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Periodic structures are effective in attenuating wave in low frequency range at local resonance (LR) conditions, but it is still a 

challenge to achieve this in very low frequency range. The main original contribution of this paper is to further lower the 

band gaps of flexural wave propagation in LR beams by developing a new resonator with high-static-low-dynamic stiffness 

(HSLDS). The proposed resonator is designed by combining a vertical spring with two oblique springs that provide negative 

stiffness in the vertical direction, and thus the stiffness of the vertical spring can be counteracted effectively by the negative-

stiffness (NS) mechanisms. The band structures of HSLDS-LR beams, obtained by the transfer matrix method and verified 

by numerical simulations, demonstrate that band gaps can be shifted to much lower frequency than that of conventional LR 

beams. Most importantly, the band gaps can be assigned to desired locations by adjusting only the stiffness of the oblique 

springs. For wave attenuation in HSLDS-LR beams with finite length, a sufficient number of unit cells are required to 

achieve a good performance of attenuation. 

 

I. INTRODUCTION 

Phononic crystals comprised of periodic materials or structures have drawn extensive attention from researchers, due to 

their fascinating features, including the capability of attenuating waves in a certain frequency range, called a stop band or a 

band gap, by tailoring the size or structure of the unit cell1-8. Generally, there are two mechanisms to create a band gap, either 

Bragg scattering (BS)1 or local resonance (LR)5. The band gap of Bragg-type phononic crystals normally appear at a 

frequency with the same order of magnitude as the ratio of the wave velocity to the lattice constant1, and thus ultra-large 

lattice constants are needed to control vibration wave propagation in machines and structures5, 9, which are often unrealizable. 

Fortunately, the local resonance mechanism breaks through the dependence on wavelengths of the BS mechanism, and the 

band gap of such a mechanism merely depends on the resonant frequency of the local resonator5, 7, which successfully shifts 

the band gap into low-frequency range. Since the design concept of local resonance was proposed, a large amount of work in 

this filed has been carried out, as well documented in the comprehensive review article by Hussein et al.7 and the monograph 
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edited by Deymier8. In this paper, we mainly focus on the attenuation of flexural waves in LR beams, and thus a brief 

literature review related to this topic is given as follows.  

Yu et al.9, 10 studied band gaps of flexural waves in LR beams by using transfer matrix theory and experimental tests, 

where the local resonator was realized by composing a soft rubber ring and a copper ring. For such LR beams, Liu et al.11 

discussed parametric factors that affect the attenuation property, and Xiao et al.12 analytically studied the formation 

mechanism of band structures. Chen et al.13 embedded local resonators into sandwich beams to attenuate flexural wave 

propagation in them. In order to broaden the width of the band gap, Xiao et al.14 proposed multiple periodic arrays of local 

resonators with mismatching resonant frequencies, and  Zhu et al.15 used this design concept to construct a chiral 

metamaterial beam for vibration suppression. Badreddine Assouar and Oudich16  extended stub-type resonators attached onto 

host plates from one side to double sides to achieve broader band gaps. An alternative way to achieve wide band gaps might 

be constructing a resonator with multiple degrees of freedom (DOF). Xiao et al.17 investigated band structures of flexural 

wave in beams with beam-like resonators, which revealed some new features of band gaps, e.g. transition and near-coupling 

effects between BS band gaps and LR ones. Wang et al. proposed a two-DOF resonator18 and a continuum-beam resonator19  

for attenuating flexural wave in LR beams, and both investigations indicated wide band gaps. Pai et al.20 proposed a two-

stage resonator with different stiffness and mass in each layer to achieve two band gaps. Wang et al.21 obtained multiple band 

gaps of flexural waves in LR beams by using resonators attached with lateral oscillators. On the other hand, piezoelectric 

shunts were periodically installed onto host structures as tunable resonators for broadband vibration and wave propagation 

control of flexible plates22, 23. 

Compared with broadening band gaps, lowering band gaps to handle the tough issue of controlling very low frequency 

wave propagation in structures is probably a more attractive topic. The frequency range of the band gap of an LR beam is 

determined by the resonant frequency of the resonator, and thus a direct route of lowering band gaps might be reducing the 

resonant frequency, which was generally realized, for example, by using a heavy core coated with soft materials [5], or a 

metal solid cylinder suspended by a soft cylinder (stub)24, 25. Nouh et al.26 studied flexural wave propagation in a slender 

beam with periodic holes that are filled with membranes attached with small lumped masses, which showed low-frequency 

band gaps. Some researchers resorted to weakening host structures of phononic crystals, e.g. Bilal and Hussein27 and 

Badreddine Assouar et al.28 punched holes periodically on a host plate, which made solid regions act as springboards of a 

resonator (pillars act as heavy masses), leading to lower and broader band gaps. However, the above methods might be 

unworkable when one faces the issue of wave attenuation at very low frequency in host structures that cannot or are not 
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allowed to be weakened, due to a fact that it is unrealizable to make the stiffness of a resonator ultra-low, or the mass ultra-

large. Therefore, it is still a challenge to realize wave attenuation by LR phononic crystals in very low frequency range7.  

The motivation of this paper is to substantially lower band gaps of flexural wave in LR beams by developing a new 

resonator with high-static-low-dynamic stiffness (HSLDS), called HSLDS resonator for brevity. The elastic element of the 

resonator is constructed by combining a vertical spring with two oblique springs, which act as a mechanism to provide 

negative stiffness in the vertical direction29, 30, and thus the stiffness of the vertical spring can be effectively counteracted by 

the negative-stiffness (NS) mechanism. It should be noted that the additional NS mechanism cannot degrade the capability of 

suspending a heavy mass, because oblique springs are horizontal and thus perpendicular to the vertical spring at the static 

equilibrium, and thus the mass is completely suspended by the vertical spring. Therefore, this type of resonator possesses the 

excellent property of high static but low dynamic stiffness. More importantly, the stiffness of the resonator (i.e., the residual 

stiffness after counteraction by the NS mechanisms) can be tuned to desired values by just adjusting the stiffness of oblique 

springs. Consequently, the band gaps of flexural waves in LR beams can be shifted towards a very low frequency. It is worth 

noting that the stiffness is nonlinear; however, design optimization is carried out to reduce the degree of nonlinearity as far as 

possible, and thus keep a mainly linear property of the stiffness when the structures do not undergo large displacements. In 

such case, the linearized stiffness is adopted in the theoretical analysis by using the transfer matrix method, but the nonlinear 

stiffness in numerical simulations in all cases. Additionally, effects of excitation amplitudes on the band structure and 

influences of the number of unit cells on attenuation are analyzed.  

This paper is organized as follows. The propagation of flexural wave in beams with HSLDS resonators is analyzed in 

Section II, including design of a HSLDS resonator, demonstrations of band gaps obtained based on Floquet-Bloch theorem, 

and verifications of band gaps in terms of frequency response function (FRF) calculated by using the Galerkin method. And 

then the corresponding numerical experiments are given in Section III. Section IV presents the effects of the number of unit 

cells on wave attenuation in the band gap, and the impacts of degrees of nonlinearity on band structures. Finally, several 

conclusions are drawn in Section V. 

II. Model and method of calculation 

The physical model of an Euler-Bernoulli beam coupled with HSLDS resonators is shown in Fig. 1a, which is called 

HSLDS-LR beam for brevity in this paper. Each resonator is fixed onto the beam using a bolted joint and is constructed by 

combining a vertical spring with two oblique spring that provide negative stiffness in the vertical direction, as shown in Fig. 

1b. It should be noted that the oblique springs are initially horizontal when the mass is fully supported by the vertical spring. 

One end of the vertical spring is screwed into a connector fixed on a rigid frame, while the other end is screwed into a 
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connector fixed on the mass. A linear bearing is embedded into the mass, which allows the mass to slide freely on the guide 

rod, to guarantee that the mass only oscillates along the vertical direction. Two ends of the oblique spring are hinged on the 

mass and the rigid frame, respectively. Inside each oblique spring, there is a guide rod sliding on a linear bearing to prevent it 

from possible bending and buckling. In order to maintain enough rigidity of the frame, there are triangle-shaped ribs 

reinforcing at two corners of the frame. Fig. 1c shows the computational model of the HSLDS-LR beam with infinite length, 

which is used to analyze the propagation of flexural waves in the HSLDS-LR beam by using the transfer matrix method 

based on Floquet-Bloch theorem. Finally, the dynamic equations of the HSLDS-LR beam with finite length are established, 

and the frequency response functions (FRFs) under free-free boundary condition are obtained to verify the band structures. 

 

FIG. 1.  (a) Physical model of the HSLDS-LR beam, (b) physical model of the HSLDS resonator, (c) computational model of the HSLDS-
LR beam with infinite length, and (d) schematic diagram of static analysis of the HSLDS resonator. 
 
A. Design of a HSLDS resonator 

The HSLDS resonator is shown in Fig. 1b. Two oblique springs provide negative stiffness in the vertical direction when 

the mass oscillates around the equilibrium position, which is utilized to counteract the positive stiffness of the vertical spring. 

The mass can only oscillates along the vertical direction, and the oblique springs deform symmetrically with respect to the 

vertical spring. The restoring force of the HSLDS resonator can be obtained by static analysis, as shown in Fig. 1d,  

v o 2 2
2 1

l
f k y k y

a y

 
   
  

                                                                                                                (1) 

where f  is the restoring force; y is the displacement of the mass deviating from the static equilibrium position, as 

represented by the dashed horizontal line in Fig. 1d; vk  and ok  are the stiffness of vertical and oblique springs, respectively; 

l  is the original length of oblique spring; a  is the deformed length of oblique spring at the static equilibrium position, and 

a l . Using vf f k l , y y l , the non-dimensional restoring force can be written as 
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2 2

1
2 1f y y

a y


 
   
  

                                                                                                                     (2) 

where o v= k k . As mentioned previously, the stiffness of the vertical spring can be partly or totally counteracted by the NS 

mechanisms. Let   ( 0 1  ) denotes the proportion of the residual stiffness of the resonator at its static equilibrium 

position in the vertical direction, after counteraction by the NS mechanisms, and then the restoring force can be rewritten as 

  
2 2

1
+ 1 2 1f y y y

a y
  

 
    
  

                                                                                                     (3) 

The non-dimensional stiffness of the HSLDS resonator is derived by differentiating the above expression with respect to 

y , 

  
 

3
2

2

2 2
1 2 1

a
k

a y
  

 
     
   

                                                                                                            (4) 

where v=k k k , and k is the dimensional stiffness of the resonator. In order to reduce the stiffness of the resonator, and thus 

lower the band gap, one can counteract the stiffness by a ratio of 1   by letting  

  
 

3
2

2

2 2
1 2 1 =0

a

a y
 

 
   
   

                                                                                                                (5) 

By doing this, at the static equilibrium =0y , the non-dimensional stiffness of the resonator is successfully reduced from 1 to 

 , and the dimensional one from vk  to vk . At =0y , there is a unique relation between parameters  ,  , and a  

 
 
 

1
=

2 1

a

a







                                                                                                                                        (6) 

which provides a physical expression of   related to parameters vk , ok , a  and l . Substituting Eq. (6) into Eq. (3) and Eq. 

(4), one can obtain the restoring force and stiffness of the HSLDS resonator after a part of stiffness is counteracted by the 

ratio of 1  , as given below 

  
2 2

1
1 1 1

1

a
f y

a a y


             
                                                                                                    (7) 

  
 

3
2

2

2 2
1 1 1

1

a a
k

a a y


 
        

                                                                                                          (8) 

Note that, only at the static equilibrium =0y , the stiffness is k  , and it increases as the displacement y  increases. In 

order to lower the stiffness and reduce the degree of nonlinearity in the neighborhood of the equilibrium point as far as 

possible, the displacement range corresponding to the non-dimensional stiffness smaller than 1 should be maximized [30], i.e. 

 
4
3 2

dMax. y a a                                                                                                                              (9) 
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One can easily obtain its solution as  3 2

opt 2 3a  , leading to d max = 2 3 9y , which means that the stiffness of HSLDS 

resonator is lower than that of its counterpart without the NS mechanisms in the displacement range of 

2 3 9 2 3 9l y l   .  

The stiffness of the HSLDS resonator with different proportions of residual stiffness is depicted in Fig.2, when 

 3 2
2 3a  . Obviously, the stiffness can be effectively designed to a desired value by adding the NS mechanisms. All the 

stiffness curves pass through two points  d max 1y ， , which implies that the optimal a  is independent of  . Additionally, 

when   is selected to be 1, the HSLDS resonator degrades to a linear one. Therefore, the proposed HSLDS resonator has a 

tunable feature of controlling the resonant frequency by changing its stiffness, which is desirable for phononic structures7. 

Also shown is that the stiffness of the NS resonator is close to   in the displacement range around the equilibrium point 

=0y . Consequently, under circumstances of weak oscillations, the linearized stiffness can be used to analyze the propagation 

of flexural waves in HSLDS-LR beams using the transfer matrix method.  

 

FIG. 2.  Stiffness of the HSLDS-LR oscillator, when  3 2
2 3a  .  

B. Propagation of flexural wave in HSLDS-LR beam with infinite length by transfer matrix method 

The governing equation of motion of an Euler-Bernoulli beam can be given by  

 
4 2

4 2
0

w w
EI A

x t
 

 
 

                                                                                                                           (10) 

where EI  is the flexural rigidity,  the density, A  area of cross section, and  ,w x t  is the dynamic transverse deflection at 

x . It is assumed that     1, = tw x t W x e  , where  W x  is the mode shape function, which can be written as  

          = cos sin cosh sinhW x A x B x C x D x                                                                                (11) 

where A , B , C , and D  are unknown coefficients,   is the flexural wavenumber and 4 2=
A

EI

  . For the ith unit cell, 

 iW x  can be written as  
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          = cos sin cosh sinhi i i i iW x A x B x C x D x                                                                              (12) 

where c=x x il  ,  c c+1il x i l  , and cl  is the length of a unit cell, namely lattice constant.  

Note that the situation of small-amplitude oscillations is considered here to study the wave propagation in this beam 

using the transfer matrix method, and thus the linearized stiffness at the static equilibrium vk  is adopted for the HSLDS 

resonator. The governing equation of the ith resonator can be given by 

    r + , 0i im z t f x t                                                                                                                                  (13) 

where      v, = ,i i if x t k w x t z t     is the internal force between the resonator and the beam at the connecting point. It 

can be assumed that   1= t
i iz t Z e  , where iZ  is the displacement amplitude. Substituting this expression into Eq. (13), one 

can obtain  

  v

2
v r

0i
i

k W
Z

k m


 




                                                                                                                                (14) 

and thus  ,if x t  can be given by 

      
2

1 1 1v r
v 2

v r

, = 0 0 =t t t
i i i i i

k m
f x t k W Z e W e F e

k m
   


 

       
                                                              (15) 

where iF  is the amplitude of the internal force.  

Considering the continuities of displacement, slope, bending moment and shear force at the connection point of the 

resonator, one can obtain 

 

   
   
   
   

1 c

1 c

1 c

1 c

0

0

0

0

i i

i i

i i

i i i

W l W

W l W

EIW l EIW

EIW l F EIW












 
  
   

                                                                                                                    (16) 

Substituting Eq. (12) and Eq. (15) into Eq. (16) gives  

 1i i Ηψ Gψ                                                                                                                                       (17) 

where  T
= , , ,i i i i iA B C Dψ  and  

 

       
       
       
       

c c c c

c c c c
2 2 2 2

c c c c
3 3 3 3

c c c c

cos sin cosh sinh

sin cos sinh cosh
=

cos sin cosh sinh

sin cos sinh cosh

l l l l

l l l l

l l l l

l l l l

   
       
       
       

 
  
  
 

  

Η                                                               (18) 

 2 2

3 3

1 0 1 0

0 0
=

0 0

F F

 
 

 

 
 
 
 
 
   

G                                                                                                                     (19) 

 
2

v r
2

v r

1 k m
F

EI k m

 
 




                                                                                                                                (20) 
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According to the Floquet-Bloch theorem1, for a one-dimensional periodic structure, one can obtain following relationship 

between -1iψ  and iψ  

 c1
-1= ql

i ie ψ ψ                                                                                                                                       (21) 
where q  is the wave vector, appearing as the form of scalar for one-dimension wave propagation. Substituting Eq. (21) into 

Eq. (17) gives 

  c1-1
1 0ql

ie 
 G Η I ψ                                                                                                                           (22) 

where I  is the identity matrix. Then the dispersion relation of the NS-LR beam can be derived  

 c1-1 =0qle G Η I                                                                                                                                 (23) 

For a given  , one can obtain solutions of the wave vector q . The propagation of a flexural wave in the beam is dampened 

when the solution of q  is imaginary, namely stop band or band gap. In contrast, the flexural wave propagates through the 

beam when the solution is real, namely pass band9. 

C. Dynamics of the HSLDS-LR beam with finite length 

In order to analyze propagation characteristics of a beam with finite-length L and verify band structures obtained by the 

above elastodynamic analysis, the frequency response function (FRF) is adopted to determine the band gap. Generally, the 

FRF is defined as the spectrum of the output signal divided by that of the input signal. In the present paper, a vertical random 

(white noise) force with bandwidth from 1 to 800 Hz is applied at the left end of the beam. The displacement time histories at 

the left hand (x=0) are collected as the input signal, and those at the right hand (x=L) as the output signal. The dynamic 

responses are calculated by using the Galerkin method. 

The governing equation of the HSLDS-LR beam can be given by 

        
4 2

R4 2
1

0 ,
n

i i
i

w w
EI A f t x f x t x x

x t
  



 
    

                                                                             (24) 

where  Rf t  is the random (white noise) force within a bandwidth form 1 to 800 Hz, and its expectation of amplitudes of 

frequency components is denoted by  REx f , called amplitude expectation for brevity, and 

        
    

v 22

1
, , 1 1 1

1 ,
i i i

i i

a
f x t k z t w x t

a a z t w x t l


  
  

                 

                                             (25) 

It is reminded that  ,iw x t  is the transverse displacement of the beam at the connecting point of the ith resonator, and  iz t  

is the vertical displacement of the ith resonator.  

The Galerkin method is utilized to discretize the system, and thus  ,w x t  can be assumed to be  
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      
1

, =
N

j j
j

w x t x p t

                                                                                                                           (26) 

where  j x  are trail functions, and  jp t  are the generalized displacements. Substituting Eq. (26) into Eq. (24) gives  

                (4)
R

1 1 1

0 ,
N N n

j j j j i i
j j i

EI x p t A x p t f t x f x t x x    
  

                                                         (27) 

where  

          

     
v 2

1
2

1

1
, 1 1 1

1

N

i i j i j
j N

i j i j
j

a
f x t k z t x p t

a
a z t x p t l

 






  
  
                               




                    (28) 

Multiplying Eq. (27) by the weight functions  j x  and integrating it from 0 to L, one can obtain 

 
           

           

(4)

0 0
1 1

R0 0
1

d d

0 d d ,

N NL L

j j j j j j
j j

nL L

j j i i
i

EI x x xp t A x x xp t

x x x f t x x x x f x t

    

   

 





   

  

 


                                                              (29) 

In this paper, both the trail and weight functions are selected as the mode functions of the Euler-Bernoulli beam. The 

free-free end boundary condition is considered here, namely no limitations are applied on both ends, and thus the beam can 

vibrate freely. The mode functions of Euler-Bernoulli beam with free-free end can be found in Rao31 

            
       

sin sinh
= =sin sinh cos cosh

cosh cos

j j

j j j j j j

j j

L L
x x x x x x

L L

 
     

 


    

                                      (30) 

The wave number   defined below Eq. (11) can be determined from the following frequency equation 

    cos cosh 1j jL L                                                                                                                             (31) 
Considering the orthogonality of mode functions, and taking into account modal damping and damping of resonators, Eq. (29) 

can be rewritten as  

            R d
1 1

0 , + ,
n n

j j j j j j j j i i j i i
i i

m p c p k p f t x f x t x f x t  
 

                                                              (32) 

and the governing equation of the ith resonator is given by 

      r d+ , + , 0i i im z t f x t f x t                                                                                                                      (33) 
where  

              2 (4)
d o r v0 0

1

= d ; = d ; 2 ; , =2
NL L

j j j j j j j j j i i j i j
j

m A x x k EI x x x c m k f x t m k z t x p t      


 
  

 
           (34) 

where j  is the damping ratio of the jth beam mode, which is introduced to dampen free vibrations,  d ,if x t  is the internal 

damping force of the ith resonator, and o  is the damping ratio of the resonator.  
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The displacements in generalized coordinates and the absolute displacements of all oscillators can be directly obtained 

by solving simultaneous equations (32) and (33), and then substituting those generalized displacements into Eq. (26) gives 

the displacement responses of the beam. Note that the number of Galerkin truncation N should be large enough to meet the 

requirement on computational accuracy. 

III. Numerical results 

A set of parameters of the HSLDS-LR beam are listed in Table I. The material parameters and a part of geometric 

parameters of the beam are chosen from Yu et al.9. The length of the beam depends on the number of unit cells, namely 

cL nl . The stiffness of oblique springs is related to the proportion of residual stiffness  , as determined by Eq. (6), namely 

 o v=0.5973 1k k . The number of unit cells is selected as n=8 here, and the effects of n on band structures and attenuation 

property will be discussed in the following section. The numerical tests, for analyzing accuracy of the Galerkin method in 

relation to the number of truncations N, are carried out but are not shown in this paper for brevity, which indicate that N=10 

gives results at high computational accuracy, when the number of unit cells is 8 (L=1 m). It also can be attributed to a fact 

that the 10th natural frequency in such case, i.e. 5484.6 Hz, is much higher than 800 Hz. According to the mechanism of 

wave attenuation by local resonators, the beginning frequency of the band gap for the LR beam ( =1 ) are bL v r= k m , and 

that of the HSLDS-LR beam is expected to be bN v r bL= k m   , when the resonator undergoes weak oscillations. 

TABLE I. Parameters of the HSLDS-LR beam 
Parameters Descriptions Values 

E   Module of elasticity 70 GPa 

  Density  2600 kg/m3 

I  Area moment of inertia -9 45.968 10 m  

A  Area  -4 21.602 10 m  

lc Length of unit cell 0.125 m 

rm  Mass of resonator 0.0437 kg 

vk  Stiffness of vertical spring 51.65 10 N/m  

l Length of oblique spring 0.0459 m 

 1j j N    Modal damping ratios 0.02 

o  Damping ratio of resonator 0.01 

 REx f  Amplitude Expectation  10 N 

It is reminded that the linearized stiffness of the HSLDS resonator, i.e. vk , is used to achieve band structures calculated 

by Eq. (23). As mentioned previously, there are four solutions of the wave vector q , namely two near-field wave 
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components dampened within finite distances; and two traveling wave components which pass through the beam when the 

solutions of q are real, but are dampened when the solutions are imaginary9. The band structures are shown in Fig. 3 for 

different residual stiffness. The solid lines represent the real wave vector q, and the shadow areas denote band gaps (i.e., stop 

band of flexural wave propagation), in which the wave vector q is imaginary. The beginning and ending frequencies of the 

band gap versus the proportion of residual stiffness   are depicted in Fig. 4. From Figs. 3 and 4, it can be observed that the 

band gap is shifted from high frequency range to lower one as   decreases, while the band gap becomes narrow. According 

to  Smith et al.32, the ending frequency of the band gap can be given by  eL r= 1+   , where r= cm Al   is the ratio of 

the mass of resonator to that of the unit cell of the beam, and r v r= k m   is the resonant frequency of the HSLDS 

resonator. Consequently, the band gap becomes narrow as the resonant frequency is changed into low values.  

 

FIG. 3.  Band structures calculated by Eq. (23) of the HSLDS-LR beam for different residual stiffness of the HSLDS resonator. (a) =0.01 , 

(b) =0.1 , (c) =0.5 , (d) =1 . Shadow areas represent band gaps. 

 
FIG. 4.  Beginning frequency (solid line) and ending frequency (dashed line) of the band gap for different residual stiffness of the HSLDS 
resonator. 
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Band structures are verified by calculating FRFs, which are obtained by solving simultaneous equations (32) and (33). 

Note that the original nonlinear stiffness (i.e., Eq. (7)) of the HSLDS resonator is adopted in numerical simulations. Fig. 5 

shows FRFs for four cases of residual stiffness, corresponding to the band structures in Fig. 3. One can see excellent 

agreement between theoretical results and numerical simulations. A contour plot of FRFs versus the proportion of residual 

stiffness and excitation frequency is depicted in Fig. 6a, where the colored area with values below zero denotes frequency 

range of the band gap, which is also illustrated as the area surrounded by frequency band-gap edges in Fig. 6b. Comparing 

this area with that surrounded by the two lines representing the beginning and ending frequencies of the band gap in Fig. 4, 

one can also observe good agreement. Therefore, the band structures of flexural wave propagation in the HSLDS-LR beam 

can be effectively predicted by transfer matrix method with the usage of linearized stiffness, as long as the resonator does not 

undergo large displacements. The effects of excitation amplitudes on band structures will be discussed in the following 

section.  

 
FIG. 5. FRFs of the HSLDS-LR beam calculated by Galerkin method. (a) =0.01 , (b) =0.1 , (c) =0.5 , (d) =1 . Shadow area denotes 
the band gap. 
 

 
FIG. 6. (a) Contour plot of FRFs (dB) of the HSLDS-LR beam vs the proportion of residual stiffness and excitation frequency; (b) the 
frequency band-gap edges. 
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Most importantly, from both the observations of theoretical analysis and numerical simulations, it indicates that adding 

NS mechanisms to resonators can successfully shift band gaps form high frequency to lower one by a proportion of  . As 

a result, the locations of band gaps can be tuned into desired low frequency ranges by adjusting the stiffness of oblique 

springs, according to the expression of  o v=0.5973 1k k . Indeed, the bandwidth becomes narrow and the attenuation 

performance deteriorates, as the frequency of the band gap decreases. These issues might be further resolved by using 

multiple HSLDS resonators with mismatching resonant frequencies or combining with piezoelectric shunts to broaden 

bandwidth and drop the FRF curves even further. 

IV. Further analysis 

    For a finite-length LR beam, the efficiency of wave attenuation is most likely affected by the number of unit cells11. As 

shown in Fig. 5, the wave attenuation of the HSLDS-LR beam with 8 unit cells degrades as the frequency approaches to the 

ending frequency of the band gap. Additionally, the stiffness of the HSLDS resonator has a typical feature of nonlinearity, 

that is, it depends on the magnitude of response, or in other words on the level of excitation. Therefore, to address the above 

concerns, the effects of the number of unit cells on wave attenuation and what would happen to the band structure under large 

excitations will be analyzed in this section. 

A. Effect of the number of unit cells on wave attenuation 

To demonstrate the effects of the number of unit cells on wave attenuation, comparisons of FRFs among n=8, n=16 and 

n=24 for two cases of residual stiffness, =0.25  and =0.75 , are shown in Fig. 7. The contour plots of FRFs for different 

number of unit cells, n=16 and n=24, are depicted in Fig. 8, which presents comprehensive evaluations of FRFs against the 

residual stiffness and excitation frequency. Note that when the number of unit cells is 24, the length of the beam changes into 

3 m, and thus several natural frequencies lower than 800 Hz occur. In order to cover all the natural frequencies lower than 

800 Hz, the number of modes N is increased to 15. 

It can be seen that more resonant peaks occur as the number of unit cells increases, because more low natural 

frequencies appear as the length of beam becomes greater. Obviously, in the band gap, the wave attenuation is significantly 

improved by increasing the number of unit cells. Especially, a sharp drop occurs near the ending frequency of the band gap 

for large values of  , when n=16 and n=24, as shown in Fig. 7b and Fig. 8. Notice that in Fig. 8 two edges of the band gap 

region are now in distinct colors, such as dark blue (comparing with Fig. 6), representing better attenuations. Nevertheless, 

for all values of  , the efficiency of mitigating wave revealed by the FRF is improved notably by the increasing number of 
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unit cells. Therefore, to filter undesirable vibrations pass through a finite-length beam in practice, a sufficient number of unit 

cells are needed to achieve a good performance of attenuation. 

 
FIG. 7. FRFs of the HSLDS-LR beam with different numbers of unit cells: dash-doted lines, n=8; solid lines, n=16; dashed lines, n=24. (a) 

=0.25 , (b) =0.75 . 

 
FIG. 8. Contour plots of FRFs (dB) of the HSLDS-LR beam vs the proportion of residual stiffness and excitation frequency for different 
numbers of unit cells: (a) n=16, (b) n=24. 
 

 
B. Effect of the excitation amplitude on band structures 

As mentioned before, the stiffness of the HSLDS-LR oscillator is nonlinear, and thus it depends on the relative 

displacement amplitude between the center of the mass and the connecting point on the beam. Under low excitations the 

relative displacement is small, and the nonlinearity is not notable. However, under large excitations, the nonlinearity cannot 

be neglected, whose effects on wave attenuation will be analyzed in terms of FRF in the following numerical simulations. 
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Fig.9 shows contour plots of FRFs excited by the random force for =0.25  and =1 . Note that =1  means no 

nonlinearity, and it is a case of pure linearity. It can be observed form Fig. 9a that the band gap on the contour plot becomes 

indistinct as the amplitude expectation of the random force is increased. The reason is that complicated dynamic behavior of 

a system with strong nonlinearity is readily aroused by the excitation with multiple harmonic components, especially those 

components with non-commensurate frequencies33. Consequently, when the amplitude expectation is relatively large, some 

harmonic components of the output signal are amplified, but some others are reduced, and even some new components occur. 

It leads to rapid changes of FRFs with respect to the frequency, and thus the band-gap area becomes indistinct as the random 

force increases. In contrast, dynamic behavior of a linear system ( =1 ) cannot be affected by the increasing force, as shown 

in Fig. 9b, where the band-gap area remains unchanged by the increasing random forces.  

 
FIG. 9. Contour plots of FRFs (dB) of the HSLDS-LR beam with 16 unit cells vs amplitude expectation and frequency of the random 
excitation for different proportion of residual stiffness: (a) =0.25 , (b) =1 . 
 

Moreover, the dynamic behavior of a strongly nonlinear system under a single-harmonic excitation might be different 

from those under multi-harmonic excitation. In the case of a single-harmonic excitation 0 cosF t , the FRF is defined by the 

Root Square Mean (RSM) displacement ratio of the output signal to the input one. Recall that the excitation is acting on the 

left end of the HSLDS-LR beam, and the time history of displacement of the left end is chosen as the input signal, and that of 

the right end as the output one. The FRFs for different amplitudes of single-harmonic excitations are shown in Fig. 10, when 

=0.25 .  
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It can be observed that the band gap is shifted to higher frequency by the increasing excitation, which can be attributed 

to the fact that the stiffness of HSLDS resonator possesses hardening nonlinearity34, namely its stiffness increases as the 

displacement is increased. Increase of stiffness implies an alteration of the location of the band gap from low frequency to 

higher one. Also shown is that the band gap is split into two parts, and the bandwidth with high attenuation (small FRF values) 

becomes narrow, as shown in Figs. 10c and 10d, which indicates that the efficiency of wave attenuation would get worse 

under very large excitations. 

 
FIG. 10. Effects of excitation amplitude on FRFs of the HSLDS-LR beam with 16 unit cells and =0.25 . (a) F0=100N, (b) F0=250N, (c) 
F0=500N, (b) F0=750N. 
 

It is of interest that the jump phenomenon (Fig. 10d) and chaotic motions (Fig. 11), intrinsic features of nonlinear 

dynamic systems, are aroused by very large excitations. Fig. 11 depicts time histories of the input and output signals, when 

0 750NF   and 350 rad/s  , at which a drop of FRF appears (Fig. 10d). Fig. 11b shows a Poincare section of the output 

signal, from which one can make a judgement that the motion is chaotic, as evidenced by a cloud of points in a Poincare 

section for a lightly dampened nonlinear system33. However, from Fig. 11a, one can still observe a considerable attenuation 

of wave propagation, even though the responses are chaotic, and the band gap with high efficiency of wave attenuation gets 

narrow under such large excitations (Fig 10d). 
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FIG. 11. Response of the HSLDS-LR beam with 16 unit cells when F0=750N and =350 rad/s  . (a) Time histories of input signal (dotted 

line) and output signal (solid line), (b) Poincare section of the output signal. 
 

V. CONCLUSION 

In this paper, a new local resonator with high-static-low-dynamic stiffness (HSLDS) is proposed to shift the band gap of 

flexural wave in beams into lower frequency range by adding negative-stiffness (NS) mechanisms. The band structures of 

flexural wave propagation in a HSLDS-LR beam with infinite length are obtained by using the transfer matrix method, when 

the linearized stiffness is used in the case of small-amplitude oscillations, which are verified by numerical simulations of a 

HSLDS-LR beam with finite length under free-free boundary condition. The effects of the number of unit cells on wave 

attenuation, and the impacts of the excitation amplitude on band structures are discussed. Several conclusions can be drawn 

as follows. 

The stiffness of the HSLDS resonator can be reduced effectively by connecting in parallel two oblique springs that 

provide negative stiffness, which implies that the resonant frequency of the resonator can be decreased substantially, and thus 

the band gap can be shifted into lower frequency range. It is of interest to stress that the band gap can be assigned to a desired 

location by tuning only the stiffness of oblique springs. The efficiency of wave attenuation is improved notably by the 

increasing number of unit cells for HSLDS-LR beams with finite length. Therefore, a sufficient number of unit cells are 

needed to achieve a good performance of filtering undesirable flexural waves. Moreover, the band gap is shifted to a higher 
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frequency by the increasing excitation. Especially, under large excitations, the band gap becomes narrow, and the efficiency 

of wave attenuation gets worse, due to complicated dynamic behaviors induced by the nonlinearity of the HSLDS resonator.  
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