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ABSTRACT

The response of the North Atlantic Meridional Overturning Circulation

(MOC) to wind stress forcing is investigated from an observational standpoint,

using four time series of overturning transports below and relative to 1000 m,

overlapping by 3.6 years. These time series are derived from four mooring

arrays located on the western boundary of the North Atlantic: the RAPID

WAVE array (42.5◦N), the Woods Hole Oceanographic Institution Line W

array (39◦N), the RAPID MOC/MOCHA array (26.5◦N), and the MOVE

array (16◦N). Using modal decompositions of the analytic cross-correlation

between transports and wind stress, the basin-scale wind stress is shown to

significantly drives the MOC coherently at four latitudes, on the timescales

available for this study. The dominant mode of covariance is interpreted as

rapid barotropic oceanic adjustments to wind stress forcing, eventually form-

ing two counter-rotating Ekman overturning cells centered on the tropics and

subtropical gyre. A second mode of covariance appears related to patterns

of wind stress and wind stress curl associated with the North Atlantic Oscil-

lation, spinning anomalous horizontal circulations which likely interact with

topography to form overturning cells.
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1. Introduction33

The Atlantic meridional overturning circulation (MOC) is the primary driver of poleward heat34

transport by the ocean. At subtropical latitudes, it is responsible for about 70% of the poleward35

ocean heat transport and 25% of the combined ocean and atmosphere poleward heat transport36

(Ganachaud and Wunsch 2000). Numerical models suggest that over the 21st century, the MOC37

will reduce in strength (Vellinga and Woods 2002) with associated reduction in the northward38

heat transport (Johns et al. 2011). Our ability to properly simulate, or accurately observe, a cli-39

matic trend in MOC records is impaired by our incomplete understanding of the origins of MOC40

variability.41

The MOC in numerical models varies on a broad range of time scales, from decadal scales (Del-42

worth et al. 1993, 2012), to interannual scales (Biastoch et al. 2008; Köhl and Stammer 2008; Zhao43

and Johns 2014a), to annual (seasonal) and shorter scales (Hirschi et al. 2007; Blaker et al. 2012;44

Zhao and Johns 2014b). At first, processes on different timescales could be expected to linearly45

superpose, but numerical simulations suggest that intrinsic interannual variability of the MOC can46

spontaneously appear under climatological atmospheric forcing (Grégorio et al. 2015). A decade47

of continuous observations has confirmed that the Atlantic MOC at 26◦ N exhibits broadband48

variability (McCarthy et al. 2015), with amplitudes larger than anticipated (Srokosz and Bryden49

2015). As an example, the Atlantic MOC has shown an exceptional downward linear trend of50

about 0.5 Sv/year (1 Sverdrup = 106 m3 s−1) (Smeed et al. 2014), in addition to interannual varia-51

tions including a year-long dramatic reduction of about 30% (McCarthy et al. 2012). At the annual52

time scale, the MOC at 26◦N shows a substantial seasonal cycle of roughly 30% of its absolute53

magnitude. Prior to the 26◦N moored sustained observations, the Atlantic MOC had been esti-54

mated from synoptic hydrographic surveys. From five surveys spanning 50-years, a reduction of55
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8 Sv was identified (Bryden et al. 2005), but was later mostly attributed to aliasing of the seasonal56

variability of the MOC into longer timescales (Kanzow et al. 2010). Thus, analyses of the MOC57

variability is complicated by the superposition of multiple timescales of variability.58

At an individual latitude, the observed and simulated variability of the MOC may be induced59

by local or remote forcing. For example, the seasonal cycle of the MOC at 26◦N is explained60

by coastal wind forcing off the Canary Islands and associated heave of isopycnals by wind stress61

curl (Chidichimo et al. 2010; Kanzow et al. 2010). Variations in the MOC strength can also result62

from local adjustment to boundary waves propagating around ocean basins (Johnson and Marshall63

2002; Elipot et al. 2013), or planetary waves propagating westward from the basin interior but with64

limited meridional extent (Kanzow et al. 2009; Zhao and Johns 2014b). The topic of local versus65

remote forcing of the MOC is linked to the issue of observing the MOC at a single latitude: is the66

measure of the MOC at a single latitude representative of large-scale MOC variability? Elipot et al.67

(2014) showed that the observed MOC at 26◦N and 41◦N (Willis 2010) were temporally coherent68

on near-annual time scales, yet the phases of their annual cycles were in quadrature, resulting in a69

null correlation (see also Mielke et al. 2013). In general, numerical simulation experiments clearly70

indicate that the latitudinal boundaries between tropical, subtropical and subpolar gyres can break71

the meridional coherence of the MOC on various time scales (Bingham et al. 2007; Xu et al. 2014).72

Numerical simulations are able to provide basin-wide and consistent transport estimates at all73

latitudes (Bingham et al. 2007; Zhang 2010). In contrast, transport estimates at discrete latitudes74

from observational methods are not necessarily comparable. For the MOC, observational methods75

include (1) a net transport over a fixed depth range [measured from profiling floats at a nominal76

3-month time resolution near 41◦N, (Willis 2010)], (2) the maximum of an overturning stream-77

function [estimated from transbasin geostrophic shear, as near 26◦N with the RAPID MOC array78

(Cunningham et al. 2007; Rayner et al. 2011)], (3) the transport of a physically coherent current79
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near boundaries [such as the Deep Western Boundary Current near 39◦N (Toole et al. 2011) and80

at 26◦N (Meinen et al. 2013)], or (4) zonally-integrated meridional transport across a partial basin81

width [as near 16◦N (Send et al. 2011)]. In this study, we use some of the same observations in the82

North Atlantic, but we aim at estimating comparable oceanic transport quantities at each of these83

four latitudes (41◦N, 26◦N, 39◦N and 16◦N), applying the method of using ocean bottom pressure84

(OBP) gradients on the western boundary of the Atlantic’s basin (Hughes et al. 2013; Elipot et al.85

2014). Next, we apply statistical methods to study the covariance between transport estimates, and86

investigate wind forcing as a driver of this covariance.87

This paper is organized as follows. Section 2 presents a brief review of the concepts of over-88

turning processes and observational principles. Section 3 presents the oceanic and atmospheric89

data used. Section 4 describes the methods used. Section 5 presents the results of analyses be-90

tween the four transport time series by themselves. Section 6 presents the results on the statistical91

analyses between the four transport time series and the wind over the North Atlantic, and provides92

dynamical interpretation for the observed statistical linkage. Section 7 provides a summary and93

concluding remarks.94

2. Overturning meridional transports: concepts and observational principles95

To investigate rapid coupling between wind forcing and overturning transports, it is useful to96

consider the velocity decomposition of Lee and Marotzke (1998) (see also Jayne and Marotzke97

2001; Sime et al. 2006). Assuming that a time-dependence is implicit, the meridional velocity98

v(x,y,z) is decomposed in three components99

v(x,y,z) =
1
H

∫ 0

−H
v(x,y,z)dz+

[
ve(x,y,z)−

1
H

∫ 0

−H
ve(x,y,z)dz

]
+ vsh(x,y,z), (1)
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where H(x,y) is the water depth at location (x,y). Each of these three terms can lead to an overturn-100

ing, where overturning refers to a zonally-integrated meridional transport which varies with depth.101

The first term represents velocities which are depth-independent at each (x,y) spatial location, but102

its zonal integral can vary with depth due to varying topography and basin-width. As an example,103

imagine a hypothetical ocean where the western half is 1000 m deep with a depth-independent ve-104

locity of 2 cm/s northward, and the eastern half is 2000 m deep with a depth-independent velocity105

of 1 cm/s southward. The resulting zonally-averaged velocity profile will be 1 cm/s northward in106

the top 1000 m and 1 cm/s southward in the lower 2000 m, effectively forming an overturning107

circulation. The overturning transport from the first term in (1) is the so-called external mode, and108

is often associated with a barotropic gyre circulation. Conceptual examples of such circulations109

leading to an overturning are given by Lee and Marotzke (1998), Elipot et al. (2013), and Yang110

(2015).111

The second velocity term in the square bracket of (1) leads to the so-called Ekman overturn-112

ing. The first sub-term in the bracket is the upper-ocean response to zonal wind stress, summing113

to a meridional Ekman flow distributed over a surface Ekman layer of unknown thickness1. The114

second sub-term in the bracket represents a local vertically-uniform return flow which compen-115

sates the surface Ekman flow, thus forming an overturning circulation. As noted by Hughes et al.116

(2013), the Ekman return flow is a convenient mathematical representation which is not meant to117

be physically correct since it will be distributed over a range of depths. Killworth (2008) shows118

that the return flow in a simple linear frictional ocean model with flat bottom can vary strongly119

horizontally and vertically. In addition, the exact distribution may also depend on the time scales120

under consideration, as also shown by Jayne and Marotzke (2001) in an ocean general circulation121

model.122

1at the RAPID-MOC array the Ekman transport calculated from wind data is evenly distributed over the upper 100 m of the ocean
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The final term of (1) leads to a baroclinic, that is vertically-sheared, meridional flow, with123 ∫ 0
−H vsh dz = 0. The velocity vsh consists mostly of a thermal-wind sheared velocity which is124

balanced by the zonal density gradient, but could also include non-Ekman ageostrophic flow. In125

a numerical model, Lee and Marotzke (1998) find that Ekman overturning dominates the merid-126

ional overturning of the Indian Ocean. In a coupled climate model, Sime et al. (2006) find that the127

contributions to the MOC of each term of (1) in the Atlantic Ocean on seasonal and interannual128

time scales depend on the latitude under consideration.129

Let us now consider the meridional geostrophic velocity vg from the zonal pressure gradient:130

f vg =
1
ρ

∂ p
∂x

,

with f the Coriolis parameter and ρ the water density. The zonal integral of this equation gives131

the geostrophic meridional mass transport per unit depth132

T (y,z)≡
∫ xE

xW

ρvg dx =
pE(y,z)− pW (y,z)

f
, (2)

where pE and pW are the OBP on the eastern and western boundaries, respectively. Thus, T is133

given by the difference between OBP on each side xW and xE of an ocean basin. Overturning, by134

definition, is a measure not of the net flow across a given latitude, but of compensating meridional135

flows at different depths, meaning a zonally integrated flow which has vertical shear. Thus, to136

capture an overturning transport, it is not so much absolute OBP signals which are needed but137

rather the vertical OBP gradient along side boundaries [see Bingham and Hughes (2008) for an138

extended discussion of this point]:139

∂

∂ z
T (y,z) =

1
f

∂

∂ z
[pE(y,z)− pW (y,z)]. (3)

The sheared transport ∂T/∂ z can then be formally separated into two contributions: one arising140

from the western boundary OBP gradient, and one from the eastern boundary OBP gradient, in-141

dependently of the interior velocity field. In an ocean basin with vertical side walls, the vertical142
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pressure gradient is proportional to density anomalies through the hydrostatic relation. In the pres-143

ence of sloping boundaries, horizontal geostrophic velocities near the boundaries are also needed144

to obtain the full vertical pressure gradient (Hughes et al. 2013).145

The appropriateness of using the OBP gradient method to estimate overturning was demon-146

strated in an ocean general circulation model (OGCM) of the North Atlantic by Bingham and147

Hughes (2008). They found that the western boundary OBP gradient integrated to form a layer148

transport representative of the MOC explained more than 90% of the interannual variability of149

transports calculated directly from the model velocity fields. The dominance of the western bound-150

ary OBP variance is due to more energetic flow on the western boundaries and westward accumu-151

lating variability associated with Rossby waves and eddies. From observational data, Elipot et al.152

(2014) found that the dominant signal of the MOC near 26◦N and 41◦N is the geostrophic overturn-153

ing, which is itself dominated by the western boundary contribution. They further demonstrated154

that OBP gradient timeseries on the western boundary, integrated within appropriate depth ranges155

to form transport quantities, captured a large fraction of the variability of the MOC. In particular,156

at 26◦N, the equivalent of the western boundary OBP gradient integrated relative to and below157

1000 m is representative of the variability of the MOC at semi-annual, and longer, time scales.158

Of the three terms in (1), the first and last terms are primarily geostrophic. Of the second term, ve159

is the result of a frictional process, but the compensation term (the integral) is assumed geostrophic.160

The overturning transport estimated from vertical pressure gradients following boundaries as in161

(3) should therefore capture overturning transports arising from all but the ve contribution. In162

this study we investigate the covariance of western boundary pressure gradient contributions to163

overturning transports at four different latitudes, with respect to the wind forcing on a basin scale.164

Because our transport time series are only a few years long, and because of the nature of the165

methodologies applied, we investigate near-instantaneous velocity responses of the oceanic cir-166
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culation, which we expect will be manifested in the first two terms of (1). The baroclinic ocean167

response to wind forcing, manifested in the 3rd term, is mediated from the ocean interior by west-168

ward propagating planetary waves, and is delayed by months or years until it reaches the western169

boundary to influence the geostrophic shear estimated from the western boundary pressure gradi-170

ents. For example, the North Atlantic Oscillation (NAO) atmospheric pattern drives a response in171

the North Atlantic ocean characterized by anomalous horizontal circulations at the boundary be-172

tween subtropical and subpolar gyres (Visbeck et al. 2003). Eventually, these velocity responses173

project onto the western boundary pressure, and thus influence the overturning. Instead, the mech-174

anisms of adjustment considered here are typically deemed barotropic, as they are communicated175

by fast propagating barotropic waves within the ocean interior and around ocean basins boundaries176

(O’Rourke 2009).177

3. Oceanic and atmospheric observations178

a. Oceanic overturning transport time series179

1) DERIVATIONS OF TRANSPORT TIME SERIES AT RAPID WAVE LINE B, LINE W, AND180

RAPID MOC/MOCHA ARRAY181

We study the basin-scale covariance of the North Atlantic MOC by considering the western182

boundary contribution to zonally-integrated meridional transport relative to and below 1000 m,183

from observations at four different latitudes. The four mooring arrays which data are used are184

shown in Fig. 1: Line B of the RAPID WAVE array near 42◦N (Elipot et al. 2013), the Woods185

Hole Oceanographic Institution Line W near 39◦N (Toole et al. 2011), the RAPID MOC/MOCHA186

array near 26.5◦N (Cunningham et al. 2007), and the MOVE array at 16◦N (Send et al. 2011). The187

common length of the transport time series from these four arrays is 1325 days (3.6 years), hence188
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we are limited to studying processes acting on time scales less than three years and seven months,189

that is from seasonal to interannual time scales.190

Elipot et al. (2013) applied Eq. (3) to derive western boundary contributions to zonally-191

integrated meridional transport relative to and below 1000 m from Line B and Line W, two arrays192

separated by about 1000 km along the western boundary. The two resulting time series called TW193

(39◦N) and TB (41◦N) were shown to be coherent and almost in phase for all time scales from 3194

months to 3.6 years. At shorter timescales, they were still coherent but with group delay estimates195

implying a propagation speed of 1 m s−1 between the two latitudes, consistent with expectations196

for baroclinic coastally-trapped wave speeds. Elipot et al. (2014) showed subsequently that these197

two time series were representative of the Atlantic MOC as captured by Argo float data analyses198

near 41◦N (Willis 2010), on semi-annual time scales and longer.199

A third time series of overturning transport below and relative to 1000 m, called T26, was derived200

by Elipot et al. (2014) from the RAPID MOC/MOCHA array, and shown to be strongly coherent201

and out-of-phase with the MOC strength, defined from the same array as the maximum of the202

vertically integrated streamfunction (Kanzow et al. 2010). The overturning transport T26 captured203

most of variance of the MOC at periods longer than two years. At periods of six months to two204

years, T26 captured most of the western boundary contribution to the geostrophic variance of the205

MOC.206

No propagating signals were detected from the latitudes of Line B and Line W to 26◦N, and207

while TB and TW were coherent with T26 on semi-annual and longer timescales, there was a 90◦-208

out-of-phase relationship resulting in a null correlation. The reasons for the coherence between209

lines B and W and 26◦N was unclear.210
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2) DERIVATION OF THE DEEP OVERTURNING TRANSPORT TIME SERIES AT THE MOVE ARRAY211

The mooring array of the MOVE experiment located near 16◦N is designed to capture the deep212

meridional flow in the western basin of the North Atlantic, between Guadeloupe in the Antilles to213

the west and the Mid-Atlantic Ridge to the east. The details of the instrumentations and moorings,214

as well as transport calculations and analyses can be found in Kanzow et al. (2006, 2008) and215

Send et al. (2011). The volume transport at the MOVE array is calculated by combining the216

unreferenced interior mass transport between an eastern tall density mooring (M1) located west217

of the mid-Atlantic ridge and a western tall density mooring just east of Guadeloupe (M3), with218

the volume transport estimated by direct velocity measurement (mooring M4) between mooring219

M3 and the continental rise between M3 and Guadaloupe. Based on water masses boundary220

considerations, absolute transport is derived by referencing geostrophic velocities to zero at 4950221

m (Send et al. 2011).222

Here we use data from moorings M3 and M4 only to derive a western boundary contribution to223

the overturning transport relative to and below 1000 m. First, we calculate the vertical shear of224

the interior transport with the east boundary density profile set to constant values where the results225

here are independent of the choice of constant value. Second, vertical profiles of cross-sectional226

velocity are calculated by linear interpolation and constant extrapolation at each time step from227

a discrete number of current meters on moorings M3 and M4. Those profiles are multiplied by228

nominal cross-sectional areas to form profiles of transport per unit depth at each mooring which,229

when summed, provides a total transport profile per unit depth in the western wedge. This transport230

profile is differentiated in the vertical to obtain the transport shear in the wedge which is then231

added to the interior shear to estimate the total western boundary transport shear. This shear is232

then integrated from zero at a reference level of 1000 m downwards to 4000 m to obtain TM,233
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the western boundary contribution to overturning transport relative to and below 1000 m. Note234

that the TM daily time series derived here is anti-correlated (ρ = −0.14 with a p-value of 0.15)235

with the North Atlantic Deep Water (NADW) transport time series of Send et al. (2011) for the236

February 8, 2002 to June 23, 2009 period. This may seem surprising but cross-spectral analysis237

(not shown) reveals that the absolute value of coherence phase between those two time series238

is mostly greater than 90◦ for time periods shorter than about 8 months (corresponding to anti-239

correlation at those time scales) but becomes less than 90◦ for longer time periods (corresponding240

to positive correlation). This implies that the two time series convey similar transport tendencies241

at longer time scales.242

b. Other data243

We investigate the forcing of the overturning transports by the wind. We use the 10-m wind244

data from the Cross-Calibrated Multi-Platform (CCMP) ocean surface wind vector product (Atlas245

et al. 2011), obtained from NASA PO.DAAC (http://podaac.jpl.nasa.gov). The resolution of this246

product is 0.25◦ by 0.25◦at 6-hour intervals, and the region used is 0-60◦N and 0-80◦W in the247

North Atlantic. A 1.25◦ 2-dimensional Gaussian smoothing window is applied at each time step,248

then subsampled every 0.5◦ to reduce the volume of the data. In order to match the spectral249

content of the transport time series, a third order type I Chebyshev filter with a cut-off frequency250

of 1 cpd is applied to the time series of wind stress at each grid point, in both forward and reverse251

directions to ensure zero-phase distortion of signals. The wind time series are then subsampled at252

12-h intervals.253

We also analyze changes of the geostrophic surface circulation as revealed by abso-254

lute dynamic topography (ADT) data produced by SSALTO/Duacs and distributed by Aviso255

(http://www.aviso.oceanobs.com/duacs/). Specifically, we used the merged, delayed-time, ref-256
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erence ADT map product at 7-day interval on a 1/3 degree Mercator grid. Note that we use the257

products before the update of April 2014. We also use the mean dynamic topography product258

CNES-CLS09 v1.1 (Rio et al. 2011).259

4. Statistical methodologies260

a. Analytic signal and analytic correlation261

We use the analytic transform (Gabor 1946) in our analyses because, as we will show in our262

results, this transformation conveys phase and phase difference information from temporal time263

series (Jacovitti and Scarano 1993; Marple Jr 1999). It also forms the basis of the analytic eigen264

method described next. When x(t) is a real-valued time series, its complex-valued analytic exten-265

sion x+(t) is266

x+(t) = x(t)+ ix̂(t), (4)

where x̂(t) is the Hilbert transform of x(t):267

x̂(t) =
(

x∗ 1
πt

)
(t) =

1
π
−
∫ −∞

+∞

x(u)
t−u

du. (5)

Here,−
∫

is the Cauchy principal value integral, ∗ is the convolution operator, and i≡
√
−1.268

The analytic correlation between two zero-mean time series x(t) and y(t) is defined as the corre-269

lation between their respective analytic transforms (Jacovitti and Scarano 1993; Marple Jr 1999):270

ρ+ =
E[x∗+(t)y+(t)]√

E[x∗+(t)x+(t)]E[y∗+(t)y+(t)]
, (6)

where E[.] is the expectation or time average operator. It is relatively straightforward to show that271

the (zero-lag) analytic cross covariance E[x∗+(t)y+(t)] is equal, up to a real factor, to the frequency272

integral of the cross-spectrum of x(t) and y(t). Thus, the phase of the analytic covariance, like the273

phase of ρ+, is a power-weighted sum of all phases of the cross-spectrum, and will be dominated274
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by the phases of the cross-spectrum in the frequency bands where this one has the largest power275

(see Appendix A).276

b. Analytic extension of Singular Value Decomposition analysis277

The Singular Value Decomposition (SVD) method is used in climate sciences to decompose the278

cross-covariance patterns between two real-valued scalar field variables, a left one and a right one,279

into statistical modes potentially revealing linear couplings between the two fields (Preisendorfer280

and Mobley 1988). This is also known as Maximum Covariance Analysis (MCA) (von Storch281

and Zwiers 2002). When the left and right fields are the same, the SVD method reduces to the282

Empirical Orthogonal Function (EOF) method. A variant of the EOF method exists when the283

single field variable components have undergone the analytic transform [Eq. (4)], and thus become284

complex-valued variables. The method is then known as Complex (Barnett 1983; Horel 1984) or285

Hilbert (von Storch and Zwiers 2002; Hannachi et al. 2007) EOF analysis.286

To the best of our knowledge, the variant of the SVD method when distinct left and right field287

variables have both undergone the analytic transform, has not been described before, and is named288

here the analytic SVD (ASVD) method. Under specific conditions, such as when signals of interest289

have a clear and unique periodicity, the ASVD method can be equivalent to a SVD method where290

one of the two fields has been lagged in time (e.g. Czaja and Frankignoul 1999), because the291

analytic covariance (or correlation) integrates the cross-spectrum (Appendix A). Here, the modes292

that will be revealed by our analyses do not have a single periodicity, and their spectra are generally293

red. Thus, the phase information cannot be readily interpreted as a temporal lag. Yet, the time294

evolution of the phase of the Principal Component (PC) time series of these modes still indicate a295

cyclic and oscillatory character of the explained variance.296
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The algebra necessary to conduct the ASVD analysis is standard, yet care needs to be taken297

because the data are complex-valued (e.g. Schreier 2008). In order to establish our conventions,298

Appendix B describes the ASVD method in detail. Here we note two points of importance. First,299

the coupling coefficient of a given mode, which measures the strength of the linear relationship300

between the left and right field variables for that mode, is the analytic correlation (6) between the301

complex-valued Principal Component (PC) time series of the left field and the complex-valued302

PC time series of the right field. By construction, the coupling coefficient is real valued, and thus303

the PC time series are “in-phase” on average. It is the patterns of the phase of the left and right304

singular vectors for that mode (i.e. the spatial patterns) that determine the phase lags between305

the individual components within each field, and between the left and right fields. The second306

point of importance is that we choose to decompose the wind stress (a bivariate field variable)307

into its rotary components (clockwise and counterclockwise) (Lilly and Olhede 2010), rather than308

into its Cartesian components (zonal and meridional). The reason for this choice is that applying309

ASVD onto Cartesian components intertwine geometric and temporal phase information of the310

bivariate variables which are difficult to extricate. In contrast, ASVD applied to rotary components311

leads to relatively tractable elliptical modes of variance with distinguishable geometry and phase312

information; in particular the geometry of the variance ellipses of a given mode is the same as the313

geometry of the instantaneous hodographs of the vector anomalies (see Elipot and Beal (2015) for314

details).315

c. Spectral model and estimates316

For the purpose of simulation, we fit a Matérn model to the observed transport time series Tj,t317

for j = 1, ...,4. The Matérn model (Matérn 1960) is more commonly applied to spatial data (Stein318

1999), but is also reasonable for time series analysis (Sykulski et al. 2016). The spectral density319
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of the model is320

SM(ν) =
α2

1(
ν2 +α2

2
)α3

, (7)

for which the parameters are usually interpreted as follows. The parameter α2
1 is an overall energy321

level, α3 determines the smoothness or differentiability of the process, and α2 determines the range322

or correlation decay.323

We estimate the parameter α= (α1,α2,α3) of the Matérn spectrum by maximizing the Whittle324

likelihood (Whittle 1953):325

`(α) =
bN/2c−1

∑
k=1

{
− log

[
SM
(

k
N

;α
)]
−
|J0(Tj,ν)|2

SM
( k

N ;α
) } , (8)

where326

J0(Tj,ν) =
N−1

∑
t=0

h0,t
[
Tj,t−Tj

]
e−2iπνt , (9)

and Tj is the sample mean of Tj (Sykulski et al. 2016). The sum over the indices k correspond to327

the bN/2c−1 frequency bands achievable from the N data points time series. The first Slepian data328

taper is h0,t (Walden 2000), used to remove leakage in the Fourier transform. A single taper for329

the estimation ofα is used because the objective of its usage is to minimize spectral leakage rather330

than to estimate the spectrum. The maximization of `(α) is achieved by a applying the standard331

Nelder-Mead optimization method (Press et al. 1988). The optimum values for each transport time332

series are listed in Table 1.333

We also estimate the auto or cross-spectral density function of our quantities Tj by a multita-334

per estimate which is formed from individual orthogonal Slepian tapers hk,t and each individual335

tapered estimate is written as336

Jk(Tj;ν) =
N−1

∑
t=0

hk,t
[
Tj,t−Tj

]
e−2iπνt . (10)
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A spectral estimate is formed by averaging across tapers and so we obtain (Walden 2000)337

Ŝi j(ν) =
1

K +1

K

∑
k=0

J∗k (Ti;ν)Jk(Tj;ν). (11)

d. Bootstrapping338

Throughout this study, the Matérn spectrum model SM
j (ν) for each transport time series Tj, is339

used to assess the significance of the various statistics estimated from the observational data. We340

use a parametric approach, coupled with phase scrambling, to bootstrap whole time series (Theiler341

et al. 1992; Davison and Hinkley 1997, p. 408). From the Matérn model parameters obtained342

for each Tj, simulated replicated time series are generated as follows. The Fourier transform of343

a simulated time series corresponding to Tj is generated with a random phase for each discrete344

frequency νk as345

F [Tj](ν) =
√

SM
j (ν)

Z1(ν)− iZ2(ν)√
2

, (12)

where SM
j (ν) is the Matérn model for Tj, and where Z1(ν) and Z2(ν) are two zero-mean unit-346

variance Gaussian random sequences of length [N/2]− 1, the number of frequencies sampled,347

coupled with two real-valued unit variance Gaussian random sequences at ν = 0 and ν = 1/2 just348

multiplied by
√

SM
j (ν). To make the generated time series real-valued, the sequence is extended349

to negative frequencies using Hermitian symmetry of the Fourier transform. The simulated time350

series is then obtained by taking the inverse Fourier transform. To avoid periodic sequences a351

series of twice the length of the data is generated, and half the series subsequently discarded. This352

operation is repeated 104 times to obtain a pool of simulated time series. Typically, the statistical353

analyses in this study (correlation, coherence, complex empirical orthogonal function analysis,354

singular value decomposition) are repeated over these simulated realizations, and the distributions355

of the statistics from the simulations are used to assess the significance of the statistics calculated356

from the real observations.357
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5. Results: relationship between transport time series358

a. Standard and analytic correlations359

For analyses, we consider the original 12-hourly time series for their overlapping time period,360

from 22 August 2004 to 8 April 2008, and also the time series after a 3-month 3rd-order Butter-361

worth lowpass filter is applied forwards and backwards to prevent phase distortion. The 3-month362

cut-off corresponds to the minimum time scale at which Elipot et al. (2013) detected significant co-363

herence between TB and TW but time delays not significantly different from zero. In addition, Elipot364

et al. (2014) found that TW exhibited some coherence with T26 for periods longer than 2 months365

(though TB exhibited significant coherence with T26 only at periods longer than 15 months). In366

both cases, the phase in coherent bands was found to be near -90◦, implying that the overturning367

transports at Lines B and W led the transport at 26◦N.368

Here we conduct cross-spectral analyses with the new time series TM to find that it exhibits369

significant coherence at the 95% confidence level with T26 and TW only in a few marginal frequency370

bands corresponding to periods longer than 2 months (not shown). As a consequence of weak371

coherence, the only significant correlation between the time series at 12-hourly resolution is found372

between TB and TW at 0.18 (Table 2 and Elipot et al. (2013)). The correlations of T26, and of TM,373

with the other three time series are indistinguishable from zero. The correlation between TB and374

TW increases to 0.59 for the 3-month lowpassed time series, yet all other correlations remain near375

zero.376

The realization that a specific phase organization may exist between the four time series prompts377

us to calculate the complex-valued analytic correlation ρ+. The analytic correlation between all378

pairs of transports for the 12-hourly and 3-month lowpassed time series are reported in Table 2,379

displaying the absolute values and complex arguments, or phases in degrees. We find that the380
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transport time series adjacent in latitude all have modest, yet significant, analytic correlation with381

absolute values between 0.19 and 0.27 for the 12-h time series. Between TB and TW the analytic382

correlation phase is -15.5◦ suggesting again that TW slightly lags TB. Between TW and T26 the phase383

is -98.6◦and between T26 and TM the phase is -69.5◦. The absolute values of analytic correlations384

for the 3-month lowpassed time series are increased but overall the organization of the phases385

does not change much. Examining Table 2, there seems to exist an overall pattern of correlation386

between these time series after accounting for phase lags. Furthermore, the arrangement of these387

phases suggests that there could be an underlying common signal or forcing pattern at the source388

of these correlations.389

b. Analytic Empirical Orthogonal Function analysis390

In order to investigate whether the analytic correlations between transport pairs are representa-391

tive of a common mode of variability, we apply the ASVD method (section 4) to the transport time392

series. Since the left and right fields for analysis are here identical, it is effectively an Analytic393

EOF method (AEOF) which is also known as Complex or Hilbert EOF analysis (Barnett 1983;394

von Storch and Zwiers 2002). Because there are four transport time series, the analysis produces395

four modes explaining all the variance. Using our bootstrapping method to assess significance, we396

find that only the first mode, hereafter AEOF1, is significant at the 95% confidence level (Table397

4), explaining 36% of the variance. The eigenvector for AEOF1 is displayed on a complex plane398

in Fig. 4a, scaled to represent mode anomalies in Sv. AEOF1 causes typical transport anomalies399

between 5.6 Sv (at Line W) and 3.2 Sv (at Line B and MOVE), which are of the same order of400

magnitude as the standard deviations of the transport time series (5.1, 6.6, 5.6 and 7.7 Sv for TB,401

TW , T26 and TM, respectively). The projection of the four time series onto AEOF1 results in the402

first analytic PC (APC1), plotted in Figs. 2b,c. The variance explained by this first mode for each403
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time series is listed in Table 5. This mode explains the most variance for T26 (55.7%) and the least404

for TB (19.1%).405

Here we choose to represent AEOF1 when the phase of the component for TB is 180◦, that is406

when the anomaly for TB is southward (Fig. 4a). At those times, the phase of TW is separated407

by approximately -12◦ from the phase of TB, and the phase of T26 is separated by approximately408

-91◦ from the phase of TW . Thus, T26 is approximately in quadrature phase from TB and TW for409

this mode. In addition, the phase of TM is separated approximately by 52◦ from the phase of T26,410

making TM separated by about 156◦ from the phase of TB. Thus, the overall picture is one of TB411

and TW in phase, and both of them in quadrature phase with T26, and out-of-phase with TM.412

The time variability of this mode is given by the complex time series APC1. The phase of413

APC1 (Fig. 4c) follows a mixed annual to semi-annual cycle, with higher frequency variability414

superimposed. The amplitude of APC1 (Fig. 4b) has annual and semi-annual modulations (this415

is more evident for the 3-month low-pass version of the PC) but also a pronounced near-monthly416

variability. The spectrum of APC1 is consequently red and broadband, which means that we417

cannot assign a single frequency to the time variability of the mode (Fig. 4d). The energy is mostly418

contained at low frequencies where the spectral power levels off at periods longer than 3 months.419

Yet, the first-moment of the spectrum —equivalent to the energy-weighted average frequency— is420

1/27.7 cpd which indicates that variability on monthly timescales is important (also indicated by a421

significant peak near the 34-day period).422

The AEOF analysis identifies a coupling between the transport time series, not only pairwise as423

the analytic correlations already showed, but between all of them, modulated in amplitude from424

one year to the next and also at higher frequencies, with a temporal phase which is loosely locked425

to an annual to semi-annual cycle. It is tempting to interpret the phase of the eigenvector for426

AEOF1 as a signal propagation, as is typical in Complex EOF analyses (Barnett 1983). However,427
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this would be valid for narrow-band signals only, which is not consistent with the spectrum of428

AEOF1 (Fig. 4d). Instead in section 6 we interpret the pattern of AEOF1 as a rapid adjustment, or429

response, of the meridional overturning between 16◦ N and 41◦ N to basin-scale wind forcing.430

c. Fits to annual and semi-annual cycles431

To characterize further the seasonal variability in the transport time series, we conduct least432

squares fits of annual and semi-annual frequency models Tj(t) = A j cos(2πνt + φ j), with ν =433

1/365.25 cpd and ν = 1/182.625 cpd. The results (amplitude, phase and amount of variance434

explained) are listed in Table 3 and the corresponding curves are drawn in Fig. 5. The sums of435

the fits for each oceanic transport time series are also included in Fig. 2. The sum of annual and436

semi-annual cycles explain less than 20% of the variance of the 12-hourly time series, except for437

TM at 16◦N for which 27.6% of the variance is accounted for. When time scales shorter than 3438

months are filtered out, these cycles explain between 40% and 50% of the variance of T26 and TM,439

about 29% of the variance of TW , and about 19% of the variance of TB.440

At the annual frequency, TB and TW are in phase, with a maximum overturning (maximum nega-441

tive anomaly) at the beginning of May, and a minimum overturning at the beginning of November442

(Fig. 5a). For T26, the maximum overturning occurs at the beginning of August, and for TM in443

mid-October. The phase arrangement of the annual cycle is close to the phase arrangement of the444

AEOF1 mode described earlier (Fig. 4). These transport time series are representative of the west-445

ern boundary contribution only to the overturning, yet near 26◦N and 41◦N they exhibit the same446

approximate phasing as identified in the conventional MOC time series which include the variabil-447

ity of the eastern boundary (maximum overturning in summer, minimum in winter) (Kanzow et al.448

2010; Mielke et al. 2013).449
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When the annual and semi-annual cycles are summed, the overturning is maximum for TB and450

TW around the beginning of July and minimum in October. For T26, the sum of the two cycles ex-451

hibits two similar minimum overturning at the beginning of April and in October, and a maximum452

in mid-July. For TM, the sum of the two cycles predominantly peaks with a maximum overturning453

at the end of August and a minimum in May.454

6. Results: relationship to wind stress and wind stress curl455

In this section, we investigate the relationship between the overturning transports and the wind456

over the North Atlantic. Figure 6 shows the mean and standard deviation fields of the filtered457

wind stress (panels a and b) and wind stress curl (panels c and d) for the overlapping period of458

the transport time series, from 22 August 2004 to 8 April 2008. The mean wind stress exhibits459

an anticyclonic circulation over the subtropical gyre, with westerlies north of 35◦N and the trade460

winds to the south. Accordingly, the wind stress curl is negative over the subtropical gyre away461

from coastal areas, and positive over the subpolar gyre. South of 20◦N the wind stress curl is462

mostly positive apart from over the eastern equatorial Atlantic. The variance of wind stress in-463

creases from south to north. South of 25◦S the wind variance ellipses are generally oriented along464

the mean wind stress direction, showing the steadiness of the trade winds. In contrast, to the north465

of 25◦N, the variance ellipses are more isotropic with no clear orientation. Like the pattern of466

the mean curl, the pattern of the standard deviation of the curl is not purely zonal, but exhibits a467

southwest-northeast tilt.468

a. Correlation patterns469

Inspired by the results of the AEOF analysis, rather than considering the standard correlation,470

we consider the analytic correlation between transports and wind stress. Our convention is such471
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that if the correlation is due to a narrow-band oscillatory signal, a negative phase indicates that the472

signal propagates from x to y or equivalently that x precedes y in time.473

The analytic correlations between the transport time series and both components of the wind474

stress τ = (τx,τy) and its curl k ·∇×τ are displayed in Fig. 7. The first, and striking, result is that475

the strongest correlation with any wind stress variable does not occur at the respective latitudes of476

the overturning transports. Rather, common correlation patterns appear to be associated with large477

spatial scales of the wind stress over the North Atlantic.478

The four overturning transport time series exhibit weak but significant analytic correlation with479

τx in near-zonal large patterns between 15◦N and 35◦N, with phases between 0◦ and -90◦. In480

addition, TB and TW are significantly correlated with large areas of τx north of 45◦N, with phases481

between 90◦ and 180◦. The series TW , T26 and TM are significantly correlated with large regions of482

τx south of 15◦N with phases between -135◦ and -45◦ for TW and T26, and phases between 90◦ and483

180◦ for TM. In summary, the patterns of analytic correlation with τx are similar for all transport484

time series, except that the pattern for TM is shifted in phase.485

The patterns of analytic correlation with τy are roughly oriented southwest to northeast (middle486

row of Fig. 7), characteristic of the meridional structure of weather regimes (e.g. Barrier et al.487

2014). Considering the region of the domain north of 20◦N, for TB, TW , the southeast part of the488

domain exhibits significant analytic correlation with τy with a phase between -90◦ and 0◦, and489

the north and northwest parts of the domain exhibit significant correlation with a phase between490

0◦ and 90◦. The series T26 and TM also exhibit patterns of significant correlations, located in the491

center and in the western parts of the domain, with phases about 180◦ apart. The phases of this492

dipole for TM are shifted by approximately -90◦ compared to T26. South of 20◦N, TW , T26 and TM493

all exhibit significant correlation with τy but with 90◦ phase differences from TW to T26 to TM. If494

one considers together the analytic correlations with both τx and τy, and shift all phases by 180◦,495
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a positive overturning anomaly (negative transport anomaly) at TB, TW and T26 corresponds to an496

approximately in-phase large scale anticyclonic anomaly of the wind stress over the whole North497

Atlantic basin. This apparent pattern would be valid for TM but with a -90◦ phase shift.498

The correlation patterns between the transports and wind stress curl (Fig. 7, bottom row) are less499

striking than with the wind stress components, with smaller areas with significant correlation. This500

may result from the added noise due to the spatial derivatives calculated for curl. Even so, there is501

a marked dipole pattern in the tropics for all transport time series, with centers south and north of502

10◦N, 90◦ to 180◦ out-of-phase. The phases of these dipoles are common between TB and TW but503

shifted by approximately -45◦ for T26 and a further -45◦ for TM, for which this dipole is broader.504

Another noticeable pattern of correlation for TB and to a lesser extent for TW , is another dipole505

outside the tropics, with a center of action with phases -90◦ located over the east Atlantic at 40◦N,506

and another center with phases shifted by about 90◦over the east Atlantic near 20◦N. Interestingly,507

T26 is significantly correlated and in-phase with a broad region of wind stress curl located above508

the Gulf Stream after it separates from the west coast of North America.509

These geographical patterns of analytic correlation suggest a common, basin-wide response of510

the overturning transports to the large-scale wind and wind stress forcing. This common response511

is further investigated next.512

b. Singular value decomposition analysis of transport covariance with the wind stress and wind513

stress curl514

We conduct ASVD analyses between a left field constituted of co-located time series of wind515

stress curl and wind stress decomposed into its rotary components, and a right field constituted of516

the four oceanic transport time series. All time series are normalized by their respective standard517

deviations so that the analyses are based on correlations, which equally weights all data. The518
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total number of modes that can be considered is limited by the minimum number of individual519

components in one of the two coupled variable fields under study, here four for the transports.520

The statistical significance of each mode is assessed by repeating the ASVD calculation for the521

cross correlation matrices formed between the original wind stress time series and the 104 sets of522

simulated transport time series, and by calculating the probabilities of obtaining singular values523

as large as those obtained using the real transport time series (Table 4). We find no singular value524

as large for the first two modes with the simulated data, and thus deem these first two modes525

to be significant. We interpret the coupled pattern emerging from the ASVD analyses as being526

representative of the response of the overturning transports to wind stress forcing.527

1) SEASONAL MODE528

The first mode, ASVD1 (Fig. 8), is characterized as an annual, or seasonal, mode of variability529

since its APC1 time series exhibit a 360◦ phase progression over a year (Fig. 8e). The annual530

cycle is less evident for the absolute values time series (Fig. 8d), although there is a tendency for531

APC1[∇× τ,τ] to be larger in late summer (August) of each year. The correlation between the532

two APC1 time series (0.51) indicate a strong coupling between the wind stress pattern and the533

overturning pattern for this mode.534

The wind patterns for this mode are shown in panels a and b of Fig. 8 for the wind stress535

curl and the wind stress vectors, respectively. In panel b, the geometry and typical magnitude of536

the wind stress pattern are indicated by variance ellipses, [as drawn, they are also instantaneous537

hodographs, see Elipot and Beal (2015)] and the relative importance of this mode on the total538

wind stress variance at each pixel is given by the homogeneous correlation map (color shading).539

The anomalies associated with this mode are relatively strong over the equatorial region (south of540

15◦N), corresponding to an oscillation of the trade Winds (Fig. 6). There they explain a sizable541
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fraction of the total variance as the homogeneous correlation is generally greater than 0.5. The542

mode anomalies are also strong above the subtropical gyre to the west and to the northeast, as543

anomalous circulation cells of opposite signs, though the pattern only captures a small fraction of544

the total variance of the wind stress in those regions. The instantaneous wind stress anomalies are545

also shown in panel b (green vectors) at times when APC1[∇× τ,τ] (t) = 1 (i.e. with zero phase),546

which approximately occur in the middle of each calendar year (panel e). At such times, the wind547

stress anomalies consist of an anticyclonic circulation over the western subtropical gyre and a548

cyclonic circulation in the northeast corner of the domain, and also consist of weak forcing to the549

east and over the equatorial region. At later times, when the phase of APC1[∇× τ,τ] progresses550

by 90◦, the instantaneous wind stress anomalies also rotate by ±90◦ depending on the polarity551

of the ellipses (cyclonic or anticyclonic). At these times, the wind stress anomalies are relatively552

weak in the west and north parts of the subtropical gyre, but are relatively large in the entire north553

equatorial region.554

The wind stress curl anomalies for this mode (panel a) consist mostly of a relatively strong555

zonally-elongated dipole with centers at about 5◦N and 19◦N, with phases consistent with the556

wind stress vector anomalies just described. The pole near 19◦N has a phase near -90◦ while557

the pole near 5◦N has a phase near 90◦, implying a differential Ekman pumping forcing over the558

tropical region at a quarter and three-quarter of the cycle of this mode. To the north, the impact of559

the curl for this mode is much weaker (correlation near 0.1-0.2) and exhibits a 180◦-out-of-phase560

dipole between the center of the subtropical gyre and its northeast corner.561

The overturning response to this mode is shown (panel c) with colored arrows the size of which562

correspond to the standard deviations of the response, and the directions of which correspond to563

the phases. The response is such that TB and TW are approximately in phase near ±180◦ which564

implies a negative transport anomaly below 1000 m and hence a strengthening of the MOC at565
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these latitudes. The response for T26 is offset compared to the two northern latitudes, with a566

phase near 135◦, and the response for TM is even further offset with a phase near 60◦. This567

arrangement of phase indicates primarily that the response at 16◦N is instantaneously of opposite568

sign to the responses at the other three latitudes. The phases also indicate that within a phase cycle569

the response exhibits a strengthening of the overturning first occurring near 42◦N, progressing570

south to eventually reaching 16◦N, one third of a cycle later. The magnitude of the transport571

response increases from north to south, 1.5 Sv for TB to 6.3 Sv for TM. The amount of variance572

of the transport time series explained by this mode (Table 5) also increases from north to south, at573

9.2% for TB to over 50% for T26 and TM.574

We hypothesize that the results for the transports are representative of an Ekman overturning575

in response to large-scale patterns of wind stress forcing, varying on seasonal time scales. In an576

OGCM, Jayne and Marotzke (2001) showed how, at 30◦N in the Pacific basin, the surface merid-577

ional Ekman transport anomalies are almost exactly compensated instantaneously by a transport578

calculated as the top-to-bottom vertical integral of the model velocities (after removal of near-579

surface Ekman velocities). To some extent, this type of barotropic adjustment was confirmed after580

the first year of observations of the meridional transport components at 26◦N (Kanzow et al. 2007).581

In the model of Jayne and Marotzke (2001), the spatial structure of the seasonal variability (defined582

as average January conditions minus average July conditions) of the overturning streamfunction583

is well reproduced by a near-surface Ekman layer and a depth-independent (but still horizontally584

varying) meridional velocity return flow field equal to the opposite of the surface Ekman trans-585

port divided by the ocean’s depth, as in the second term of Eq. (1). The time scales associated586

with the Ekman overturning are very short, on the order of an inertial period for the spin-up of587

Ekman transports, and on the order of a day (the time needed for barotropic waves to traverse588

a basin) for the barotropic adjustment of the depth-independent response (Jayne and Marotzke589
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2001; Willebrand et al. 1980). As a consequence of the spatial structures of wind forcing, and590

potentially of the geometry of ocean basins, Ekman overturning cells develop within basins with591

large-scale meridional structures which are quite distinct from the mean overturning cells (Jayne592

and Marotzke 2001; Sime et al. 2006). Furthermore, the vertical structure of these Ekman cells593

are such that an overturning transport between 1000 m and 4000 m, relative to 1000 m, will not594

only oppose in direction the surface Ekman transport, but will also exhibit substantial shear, with595

an amplitude depending on latitude (see as an example Figure 4 of Jayne and Marotzke (2001)596

and Figure 4 of Sime et al. (2006)). To reiterate, even if the near-instantaneous Ekman overturning597

at a given latitude manifests itself as a vertically-uniform return velocity at depth, the resulting598

deep transport on seasonal time scales may still be vertically sheared, and thus may constitute an599

overturning detectable by pressure gradients on basins’ boundaries.600

To test the hypothesis that ASVD1 for transports corresponds to an Ekman overturning like just601

described, we calculate the meridional Ekman transport as a function of latitude from the instan-602

taneous zonal wind stress anomalies shown in Fig. 8b (we use the analytic transform of the zonal603

wind stress for this mode, hence the result is an analytic meridional transport which contains phase604

information). North of 5◦N, we find that the magnitude of such Ekman transport is typically less605

than 0.4 Sv so it does not match in magnitude the overturning response for ASVD1. Yet, we606

plot the Ekman response with arbitrary constant value (Fig. 8c), and observe that the phases of607

the Ekman transport indicate a general pattern of northward transport between 10◦N and approx-608

imately 40◦N, and a southward transport between 40◦N and 50◦N. At a quarter cycle later for609

this mode, the phases of the meridional Ekman transport is rotated by 90◦ counterclockwise (not610

shown), implying little Ekman transport between 10◦N and 50◦N but some northward transport611

near 10◦N. We expect that a direct response of the deep overturning transports would generally612

be 180◦out-of-phase with the Ekman transports. This is not exactly what we observe but it would613
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suffice to displace southward by about 5◦ of latitude the overturning transports to make this picture614

consistent. It is possible that the northward tilt of the gyre boundary to the east, as well as the com-615

plicated bathymetry of the North Atlantic, are responsible for the mismatch between meridional616

Ekman flows induced by zonal stress and deep overturning transports. We still conclude that our617

limited observations are consistent with an Ekman-type of overturning, set up on seasonal time618

scales.619

2) MODAL RESPONSE TO NAO620

The second coupling mode, ASVD2, between wind stress and overturning transport (Fig. 9) is621

associated with the pattern of the North Atlantic Oscillation (NAO) for the wind stress. This is622

demonstrated by the significant correlation (ρ = 0.51) between the 30-day low-passed real part623

of APC2[∇× τ ,τ ] and the NAO index [obtained from the NOAA Climate Prediction Center624

(http://www.cpc.ncep.noaa.gov), Fig. 10], which is slightly larger when only October to April625

data are used for the computation (ρ = 0.58). The correspondence with the NAO is further demon-626

strated in Fig. 11 which shows composites of the wind stress vector and wind stress curl anomalies627

for NAO+ and NAO- daily indices on one hand, and positive and negative Re{APC2[∇×τ ,τ ]}628

on the other hand, for the time period of analysis. The two sets of composite anomaly maps629

clearly show similar patterns. In positive phases of the NAO and ASVD2, compared to the mean630

(Fig. 6), there are positive wind stress curl anomalies on the southern edge of the subtropical gyre631

and negative anomalies on the northern edge. The wind stress anomalies consist of an anomalous632

anticyclonic circulation centered above the northeast corner of the subtropical gyre and westward633

to southwestward anomalies on the southern edge of the subtropical gyre and above the north634

equatorial Atlantic. These wind stress anomaly patterns result in a northern shift of the mean wind635

stress pattern for that period.636
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The oceanic overturning transport response for ASVD2 (Fig. 9c) is typically weak for T26 (0.5 Sv637

standard deviation), with an absolute phase less than 90◦ implying a northward transport anomaly,638

thus a weakening of the overturning, for the wind patterns displayed in panels a and b. In contrast,639

the response is relatively strong for the other three transports and all have absolute phases larger640

than 90◦ which implies a common strengthening of the overturning at these latitudes. At times641

when APC2[T] has phase of zero and an amplitude 1, the response of TB is 3.9 Sv with 180◦642

phase, the response of TW is 3.3 Sv with 152◦ phase, and the response of TM is about 3.9 Sv with643

-149◦ phase. To investigate if this mode can correspond to an Ekman overturning, the phase of644

the predicted meridional Ekman transport from the zonal wind stress associated with ASVD2 is645

calculated and displayed in the same panel. The Ekman transports consist of flows with a positive646

northward component between approximately 13◦N and 40◦N (i.e with an absolute phase less647

than 90◦). Thus, a strengthening of overturning transports for TB, TW and TM are consistent with648

a compensation response to the Ekman near-surface flow, but is inconsistent with the very weak649

positive overturning response at 26◦N.650

The correlation between APC2[∇×τ ,τ ] and the NAO index suggests a possible alternate mech-651

anism for the forcing of deep overturning transports. NAO positive periods, like Re[APC2(∇×652

τ ,τ )] positive periods, are associated with a negative wind stress curl anomaly centered above the653

inter-gyre region between 35◦N to the west and 50◦N to the east, expected to spin an “inter-gyre654

gyre” anomalous anticyclonic circulation (Marshall et al. 2001). Alternatively, such anomalies655

can be seen as a meridional displacement of the mean circulation. We verify that this is the case656

for our observation period by calculating the weighted difference of ADT between positive and657

negative periods of Re[APC2(∇×τ ,τ )] (Fig. 12) after removing at each grid point a fit to a sinu-658

soidal function with annual frequency to minimize the impact of steric seasonality. The resulting659

ADT is depressed in the southern part of the subtropical gyre, and generally lifted in the northern660

30



part. Compared to the mean, this corresponds to a northward shift of the subtropical gyre, im-661

plying a possible spin up on short time scales of a barotropic Sverdrup circulation (e.g. Pedlosky662

1979). Ekman pumping induced by wind stress curl is balanced by meridional geostrophic flows,663

which have been demonstrated from GRACE observational data to project onto the OBP of the664

mid-latitude North Atlantic (Piecuch and Ponte 2014). A barotropic circulation would have no665

overturning impact in a flat bottom ocean with vertical walls. Yet, in the real ocean, the differ-666

ence of topography can induce vertically-sheared zonally-integrated transport, and thus might be667

responsible for our observations (typically vertically-uniform flow over deep regions and western668

boundary return flow over shallow regions) (Elipot et al. 2013; Yang 2015). The formal dynamical669

link between barotropic gyre circulation and the MOC has been shown to be via the torque of the670

OBP, a term arising both in the vertically integrated vorticity equation and the vorticity balance of671

the MOC (Yeager 2015). The amount of variance explained by ASVD2 is the strongest for the two672

northern latitudes (see Table 5), which is consistent with expectations of NAO-type of atmospheric673

patterns affecting regions outside of the tropics on interannual time scales.674

7. Summary and conclusions675

The aim of this study has been to assess the meridional coherence of the MOC from an obser-676

vational standpoint, and to identify the forcing of coherent variability. For this, we have derived677

comparable transport time series from observational arrays at four different latitudes. These trans-678

ports are determined from western boundary pressure gradients, leading to the calculation of the679

western boundary contribution to meridional overturning transport below and relative to 1000 m680

(Fig. 2). At 41◦N, 39◦N, and 26◦N, these time series were shown to be representative of the MOC681

on semiannual and longer time scales The resulting time series overlap by only 3.6 years, limiting682

this study to sub-annual to inter-annual time scales of variability.683
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Over their common length, the time series spectra (Fig. 3) do not reveal any outstanding common684

periodicity. Yet, a simple fit to sinusoidal oscillations with period of one year (Fig. 5) suggests that685

the western overturning is at its maximum at the beginning of May at 41◦N and 39◦N, is maximum686

at the beginning of August at 26◦N, and is maximum mid-October at 16◦N. While the sinusoidal687

fit are no proof of coherent variability, using an analytic EOF analysis, we find that the four time688

series do covary significantly between the annual and semi-annual periods (Fig. 4). This mode of689

variability explains a sizeable portion of the variability at individual latitudes (Table 5), and the690

arrangement of the phases is such that TB and TW are approximately in phase, T26 is in quadrature691

phase from TB and TW , and TM is further offset to be nearly out-of-phase from TB and TW .692

To investigate a possible common forcing for this mode of overturning covariance, we have con-693

sidered the analytic correlation between each transport time series and winds between 10◦N and694

60◦N in the North Atlantic. We identified striking common patterns of correlation with geographic695

centers that are not necessarily at the same latitudes as the transport time series. The application of696

analytic correlation also highlights the need to properly account for phase information. Applying a697

newly extended method of SVD analysis, which we have here called the Analytic SVD or ASVD,698

we identified two significant modes of covariance (Figs. 8 and 9). The first mode is a near-annual699

mode of oceanic overturning which we have interpreted to be an Ekman overturning in response700

to a large-scale pattern of wind forcing. The second mode is related to NAO-like patterns of winds701

over the North Atlantic Ocean (Figs. 10, 11, and 12), and we interpret the overturning response702

as being the result of a barotropic Sverdrup circulation which, when it interacts with topography,703

projects onto the overturning transports. This second mode had a centre of action at the boundary704

between the subtropical and subpolar gyres, forming the so-called inter-gyre gyre. In summary,705

the ASVD analysis with the wind stress and wind stress curl is able to explain more than 50%706

of the variance of each individual transport time series when the contributions from the first two707
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modes are summed (Fig. 13 and Table 5). The impact of the first seasonal mode is the strongest708

for the two southernmost overturning time series, and the impact of the second NAO-like mode is709

the strongest for the two most northerly time series.710

A limitation of the SVD method is that the patterns of transport and of wind stress are designed711

to be orthogonal, providing a constraint on the structure of second and higher modes which limits712

their ability to represent natural modes of variability, which may not share the same orthogonality713

properties. Another approach is to use the method of weather regimes which circumvents the714

caveat of orthogonality by clustering data to extract recurrent and quasi-stationary patterns. Barrier715

et al. (2014) used this method in a forced ocean model and also found that the MOC underwent716

a fast wind-driven response in the form of Ekman overturning cells, spanning wide ranges of717

latitudes, and delineated by the latitudes of Ekman transport convergence and divergence. Despite718

the limitations of modal analysis, we have been able to extend the standard SVD by using phase719

information and applying analytic methods. Considering the relative phases was key to explain a720

common response of the overturning at a discrete set of latitudes.721

Another limitation comes from the real nature of the observations. The hypothesized fast wind-722

driven barotropic response which we believe can explain our observed modes (Eden and Wille-723

brand 2001) is likely obscured by the baroclinic response that occurs on longer, non-instantaneous724

times scales, which should eventually modify the fast barotropic response (Anderson and Kill-725

worth 1977). Finally, our study ignores the eastern boundary contribution to the variability of the726

overturning which has been shown to be important on annual, or again seasonal, time scales (e.g.727

Zhao and Johns 2014a).728

Despite the strength of having comparable time series representative of MOC processes, an729

important restriction is the limited time span of the time series used. While the patterns and730

ocean responses identified here are statistically significant, longer time series could improve the731
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physical interpretation of the ocean response. TB has been extended through the continuation732

of the RAPID WAVE Rapid-Scotian Line for the time period 2008–2014 (Hughes et al. 2013),733

and observations at Line W have also continued through 2014, but the data are not yet available.734

Both the RAPID MOC and MOVE arrays are still on-going, and Fig. 2 shows the continuation735

of T26 and TM through 2011. An interesting and noticeable feature is that both T26 and TM show736

a low-frequency increase in the last half of 2009 followed by a decrease in the first half of 2010,737

corresponding to the exceptional decrease of the AMOC at 26.5◦N (McCarthy et al. 2012; Srokosz738

et al. 2012), suggesting a meridional coherence of this event between 26◦N and 16◦N. This in-739

phase relationship between these two latitudes does not appear to correspond to any of the two740

ASVD modes identified in this study, where T26 and TM are not in phase. The exceptional downturn741

at 26.5◦N was primarily due to a combination of anomalously negative Ekman transport, combined742

with an intensification of the southward return flow in the upper mid-ocean, reflected partly into743

the deeper layer (McCarthy et al. 2012), and also captured by T26 (Elipot et al. 2014, their Fig. 2).744

Whether the same processes occurred at 16◦N and can be explained by a meridional coherent745

response to atmospheric forcing requires further investigation.746
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APPENDIX A756

Analytic covariance and correlation757

Consider two zero-mean continuous variables x(t) and y(t), and their two analytic transforms x+(t)758

and y+(t), respectively. Since analytic variables are complex-valued, the definition of the cross759

covariance function between x+(t) and y+(t) is the expectation of the Hermitian product, which760

is the product of the complex conjugate of the first variable and of the second variable (other761

conventions may be chosen but one of the two variables needs to be conjugated),762

Rx+y+(τ) = E[x∗+(t)y+(t + τ)]. (A1)

From the Wiener-Khinchine theorem, the expression above can be re-written as763

Rx+y+(τ) =
∫ +∞

−∞

Sx+y+( f )ei2π f τd f , (A2)

where Sx+y+( f ) is the cross-spectrum of x+(t) and y+(t), which can be obtained from the cross-764

spectrum Sxy( f ) of x(t) and y(t) (e.g. Bendat and Piersol 1986, Chap. 13):765

Sx+y+( f ) =



4Sxy( f ) for f > 0

Sxy( f ) for f = 0

0 for f < 0

. (A3)

The cross-spectrum Sxy( f ) is a complex-valued function of frequency f which can be written by766

convention (Jenkins and Watts 1968)767

Sxy( f ) = Lxy( f )− iQxy( f ) = |Sxy|eiθxy( f ), (A4)
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which defines the coincident or co-spectrum Lxy( f ) and the quadrature or quad-spectrum Qxy( f ),768

as well as the amplitude cross-spectrum and the phase cross-spectrum769

|Sxy( f )|=
√

L2
xy( f )+Q2

xy( f ) (A5)

θxy( f ) = arctan
(
−

Qxy

Lxy

)
. (A6)

Thus, assuming that the function Sx+y+( f ) is absolutely continuous for f ≥ 0770

Rx+y+(τ) =
∫ +∞

0
4Sxy( f )ei2π f τd f (A7)

= 4
∫ +∞

0
|Sxy( f )|eiθxy( f )ei2π f τd f , (A8)

and, at zero lag,771

Rx+y+(0) = 4
∫ +∞

0
|Sxy( f )|eiθxy( f )d f . (A9)

The analytic cross correlation coefficient at zero lag between x(t) and y(t) is772

ρx+y+(0) =
Rx+y+(0)√

Rx+x+(0)Ry+y+(0)
. (A10)

Since Rx+x+(0) and Ry+y+(0) are real-valued and correspond to variances, the phase of ρx+y+(0) is773

identical to the phase of Rx+y+(0). Thus, according to (A9), this phase is a power-weighted sum774

of all phases of the cross-spectrum of x(t) and y(t). Figure 14 is an illustration of this, showing775

a cross-spectral analysis between the transport TB and the zonal component of wind stress at the776

location (37.875◦W, 31.125◦N) where the analytic correlation between these two quantities is the777

largest (Fig. 7). The phase of the analytic correlation is -51.55◦, which is the phase of the sum778

of the complex-valued cross-spectrum from the zero frequency up to approximately 0.02 cpd, the779

range of frequencies where the cross-spectrum has the most power.780

APPENDIX B781

Analytic Singular Value Decomposition (ASVD) analysis782
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We describe here the analytic SVD method (ASVD). We consider a first, or left, complex-valued783

field variable {xt, j} observed at M locations ( j = 1,2, . . . ,M ) and N(t = 1, . . . ,N) discrete times.784

This field variable is complex-valued because the analytic transform (4) has been applied to each785

time series. If the field variable is complex-valued for another reason than calculating the analytic786

transform, then the interpretations of the mathematical method presented here are not quite valid.787

Each location j defines a N×1 data column vector,788

x j = [x j(∆t), x j(2∆t), ..., x j(N∆t)]T, (B1)

where ∆t is the time interval of the time series and (.)T is the transpose matrix operation as per789

usual. The M column vectors are subsequently combined in a N×M data matrix790

X = [x1, x2, . . . , xM]. (B2)

We also consider a second, or right, complex-valued field variable {yt,k}, observed at the same791

N discrete times, and at P locations (k = 1,2, . . . ,P). The P locations of the right field are not792

necessarily equal in number to, or coinciding in space with, the M locations of the left field. Thus,793

we have a second data matrix of dimensions N×P794

Y = [y1, y2, . . . , yP], (B3)

constructed analogously to X. Without further loss of generality, it is hereeafter assumed that795

P ≤M. Assuming that all time series have zero mean for simplicity, the M×P cross-covariance796

matrix between field variables {xt, j} and {yt,k} is797

CXY ≡ E
[
XHY

]
, (B4)

where E[.] the expectation operator, and (.)H is the conjugate transpose matrix operation. The798

( j,k) component of CXY is799

E
[
x∗j(t)yk(t)

]
= Rx jyk(0), (B5)

37



where (.)∗ is the conjugate operator and Rx jyk(0) the cross covariance function at zero lag between800

x j(t) and yk(t). Note that in practice the sample cross-covariance matrix is801

C̃XY = XHY/(N−1), (B6)

for which the ( j,k) entry is802

Ẽ[x∗j(t)yk(t)] =
1

N−1

N

∑
n=1

x∗j(n∆t)yk(n∆t). (B7)

The truncated SVD decomposition of the cross-covariance matrix (B4) is803

CXY = UΛVH (B8)

where U is M×P, Λ is P×P, and V is P×P. If we write804

U = [u1, u2, . . . , uP], (B9a)

V = [v1, v2, . . . , vP], (B9b)

then the k-th column vector uk is the singular vector for {x}, also called left (spatial) pattern, and805

the k-th column vector vk is the singular vector for {y}, also called right pattern, both for the k-th806

ASVD mode. In this analytic case, U and V are both complex-valued matrices. U and V are unitary807

matrices, which means that their columns are pairwise orthonormal:808

UHU = I, (B10a)

VHV = I. (B10b)

The matrix Λ is strictly diagonal, and on its diagonal are found the P real-valued and positive809

singular values λk usually arranged in decreasing order. The real-valued k-th ratio810

SFC =
λk

∑
P
j=1 λ j

(B11)
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is the squared fraction covariance of mode k, usually expressed in percentage, and is interpreted as811

the amount of the total (cross-co)variance which is captured by each coupling mode, characterized812

in space by the singular vectors.813

The singular vectors provide statistical spatial patterns leading to coupled modes of covariance814

between the left and right fields. These patterns are modulated in time by the expansion coefficients815

time series or Analytic Principal Components time series (APC). For each mode k, the complex-816

valued ak(t) and bk(t) APC time series for the left and right fields respectively, are found in the817

column vectors obtained by projecting the data matrices onto their respective singular vectors818

ak = Xuk = [ak(∆t), ak(2∆t), ..., ak(N∆t)]T (B12a)

bk = Yvk = [bk(∆t), bk(2∆t), ..., bk(N∆t)]T. (B12b)

Those P vectors are combined in the N×P PC matrices819

A = XU = [a1, a2, . . . , aP] (B13a)

B = YV = [b1, b2, . . . , bP]. (B13b)

The APC time series can be written using polar notations820

ak(t) = αk(t)eiχk(t) (B14a)

bk(t) = βk(t)eiφk(t) (B14b)

where αk(t) and βk(t) are absolute value, or positive amplitude time series, and χk(t) and φk(t) are821

phase time series, defined by822

α
2
k (t) = Re2 [ak(t)]+ Im2 [ak(t)] (B15a)

χk(t) = tan−1
{

Im [ak(t)]
Re [ak(t)]

}
, (B15b)
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and similarly for βk(t) and φk(t). In some specific cases,823

d
dt

arg[ak(t)] =
dχk(t)

dt
≡ 2π fak(t) (B16a)

d
dt

arg[bk(t)] =
dφk(t)

dt
≡ 2π fbk(t) (B16b)

can define instantaneous frequencies fak(t) and fbk(t) for mode k. For the ASVD method, note824

that ak(t) and bk(t) are analytic time series which implies that their Fourier components are null825

for negative frequencies. Using (B13), (B8) and the unitary property (B10), direct calculations826

yield827

E
[
AHB

]
= Λ. (B17)

Since Λ is diagonal, non-negative, and real, this result implies that for a given mode k, the APC828

time series of the left and right fields are in phase on the time average. Additionally, as in stan-829

dard (non complex-valued) SVD analysis, it implies that a APC time series of the left field for830

a given mode is uncorrelated with all the APC time series of the right field for the other modes.831

The strength of the coupling for mode k between the two fields is measured by the correlation832

coefficient833

rk =
E[ak

∗bk]√
E[ak

∗ak]E[bk
∗bk]

=
λk√

E[ak
∗ak]E[bk

∗bk]
(B18)

which is thus real-valued.834

In conclusion, the data matrices, that is the reconstructed variability for any mode k ≤ P, are835

obtained by multiplying the k-th APC time series by the conjugates of the k-th singular vectors:836

Xk = ak(uk)
H (B19a)

Yk = bk(vk)
H. (B19b)
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Thus, as we do in this study, it is advantageous to represent the spatial structure of a given ASVD837

mode by displaying the conjugate of a singular vector and the corresponding complex-valued APC838

time series.839

One way of presenting results from SVD analyses in general is to compute the homogeneous840

covariance vectors or “maps” between each field variable and its respective APC time series.841

Using (B12), the M×1 and P×1 homogeneous covariance vectors for the left and right fields for842

mode k are (Bretherton et al. 1992)843

E
[
XHak

]
= CXX uk (B20a)

E
[
YHbk

]
= CYY vk (B20b)

where CXX and CYY are the auto covariance matrices of the left and right field respectively. The844

homogeneous covariance vectors become homogeneous correlation vectors when the left hand845

sides of (B20) are calculated after normalizing each column of X and Y, as well as normalizing846

ak and bk. The homogeneous correlation vectors can also be calculated from the right hand sides847

of (B20) if they are respectively divided by
√

Var[ak(t)] and
√

Var[bk(t)] and CXX and CYY are848

correlation matrices.849

Alternatively, one can choose to compute the covariance vectors between each field variable and850

the APC time series of the other field, which are called the heterogeneous covariance vectors or851

maps. By using (B12), noting that CXY = ∑
P
k=1λkuk(vk)

H, and the orthogonality property (B10) of852

the singular vectors, the M× 1 and P× 1 heterogeneous covariance vectors for the left and right853

field for mode k are found to be854

E
[
XHbk

]
= λkuk, (B21a)

E
[
YHak

]
= λkvk. (B21b)
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The heterogeneous covariance vectors become heterogeneous correlation vectors when the left855

hand sides of (B21) are calculated after normalizing each column of X and Y, as well as normal-856

izing bk and ak. The heterogeneous correlation vectors can also be calculated from the right hand857

sides of (B21) if they are respectively divided by
√

Var[bk(t)] and
√

Var[ak(t)] and the λk are the858

singular vectors of the cross correlation matrix CXY . In conclusion, the left heterogeneous co-859

variance vector is proportional to the left singular vector, and the right heterogeneous covariance860

vector is proportional to the right singular vector. Representing graphically the heterogeneous co-861

variance (or correlation) vectors has the advantage of showing both the pattern of singular vectors862

and the strength of the linear relationship between the two fields. Note that if the coupling coeffi-863

cient (B18) for a given mode is strong, the homogeneous and heterogeneous maps can appear very864

similar. For the case of an EOF analysis where Y ≡ X the homogeneous and heterogeneous maps865

are the same.866

The components of the heterogeneous covariance vectors (B21) for the left and right field vari-867

ables have the same phases as the components of the singular vectors of the left and right field868

variables. This means that the phase patterns of the singular vectors of the left (right) field variable869

show the time-average phases between the left (right) field variable and the APC time series of870

the right (left) field variable. In contrast, (B20) show that there can exist any average phase of871

covariance between the left (right) field variable and the left (right) APC time series.872

In section 6 we conduct an analytic SVD analysis between the transport variables (right field)873

and the wind stress vector (left field) which is a bivariate variable. We apply the method described874

above but we decompose the bivariate field variable into its time-domain rotary components (Lilly875

and Olhede 2010), as opposed to its Cartesian (zonal and meridional) components, to ultimately876

reconstruct elliptical modes of motions of the wind stress. This reconstruction is described in the877

appendix of Elipot and Beal (2015).878
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TABLE 1. Estimated parameters for frequency spectrum marginal Matèrn model function of frequency ν ,

S(ν) = α2
1/(α

2
2 +ν2)α3

1099

1100

TB TW T26 TM

α1 0.1025 0.1197 0.5811 0.4077

α2 0.0522 0.1498 0.0210 0.0248

α3 1.8400 2.7311 1.0402 1.2706
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TABLE 2. Correlation ρ and analytic correlation ρ+ (absolute value, phase in degree) between the 12-h step

transport time series (above diagonal of each sub-table) and 3-month lowpassed time series (below diagonal),

and with the NAO index. A negative phase for ρ+ indicates that the variable in the column lags the variable in

the row by the corresponding amount of a 360◦ cycle. Significant correlation at the 95% confidence level are

displayed in bold font. The significance for ρ is assessed from a two-tail test, the significance for ρ+ from a

one-tail test.

1101

1102

1103

1104

1105

1106

ρ TB TW T26 TM NAO

TB – 0.18 -0.02 0 -0.18

TW 0.59 – -0.04 0 -0.09

T26 0.1 0.09 – 0.08 0.11

TM 0 0 0.09 – -0.14

NAO -0.26 -0.25 0.31 -0.14 –

ρ+

TB – 0.19, -15.5◦ 0.07, -106.3◦ 0.03, -86.7◦ 0.17, -136.5◦

TW 0.49, -2.7◦ – 0.27, -98.6◦ 0.06, -89.5◦ 0.12, -124.0◦

T26 0.34, 70.6◦ 0.51, 80.9◦ – 0.24, -69.5◦ 0.08, -11◦

TM 0.14, 97.4◦ 0.09, 81.3◦ 0.41, 77.0 ◦ – 0.10, -163.0◦

NAO 0.20, 155.9◦ 0.37, 117.7◦ 0.23, 12.3◦ 0.15, 134.1◦ –
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TABLE 3. Amplitude, phase and fraction of variance of the annual and semi-annual fits to the oceanic over-

turning transport time series for the model Tj(t) = A j cos(2πνt +Φ j). The phase is relative to the time origin

set to January 1. The fraction of variance explained is listed for the 12-h time series and 3-month lowpassed

time series. The bottom part of the table gives half of the peak-to-peak amplitude of the sum of the annual and

semi-annual cycles and the fraction of variance explained by this sum.

1107

1108

1109

1110

1111

Annual

Frac. Var. (%)

A j (Sv) Φ j 12-h 3-month

TB 0.94 67◦ 1.7 6.6

TW 1.70 63◦ 3.4 18.9

T26 1.84 -29◦ 5.1 20

TM 3.62 -101◦ 3.5 18.2

Semi-annual

Frac. Var. (%)

A j (Sv) Φ j 12-h 3-month

TB 1.08 163◦ 2.2 12.5

TW 1.25 166◦ 1.8 10.2

T26 1.93 162◦ 5.6 23.4

TM 4.11 84◦ 14.1 23.2

Annual + semi-annual

Frac. Var. (%)

half peak-to-peak (Sv) 12-h 3-month

TB 1.71 3.9 18.6

TW 2.47 5.1 28.7

T26 3.20 11.8 47.4

TM 6.82 27.6 45.1
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TABLE 4. Eigen values (γ) and singular values (λ ) of the AEOF and ASVD analyses for the 4 respective

modes of each analysis. The “Prob.” colums list the probability of obtaining an eigen value or a singular

value from the simulated data as large as or larger than from the observational data. A zero percent probability

indicates that no value as large were obtained with the simulated data.

1112

1113

1114

1115

AEOF ASVD[∇×τ ,τ ]

Mode γ Prob. (%) λ Prob.(%)

1 1.43 0 11.91 0

2 1.08 7.62 8.85 0

3 0.85 100 4.38 52.06

4 0.63 100 3.20 97.43
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TABLE 5. Amount of variance (in percentage) after applying a 3-month lowpass filter explained by principal

components from the Analytic EOF analysis and from the Analytic SVD analyses with ∇×τ and τ .

1116

1117

TB TW T26 TM

AEOF1 19.1 47.9 55.7 20.6

[∇×τ ,τ ]

ASVD1 9.2 22.6 50.2 54.7

ASVD2 59.2 33.7 4.1 17.1

ASVD1+ASVD2 65.8 51.5 52.4 77.5
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Fig. 1. Western North Atlantic bathymetry and locations of western boundary arrays used to de-1119

rive western boundary overturning transports. On the left panel the black longitude-latitude1120

boxes delineate the close-ups on the right; from north to south, these are RAPID WAVE line1121

B, Woods Hole line W, RAPID-MOC/MOCHA (west moorings only), and MOVE array1122

(west moorings only). Bathymetry data are from Smith and Sandwell (1997) topography1123

database version 13.1. . . . . . . . . . . . . . . . . . . . . 621124

Fig. 2. Overturning transport anomaly time series TB, TW , T26, and TM , successively offset by -301125

Sv. The gray curves are 12-h time series, the black curves are 3-month lowpassed time series1126

for the common time period of length 1259.5 days used for the analyses. The red curves are1127

the real part of the 3-month lowpassed projections of the Analytic first mode (AEOF1). The1128

blue curves are the sum of the fits to annual and semi-annual cycles. . . . . . . . . 631129

Fig. 3. Spectral density functions of the overturning transport time series. These estimates were1130

computed for the common time period of the time series (1259.5 days). First Slepian taper1131

unitaper estimates are the light gray curves. Their associated Matérn model fits SM(ν) =1132

α2
1/(α

2
2 +ν2)α3 are the heavy black curves. Seven Slepian tapers multitaper estimates are1133

the dark gray curves. The fits to the Matérn model are conducted in the [1/1259.5,1/0.5] cpd1134

range. The parameters of the fits are listed in Table 1. The unitaper and multitaper estimates1135

have been corrected for the expected value of a log χ2
2 . The asymmetric 95% confidence1136

intervals for the unitaper and multitaper estimates are also drawn in the corresponding colors. . 641137

Fig. 4. First mode of an Analytic Empirical Orthogonal Function (AEOF) analysis of the transport1138

time series. a) Conjugate of the first complex eigen vector (AEOF1). The entries of AEOF11139

are complex numbers, represented here as vectors in a complex plane and scaled in absolute1140

value to represent a transport in Sv as indicated by the scale of the abscissa when the absolute1141

value of APC1 in panel b takes the value 1. The angle of the vector from the right direction1142

correspond to the complex argument. The origin of each vector is indicated by a small1143

open circle. A clockwise angle from a first eigen vector entry to a second indicates that the1144

first leads the second. All phases of the eigen vector entries and of the Analytic PC1 time1145

series (b and c panels) were offset to align the eigen vector entry for TB with a 180◦ phase1146

corresponding to a southward transport at Line B. b) Amplitude of the analytic PC1 (APC1)1147

associated with AEOF1 (absolute value of expansion coefficient time series of AEOF1). c)1148

Phase of APC1. The black lines in b) and c) are the 3-month lowpass filtered time series.1149

d) PC1 Power spectral density computed with a multitaper spectral estimate with 7 Slepian1150

tapers. The vertical dashed line correspond to 1/27.7 cpd, the first moment of the spectrum,1151

equivalent to the energy-weighted average frequency. . . . . . . . . . . . . 651152

Fig. 5. a) Annual, b) semi-annual and c) annual plus semi-annual sinusoidal cycles fitted to the four1153

transport time series. . . . . . . . . . . . . . . . . . . . . 661154

Fig. 6. (a) Mean wind stress for the common period of overturning transport observations 22 August1155

2004 to 8 April 2008. Every other 5 data points of the CCMP grid are shown. (b) Wind stress1156

standard deviation ellipses. Note the two different scales used. (c) Mean wind stress curl.1157

The solid black curve is the zero contour of the mean dynamic topography CNES CLS091158

v1.1. (d) Standard deviation of wind stress curl. . . . . . . . . . . . . . 671159

Fig. 7. Analytic correlation ρ+ between the transport time series (TB, TW , T26, and TM in the1160

columns) and the zonal wind stress (τx first row), the meridional wind stress (τy second1161

row) and the wind stress curl (∇×τ third row). ρ+ is represented as a hue-saturation-value1162

color, for which the value is proportional to the absolute value, the hue represents the phase,1163
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and the saturation is kept at 1.The maximum absolute value of ρ+ east of 75◦W for each1164

panel (written at each southwest corner) is assigned the maximum color value of 1 and all1165

other absolute values are accordingly scaled. A zero absolute value of ρ+ therefore appears1166

in black. The areas where the absolute value of the correlation is significant at the 95%1167

confidence are enclosed by gray contours. The horizontal white dashed lines indicate the1168

latitude of each array. . . . . . . . . . . . . . . . . . . . . 691169

Fig. 8. Mode 1 of ASVD analysis between wind stress (τ ) and wind stress curl (∇× τ ) on one1170

hand (left field), and western transport time series (T ) on the other hand (right field). (a)1171

Conjugate of the singular vector for mode 1 for ∇×τ (ASVD1∗, color hue for phase and1172

color value for amplitude after histogram equalization as indicated below panel) and absolute1173

value of the homogeneous correlation vector (labeled contours at 0.1 interval). SFC=42% is1174

the squared fraction covariance explained by mode 1. (b) Singular vector for τ for ASVD11175

represented using instantaneous ellipse hodographs after rescaling the singular vector by the1176

standard deviation of the wind stress. These ellipses also represent the variance ellipses for1177

this mode. Counter-clowkwise (cyclonic) ellipses are drawn with dashed lines and clockwise1178

(anticyclonic) with solid lines. The green arrows show the direction of the wind stress when1179

the absolute value of APC1 is 1 and its phase is zero. (c) Vectors representing the conjugate1180

of the singular vector for transports, with the phase indicated by both the color and the angle1181

from the right direction. The origins of the vectors correspond to the latitude of each array1182

in panel (b). The gray arrows correspond to the phase of meridional Ekman transports (here1183

plotted with a constant value) calculated from the zonal wind stress anomalies shown in1184

green in panel (b). (d) Amplitude and (e) phase of 30-day low-passed normalized PC time1185

series (APC1) for ∇× τ and τ (black) and transports (gray). The coupling correlation1186

coefficient is r = 0.51. . . . . . . . . . . . . . . . . . . . . 711187

Fig. 9. Same as Fig. 8 but for mode 2 of ASVD analysis between wind stress (τ ) and wind stress1188

curl (∇×τ ) on one hand (left field), and western transport time series (T ) on the other hand1189

(right field). . . . . . . . . . . . . . . . . . . . . . . . 721190

Fig. 10. Real part of the principal component time series (30-day low-passed) of the first mode of1191

the ASVD analysis between wind stress and overturning transports (Re{APC2[∇×τ ,τ ]}),1192

and normalized 30-day low-passed NAO index time series. . . . . . . . . . . 731193

Fig. 11. Composite anomaly maps of normalized wind stress (arrows) and wind stress curl (shading1194

as indicated by the colorbar) for positive and negative phases of the NAO index and positive1195

and negative phases of Re[APC2(∇×τ ]. In each panel, an arrow indicates a normalized1196

wind stress vector anomaly of amplitude 0.5, and the thin black line is the zero contour of1197

the mean dynamic topography CNES CLS09 v1.1. . . . . . . . . . . . . 741198

Fig. 12. Difference between de-seasoned Absolute Dynamic Topography weighted composite map1199

when Re{APC2[∇ × τ ,τ ]}> 0 and weighted composite map when Re{APC2[∇ ×1200

τ ,τ ]}< 0 . The thin black line is the zero contour of the mean dynamic topography CNES1201

CLS09 v1.1 separating the subtropical gyre from the subpolar gyre. . . . . . . . . 751202

Fig. 13. Overturning transport anomaly time series (T), and the real parts of their respective first two1203

modal components and sums from the ASVD analysis with ∇×τ and τ . The time series1204

are plotted after applying a 30-day lowpass filter, and successively offset by -20 Sv. . . . . 761205

Fig. 14. Cross-spectral analysis between transport TB and zonal wind stress at 37.875◦W, 31.125◦N.1206

Top: Power spectral densities of the real part and imaginary part of the cross-1207

spectrum Sxy and of the amplitude cross-spectrum |Sxy|. Bottom: Phase spectrum1208

(Angle[Sxy( f )]) and phase of the cumulative frequency integral from 0 of the cross-spectrum1209

60



(Angle[
∫

f Sxy(d)d f ]) . In both panels, vertical green dashed lines indicate the frequencies1210

corresponding to the periods of 1 year and 6, 3, 2 and 1 month. . . . . . . . . . 771211

61



80˚W 70˚W 60˚W 50˚W

10˚N

15˚N

20˚N

25˚N

30˚N

35˚N

40˚N

45˚N

50˚N

−6000 −4000 −2000 0

Depth (m)
61˚W 60˚W

16˚N

17˚N
MOVE

RAPID MOC

77˚W 76˚W

26˚N

27˚N

WHOI Line W

69˚W 66˚W

38˚N

39˚N

40˚N

RAPID WAVE Line B

62˚W 60˚W

42˚N

43˚N

FIG. 1. Western North Atlantic bathymetry and locations of western boundary arrays used to derive western

boundary overturning transports. On the left panel the black longitude-latitude boxes delineate the close-ups

on the right; from north to south, these are RAPID WAVE line B, Woods Hole line W, RAPID-MOC/MOCHA

(west moorings only), and MOVE array (west moorings only). Bathymetry data are from Smith and Sandwell

(1997) topography database version 13.1.
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gray curves. Their associated Matérn model fits SM(ν) = α2
1/(α

2
2 + ν2)α3 are the heavy black curves. Seven

Slepian tapers multitaper estimates are the dark gray curves. The fits to the Matérn model are conducted in

the [1/1259.5,1/0.5] cpd range. The parameters of the fits are listed in Table 1. The unitaper and multitaper

estimates have been corrected for the expected value of a log χ2
2 . The asymmetric 95% confidence intervals for
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FIG. 4. First mode of an Analytic Empirical Orthogonal Function (AEOF) analysis of the transport time

series. a) Conjugate of the first complex eigen vector (AEOF1). The entries of AEOF1 are complex numbers,

represented here as vectors in a complex plane and scaled in absolute value to represent a transport in Sv as

indicated by the scale of the abscissa when the absolute value of APC1 in panel b takes the value 1. The angle of

the vector from the right direction correspond to the complex argument. The origin of each vector is indicated

by a small open circle. A clockwise angle from a first eigen vector entry to a second indicates that the first leads

the second. All phases of the eigen vector entries and of the Analytic PC1 time series (b and c panels) were

offset to align the eigen vector entry for TB with a 180◦ phase corresponding to a southward transport at Line B.

b) Amplitude of the analytic PC1 (APC1) associated with AEOF1 (absolute value of expansion coefficient time

series of AEOF1). c) Phase of APC1. The black lines in b) and c) are the 3-month lowpass filtered time series.

d) PC1 Power spectral density computed with a multitaper spectral estimate with 7 Slepian tapers. The vertical

dashed line correspond to 1/27.7 cpd, the first moment of the spectrum, equivalent to the energy-weighted

average frequency.
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FIG. 6. (a) Mean wind stress for the common period of overturning transport observations 22 August 2004
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ellipses. Note the two different scales used. (c) Mean wind stress curl. The solid black curve is the zero contour

of the mean dynamic topography CNES CLS09 v1.1. (d) Standard deviation of wind stress curl.
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FIG. 7. Analytic correlation ρ+ between the transport time series (TB, TW , T26, and TM in the columns) and

the zonal wind stress (τx first row), the meridional wind stress (τy second row) and the wind stress curl (∇×τ

third row). ρ+ is represented as a hue-saturation-value color, for which the value is proportional to the absolute

value, the hue represents the phase, and the saturation is kept at 1.The maximum absolute value of ρ+ east of

75◦W for each panel (written at each southwest corner) is assigned the maximum color value of 1 and all other

absolute values are accordingly scaled. A zero absolute value of ρ+ therefore appears in black. The areas where

the absolute value of the correlation is significant at the 95% confidence are enclosed by gray contours. The

horizontal white dashed lines indicate the latitude of each array.
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FIG. 8. Mode 1 of ASVD analysis between wind stress (τ ) and wind stress curl (∇×τ ) on one hand (left

field), and western transport time series (T ) on the other hand (right field). (a) Conjugate of the singular vector

for mode 1 for ∇×τ (ASVD1∗, color hue for phase and color value for amplitude after histogram equalization

as indicated below panel) and absolute value of the homogeneous correlation vector (labeled contours at 0.1

interval). SFC=42% is the squared fraction covariance explained by mode 1. (b) Singular vector for τ for

ASVD1 represented using instantaneous ellipse hodographs after rescaling the singular vector by the standard

deviation of the wind stress. These ellipses also represent the variance ellipses for this mode. Counter-clowkwise

(cyclonic) ellipses are drawn with dashed lines and clockwise (anticyclonic) with solid lines. The green arrows

show the direction of the wind stress when the absolute value of APC1 is 1 and its phase is zero. (c) Vectors

representing the conjugate of the singular vector for transports, with the phase indicated by both the color and

the angle from the right direction. The origins of the vectors correspond to the latitude of each array in panel

(b). The gray arrows correspond to the phase of meridional Ekman transports (here plotted with a constant

value) calculated from the zonal wind stress anomalies shown in green in panel (b). (d) Amplitude and (e) phase

of 30-day low-passed normalized PC time series (APC1) for ∇×τ and τ (black) and transports (gray). The

coupling correlation coefficient is r = 0.51.
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FIG. 9. Same as Fig. 8 but for mode 2 of ASVD analysis between wind stress (τ ) and wind stress curl (∇×τ )

on one hand (left field), and western transport time series (T ) on the other hand (right field).
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FIG. 10. Real part of the principal component time series (30-day low-passed) of the first mode of the ASVD

analysis between wind stress and overturning transports (Re{APC2[∇×τ ,τ ]}), and normalized 30-day low-

passed NAO index time series.
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FIG. 11. Composite anomaly maps of normalized wind stress (arrows) and wind stress curl (shading as

indicated by the colorbar) for positive and negative phases of the NAO index and positive and negative phases

of Re[APC2(∇×τ ]. In each panel, an arrow indicates a normalized wind stress vector anomaly of amplitude

0.5, and the thin black line is the zero contour of the mean dynamic topography CNES CLS09 v1.1.
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FIG. 12. Difference between de-seasoned Absolute Dynamic Topography weighted composite map when

Re{APC2[∇×τ ,τ ]}> 0 and weighted composite map when Re{APC2[∇×τ ,τ ]}< 0 . The thin black line

is the zero contour of the mean dynamic topography CNES CLS09 v1.1 separating the subtropical gyre from the

subpolar gyre.
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FIG. 13. Overturning transport anomaly time series (T), and the real parts of their respective first two modal

components and sums from the ASVD analysis with ∇×τ and τ . The time series are plotted after applying a

30-day lowpass filter, and successively offset by -20 Sv.
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FIG. 14. Cross-spectral analysis between transport TB and zonal wind stress at 37.875◦W, 31.125◦N. Top:

Power spectral densities of the real part and imaginary part of the cross-spectrum Sxy and of the amplitude cross-

spectrum |Sxy|. Bottom: Phase spectrum (Angle[Sxy( f )]) and phase of the cumulative frequency integral from 0

of the cross-spectrum (Angle[
∫

f Sxy(d)d f ]) . In both panels, vertical green dashed lines indicate the frequencies

corresponding to the periods of 1 year and 6, 3, 2 and 1 month.
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