 11 

Timeliness of care 6 3 5 

Efficiency 3 1 11 

Equity 10 2 1 

Healthy lives 9 10 11 

Health expenditure per capita $3182 $3405 $8508 

Overall Ranking 7 1 11 

 

While the three countries selected are vastly different in terms of the health care rankings, 

they are all Western countries in which cultures may not differ to the extent that perhaps 

Eastern and Western nations may. Nevertheless, comparison between the three countries on 

the major dimensions of national culture [115] reveal that while there are some similarities, 

there are also notable differences, not least in terms of long term orientation, a cultural 

dimension which measures short-termism and quick solutions over preparing for the future. 
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This dimension seems particularly important in terms of healthcare planning for future 

generations.  

 

Baby Boomers (born between 1946 and 1964) are the focus of the current study. Projections 

suggest that this cohort will place major strains on healthcare systems in each of these chosen 

nations [60- 62]. Rapid population aging and a steady increase in human longevity is leading 

to one of the greatest social, economic, and political transformations of all time [63]. 

Globally, life expectancy has increased by almost 20 years over five decades, and the 

profundity of this demographic change impacts many economic and social areas, including 

healthcare. As longevity increases, age-related diseases such as dementia, cardiovascular 

disease, arthritis, osteoporosis, and type 2 diabetes will place greater demands on healthcare 

providers. Hence, in an increasingly technology-driven society, eHealth literacy is a crucially 

important area of study [30, 64]. Many Baby Boomers are both technologically proficient and 

increasingly taking a greater role in their own healthcare [65]. Indeed, Baby Boomers have a 

marked difference in social attitudes in comparison with the generation that preceded them, 

with very different attitudes expressed in certain consumption choices, including bodily 

maintenance, diet and exercise [66]. 

 

However, statistics show that Baby Boomers are not particularly healthy. In comparison to 

previous generations, there is a higher prevalence of obesity, alcohol consumption, 

hypertension, and diabetes among Baby Boomers in the US [67], the vast majority of British 

Boomers have at least one medical condition requiring regular medical care, with only one in 

six being condition free [68], and few doubt the significant impact that aging is predicted to 

have on the New Zealand’s healthcare expenditure [69].  Interestingly, the three countries 

under study are bottom of the league in terms of healthy lives (table 1). One of the 
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performance indicators for healthy lives is healthy life expectancy at age 60, and while 

individual ranking data for this indicator is not provided, it nevertheless gives an insight into 

the health-related conditions facing the baby boomers under study.  

 

The study presented here therefore addresses two important issues. First, it answers the call 

for further research to examine the eHEALS scale, and does this through the use of structural 

equation modelling to examine its underlying structure. Then, by establishing full 

measurement invariance, validates eHEALS using samples of Baby Boomers (born 1946 to 

1964) selected from the US, the UK, and NZ. The paper begins with a brief overview of the 

eHEALS scale and then synthesizes the diverse studies which have utilized the scale. It then 

argues for the need to establish measurement invariance, before detailing the procedures used 

to obtain it across these diverse nations. The paper concludes with a discussion of the 

implications for future research and practice.  

 

 

The eHEALS Scale 

Norman and Skinner [16] developed the ‘lily model’ of eHealth literacy. The lily model 

depicts six core skills or literacies, each represented by an overlapping lily petal that feeds the 

pistil which is eHealth literacy. These six core skills comprise two components. Table 2 

outlines this classification of components and provides an overview of each of the core skills.  
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Table 2: Components of eHealth literacy lily model 

Analytic Components: involving skills applicable to a broad range of information sources and 

contexts 

Traditional 

Literacy 

Ability to read text, understand written passages, and speak and write a language 

coherently  

Information 

Literacy 

Understand how information is organised on the Internet, how to search for it, and 

how to use it 

Media Literacy Ability to place information in a social and political context so as to understand 

how different media forms can shape the conveyed message 

  

Context-specific Components: situation-specific skills 

Computer 

Literacy 

Ability to use computers to solve problems 

Science Literacy Ability to place health research findings in an appropriate context, thus 

understanding the research processes involved in knowledge creation 

Health Literacy Ability to read, understand, and act on health information 

 

 

Shortly after disseminating the lily model of eHealth literacy, Norman and Skinner [9] 

published the eHEALS scale, which comprises eight items designed to “measure consumers’ 

combined knowledge, comfort, and perceived skills at finding, evaluating, and applying 

electronic health information to health problems” [p.1]. Norman and Skinner [9] report sound 

scale development procedures, describing a process whereby the six core skills depicted in 

their lily model were used to compile an initial pool of items from which “an iterative process 

of item reduction was used to create an instrument that could be easily deployed within a 

variety of settings and contexts” [p. 3]. This iterative process of item reduction and 

modification comprised reviews by faculty colleagues, a consumer group with developing 

literacy skills, and a large pilot test, resulting in the 8-item eHEALS scale shown in table 3.  
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Table 3: eHEALS scale items 

1 I know what health resources are available on the Internet 

2 I know where to find helpful health resources on the Internet 

3 I know how to find helpful health resources on the Internet 

4 I know how to use the Internet to answer my questions about health 

5 I know how to use the health information I find on the Internet to help me 

6 I have the skills I need to evaluate the health resources I find on the Internet 

7 I can tell high quality health resources from low quality health resources on the 

Internet 

8 I feel confident in using information from the Internet to make health decisions 

 

 

Even from a cursory glance at the scale it is clear that each item does not relate solely to one 

skills dimension. Rather, though it is not explicit either in the items themselves or in the 

published scale development paper [9], it seems that embedded into each item are several 

core literacy skills. Item 1 ‘I know what health resources are available on the Internet’ is 

perhaps  reflecting traditional and computer literacy, while item 7 could incorporate 

traditional, information, media, science, and health literacies. It is important to note that 

Norman and Skinner [9] do point out that the eHEALS scale does not measure the skills 

directly, but rather is a “measure of consumer’s perceived skills and comfort with eHealth” 

[p. 5].  

 

Developed and used in further studies in Canada [17-18], the eHEALS scale has since been 

utilized in many countries and cultures across the globe, including the USA [19-30],  

Australia [98], Germany [31], Greece [101], Israel [32], Indonesia [33], Japan [34], The 

Netherlands [35-36], Norway [37], Portugal [38], Switzerland and Italy [11], Singapore [12], 

South Korea [39], Taiwan [40-41], and is currently being used in an ongoing health 

intervention study in the UK [42]though results from this latter study are not yet available. 
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The eHEALS scale has also been used with a wide variety of samples, including 

schoolchildren and adolescents [9, 20, 27, 31, 38, 40-41], parents [23, 100], university 

students [12, 17], adults comprising different age groups of a wide age range [14, 32, 34],and 

comprising solely older generations [18, 29-30], as well as veterans [21, 97], patients [19, 24-

26, 28, 43], carers [22], and health service providers [10, 33]. The scale has been used with 

very small (< 100) sample sizes [17-18, 20, 30, 33] as well as studies comprising several 

thousand respondents [23, 32, 34, 40]. Researchers have found eHEALS to be useful for 

measuring perceptions of eHealth literacy in order to ascertain skills and training gaps [17] 

and to measure the success of intervention studies [28, 30, 42]. The scale has also been 

beneficial in explaining willingness to adopt personal health record technology [26]. Perhaps 

even more importantly, though the scale measures self-perceptions of eHealth literacy, higher 

scores on the scale have indicated good health behaviors, including the likelihood of 

undergoing cancer screening [34] as well as eating a balanced diet and taking physical 

exercise [99].  

 

Clearly, eHEALS is becoming an established and well-accepted scale with which to measure 

eHealth literacy, utilized across very different studies with a wide range of research questions 

and a great deal of diversity in terms of sample profiles. However, often the scale is used 

without due consideration of its validity and reliability. It has been noted that the eHEALS 

construct does not appear to fully reflect the six different types of health literacy [15], the 

representativeness of the results from smaller studies has been questioned [44], and previous 

authors have noted that the validity of eHealth literacy in general [45], and the eHEALS 

instrument in particular [36] require further study. Moreover, the original scale authors do 

note that the eHealth lily model has its roots in social cognitive theory and self-efficacy 

theory [16]. However, despite their claim that detailed descriptions of these theories appear in 
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their earlier publication [9], there is no explicit mention of these theories or how they were 

used to develop neither their eHealth literacy definition nor their eHEALS measurement 

instrument.  

 

 

Validity & Reliability of eHEALS 

Much of the burgeoning research that uses the eHEALS scale does so without consideration 

of the factorial validity of the construct. Of those studies that do examine the measurement 

properties of the instrument, most use Principal Components factor analysis [9, 25, 29, 41].  

Recently, one study examined the construct validity of eHEALS by first using an exploratory 

components analysis, which extracted one factor from two different convenience samples. 

Analysis then turned to further scrutiny of the scale using the Rasch Model, which, in 

addition to providing details about the perceived difficulty of items, provides reliability 

statistics to estimate how well an instrument separates individuals on the construct. The study 

concluded that “eHEALS is a reliable and consistent measurement tool for perceived 

measurement of eHealth literacy. An exploratory factor analysis showed that items loaded on 

a single factor solution, thereby supporting the criterion of unidimensionality” [109, p. 11]. 

 

However, while exploratory factor analysis such as Principal Components analysis (PCA) is 

very useful for reducing a large number of items to a more manageable amount, a 

“confirmatory factor analysis (CFA) of a multiple-indicator measurement model…affords a 

more rigorous evaluation of unidimensionality according to the constraints imposed by 

internal and external consistency” [46, p.189]. Only two known studies have used the more 

complex and sophisticated structural equation modelling in order to construct a CFA of the 

eHEALS scale. The first, conducted in Japan, entailed translation of eHEALS into Japanese 
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[34, 47] with CFA used to build a good fitting model comprising a single factor. The second, 

a German study [31], compared a single factor model to a two-factor model. Of the two 

German alternatives, the two-factor model was a superior fit, suggesting that the eHEALS 

scale is not unidimensional, as claimed in much previous literature, most of which has tended 

to use PCA. However, as these authors themselves admit, the results of the two-factor model 

clearly still did not indicate a well-fitting model, because several important indices “indicated 

a poor model fit” [p. 33]. Indeed, even in the better fitting model, the RMSEA was greater 

than 1.0, which is indicative of a poor fitting model [74-75], while the CFI of 0.914 and the 

TLI of 0.874 are clearly not close to the .95 needed for a well-fitting model [76].   

 

Noteworthy is the fact that in each of the studies that utilized CFA, eHEALS was translated 

into a different language from the English in which it was originally designed. When 

translated, scale items can take on different meanings, and these nuances can impact 

perceived meanings for respondents [104-105]. The majority of health information on the 

web is not only in English but developed from an English as first language cultural 

perspective, and the ramifications of this appear to be far greater than for English speakers of 

different ethnic origins [106]. Indeed, in their original presentation of the Lily Model [16] 

Norman and Skinner comment on the fact that the overwhelming content of the Web is in 

English and suggest that English speakers are therefore not only more likely to find eHealth 

resources that are relevant to their needs, but are also more likely to find eHealth resources 

that they can understand.  Undoubtedly, then, more research needs to examine the 

unidimensionality of eHEALS in an English language context.  

 

Importantly, no known previous study has examined the measurement properties of eHEALS 

in terms of its use with multi-groups. In order to make comparisons between groups, 
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measurement invariance needs to be established. Measurement invariance, or measurement 

equivalence, is a check to establish that a scale measures the same trait dimension, in the 

same way, when administered to two different groups [107]. Measurement invariance 

therefore checks that different groups (based on gender, ethnicity, nationality, or any other 

individual differences) respond to a measurement instrument in similar ways. Too often, 

researchers make assumptions about measurement equivalence, yet violations of 

measurement equivalence threaten fundamental interpretations of results [108]. Hence, 

measurement invariance is essential for testing theory successfully in different cultural 

settings [48]. Without such evidence, findings “are at best ambiguous and at worst erroneous” 

[49, p.78]. A standard scale, particularly one that exhibits measurement invariance, is a 

potentially valuable research tool for comparative and longitudinal research purposes in a 

variety of nations in order to create new theories and or test existing hypotheses [50].  

 

There is a growing body of international research that focuses on identifying the antecedents 

and impact on behavior of the eHEALS scale. Previous studies have examined the correlates 

of eHEALS in terms of antecedents such as sociodemographic characteristics [19, 64], living 

arrangements [19], medical conditions and health status [19, 64], and frequency of internet 

use [19]. Additionally, some studies have attempted to measure behavioral correlates, for 

example eHEALS has been described as a marker for consuming more information [51], 

basic Internet use [36] and using the Internet specifically for healthcare and lifestyle 

information [12, 14, 40], predicting post medical visit online health information seeking [24], 

patient willingness to adopt a personal health record [26], and the likelihood of undergoing 

cancer screening [34]. There are also a growing number of studies that make comparisons 

between groups.  For example, past research has made direct comparisons of eHEALS scores 

between different groups on the basis of various sociodemographic variables [19, 38, 40], and 
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users and non-users of Web 2.0 for health information [64]. Research has also used eHEALS 

to identify groups with low and high eHealth literacy and made behavioral comparisons 

based on these groups [11]. Establishment of measurement invariance of the scale would be a 

useful contribution to knowledge because measurement invariance is needed to ensure group 

comparisons are valid and meaningful [103]. Such groups can comprise any distinguishing 

measure, so in order to make a comparison of say males and females drawn from the same 

population, measurement invariance of a scale should be checked.  This research makes that 

contribution.  

 

CFA models should test a hypothesis based on a strong theoretical and/or empirical 

foundation [52]. As previously discussed, from a theoretical perspective, close scrutiny of the 

health literacies that make up the lily model (table 2) and the eight eHEALS scale Items 

(table 3) clearly shows that eHEALS does not reflect the six core skills depicted in the lily 

model. Indeed, this observation appears in previous literatures [31]. Hence it is not easily 

apparent how to decide on the number of factors to test in a model based solely on the items 

in the lily model from where Norman and Skinner [9] claim eHEALS emerged. Norman and 

Skinner do however claim that the “foundations of the eHealth literacy concept are based in 

part on social cognitive theory and self-efficacy theory which promote competencies and 

confidence as precursors to behavior change and skill development” [9, p. 2]. It should be 

noted, however, that though their assertion that these theories are described in detail in their 

paper published that same year [16], this claim does appear to be an overstatement, as there is 

in fact very little detail pertaining to these theories explicitly in their published work. What 

these authors do, however, is explain that eHEALS is based on the premise that the core skills 

or literacies in the lily model (table 2) are not static, and can be improved with intervention 

and training. In fact they explain that literacy is as much a process as it is an outcome. It is 
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here that Social Cognitive Theory (SCT) is apparent in their work, as SCT is based on a 

model of causation where behavior, environmental influences, and personal factors (which 

include cognitive, affective, and biological factors) all interact and influence each other [53]. 

Hence rather than the lily model, the underlying theories to eHEALS, namely SCT and self-

efficacy theory [16], are used here to attempt to develop a hypothesis upon which a 

measurement model can be tested.  

 

The root of SCT is the concept of reciprocal determinism, where three factors – person, 

environment, and behavior – are interlinked [53]. The individual learns from experiences and 

the environment, which incorporates external social contexts. Responses to this learning and 

the environment affect the individual’s behavior and therefore their ability to achieve goals. 

As Bandura [54] stresses, diversity in psychobiological origins, experiential conditions, and 

behavior results in substantial individual differences in what individuals can and cannot do. 

This theory therefore makes perfect sense as a foundation to eHEALS, given that individuals 

differ greatly in their competences pertaining to the literacies depicted in the lily model.  

 

It is clear that eHEALS measures an individual’s perceived skills as opposed to actual skills. 

An important influence in the personal dimension of the reciprocal model of SCT is self-

efficacy, as this can directly influence self-motivation. Self-efficacy relates to self-belief and 

confidence: hence, self-efficacy is not to do with the skills a person has, but rather what that 

person believes they can achieve with those skills. Self-doubt and negativity can lead to 

failure, while self-belief and confidence can lead to an increase in effort and persistence until 

success is realized. Hence self-efficacy can lead to restructuring of goals, including either 

lowering standards or setting higher goals in order to achieve even greater things, all based on 

the individual’s perceived capabilities [54]. 
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Attempting to apply these theories to the eHEALS scale is not straightforward at first glance. 

Nevertheless is relatively easy to identify those items that relate to self-efficacy. Items 6 (“I 

have the skills I need to evaluate…”), 7 (“I can tell high quality….from low quality…”), and 

8 (“I feel confident in using…) all appear to pertain to a belief and confidence in one’s own 

evaluation skills in order to effectively use health resources and information. However, 

keeping in mind that some previous empirical evidence suggests eHEALS is neither a single 

factor structure nor a two-factor structure [31], the remaining items require close scrutiny in 

order to identify potential groupings. This close scrutiny reveals a difference between items 1 

and 2, which both pertain to an awareness of what resources and information are available on 

the internet, and Items 3-5 which all pertain to the “how” in terms of how to find and how to 

use these resources. In other words, items 1 and 2 relate to an awareness of Internet health 

resources, items 3-5 to the skills needed to access them, and items 6-8 to the self-belief that 

one can effectively evaluate them.  

 

These three groupings do, in fact, relate to SCT in that social and technological changes 

impact life experiences to different degrees among different individuals [53].  Hence, 

knowledge of such social and technological innovations (various levels of awareness and 

learning about health resources on the Internet), which are reflected in items 1 and 2 of the 

scale, are clearly influenced by environmental factors which impact exposure to different 

sources of information pertaining to Internet health resources. Then, the skills needed to 

access these Internet health resources, which comprise items 3-5, are impacted by modelling, 

instruction, and social persuasion in the environment. Clearly there is a behavioral element 

here, and such skills are a response to the environmental stimuli as well as being impacted by 

personal factors such as internal dispositions, motivation, and biological properties that 
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impose constraints on capabilities. This reciprocity is a key aspect of SCT theory [111]. 

Finally, self-efficacy is clearly apparent in the remaining items (items 6-8) as these items 

reflect an individual’s self-perception of the skills needed to fully utilize the eHealth 

information attained on the Internet. Of course, the individual’s environment and previously 

learned knowledge will influence the levels of self-belief that the individual holds, which is 

in line with the reciprocal nature of SCT theory. Figure 1 shows the resulting three-factor 

model to be tested. Factor 1 pertains to awareness (knowledge of what resources are available 

and where they are), factor 2 to the skills and behavior needed to access them, and factor 3 to 

believing one has the ability to evaluate them once accessed.  
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Figure 1: Three-Factor Model 
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Methods 

Instrument 

The original eHEALS scale was developed at a time before the rise of social media [6]. 

Extensive social networking opportunities, as well as advances in technology such as Web 

2.0, change the landscape in terms of how consumers interact with health information [55]. 

Hence, the wording of the original scale items was tweaked in order to incorporate ‘health 

information’ as well as ‘health resources’. This is because it was felt that solely using the 

term ‘resources’ may limit eHealth information search to official resource sites (e.g., the 

American Cancer society,  Cancer Research in the UK, or Cancer Society NZ) and not 

incorporate the increasingly important electronic word-of-mouth that occurs on social media 

sites and online forums. Norman [6] advocated that the scale may need to be adapted, 

suggesting a social media sub-scale could perhaps enhance the current scale, while others 

have suggested that interactive applications would indeed enhance the eHEALS scale [96]. 

For these reasons, the words “and information” to several items were added. Informal 

feedback among friends, family, and colleagues when they were asked to name some 

“Internet health resources and information” reflected a wide perspective, in that people 

immediately cited search engines (usually Google) but also cited a wide variety of other 

sources including online forums and Facebook support groups. For example  one person who 

was at the time undergoing tests for multiple sclerosis, replied that he had not only studied 

the Multiple Sclerosis Society’s web pages and viewed this as an important health resource 

had also joined a Facebook group to learn more about how people coped with their diagnosis 

and viewed this as an informal information resource. Hence rather than drastically change the 

scale by adding items specific to social media, it is hoped that information gained from social 

media is now incorporated. Table 4 shows the adapted scale. Approval was granted by the 

Universities ethics committees.  
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Table 4: Adapted eHEALS scale 

1 I know what health resources and information are available on the Internet 

2 I know where to find helpful health resources and information on the Internet 

3 I know how to find helpful health resources and information on the Internet 

4 I know how to use the Internet to answer my questions about health 

5 I know how to use the health information I find on the Internet to help me 

6 I have the skills I need to evaluate the health resources and information I find on the 

Internet 

7 I can tell high quality health resources and information from low quality health resources 

and information on the Internet 

8 I feel confident in using information from the Internet to make health decisions 

 

 

In addition to the tweaked eHEALS scale, because the study is part of a larger piece of 

research into eHealth, the survey contained questions pertaining to information search and 

usage such as sources of health information used (including interpersonal sources such as 

friends and family as well as formal health information sources such as non-profit 

organizations and health care providers), perceived advantages of using Internet eHealth 

sources (e.g., 24-hour accessibility, convenience, anonymity, etc.), and perceived usefulness 

of Internet eHealth resources in comparison to information provided by health care providers 

(Likert-type scale ranging from ‘much less useful’ to ‘much more useful’). In addition the 

questionnaire contained a battery of sociodemographic variables, including age (measured via 

year of birth), gender (male or female), marital/relationship status (married, widowed, 

divorced, separated, in a domestic partnership or civil union, single, but cohabiting with a 

significant other, single, never married), work status (employed full-time, employed part-

time, retired, unemployed, homemaker, on government/state benefit, student/in training, 

other: please specify), and educational attainment (University degree, Vocational training 
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e.g., trade apprenticeship, Professional qualification, College qualification, High school, Less 

than High school). 

 

 

Sample 

In each country, a commercial organization was commissioned to survey randomly-selected 

Baby Boomers. A prerequisite for completing the survey was that respondents 1) had to be 

born between 1946 and 1964 and 2) had used the Internet to search for health information in 

the last six months. Each organization was instructed to collect data from at least 250 Baby 

Boomers, and therefore the first respondents were included in the survey before the survey 

was closed, hence the surveys were open for less than two days in each country.  Prior to 

completing the survey, respondents were informed of its purpose (an international research 

project studying the use of the Internet to search for and share health information) its 

academic nature, how the data would be stored (password protected secure University drives) 

and for how long, and the length of the survey, which typically took 20 minutes to complete. 

This procedure resulted in 996 usable questionnaires. There was no missing data as a “not-

applicable” option was given to suitable questions, and while respondents were able to review 

and change their answers they were unable to submit incomplete questionnaires.   

 

 

Data Analysis 

In order to further check the psychometric properties of the eHEALS scale, a series of 

confirmatory factor analyses (CFA) using AMOS 20 were conducted. Standard global model 

fit indices with well-known fit guidelines were used. Hence the RMSEA (root mean square 
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error of approximation), which is a popular measure of fit in structural equation modelling 

(SEM) and is now recognized as one of the most informative criteria in SEM [77] was 

utilized. The guidelines suggested by Hu and Bentler [76] were adhered to, hence RMSEA 

values of .00 to .05 indicate a close or good fit, .05 to .08 a fair fit, .08 to .10 a mediocre fit, 

and over .10 a poor fit. Other fit indices which were used to assess the models were the 

Comparative Fit Index (CFI) and Tucker-Lewis Index (TLI), both of which should be close to 

.95 [76]. AIC (Akaike’s Information Criterion) is a fit statistic used to compare two or 

models, with smaller values indicating better fit [110].  

 

Additionally, PCLOSE was used to test the hypothesis that that RMSEA is good in the 

population, testing the null hypothesis that RMSEA is no greater than .05 [77]. In other 

words, PCLOSE is an additional test of model fit and this result indicates a close fit.  Data 

analysis also included the use of Hoelter’s Critical N, which is another fit statistic that differs 

from the others used here in that it focuses directly on the adequacy of the sample size, rather 

than the fit of the model. A “value in excess of 200 is indicative of a model that adequately 

represents the sample data” [77, p. 83]. 

 

Steenkamp and Baumgartner [49] contend that multi-group confirmatory factor analysis is 

the most powerful and versatile approach to testing for cross-national invariance and offer a 

sequential testing procedure for doing so. This procedure was followed here.  Measurement 

invariance comprises three levels: configural, metric, and scalar. Each level is an increasingly 

stringent test of multi-group invariance. Consequently, a multi-group measurement model 

was constructed and tested first for configural invariance, which provided a baseline model 

for comparisons of subsequent tests for invariance. Testing the pattern of salient (non-zero) 

and nonsalient (zero or near zero) loadings defined the structure of the measurement 
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instrument [49]. In other words, the purpose of the test of configural invariance was to 

explore the basic structure of the construct, and check that participants from different groups 

conceptualized the constructs in the same way [103].  Simply put, did respondents, 

irrespective of their cultural or national heritage, employ the same conceptual framework [87] 

when answering the questions that make up the eHEALS scale?  

 

Configural invariance does not, however, mean that the respondents in different nations 

reacted to the scale items in the same way. In order to compare item scores meaningfully 

across nations, and thus have confidence in observed item differences being indicative of 

cross-national differences in the underlying construct, metric invariance is required. Indeed, 

for a scale to be useful in larger studies which examine structural relationships with other 

constructs cross-nationally, metric invariance is needed. [49]. Metric invariance checks that 

the scale is measured in the same way across groups, in that not only do different groups 

respond to scale items in the same way, but also that the strength of the relations between 

items and their underlying construct is the same across groups [103].   

 

In practice, most researchers focus on the two preceding and most fundamental steps, which 

are tests of configural and metric invariance [80]. There may be some projects, however, 

where researchers want to compare means and in order to do this the scale needs to exhibit 

scalar invariance. Scalar invariance implies that cross-national differences in the means of the 

observed items are due to differences in the means of the underlying constructs [49, 82], and 

therefore indicates that the latent means can be meaningfully compared across groups [103]. 

Scalar invariance tests whether, in addition to the factor loadings, the intercepts are the also 

the same, which implies that cross-national differences in the means of the observed items are 

due to differences in the means of the underlying constructs [82]. 
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Results 

Preliminary Analysis 

Table 5 provides a profile of the sample by country. 

 

Table 5. Sample profile by country 

 UK NZ US Total 

     

N=     

 407 276 313 996 

     

Gender (%)     

Male  47 51 52 50 

Female 53 49 48 50 

     

Mean Age     

Years 59.6 61.3 60.3 60.3 

(SD) (5.15) (5.78) (5.35) (5.43) 

     

Work Status (%)     

Working Full Time 32.4 29.7 26.8 29.9 

Working Part Time 15.5 19.6 10.2 15.0 

Retired 31.9 24.3 36.4 31.2 

Unemployed/Welfare 8.6 15.2 8.6 10.4 

Homemaker 8.6 4.3 6.4 6.7 

Other 2.9 6.9 11.5 6.7 

     

Education     

Less than high school 0.5 0.0 2.6 1.2 

High school 38.6 32.2 18.8 30.6 

College/practical/technical/occupational 36.4 36.6 32.3 35.1 

University degree 24.1 31.2 46.3 33.0 

 

Table 6 provides the mean eHEALS Item scores by country. While the purpose of this paper 

is not to compare the countries in question in terms of eHealth literacy (that will be done 

elsewhere), noteworthy is that even a cursory glance at table 6 reveals American respondents 

had higher scores than their NZ and UK counterparts. Whether or not this is due to the overall 

higher educational attainment of the US sample (table 5), perceptions of poorer health care 

provision (table 1) or other reasons is currently unknown. Across all three countries, the 
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corrected item-total correlations revealed no low values (all were above .635) and it was not 

possible to obtain a higher alpha score by deleting any item. In all three nations, Cronbach 

alpha results were very high (UK = .931, US = .917, NZ =. 910). Indeed, with medical 

researchers being urged to be more critical when reporting alpha values [70] it is noted that 

alphas this high (> 0.90) may suggest redundancies or that the construct being measured is 

too specific [71]. Hence, analysis turned to further investigation using confirmatory factor 

analysis. 

 

Table 6: Mean eHEALS item scores by country 

Item US UK NZ 

M
 

SD M
 

SD M
 

SD 

       

1 3.81 .76 3.67 .77 3.56 .81 

2 3.91 .71 3.78 .71 3.70 .77 

3 4.01 .68 3.80 .71 3.88 .66 

4 3.96 .77 3.83 .72 3.81 .68 

5 3.89 .73 3.71 .74 3.73 .70 

6 3.62 .94 3.47 .82 3.37 .93 

7 3.61 .85 3.48 .87 3.28 .93 

8 3.66 .79 3.50 .88 3.39 .94 

 

Cronbach’s α 

 

.917 

 

.931 

 

.910 

 

 

 

Confirmatory Factor Analysis 

The first step in testing for discriminant validity of a model structure with multiple latent 

factors is to reject the possibility of a single factor structure [73]. Table 7 details these single-

factor CFA results.  
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Table 7. eHEALS CFA by nation – single factor structure 

 

Nation N X
2
 

 

df P RMSEA P 

close 

AIC CFI TLI 

UK 407 379.003 20 <.001 .210 <.001 411.003 .864 .809 

NZ 276 263.140 20 <.001 .210 <.001 295.140 .833 .767 

US 313 199.218 20 <.001 .169 <.001 231.218 .896 .854 

 

 

 

The data do not fit the one-dimensional model well. In addition to significant chi-square 

values (UK: X
2
 = 379.003, df = 20, P < .001; NZ: X

2
 =263.140, df = 20, P < .001; US: X

2
 

=199.218, df = 20, P < .001) the RMSEA values of .210 for UK and NZ and .169 for US fell 

outside the guidelines [74-75] that propose values less than .05 indicate good fit, values 

ranging from .05 to .08 reflect reasonable fit, values between .08 and .10 indicate mediocre 

fit, while values greater than .10 reflect poor fit. Likewise the Comparative Fit Index (CFI) 

and Tucker-Lewis Index (TLI) should be close to .95 [76], yet fell well below the cut-off 

point suggested for these indices in all three nations.  

 

Analysis then turned to examination of the hypothesized three-factor model, using the UK 

data. Testing for factorial equivalence encompasses a series of hierarchical steps that begins 

with the determination of a baseline model for each group separately [77]. The first step, 

then, was to establish a baseline model from one of the samples. The UK data were chosen 

simply because the UK sample comprises the largest number of respondents. While the three-

factor model revealed a much better fit to the one-dimensional model, examination of the 

modification indices suggested improvement through the pairing of error terms associated 

with eHEALS Items 2 and 3. One possible method effect that can trigger error covariance is a 
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high degree of overlap in item content [77]. The high Chronbach alpha scores presented in 

Table 6 do of course suggest such redundancy [71].  Scrutiny of Items 2 and 3 did reveal a 

degree of overlap, in that Item 2 asks respondents if they know where to find resources while 

Item 3 asks them if they know how to find these resources. Clearly, to some people, there is 

not much difference in the meaning of these questions. Given the apparent overlap in the 

content of these items, and the high Chronbach alphas which had already suggested some 

redundancy between scale items, the three-factor model was respecified to include these 

correlated errors, and analysis moved from confirmatory to exploratory mode.  

 

 

Table 8. eHEALS CFA – respecified three factor structure (UK data) 

 

N X
2
 

 

 

df P RMSEA AIC CFI TLI 

407 44.174 16 <.001 .066 84.174 .989 .981 

 

 

As can be seen from Table 8 the RMSEA of .066 was within the range for a reasonable fitting 

model, the CFI of .989 and the TLI of .981 far exceeded the recommended minimum values 

of .95 and the AIC of 84.174 shows a dramatic improvement on the previous model.  

Examination of the standardized residuals revealed none to exceed the threshold of 2.58 [79]; 

indeed the highest standardized residual was 1.102 between eHEALS5 and eHEALS8, with 

all other standardized residuals falling below 1. In sum, the respecified three-factor model 

fitted the UK data well. 
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Measurement Invariance 

For the scale to be useful in multi-national research, measurement equivalence is needed; 

without evidence of invariance conclusions based on the scale “are at best ambiguous and at 

worst erroneous” [49, p.78]. The next goal, then, was to examine the basic meaning and 

structure of the construct cross-nationally, in order to establish whether or not the scale is 

conceptualized in the same way across countries. Before moving to analysis of multinational 

invariance, however, Byrne [77] recommends testing the model separately in each group as 

the first step toward multi-group confirmatory factor analysis. Table 9 gives the goodness of 

fit indices for each nation (including the UK data for comparative purposes). All samples 

demonstrated indices falling within the boundaries outlined earlier. Therefore, the model fit 

was acceptable for all countries. 

 

Table 9. eHEALS CFA by nation – three factor structure 

 

Nation N X
2
 

 

df P RMSEA AIC CFI TLI 

UK 407 44.174 16 <.001 .066 84.174 .989 .981 

NZ 276 40.651 16 .001 .075 80.651 .983 .970 

US 313 43.529 16 <.001 .075    83.529 .984 .971 

 

 

A multi-group measurement model (based on the final 3-factor model) was then constructed 

and tested first for configural invariance. Table 10 shows the results of this and subsequent 

analyses. The fit indices of the configural model (X2 = 128.363, df = 48, P < .001), RMSEA 

= .041, CFI = .954, indicate that the model cannot be rejected, which led to the conclusion 

that the specification of the Items that index the three factors of eHEALS are configurally 

invariant for the three nations under study. 
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The results of the metric invariance analysis, when all factor loadings are constrained equal 

across all three groups, are presented in Table 10. Despite the fact that metric invariance is 

often difficult to achieve [80], although the chi-square change between the configural and the 

metric model is non-significant, the ∆CFI of .002 is well below the proposed cut-off point of 

.01 [81], suggesting that the measurement model is completely invariant. This means result 

provides strong evidence that the eHEALS scale is ready to use, with a degree of confidence, 

in the different countries under study. 

 

Indeed, the scale is now ready for exploring and testing structural relationships, which is the 

most important application for most researchers. Despite the fact that full invariance is often 

difficult to achieve [80], as shown in table 10 further analyses demonstrated the eHEALS 

scale to exhibit scalar invariance, hence analysis can include direct comparisons of mean 

scores. Indeed, both the “excessively stringent” [77, p. 220] test of invariance resulting in a 

significant value in the change in X2 (74.874, ∆df = 26, P <.001), and the ∆CFI of .008 was 

below the .01 cut-off point [81]. Hence, despite potential social and/or cultural differences, 

the scale is unaffected.  For each model, the RMSEA closeness of fit (PCLOSE) far exceeds 

minimum recommended P-value of at least .05 [78], and Hoelter’s Critical N at both the .05 

and .01 CN values are greater than 200. 

 

 

Table 10. Measurement invariance of eHEALS across NZ, US, and UK 

 
Model  X

2
 

 

df  P  RMSEA  P 

CLOSE  

Δ X
2
 

  

Δ df Sig. CFI Δ 

CFI 

Critical 

N 

.05   .01 

1) 

Configural 

invariance 

128.363 48 <.001 .041 .954 N/A N/A N/A .986 N/A 505   571 

2) Metric 

invariance 

149.262 58 <.001 .040 .983 20.899 10 .022  .984 .002 512   573 

3) Scalar 

invariance 

203.237 74 <.001 .042 .971 74.874 26 .000 .978 .008 466   515 
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Despite not checking for normality prior to analysis, noteworthy is the fact that the data 

indicated no departure from normality, as evidenced by no rescaled β2 values exceeding 7 

[83]. Table 11 provides these rescaled β2 values. However, there was some suggestion of 

multivariate kurtosis. Consequently, bootstrapping using 2000 bootstrap samples, none of 

which was unused, revealed only very small differences between the maximum likelihood-

based estimates and the bootstrap-based estimates (table 11). Moreover, no confidence 

intervals included zero (table 12). Thus, there were no substantial discrepancies between the 

results of the bootstrap analysis and the original analysis, and the interpretations of the results 

presented earlier are without fear that departure from multivariate normality has biased the 

calculation of parameters [84]. 

 

Table 11. Rescaled β2 values and differences in ML estimates and bootstrap estimates 

Variable Rescaled β2 values 

 

 

    UK                     NZ                 US 

Differences in ML estimates and 

bootstrap estimates 

 

UK                         NZ                        US 

   

eHEALS 1    .741                    .238              1.415  

eHEALS 2  2.011                  1.304              1.850 .008                        .013                    .007 

eHEALS 3 2.110                   1.997              2.924  

eHEALS 4 1.986                   1.296              2.181 .002                        .008                    .006 

eHEALS 5 1.709                     .746                .934 .003                        .008                    .015 

eHEALS 6   .189                     .016                .297  

eHEALS 7   .136                    -.117              -.063 .005                        .001                    .012 

eHEALS 8   .484                     .078              -.085 .005                        .002                    .013 
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Table 12. Bias-Corrected bootstrap confidence intervals 

Parameter UK 

Lower         Upper              

NZ 

Lower           Upper 

 

US 

Lower         Upper 

    

eHEALS 1  < -- aware    .878         1.055   .923           1.203   .921          1.129 

eHEALS 2  < -- aware 1.000           1.000 1.000           1.000 1.000          1.000 

eHEALS 3  < ---  skills   .926         1.083   .792           1.007   .783            .989 

eHEALS 4  < ---  skills   .928         1.083   .856           1.069   .975          1.129 

eHEALS 5  < ---  skills 1.000         1.000 1.000           1.000 1.000          1.000 

eHEALS 6  < --- evaluate   .862           .995   .874           1.098 1.093          1.448 

eHEALS 7  < ---  evaluate   .829           .972   .912           1.133   .973          1.283 

eHEALS 8  < ---  evaluate 1.000         1.000 1.000           1.000 1.000          1.000 

 

 

Finally, convergent validity was tested. First, inspection of the factor loadings presented in 

Table 13 revealed that all exceed the ideal of .7 [85]. Moreover, all factor loadings were 

positive and statistically significant. 

 

Table 13. Standardized regression weights
1
 

   
UK       NZ             US 

eheals2 <--- aware .919 .846 .912 

eheals1 <--- aware .836 .825 .857 

eheals5 <--- skills .843 .841 .842 

eheals4 <--- skills .877 .857 .867 

eheals3 <--- skills .874 .832 .877 

eheals8 <--- evaluate .843 .837 .818 

eheals7 <--- evaluate .795 .832 .751 

eheals6 <--- evaluate .854 .826 .730 
1
All factor loadings are positive and statistically significant 

 

 

Additionally, Table 14 presents the average variance extracted (AVE) and the construct 

reliability (CR) results for each nation. All AVEs exceeded the cut-off of .5 [86] indicating 
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convergent validity and all CRs exceeded .7, again indicating good reliability. Taken 

together, the evidence provides support for the convergent validity of the 3-construct 

eHEALS measurement model.  

 

Table 14. Average variances extracted (AVE) and construct reliability (CR)
2
 

 UK NZ US 

 AVE CR AVE CR AVE CR 

       

Aware .772 .871 .699 .822 .783 .878 

Skills .748 .898 .711 .881 .743 .897 

Evaluate .691 .870 .691 .871 .589 .811 
2
 The AVE and CR are not provided by AMOS software so they were calculated using the 

following formulae:                                    

 

                               λ represents the standardized factor loading and i is the number of items.   

 

 

                                   (δ) represents error variance terms (delta)  

 

 

 

 

Discussion 

Healthcare providers and researchers need a valid, reliable, and easy to use measurement tool 

with which to assess levels of perceived eHealth literacy among different groups of patients. 

Until now, there has been some debate about the construct validity of the eHEALS scale, and 

indeed the validity of the measurement of eHealth in general [13-15, 93], casting doubt over 

subsequent results.  Hopefully the current study alleviates some of that doubt.  
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The finding that eHEALS comprises three distinct factors is novel and important because the 

factors that emerged are clearly based on the underlying theory on which Norman and 

Skinner’s [16] definition of eHealth literacy is founded. The current study is the first to 

demonstrate that eHEALS does indeed relate to the Social Cognitive Theory upon which it is 

founded. Future research should attempt to do the same. Previously, research has not given 

due attention to the underlying theoretical arguments for unidimensionality versus 

multidimensionality, with the majority of studies that did examine the factor structure of the 

scale being limited to PCA [9, 12, 25, 29, 38, 41], rather than CFA which provides a much 

more rigorous evaluation. 

 

Interestingly, the two studies that have used CFA have examined the scale did so after it was 

translated into languages other than the one in which it was designed [31, 34, 47]. Given 

translation problems [104-105], it is possible that language issues have impacted results in 

other studies. Moreover, in this study the minor tweaks to the scale in terms of insertion of 

the words ‘and information’ into five of the items could perhaps have affected respondent’s 

derived meaning. Finally, the use of samples comprising solely Baby Boomers could have 

impacted results. Of the two previous studies to use CFA, the first used a wide age range [34, 

47] and the second used adolescents [31]. Of course, eHEALS was originally designed using 

13-21 year olds [9]. Future research should take these issues into account.  

 

As no previous known studies have attempted multi-national measurement invariance of 

eHEALS, the establishment of full measurement invariance is another novel and important 

contribution. The results of configural invariance test suggest that the respondents under 

study employ the same conceptual framework when answering eHEALS, despite their 
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different cultural experiences and indeed very different experiences of healthcare provision.  

Second, Steenkamp and Baumgartner [49, p.82] note, “When the purpose of the study is to 

relate the focal construct to other constructs in a nomological net, full or partial metric 

invariance has to be satisfied.” Clearly, the level of measurement invariance required for the 

purposes of investigating eHealth literacy in a variety of disparate nations is established. 

Finally, a cursory glance at the mean scores presented in Table 6 suggests that US Baby 

Boomers are more eHealth literate than their UK and NZ counterparts. While the examination 

and discussion of such differences is beyond the scope of the current paper, it is nevertheless 

important to note that such comparisons can now be made legitimately, as scalar invariance 

has been established. Confidence in the results of such comparisons has increased due to the 

establishment of full measurement equivalence [88, 89]. Moreover, the average variance 

extracted and the construct reliability results for each nation all suggest convergent validity 

and good reliability. Overall, these results provide solid support for the convergent validity of 

the three-factor eHEALS model.  

 

These findings are also important from a practical perspective. Results demonstrate that, 

consistent with the theory upon which it was developed, eHEALS assesses self-perceptions 

of three important and distinct (though interrelated) elements of eHealth literacy: awareness 

of Internet health resources (items 1 and 2), the skills needed to access them (items 3-5), and 

the self-belief that one can effectively evaluate them (items 6-8). Hence eHEALS can now be 

used to segment health consumers into distinct groups based on their scores on the scale, with 

corresponding intervention and training provision designed around meeting the needs of these 

segments. Those individuals with relatively low scores on the awareness factor would need to 

be offered basic training designed to address the rudimentary elements of eHealth in terms of 

describing and demonstrating the range of appropriate resources available and how they can 
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be found. For people whose scores are relatively low on this factor, such training should 

perhaps be stand-alone and could be the foundation level training. Once mastered, individuals 

could be offered the second level training, designed for those people whose scores are 

relatively low on the skills factor. This skills training should be designed to perhaps build on 

basic knowledge and concentrate on developing the individual’s search and evaluation skills 

pertaining to eHealth resources. Finally, a third training program could be developed which 

concentrates on developing and building self-efficacy, in order to give people the self-belief 

that they are truly empowered patients who are able to play an active role in their own 

healthcare. Most training and educational programs incorporate levels of progression in their 

design, and eHealth intervention and training programs should be no different. 

 

Practical intervention and training around eHealth is important for several reasons. EHealth 

has the potential to assist self-management in consumers with chronic health conditions, and 

evidence suggests that even in developed countries, half of the population with chronic health 

conditions have elementary navigational needs and would benefit from basic training in this 

area [98]. Training programs are crucial because patients with higher levels of health literacy 

have significantly lower anxiety levels than people with inadequate health literacy, and have 

fewer and shorter consultations with health care providers [116] hence there are economic 

benefits to such training programs. Improvements in ability and self-belief to access and use 

Internet Health resources have knock-on benefits in terms of ability and willingness to use 

other eHealth resources such as electronic health records, patient portals, and self-

management tools [45]. Thus understanding different skills levels and needs are important for 

policy makers and health care providers who could all use such information to develop 

correct and targeted interventions for different segments of the population. Indeed, it has even 

been suggested that eHealth is so important it should be incorporated into school curricula 
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[101]. When eHEALS was first designed in 2006, Norman and Skinner [9] claimed that the 

scale has the potential to serve as a means of identifying those who may or may not benefit 

from referrals to an eHealth intervention or resource. The current research builds on this 

claim and suggests that eHEALS can be used to ascertain the type of intervention or resource 

that could benefit these different segments. 

 

 

Conclusions 
The usefulness of a short, easy to administer scale that measures a person’s perception of 

their eHealth literacy is beyond doubt. Indeed, the extensive use of the eHEALS scale across 

a variety of studies in countries across the globe is testimony to the urgent requirement for 

such an instrument. The research presented here details a more rigorous investigation of the 

measurement properties of the eHEALS scale than has previously been conducted, using 

confirmatory factor analysis rather than principal components analysis. Based on social 

cognitive theory and self-efficacy theory, a three-factor model was tested and confirmed.  

 

Research often needs to make comparisons across groups or across time and in order to be 

able to do this, a scale must demonstrate measurement invariance. Only by establishing 

measurement invariance can there be assurance that comparisons are valid [90]. In other 

words, establishing measurement invariance provides evidence that score differences across 

countries are a true representation of differences in the construct under study, rather than 

differences brought about social and cultural factors or other such confounding variables 

[87]. This research has demonstrated full measurement invariance of the eHEALS scale 

among Baby Boomers in three diverse nations, meaning the scale is now ready to use with far 

more confidence among researchers in these nations. This research has therefore added 
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weight to Norman and Skinner’s [9] contention that the scale is a useful addition to a range of 

eHealth assessments from primary care to health promotions. The identification of three 

distinct factors not only confirms the theoretical antecedents upon which eHEALS was built, 

but also suggests that the scale can now be used to better segment consumers and identify 

different skills gaps, enabling policy makers and healthcare providers to design and offer 

tailored interventions and training programs to address such gaps.  

 

The study is not without its limitations. While Baby Boomers are a justifiably important 

sample for health care and eHealth research, the three factor structure that emerged here 

needs to be investigated using younger samples to ensure that Boomers are not unique and 

the three factor structure is indeed applicable to all age groups. Second, while the three 

nations chosen do vary a great deal in terms of health care provision rankings and to a lesser 

extent on some important cultural dimensions, they are nevertheless all English speaking 

Western countries. It has been noted that when eHEALS was translated, different factorial 

structures emerged. It is recommended that the three factor model is tested in very diverse 

cultures (for example Eastern countries) and among non-English speaking nations. Finally, it 

is acknowledged that the current version of eHEALS was designed before the rise in social 

media and Web 2.0 technology. While some attempt has been made to incorporate the 

interactive nature of today’s online environment by tweaking the scale (specifically, adding 

‘and information’ to items), the suggestion that the marginally updated version used here is 

sufficient to incorporate interactive resources is based solely on anecdotal evidence gained by 

asking family, friends, and colleagues. It is recommended that a more formal study 

investigates the way respondents perceive the eHEALS scale in its current form, as it may 

need to be more extensively altered, or indeed a new scale may need to be designed, in order 
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to fully capture the myriad of interactive eHealth resources that consumers are now able to 

access. 

 

Over 80% of Baby Boomers in all three countries under study use the Internet regularly [112-

114]. Nevertheless, this cohort did not grow up using the Internet, and there may be some for 

whom knowledge, skills, and self-confidence around eHealth resources still lag behind the 

levels that perhaps exist among younger cohorts. Yet, the Baby Boomer cohort is crucially 

important from an eHealth perspective because forecasts predict that it is this cohort that is 

increasingly going to put major pressures on healthcare systems [60- 62]. Importantly, 

Bandura [111] explains that personal factors can be altered dramatically to make 

improvements to the functioning of individuals. Competency can be developed through 

training and guidance, which in turn can increase self-belief in capability levels. While there 

are already eHealth training lessons available across all three countries included in the current 

study, the findings suggest these training programs should be built around knowledge of what 

health information and resources are available on the Internet, and then developing the skills 

needed to access them. Motivational enhancements should also be incorporated into such 

training in order to ensure an enhancement in self-belief.  

 

In sum, the current study fills an important gap in that it provides future researchers and 

practitioners with more faith in the eHEALS measurement scale than existed previously. The 

scale can now be used with a degree of confidence in a variety of nations and in studies with 

a variety of research objectives, including the modeling of complex relationships among 

variables. The choices of nations and the demographic of the samples therein are also 

strengths of the study: all too often scale evaluation and development comprises young (often 

student and often US) samples. Studies often use scales developed in a different country or 
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culture without checking that the measure is equivalent. This study has demonstrated that 

eHEALS can be used with confidence across a variety of nations and cultures. This study 

therefore lends support for the contention that eHEALS is a valid scale with which to 

measure self-perceptions of eHealth literacy, a concept that is set to become even more 

important in the future.  
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