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Abstract

Coral reefs are dynamic systems whose composition is highly influenced by unpredictable

biotic and abiotic factors. Understanding the spatial scale at which long-term predictions

of reef composition can be made will be crucial for guiding conservation efforts. Using a

22-year time series of benthic composition data from 20 reefs on the Kenyan and Tanzanian

coast, we studied the long-term behaviour of Bayesian vector autoregressive state-space

models for reef dynamics, incorporating among-site variability. We estimate that if there

were no among-site variability, the total long-term variability would be approximately one

third of its current value. Thus among-site variability contributes more to long-term

variability in reef composition than does temporal variability. Individual sites are more

predictable than previously thought, and predictions based on current snapshots are

informative about long-term properties. Our approach allowed us to identify a subset of

possible climate refugia sites with high conservation value, where the long-term probability

of coral cover ≤ 0.1 was very low. Analytical results show that this probability is most

strongly influenced by among-site variability and by interactions among benthic

components within sites. These findings suggest that conservation initiatives might be

successful at the site scale as well as the regional scale.

Keywords

vector autoregressive model, state-space model, stochastic dynamics, community

composition, spatial variability, temporal variability, coral reef, Bayesian statistics
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Introduction

“Probabilistic language based on stochastic models of population growth” has been

proposed as a standard way to evaluate conservation and management strategies (Ginzburg

et al., 1982). For example, a stochastic population model can be used to estimate the

probability of abundance falling below some critical level. Such population viability

analyses are widely used, and may be reasonably accurate if sufficient data are available

(Brook et al., 2000). In principle, the same approach could be used for communities,

provided that a sufficiently simple model of community dynamics can be found.

A good candidate for such a model is the vector autoregressive model of order 1 or VAR(1)

(Lütkepohl, 1993; Ives et al., 2003). This is a discrete-time model for the vector of log

abundances of a set of species or groups, which includes environmental stochasticity and

may include environmental explanatory variables. It makes the simplifying assumptions

that inter- and intraspecific interactions can be represented by a linear approximation on

the log scale, and that future abundances are conditionally independent of past

abundances, given current abundances. Where possible, it is desirable to use a state-space

form of the VAR(1) model, which also includes measurement error (Lindegren et al., 2009;

Mutshinda et al., 2009).

Hampton et al. (2013) review applications of VAR(1) models in community ecology, which

include studying the stability of freshwater plankton systems (Ives et al., 2003), designing

adaptive management strategies for the Baltic Sea cod fishery (Lindegren et al., 2009), and

estimating the contributions of environmental stochasticity and species interactions to

temporal fluctuations in abundance of moths, fish, crustaceans, birds and rodents

(Mutshinda et al., 2009). Recently, VAR(1) models have been applied to the dynamics of

the benthic composition of coral reefs (Cooper et al., 2015; Gross and Edmunds, 2015),

using a log-ratio transformation (Egozcue et al., 2003) rather than a log transformation, to

deal with the constraint that proportional cover of space-filling benthic groups sums to 1.

Coral reefs are dynamic systems influenced by both deterministic factors such as
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interactions between macroalgae and hard corals (Mumby et al., 2007), and stochastic

factors such as temperature fluctuations (Baker et al., 2008) and storms (Connell et al.,

1997). In general, high coral cover is considered a desirable state for a coral reef, and there

is some evidence that coral cover of at least 0.1 is important for long-term maintenance of

reef function (Kennedy et al., 2013; Perry et al., 2013; Roff et al., 2015). Thus, coral cover

of 0.1 might be an appropriate threshold against which to evaluate reef conservation

strategies, and VAR(1) models can be used to estimate the probability of coral cover falling

to or below this threshold (Cooper et al., 2015).

There is evidence for systematic differences in reef dynamics among locations. For

example, on the Great Barrier Reef, coral cover has declined more strongly at southern and

central than at northern sites (De’ath et al., 2012), and in the U.S. Virgin Islands, VAR(1)

models showed that sites differed in their sensitivity to disturbance and speed of recovery

(Gross and Edmunds, 2015). Some sites in a region may therefore represent coral refugia,

where reefs are either protected from or able to adapt to changes in environmental

conditions (McClanahan et al., 2007). Although it may be possible to associate differences

in dynamics among sites with differences in environmental variables, it is also possible to

treat among-site differences as another random component of a VAR(1) model. This will

allow estimation of the relative importance of among-site variability and within-site

temporal variability, which is important for the design of conservation strategies. If

within-site temporal variability dominates, it will not be possible to identify good sites to

conserve based on current status, while if among-site variability dominates, even a

“snapshot” sample at one time point may be enough to identify good sites. Thus, for

example, the reliability of among-site patterns from surveys at one time point, such as the

relationship between benthic composition and human impacts on remote Pacific atolls

(Sandin et al., 2008), depends on among-site variability dominating within-site temporal

variability. Furthermore, since among-site variability will affect the probability of

undesirable community composition (such as coral cover ≤ 0.1), conservation strategies
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that explicitly address among-site variability may be effective.

Here, we develop a state-space VAR(1) model for regional dynamics of East African coral

reefs, including random site effects and measurement error, and use it to answer four key

questions about spatial and temporal variability. How important is among-site variability

in the dynamics of benthic composition, relative to within-site temporal variability? How

much variability is there among sites in the probability of low (≤ 0.1) coral cover? What is

the most effective way (in terms of altering model parameters) to reduce the probability of

low coral cover in the region? How informative is a single snapshot in time about the

long-term properties of a site?

Methods

Data collection

Surveys of 20 spatially distinct reefs in Kenya and Tanzania (supporting information, Table

A1, Figure A7) were conducted annually during the period 1991-2013 (generally in

November or December prior to 1998, but January or February from 1998 onwards). Those

in the north were typically fringing reefs, 100 m to 2000 m from the shore, while those in

the south were typically smaller and more isolated patch reefs, further from the shore

(McClanahan and Arthur, 2001). We categorized reefs as either fished or unfished,

although there was substantial heterogeneity within these categories, because some fished

reefs were community management areas with reduced harvesting intensity (Cinner and

McClanahan, 2015), and some unfished reefs had only recently been designated as reserves.

Of the 20 reefs, 10 were divided into two sites separated by 20 m to 100 m, while the

remaining 10 reefs comprised only one site. The selection of sites represents available data

rather than a random sample from all the locations at which coral reefs are present in the

geographical area (and all of the longest time series are from Kenyan fringing reefs). Thus,

when we refer below to ‘a randomly-chosen site’ we strictly mean ‘a site drawn at random
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from the population for which data could have been available.’

Each of the 30 sites was visited at least twice (data from sites visited once were omitted),

with a maximum of 20 visits. A version of line-intercept sampling (Kaiser, 1983;

McClanahan et al., 2001) was used to estimate reef composition. In total, 2665 linear

transects were sampled across all sites and years, with between 5 and 18 transects (median

9) at each site in a single year. Transects were randomly placed between two points 10 m

apart, but as the transect line was draped over the contours of the substrate, the measured

lengths varied between 10 m and 15 m. Cover of benthic taxa was recorded as the sum of

draped lengths of intersections of patches of each taxon with the line, divided by the total

draped length of the line. Intersections with length less than 3 cm were not recorded. Taxa

were identified to species or genus level, but for this study cover was grouped into three

broad categories: hard coral, macroalgae and other (algal turf, calcareous and coralline

algae, soft corals and sponges). Sand and seagrass were recorded, but excluded from our

analysis, which focussed on hard substrate. The dynamics of a subset of these data were

analyzed using different methods in Żychaluk et al. (2012).

Data processing

The three cover values form a three-part composition, a set of three positive numbers

whose sum is 1 (Aitchison, 1986, Definition 2.1, p. 26). Standard multivariate statistical

techniques are not appropriate for untransformed compositional data, due to the absence of

an interpretable covariance structure and the difficulties with parametric modelling

(Aitchison, 1986, chapter 3). To avoid these difficulties, the proportional cover data were

transformed to orthogonal, unconstrained, isometric log-ratio (ilr) coordinates (Egozcue

et al., 2003). The transformed data at site i, transect j, time t were represented by the

vector yi,j,t = [y1,i,j,t, y2,i,j,t]T , in which the first coordinate y1,i,j,t was proportional to the

natural log of the ratio of algae to coral, and the second coordinate y2,i,j,t was proportional

to the natural log of the ratio of other to the geometric mean of algae and coral
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(supporting information, section A1). The T denotes transpose: throughout, we work with

column vectors.

The model

The true value xi,t = [x1,i,t, x2,i,t]T of the isometric log-ratio transformation of cover of hard

corals, macroalgae and other at site i at time t was modelled by a vector autoregressive

process of order 1 (i.e. a process in which the cover in a given year depends only on cover

in the previous year), an approach used in other recent models of coral reef dynamics

(Cooper et al., 2015; Gross and Edmunds, 2015). Unlike previous models, we include a

random term representing among-site variation, and explicit treatment of measurement

error (making this a state-space model). The full model is

xi,t+1 = a +αi + Bxi,t + εi,t,

αi ∼ N (0,Z),

εi,t ∼ N (0,Σ)

yi,j,t ∼ t2(xi,t,H, ν).

(1)

The column vector a represents the among-site mean proportional changes in xi,t evaluated

at xi,t = 0. The column vector αi represents the amount by which these proportional

changes for the ith site differ from the among-site mean, and is assumed to be drawn from

a multivariate normal distribution with mean vector 0 and 2× 2 covariance matrix Z. The

2× 2 matrix B represents the effects of xi,t on the proportional changes, and can be

thought of as summarizing intra- and inter-component interactions such as competition.

The column vector εi,t represents random temporal variation, and is assumed to be drawn

from a multivariate normal distribution with mean vector 0 and covariance matrix Σ. We

assume that there is no temporal or spatial autocorrelation in ε, and that ε is independent

of the among-site variation α.
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The observed transformed compositions yi,j,t vary around the corresponding true

compositions xi,t due to both small-scale spatial variation in true composition among

transects within a site, and measurement error in estimating composition from a transect.

We cannot easily separate these sources of variation because transects were located at

different positions in each year, and there were no repeat measurements within transects.

Observed log-ratio transformed cover yi,j,t in the jth transect of site i at time t was

assumed to be drawn from a bivariate t distribution (denoted by t2) with location vector

equal to the corresponding xi,t, and unknown scale matrix H and degrees of freedom ν

(Lange et al., 1989). The bivariate t distribution can be interpreted as a mixture of

bivariate normal distributions whose covariance matrices are the same up to a scalar

multiple (Lange et al., 1989), and therefore allows a simple form of among-site or temporal

variation in the distribution of measurement error or small-scale spatial variation, whose

importance increases as the degrees of freedom decrease. Preliminary analyses suggested

that it was important to allow this variation, because the model in Equation 1 fitted the

data much better than a model with a bivariate normal distribution for yi,j,t (supporting

information, section A3).

We make the important simplifying assumptions that B is the same for all sites, and that

the causes of among-site and temporal variation are not of interest. A separate B for each

site, or even a hierarchical model for B, would be difficult to estimate from the amount of

data we have. It might be possible to explain some of the random temporal variation using

temporally-varying environmental covariates such as sea surface temperature, and some of

the among-site variation using temporally constant covariates such as management

strategies (Cooper et al., 2015). However, it is not necessary to do so in order to answer

the questions listed at the end of the introduction, and keeping the model as simple as

possible is important because parameter estimation is quite difficult. Furthermore, some of

the relevant environmental variables may be associated with management strategies,

making it difficult to separate the effects of environmental variation and management. For
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example, although some water quality variables were not strongly associated with

protection status (Carreiro-Silva and McClanahan, 2012), unfished reefs were designated as

protected areas due to their relatively good condition and are generally found in deeper

lagoons with lower and more stable water temperatures than fished reefs (T. R.

McClanahan, personal observation).

To understand the features of dynamics common to all sites, we plotted the

back-transformations from ilr coordinates to the simplex of the overall intercept parameter

a and the columns a1 and a2 of a matrix A, which is related to B and describes the effects

of current reef composition on the change in reef composition from year to year (Cooper

et al., 2015). We plotted A rather than B because it leads to a simpler visualization of

effects (supporting information, section A4). For example, a point lying to the left of the

line representing equal proportions of coral and algae (the 1:1 coral-algae isoproportion

line) corresponds to a parameter tending to increase coral relative to algae.

Parameter estimation

We estimated all model parameters and checked model performance using Bayesian

methods implemented in the Stan programming language (Stan Development Team,

2015a), as described in the supporting information (section A5). Stan uses the No-U-Turn

Sampler, a version of Hamiltonian Monte Carlo, which can converge much faster than

random-walk Metropolis sampling when parameters are correlated (Hoffman and Gelman,

2014). For most results, we report posterior means and 95% highest posterior density

(HPD) intervals (Hyndman, 1996), calculated in R (R Core Team, 2015).

Long-term behaviour

In the long term, the true transformed composition x∗ of a randomly-chosen site will

converge to a stationary distribution, provided that all the eigenvalues of B lie inside the

unit circle in the complex plane (e.g. Lütkepohl, 1993, p. 10). If the eigenvalues of B are
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complex, the system will oscillate as it approaches the stationary distribution. Details of

long-term behaviour are in the supporting information, section A6.

This stationary distribution is the multivariate normal vector

x∗ ∼ N (µ∗,Σ∗ + Z∗), (2)

whose stationary mean µ∗ depends on B and a, and whose stationary covariance is the

sum of the stationary within-site covariance Σ∗ (which depends on B and Σ) and the

stationary among-site covariance Z∗ (which depends on B and Z).

For a fixed site i, the value of αi is fixed and the stationary distribution is given by

x∗i ∼ N (µ∗i ,Σ∗), (3)

whose stationary mean µ∗i depends on B, a and αi, and whose stationary covariance

matrix is Σ∗. Note that B, which describes intra- and inter-component interactions on an

annual time scale, affects all the parameters of both stationary distributions, and therefore

affects both within- and among-site variability in the long term. Also, the

back-transformation of the stationary mean µ∗ of the transformed composition, rather

than the arithmetic mean vector of the untransformed composition, is the appropriate

measure of the centre of the stationary distribution (Aitchison, 1989).

How important is among-site variability?

The covariance matrix of the stationary distribution for a randomly-chosen site (Equation

2) contains contributions from both among- and within-site variability. To quantify the

contributions from these two sources, we calculated

ρ =
(
|Σ∗|

|Σ∗ + Z∗|

)1/2

, (4)
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(supporting information, section A7), which is the ratio of volumes of two unit ellipsoids of

concentration (Kenward, 1979), the numerator corresponding to the stationary distribution

in the absence of among-site variation (or for a fixed site, as in Equation 3), and the

denominator to the full stationary distribution of transformed reef composition in the

region. The volume of each ellipsoid of concentration is a measure of the dispersion of the

corresponding distribution. Thus ρ provides an indication of how much of the total

variability would remain if all among-site variability was removed. A similar statistic was

used by Ives et al. (2003) to measure the contribution of species interactions to stationary

variability.

How much variability is there among sites in the probability of

low coral cover?

For a given coral cover threshold κ, we define qκ,i as the long-term probability that site i

has coral cover less than or equal to κ. This can be interpreted either as the proportion of

time for which the site will have coral cover less than or equal to κ in the long term, or as

the probability that the site will have coral cover less than or equal to κ at a random time,

in the long term. We set κ = 0.1, which has been suggested as a threshold for a positive

net carbonate budget, based on simulation models and data from Caribbean reefs

(Kennedy et al., 2013; Perry et al., 2013; Roff et al., 2015). We calculated q0.1,i for each site

numerically (supporting information, section A8). In order to determine whether

differences in q0.1,i were related to current coral cover, we plotted q0.1,i against the

corresponding sample mean coral cover for each site, over all transects and years. In order

to determine whether differences in q0.1,i had obvious explanations, we distinguished

between fished and unfished reefs, and patch and fringing reefs. In order to determine

whether there was strong spatial pattern in the probability of low coral cover, we

calculated spline correlograms (Bjørnstad and Falck, 2001) for a sample from the posterior

distribution of q0.1,i (supporting information, section A9).
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What is the most effective way to reduce the probability of low

coral cover?

For a given coral cover threshold κ, we define qκ as the long-term probability that a

randomly-chosen site has coral cover less than or equal to κ. This is equal to the expected

long-term probability that coral cover is less than or equal to κ over the region, and can be

calculated numerically (supporting information, section A8). To find the most effective way

to reduce qκ, we calculated its derivatives with respect to each model parameter. As above,

we concentrated on κ = 0.1. However, we also compared results from κ = 0.05 and

κ = 0.20. The probability qκ is a function of 12 parameters: all four elements of B; both

elements of a; elements σ11, σ21 and σ22 of Σ; and elements ζ11, ζ21 and ζ22 of Z. The

negative of the gradient vector of derivatives of qκ with respect to these parameters

describes the direction of movement through parameter space in which the probability of

low coral cover will be reduced most rapidly, and the elements of this vector with the largest

magnitudes correspond to the parameters to which qκ is most sensitive. To understand why

qκ responds to each model parameter, note that qκ depends on the parameters µ∗, Σ∗ and

Z∗ of the stationary distribution (Equation 2), which are in turn affected by the model

parameters. We therefore used the chain rule for matrix derivatives (Magnus and

Neudecker, 2007, p.108) to break down the derivatives into effects of µ∗, Σ∗ and Z∗ on qκ,

and effects of model parameters on µ∗, Σ∗ and Z∗ (supporting information, section A10).

How informative is a snapshot about long-term site properties?

In a stochastic system, how much can a “snapshot” survey at a single point in time tell us

about the long-term behaviour of the system? For example, are differences among sites

that appear to be in good and bad condition likely to be maintained in the long term? To

make this question more precise, suppose that we draw a site at random from the region,

and at one point in time, draw the true state of the site at random from the stationary
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distribution for the site. This scenario matches Diamond’s definition of “natural snapshot

experiments” as “comparisons of communities assumed to have reached a quasi-steady

state” (Diamond, 1986). For simplicity, we assume that we can estimate the true state

accurately (for example, by taking a large number of transects). To quantify how

informative this is about the long term properties of the site, we computed the correlation

coefficients between corresponding components of the true state at a given site at a given

time and of stationary mean for that site (supporting information, section A11). If these

correlations are high, then a snapshot will be informative about long term properties.

Results

Overall dynamics

At all sites, the model appeared to provide a good description of observed dynamics,

although sometimes with high uncertainty. The back-transformed posterior mean true

states from the model (e.g. Figure 1, grey lines) closely tracked the centres of the

distributions of cover estimates from individual transects, although there was substantial

among-transect variability at a given site in a given year (e.g. Figure 1, circles). Figure 1

shows two examples, and time series for all sites are plotted in the supporting information,

Figures A12 to A41. There were also substantial differences in patterns of temporal change

among sites. For example, Kanamai1 (Figure 1a-c), a fished site, had consistently low algal

cover and no dramatic changes in cover of any component. In contrast, Mombasa1 (Figure

1d-f), an unfished site, had a sudden decrease in coral cover in 1998, and algal cover was

high from 2007 onwards. As a result, Mombasa1 was unusual in that the current estimate

of true algal cover was well above the stationary mean estimate (Figure 1e: black circle at

end of time series). For most other sites, current estimated true cover was close to the

stationary mean (supporting information, Figures A12 to A41, black circles at ends of time

series). The uncertainty in true states (Figure 1, grey polygons represent 95% highest
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posterior density (HPD) credible intervals) was higher during intervals with missing

observations (e.g. 2008 in Figure 1). In general, uncertainty in true states (grey polygons)

and stationary means (black bars at end of time series) was highest for sites with few

observations (e.g. Bongoyo1, Figure A12).

The overall intercept parameter a (Figure 2, green), which describes the dynamics of reef

composition at the origin (where each component is equally abundant) was consistent with

the observed low macroalgal cover in the region (e.g. Figure 1b, e). The

back-transformation of a lay close to the coral-other edge of the ternary plot, and slightly

above the 1:1 coral-other isoproportion line. It therefore represented a strong year-to-year

decrease in algae, and a slight increase in other relative to coral, at the origin.

Current reef composition acts on year-to-year change in composition (through matrix A)

so as to maintain fairly stable reef composition. The first column a1 of A, which represents

the effects of the transformed ratio of algae to coral on year-to-year change in composition,

lay (when back-transformed) to the left of the 1:1 coral-algae isoproportion line, above the

1:1 other-algae isoproportion line, and below the 1:1 coral-other isoproportion line (Figure

2, orange). Thus, increases in algae relative to coral resulted in decreases in algae relative

to coral and other, and increases in coral relative to other, in the following year. The

second column a2 of A, which represents the effects of the transformed ratio of other to

algae and coral on year-to-year change in composition, lay (when back-transformed) on the

1:1 coral-algae isoproportion line, below the 1:1 other-algae isoproportion line, and below

the 1:1 coral-other isoproportion line (Figure 2, blue). Thus, increases in other relative to

algae and coral resulted in little change in the ratio of coral to algae, but decreases in other

relative to both coral and algae. Consistent with the above interpretation of year-to-year

dynamics, every set of parameters in the Monte Carlo sample led to a stationary

distribution, since both eigenvalues of B lay inside the unit circle in the complex plane

(supporting information, section A12). The magnitudes of these eigenvalues were smaller

than those for a similar model for the Great Barrier Reef (Cooper et al., 2015), indicating
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more rapid approach to the stationary distribution. There was some evidence for complex

eigenvalues of B, leading to rapidly-decaying oscillations in both components of

transformed reef composition on approach to this distribution. This contrasts with the

Great Barrier Reef, where there was no evidence for oscillations (Cooper et al., 2015).

How important is among-site variability?

There was substantial among-site variability in the locations of stationary means (Figure 3,

dispersion of points). Stationary mean algal cover was always low, but there was a wide

range of stationary mean coral cover. Although our primary focus is not on the causes of

among-site variability, there was a tendency for most of the reefs with highest stationary

mean coral cover to be patch reefs (Figure 3, circles). The stationary means did not clearly

separate by management (Figure 3, open symbols fished, filled symbols unfished). The

long-term temporal variability around the stationary means was also substantial (Figure 3,

green lines), as was the uncertainty in the values of the stationary means (Figure 3, grey

dashed lines). The ρ statistic (Equation 4), which quantifies the posterior mean

contribution of within-site variability to the total stationary variability in reef composition

in the region, was 0.29 (95% HPD interval [0.20, 0.39]), or approximately one third. Thus,

while within-site temporal variability around the stationary mean was not negligible,

among-site variability in the stationary mean was more important in the long term.

For all three components of variability (within-site, among-site, and measurement

error/small-scale spatial variability), variation in algal cover was larger than variation in

coral or other. This can be seen in the shapes of the back-transformed unit ellipsoids of

concentration (Figure 4: within-site, green; among-site, orange; measurement error and

small-scale spatial variability, blue) which were all elongated to some extent along the 1:1

coral-other isoproportion line. This was similar to, but less extreme than, the pattern

observed in the Great Barrier Reef (Cooper et al., 2015). The among-site ellipsoid almost

entirely enclosed the within-site ellipsoid, consistent with the estimate above that
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among-site variability was more important than within-site variability in the long term.

The large estimated measurement error/small-scale spatial variability component was

consistent with the substantial observed variability in cover among transects at any given

site and time (Figure 1, circles and supporting information, Figures A12 to A41, circles).

The low estimated degrees of freedom ν for the bivariate t distribution of measurement

error/small-scale spatial variability (posterior mean 2.99, 95% HPD interval [2.64, 3.35])

suggested that some aspect of the process leading to variation in measured composition

among transects at a given site was varying substantially over space or time, although we

cannot determine the mechanism.

How much variability is there among sites in the probability of

low coral cover?

There was also substantial among-site variability in the probability of low coral cover. For

a randomly-chosen site, the posterior mean probability of coral cover less than or equal to

0.1 (q0.1) in the long term was 0.12 (95% credible interval [0.04, 0.21]). The corresponding

site-specific probabilities q0.1,i varied from 8× 10−5 to 0.52 but were low for most sites,

with a strong negative relationship between probability of low coral cover and observed

mean coral cover (Figure 5). There was no clear distinction between fished and unfished

reefs (Figure 5, open symbols fished, filled symbols unfished). However, probability of low

coral cover appeared to be systematically lower on patch reefs, which were mainly in

Tanzania (Figures 5 and A7, circles: median of posterior means 2× 10−3, first quartile

4× 10−4, third quartile 0.04) than on fringing reefs (Figures 5 and A7, triangles: median of

posterior means 0.08, first quartile 0.04, third quartile 0.11). One site (Ras Iwatine) had a

much higher probability of low coral cover than all others, and is relatively polluted

compared to other sites in this study, due to high levels of nutrient effluent from a large

hotel (T.R. McClanahan, personal observation).

There was little evidence for strong spatial autocorrelation in the probability of low coral
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cover, because the 95% envelope for the spline correlogram included zero for all distances

other than 261 km to 322 km (supporting information, Figure A44). The general lack of

strong spatial autocorrelation reflects the substantial variation in probability of coral cover

less than or equal to 0.1 (q0.1,i) among nearby sites, while the possibility of negative spatial

autocorrelation at scales of around 300 km may reflect the generally low values of q0.1,i for

Tanzanian patch reefs, separated from sites in the north of the study area with generally

higher q0.1,i by approximately 300 km (Figure A7).

What is the most effective way to reduce the probability of low

coral cover?

Both among-site variability and internal dynamics, particularly of other relative to algae

and coral (component 2), were important in determining the probability q0.1 of coral cover

≤ 0.1 in the region. Figure 6 shows the direction in parameter space along which the

probability of low coral cover will reduce most rapidly (the estimated gradient vector of q0.1

with respect to all the model parameters). The four parameters to which q0.1 was most

sensitive were (in descending order: Figure 6) ζ21 (among-site covariance between

transformed components 1 and 2), b22 (effect of component 2 on next year’s component 2),

ζ22 (among-site variance of component 2), and b12 (effect of component 2 on next year’s

component 1). Although there was substantial variability among Monte Carlo iterations in

the values of these derivatives, the rank order of magnitudes was fairly consistent

(supporting information, Figure A45). All four most important parameters had positive

effects on q0.1 (Figure 6), so reducing these parameters will reduce q0.1. The effects of

within-site temporal variability on the probability of low coral cover were relatively

unimportant (Figure 6, derivatives of q0.1 with respect to σ11, σ21 and σ22 all had posterior

means close to zero). The signs of the effects of each parameter on q0.1, and results for

coral cover thresholds 0.05 and 0.1, are discussed further in the supporting information

(sections A13 and A14).
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How informative is a snapshot about long-term site properties?

For both components of transformed composition, a snapshot of reef composition at a

single time on a randomly-chosen site will be informative about the stationary mean

(correlations between true value at a given time and stationary mean: component 1

posterior mean 0.84, 95% HPD interval [0.75, 0.91]; component 2 posterior mean 0.82, 95%

HPD interval [0.73, 0.90]). This is consistent with the negative relationship between

long-term probability of coral cover ≤ 0.1 and observed mean coral cover (Figure 5). Thus,

while long-term monitoring of East African coral reefs is important for other reasons, it

should be possible to identify those with high conservation value (in terms of benthic

composition) from a single survey.

Discussion

In the long term, among-site variability dominates within-site temporal variability in East

African coral reefs. In consequence, the long-term probability of coral cover ≤ 0.1 varied

substantially among sites. This suggests that it is in principle possible to make reliable

decisions about the conservation value of individual sites based on a survey of multiple

sites at one point in time, and to design conservation strategies at the site level. This was

not the only possible outcome: if within-site temporal variability dominated among-site

variability, among-site differences would be neither important nor predictable in the long

term. Given the large positive effect of among-site variability on the long-term probability

of coral cover ≤ 0.1, reducing among-site variability in compositional dynamics may be an

effective conservation strategy.

The dominance of among-site variability has important implications for conservation.

There was clear evidence for the existence of a stationary distribution of long-term reef

composition in East Africa. The overall shape of this distribution (Figure 3) was similar to

that estimated by Żychaluk et al. (2012) for a subset of the same data, using a different
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modelling approach. However, our new analysis shows that this distribution is generated

by a combination of spatial and temporal processes, with substantial long-term differences

among sites. Thus, the distribution in Żychaluk et al. (2012) may be a good approximation

to the long-term distribution for a randomly-chosen site, but there will be much less

variability over time in the distribution for any fixed site. In consequence, the sites having

the highest long-term conservation value can be identified even from single-survey

snapshots, and conservation strategies at the site scale may be possible. Furthermore, in

cases where among-site variability in dynamics is dominant, it will be misleading to

generalize from observations of a few sites to regional patterns (Bruno et al., 2009).

In our study, the sites with the highest long-term conservation value are those with very

low long-term probabilities of coral cover ≤ 0.1 (Figure 5), a threshold chosen based on

evidence that coral cover ≤ 0.1 is detrimental to reef persistence (Kennedy et al., 2013;

Perry et al., 2013; Roff et al., 2015). Many of these sites are Tanzanian patch reefs, which

may have maintained high coral cover despite disturbance because of local hydrography

(McClanahan et al., 2007), and are priority sites for conservation, with high alpha and beta

diversity (Ateweberhan and McClanahan, 2016). In the light of these observations, we

experimented with a model in which reef type was included as an explanatory variable.

Although the estimated effects of reef type were consistent with lower long-term

probabilities of coral cover ≤ 0.1, including reef type did not improve the expected

predictive accuracy of the model (F. Chong, unpublished results), probably because only

482 out of 2665 transects were from patch reefs, and all but one patch reefs had only very

short time series (supporting information, Table A1). Furthermore, the absence of strong

spatial autocorrelation in long-term probabilities of coral cover ≤ 0.1 suggests that it will

be necessary to consider conservation value at small spatial scales, rather than simply to

identify subregions with high conservation value. Similarly, Vercelloni et al. (2014) found

that trajectories of coral cover on the Great Barrier Reef were consistent at the scale of

km2, but not at larger spatial scales. They argued that it would therefore be appropriate to
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focus management actions at the km2 scale. Also, it may be easier to persuade local

communities to accept management at such scales than at larger scales (McClanahan et al.,

2016).

A key result is that if we want to minimize the long-term probability q0.1 that a

randomly-chosen site has coral cover ≤ 0.1, we should minimize among-reef variability in

dynamics, other things being equal. This is because the centre of the stationary

distribution lies outside the set of compositions with coral cover ≤ 0.1 (Supporting

Information, Section A13). Conversely, if the centre lay inside this set, then (other things

being equal) maximizing among-site variability would minimize q0.1. This result is very

general, applying to any model of community composition which has a stationary

distribution, for which increasing among-site variability increases stationary variability, and

for any conservation objective based on a composition threshold.

Conservation strategies that might minimize among-site variability include distributing a

fixed amount of human activity such as coastal development or fishing evenly, rather than

concentrating it in a few locations. On the other hand, many conservation strategies will

affect both the mean dynamics and the among-site variability in dynamics. For example,

protecting the sites that are already in the best condition will tend to increase among-site

variability, while moving the centre of the stationary distribution away from the set of

compositions with coral cover ≤ 0.1.

Minimizing among-site variability in dynamics may conflict with other proposed

conservation strategies. It has been suggested that increased beta diversity is associated

with lower temporal variability in metacommunities, for at least some taxa, and that

regions of high beta diversity may therefore be priority regions for conservation (Mellin

et al., 2014). It is likely that increased beta diversity will also be associated with increased

among-site variability in dynamics, because different species are likely to have different

population-dynamic characteristics. Hence, it may not always be possible to manage for

both low among-site variability in dynamics and high beta diversity. It is not yet clear
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which of these objectives is more important in general.

Our analyses were based on the long-term consequences of current environmental

conditions, and may therefore not be relevant if environmental conditions change. For

example, if changes in climate or local human activity altered the vector a so as to

transpose the centre of the stationary distribution into the set with coral cover ≤ 0.1, then

maximizing among-site variability would become the best strategy. Since declining coral

cover trends have been observed at the regional level (e.g. Côté et al., 2005; De’ath et al.,

2012), such a shift in the best strategy may occur. It is therefore better to view a

stationary distribution under current conditions as a “speedometer” that tells us about the

long-term outcome if these conditions were maintained, rather than as a prediction

(Caswell, 2001, p. 30).

In conclusion, our analysis extends the broadly-applicable vector autoregressive approach

to community dynamics (reviewed by Hampton et al., 2013) by quantifying random

among-site variability in dynamics. This gives a new perspective on the long-term

behaviour of the set of communities in a region, as a set of stationary distributions with

random but persistent differences. The extent of these differences relative to temporal

variability determines how predictable the behaviour of individual sites will be. Since these

differences may be associated with differences in conservation value, probabilistic risk

assessment based on this approach can be used to suggest conservation strategies at both

site and regional scales. At site scales, our approach can be used to identify potential coral

refugia, while at regional scales, it can identify the parameters with most influence on

conservation objectives.
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Figure legends

Figure 1. Time series of cover of hard corals, macroalgae and other at two of the 30 sites

surveyed: Kanamai1 (fished, a-c) and Mombasa1 (unfished, d-f). Circles are observations

from individual transects. Grey lines join back-transformed posterior mean true states

from Equation 1, and the shaded region is a 95% highest posterior density interval. The

back-transformed stationary mean composition for the site is the black dot after the time

series and the bar is a 95% highest posterior density interval.

Figure 2. Posterior distributions of the back-transformed overall intercept a (green), effect

a1 of component 1 (proportional to log(algae/coral)) on year-to-year change (orange), and

effect a2 of component 2 (proportional to log(other/geometric mean(algae,coral)) on

year-to-year change (blue).

Figure 3. Stationary among- and within-site variation in benthic composition. Grey points:

back-transformed stationary means for each site (open circles fished patch, filled circles

unfished patch, open triangles fished fringing, filled triangles unfished fringing, posterior

means of of stationary means). Grey dashed curves: back-transformed unit ellipsoids of

concentration representing uncertainty in stationary means (calculated using sample

covariance matrices from Monte Carlo iterations). Green solid curves: back-transformed

unit ellipsoids of concentration representing within-site stationary variation (calculated

using posterior mean within-site covariance matrix).

Figure 4. Back-transformed unit ellipsoids of concentration for stationary within-site

covariance Σ∗ (green), stationary among-site covariance Z∗ (orange), and measurement

error/small-scale spatial variation νH/(ν − 2) (blue). In each case, 200 ellipsoids drawn

from the posterior distribution are plotted, centred on the origin.

Figure 5. Long-term probability of coral cover less than or equal to 0.1 at each site against

mean observed coral cover across all years. Circles are patch reefs and triangles are fringing

reefs. Open symbols are fished reefs and shaded symbols are unfished. Vertical lines are

95% highest posterior density intervals.
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Figure 6. Elements of the gradient vector of partial derivatives of the long-term probability

of coral cover less than or equal to 0.1 with respect to elements of the B matrix (effects of

transformed composition in a given year on transformed composition in the following year),

the a vector (overall intercept, representing among-site mean proportional changes in

transformed composition at the origin), the covariance matrix of random temporal

variation Σ, and the covariance matrix of among-site variability Z. For each parameter,

the dot is the posterior mean and the bar is a 95% highest posterior density credible

interval. For the covariance matrices, the elements σ12 and ζ12 are not shown, because they

are constrained to be equal to σ21 and ζ21 respectively. The horizontal dashed line is at

zero, the no-effect value.
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A1 Data transformation

Proportional cover data were transformed to isometric log-ratio (ilr) coordinates (Egozcue

et al., 2003). Let zi,j,t = [z1,i,j,t, z2,i,j,t, z3,i,j,t]T denote a vector of observed proportional

cover of coral (z1,i,j,t), algae (z2,i,j,t) and other (z3,i,j,t) at site i, transect j, at time t (the T

denotes transpose). Then the ilr transformation for our data is given by

ilr : S3 → R2,

zi,j,t = [z1,i,j,t, z2,i,j,t, z3,i,j,t]T 7→
[

1√
2

log
(
z2,i,j,t

z1,i,j,t

)
,

2√
6

log
(

z3,i,j,t√
z1,i,j,tz2,i,j,t

)]T
,

(A.5)

where S3 denotes the open 2-simplex in which three-part compositions lie. The first

element of the transformed composition is proportional to the natural log of the ratio of

algae to coral, and the second element is proportional to the natural log of the ratio of

other to the geometric mean of algae and coral. The transformation can be thought of as

stretching out the open 2-simplex (Figure A8(a)) so that it covers the whole of the real

plane (Figure A8(b)).

As the domain of the transformation is the open simplex, which does not include

compositions with zero parts, any observed zeros were replaced by half the smallest

non-zero value recorded (0.0008) before transformation, and the other components rescaled

accordingly. This is the simple replacement strategy described in Mart́ın-Fernández et al.

(2003), although more sophisticated approaches are possible. We denote the resulting

transformed observations by yi,j,t = [y1,i,j,t, y2,i,j,t]T .
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A2 The model

For convenience, we reproduce the full model equations here:

xi,t+1 = a +αi + Bxi,t + εi,t,

αi ∼ N (0,Z),

εi,t ∼ N (0,Σ)

yi,j,t ∼ t2(xi,t,H, ν),

(A.6)

where xi,t is the true transformed composition at site i, time t, a is a vector of among-site

mean proportional changes evaluated at xi,t = 0, αi represents the amount by which these

proportional changes for the ith site differ from the among-site mean, the 2× 2 matrix B

represents the effects of xi,t on the proportional changes, εi,t represents random temporal

variation,

Z =

ζ11 ζ12

ζ21 ζ22


is the covariance matrix of the among-site term αi (note that throughout, a diagonal

element such as ζii of a covariance matrix represent the variance of the ith variable),

Σ =

σ11 σ12

σ21 σ22


is the covariance matrix of the temporal variation, yi,j,t is the observed log-ratio

transformed cover in the jth transect of site i at time t,

H =

η11 η12

η21 η22
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is the scale matrix of the bivariate t distribution of the yi,j,t, and ν is the corresponding

degrees of freedom.

A3 Describing measurement error and small-scale

temporal variability

We initially considered using a bivariate normal distribution to describe the variability of

observed transformed composition yi,j,t around true composition xi,t, but preliminary

analyses showed that a heavier-tailed distribution was needed. We therefore used the

bivariate t distribution with location vector xi,t, scale matrix H and degrees of freedom ν,

which for ν > 2 has covariance matrix νH/(ν − 2) (Lange et al., 1989). Support for the

choice of the t over the normal distribution was provided by expected predictive accuracy

based on leave-one-out cross-validation (Vehtari et al., 2015), which was much higher for

the bivariate t model than for the bivariate normal model (difference in leave-one-out

cross-validation score 527, standard error 48).

A4 Visualizing model parameters

The effects of reef composition on short-term dynamics are most easily visualized by the

back transformation from ilr coordinates to the simplex of the columns of the matrix

A = B− I2, where Ik denotes the k × k identity matrix. The matrix A describes effects of

transformed reef composition on year-to-year changes in transformed reef composition

(Cooper et al., 2015). This is a better visualization than the back transformation of B,

because in the random walk case (where there are no interesting composition effects),

A = 02 (the 2× 2 matrix of zeros), and each column of the back-transformation of A

represents a point at the origin of the simplex. In contrast, in the random walk case, each

column of the back transformation of B = I2 represents a point at a different location in

26



the simplex. The first column a1 of A represents the effect of a unit increase in the first

component of reef composition (proportional to log(algae/coral)) on year-to-year change in

reef composition. For example, if the back-transformation of a1 lies to the left of the centre

of the simplex (the origin, with equal proportions of coral, algae and other), but on the line

of equal relative abundances of coral and other (the 1:1 coral-other isoproportion line), it

indicates that high algal cover relative to coral tends to result in a decrease in algae

relative to coral in the following year. Similarly, the second column a2 of A represents the

effect of a unit increase in the second component of reef composition (proportional to

log(other/geometric mean(algae,coral))) on year-to-year change in reef composition.

A5 Parameter estimation

Code for all analyses is available at https://www.liverpool.ac.uk/˜matts/kenya.zip.

A5.1 Priors

For Z and Σ, our priors were based on data from the Great Barrier Reef (Cooper et al.,

2015). We inspected the sample covariance matrices for ilr-transformed year-to-year

changes in composition, and among-site variation in mean composition, on 55 sites in the

Great Barrier Reef, where observation error is thought to be fairly small (Cooper et al.,

2015). We chose inverse Wishart priors (Gelman et al., 2003, p. 574) with 4 degrees of

freedom (the smallest value for which the prior mean exists, giving a fairly uninformative

prior). We chose identity scale matrices, because ellipses of unit Mahalanobis distance

around the origin for the mean of this prior almost enclosed corresponding ellipses for the

sample covariance matrices of both year-to-year changes and among-site mean composition,

and strong correlations among transformed components are neither assumed nor ruled out.

Thus, this seems a plausible prior for Σ and Z. In the absence of strong prior information,

we used the same prior for H.
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For the degrees of freedom of measurement error, ν, we assumed a U(2, 30) distribution.

The lower bound was dictated by the requirement that ν > 2 for the covariance to exist,

and the upper bound was chosen to be large enough that the resulting measurement error

distribution was able to approach a multivariate normal if necessary. In practice, the

posterior distribution of ν did not pile up against either of these bounds, indicating that

the precise choice of prior was unlikely to matter.

We chose vague priors for the other parameters. We assumed independent N (0, 10) priors

on each element of xi,0 for each site i (where the subscript 0 denotes the first time point at

which the site was observed). For each element of a and B, we assumed independent

N (0, 100) priors.

A5.2 Monte Carlo simulation

We ran four Monte Carlo chains in parallel for 5000 iterations each, after a 5000-iteration

warmup period. This took approximately two hours on a 64-bit Ubuntu 12.04 system with

4 3.2 GHz Intel Xeon cores and 16 GiB RAM. The potential scale reduction statistic,

which takes the value 1 if all chains have converged to a common distribution, was 1.00 to

two decimal places for all parameters, consistent with satisfactory convergence (Stan

Development Team, 2015b, pp. 414-415). Effective sample sizes, which measure the size of

the sample from the posterior distribution after accounting for autocorrelation in the

Monte Carlo chains (Stan Development Team, 2015b, pp. 417-419), were at least 2839 for

all parameters (most were much larger, with first quartile 12430 and median 17490).

Inspection of trace plots did not reveal any obvious problems with sampling. In addition,

we evaluated the model’s performance in estimating known parameters. We generated 100

simulated data sets with identical structure to the real data, using posterior mean

estimates for each parameter. We sampled the αi, εi,t and yi,j,t from distributions defined

by Equation A.6, and set the initial true transformed compositions at a given site to the

sample means from all years and transects on that site in the real data. The estimates were
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reasonably close to the true values, and lay within the 95% HPD intervals in 89-99 out of

100 cases (Figure A9). Thus, while estimating state-space models from ecological time

series data can be challenging (Auger-Méthé et al., 2015), performance appears adequate in

this case, perhaps because we have many replicate transects from which to estimate

measurement error and small-scale spatial variability, and most parameters are estimated

using data across many sites.

A5.3 Model checking

We examined plots of Bayesian residuals (Gelman et al., 2003, p. 170) against predicted

values of the two components of transformed reef composition. For the kth Monte Carlo

iteration, the Bayesian residual for the jth transect on the ith site at time t is

yi,j,t − xi,t|θk, where θk denotes the estimated parameters in the kth iteration. If the model

is performing well, there should be no obvious relationship between residuals and fitted

values. We checked 16 randomly-chosen iterations, which did not reveal any major cause

for concern (Figures A10, A11). However, no residuals for component 1 fell below an

obvious diagonal line (Figure A10), which results from the treatment of observed zeros.

Given the simple replacement strategy for zeros described in Section A1 and the definition

of component 1 of the transformed composition in Equation A.5,

y1,i,j,t = 1√
2

log
(
z2,i,j,t

z1,i,j,t

)

≥ 1√
2

log
(0.0008

0.9984

)
= −5.0216.

Thus the Bayesian residual for component 1 is constrained by

y1,i,j,t − x1,i,t|θk ≥ −5.0216− x1,i,t|θk,

the orange line on Figure A10. Thus the assumption of a multivariate t distribution for

individual transect deviations from true values (Equation A.6) cannot hold exactly. It
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might in future be worth attempting to develop a more mechanistic model of the process

generating observed zeros, but we do not attempt this here because the majority of data are

unaffected. Although a similar constraint exists on component 2, it did not appear to be

important in practice, because there is no obvious diagonal line of residuals on Figure A11.

Inspection of quantile-quantile plots and histograms of estimated skewness and kurtosis for

16 iterations did not indicate any major problems with the assumptions of multivariate

normal distributions with zero mean, covariance matrices Z and Σ respectively for α and

ε, and a multivariate t distribution with zero location vector, scale matrix H, for Bayesian

residuals. Quantile-quantile plots used the natural log of a squared Mahalanobis-like

distance/2 against natural log of quantiles of χ2(2) for multivariate normal distributions, or

against natural log of quantiles of F (2, ν) for multivariate t distributions (modified from

Lange et al., 1989). We did not transform to asymptotically standard normal deviates

because the degrees of freedom for the t distribution were small. We found it helpful to log

transform both axes, particularly for the multivariate t distribution, for which some

observations may have very large squared Mahalanobis-like distance. We obtained the

p-values for several tests of multivariate normality of α and ε: Royston’s H (Royston,

1982), Henze-Zirkler’s test (Henze and Zirkler, 1990), and Mardia’s skewness and kurtosis

(Mardia, 1970) using the MVN package in R (Korkmaz et al., 2014). There were more

small p-values than expected (the distribution of p-values should be approximately uniform

in the interval (0,1) if the data are normal) but that often is the case for very large

samples, and does not indicate a major cause for concern.

A6 Long-term behaviour

Iterating Equation A.6 from a fixed initial transformed composition xi,0,

xi,t =
t−1∑
j=0

Bja +
t−1∑
j=0

Bjαi + Btx0 +
t−1∑
j=0

Bjεi,t−1−j (A.7)
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If all the eigenvalues of B lie inside the unit circle in the complex plane, the system will

converge to a stationary distribution as t→∞ (e.g. Lütkepohl, 1993, p. 10). If the

eigenvalues of B are complex, they will form a complex conjugate pair λ = re±iθ (where r

is the magnitude and θ is the argument), and there will be oscillations with period 2π/θ,

whose amplitudes will change by a factor of r each year (e.g. Otto and Day, 2007, p. 355).

The first term in Equation A.7 is deterministic, and converges to

µ∗ = (I2 −B)−1a (A.8)

(e.g. Lütkepohl, 1993, p. 10), which represents the among-site mean of stationary mean

transformed composition. The third term is also deterministic, and converges to 0, so that

initial conditions are forgotten.

The second term, representing among-site variation, has mean vector 0 by definition, and

the covariance matrix of its limit is

Z∗ = V
[
(I2 −B)−1αi

]
= (I2 −B)−1V [αi]

(
(I2 −B)−1

)T
= (I2 −B)−1Z

(
(I2 −B)−1

)T
, (A.9)

since (I2 −B)−1 is a constant matrix and αi is a random vector. The covariance matrix Z∗

represents the among-site variation in stationary mean transformed composition.

The fourth term represents the long-term effects of temporal variability. It has mean vector

0 by definition, and it can be shown that it has covariance matrix

Σ∗ = vec−1
(
(I4 −B⊗B)−1vec (Σ)

)
(A.10)

(e.g. Lütkepohl, 1993, p. 22), where the vec operator stacks the columns of a matrix, vec−1
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unstacks them, and ⊗ is the Kronecker product. The covariance matrix Σ∗ can be

interpreted as the stationary covariance of transformed reef composition, conditional on the

value of αi. Since among-site variation and temporal variation were assumed independent,

the unconditional stationary covariance is Σ∗ + Z∗. Both the conditional and unconditional

stationary distributions are multivariate normal, since both εi,t and αi were assumed

multivariate normal. Thus the stationary distribution for a randomly-chosen site is the

multivariate normal vector

x∗ ∼ N (µ∗,Σ∗ + Z∗). (A.11)

To find the long-term behaviour for a given site i, we condition on the value of αi. Thus

Equation A.8 is replaced by

µ∗i = (I2 −B)−1(a +αi),

and the stationary distribution is

x∗i ∼ N (µ∗i ,Σ∗).

A7 How important is among-site variability?

From Equation A.11, the covariance matrix Σ∗ + Z∗ of the stationary distribution for a

randomly-chosen site contains contributions from both among- and within-site variability.

To quantify the contributions from these two sources, we will use a statistic based on a

ratio of generalized variances.

The generalized variance of a multivariate distribution is defined as the determinant of the

covariance matrix (Wilks, 1932; Johnson and Wichern, 2007, section 3.4). In the specific

case of a multivariate normal distribution, the generalized variance may be interpreted in

terms of ellipsoids of concentration, defined as follows. Suppose a random vector W is
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distributed according to a p-dimensional normal distribution with mean vector µ and

covariance matrix V. Then for any constant k ≥ 0, the set

Ek =
{
w : (w− µ)T V−1 (w− µ) = k

}
consists of points w of constant probability density.

In p = 2 dimensions, Ek is an ellipse, and may be referred to as a probability density

contour. In p > 2 dimensions Ek is known as an ellipsoid of concentration of V about µ

(Kenward, 1979). Taking k = 1, the set E1 is known as the unit ellipsoid of concentration.

The volume within the unit ellipsoid E1 may be used as a measure of the dispersion of the

distribution, and is equal to Sp
√
|V|, where Sp is the volume of the p-dimensional sphere of

radius 1.

In the light of the above interpretation, we chose to measure the contribution of within-site

variability to total variability using the quantity

ρ =
(
|Σ∗|

|Σ∗ + Z∗|

)1/2

, (A.12)

which is the ratio of volumes of two unit ellipsoids of concentration, the numerator

corresponding to the stationary distribution in the absence of among-site variation, and the

denominator to the full stationary distribution of transformed reef composition in the

region. This ratio is undefined if Σ∗ + Z∗ is not of full rank, but this does not occur in our

application. From Minkowski’s theorem (Mirsky, 1955, section 13.5) it follows that

|Σ∗|+ |Z∗| ≤ |Σ∗ + Z∗|, so that 0 ≤ ρ ≤ 1. However, in general |Σ∗|+ |Z∗| 6= |Σ∗ + Z∗|, so

that ρ cannot be simply interpreted as the proportion of total variability explained by

within-site variation. Nevertheless, ρ provides an indication of how much of the total

variability would remain if all among-site variability was removed. Furthermore, ρ2 is

analogous to Wilks’ Lambda (Wilks, 1932; Kenward, 1979), a likelihood-ratio test statistic

often used in multivariate analysis of variance.
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A8 Probability of low coral cover

For a given site i, the long-term probability qκ,i of coral cover less than or equal to κ is the

integral of the multivariate normal stationary density for the site over the shaded area in

Figure A42 (for κ = 0.1). This can be written as

qκ,i = 1−
∫ u

−∞
P (X2 ≤ γ|X1 = x1)fX1(x1) dx1, (A.13)

where, using Equations A.5 and the constraint that the untransformed components of

benthic composition must sum to 1,

u = 1√
2

log
(1
κ
− 1

)

is the largest value of the first ilr component x1 for which it is possible to have coral cover

less than or equal to κ,

γ = 2√
6

log
1− κ

(
1 + e

√
2x1
)

κ
√
e
√

2x1


is the value of the second ilr component x2 for which coral cover is equal to κ, given the

value of x1, P (X2 ≤ γ|X1 = x1) is the conditional marginal cumulative distribution of x2,

given the value of x1, and fX1(x1) is the unconditional marginal density of the first ilr

component x1.

Since

X = [X1, X2]T ∼ N (µ∗i ,Σ∗i ),

the unconditional marginal distribution of x1 is

N (µ∗1,i,
√
σ∗11,i), (A.14)
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and the conditional marginal distribution of x2 given x1 is

N
(
µ∗2,i +

σ∗21,i

σ∗11,i
(x1 − µ∗i,1), σ∗22,i −

(σ∗21,i)2

σ∗11,i

)
(A.15)

(Gelman et al., 2003, p. 579). Then the integral in Equation A.13 can be approximated

numerically using the integrate() function in R (R Core Team, 2015), which is based on

routines in Piessens et al. (1983). The same approach can be used for qκ for a

randomly-chosen site, replacing the elements of µ∗i and Σ∗i in Equations A.14 and A.15

with the corresponding elements of µ∗ and Σ∗.

A9 Spline correlograms for spatial pattern in

probability of low coral cover

We calculated a spline correlogram (Bjørnstad and Falck, 2001) for each set of q0.1,i in the

20000 Monte Carlo iterations, using the spline.correlog() function in the R package

ncf version 1.15. We constructed a 95% highest-density envelope (Hyndman, 1996) for the

resulting set of correlograms using the R package hdrcde version 3.1.

A10 What is the most effective way to reduce the

probability of low coral cover?

For a given threshold κ, we can calculate (by numerical integration) the probability

qκ = P (coral cover ≤ κ), for a composition drawn from the stationary distribution on a site

chosen at random from the region. The probability qκ is a function of 12 parameters: all

four elements of B; both elements of a; elements σ11, σ21 and σ22 of Σ; and elements ζ11,

ζ21 and ζ22 of Z. Note that because Σ and Z are covariance matrices, they must be

symmetric, and so σ12 and ζ12 are not free parameters. These 12 parameters can be
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thought of as the coordinates of a point in R12. The steepest reduction in qκ as we move

through R12 is achieved by moving in the direction of −∇qκ, where ∇qκ is the gradient

vector [∂qκ/∂b11, . . . , ∂qκ/∂ζ22]T (Riley et al., 2002, p. 355).

To understand the effects of each parameter, note that the probability qκ depends on these

parameters only through µ∗, Σ∗ and Z∗. Thus, for any parameter matrix Θ, using the

chain rule for matrix derivatives,

Dqκ(Θ) = Dqκ(µ∗)Dµ∗(Θ) +Dqκ(Σ∗)DΣ∗(Θ) +Dqκ(Z∗)DZ∗(Θ),

where DE(X) denotes the matrix derivative of E with respect to X (Magnus and

Neudecker, 2007, p. 108). This allows us to break up the effects of a parameter into its

effects via the stationary mean and stationary within- and among-site covariances. In each

term, the first factor (Dqκ(µ∗), Dqκ(Σ∗) or DΣ∗(Θ)) can only be found numerically. The

non-zero second factors are

Dµ∗(B) = (aT ⊗ I2)
[(

(I2 −B)−1
)T
⊗ (I2 −B)−1

]
, (A.16)

DΣ∗(B) = F
[
(vecΣ)T ⊗ I4

] [(
(I4 −B⊗B)−1

)T
⊗ (I4 −B⊗B)−1

]
(I2 ⊗K4 ⊗ I2)(I4 ⊗ vecB + vecB⊗ I4),

DZ∗(B) = F
[
(vecZ)T ⊗ I4

]
(I2 ⊗K4 ⊗ I2)

[
I4 ⊗ vec(I2 −B)−1 + vec(I2 −B)−1 ⊗ I4

]
[(

(I2 −B)−1
)T
⊗ (I2 −B)−1

]
,

Dµ∗(a) = (I2 −B)−1,

DΣ∗(Σ) = F(I4 −B⊗B)−1G,

DZ∗(Z) = F
[
(I2 −B)−1 ⊗ (I2 −B)−1

]
G,

where K4 is the 4× 4 commutation matrix (Magnus and Neudecker, 2007, p. 54),
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F =


1 0 0 0

0 1 0 0

0 0 0 1

 ,

and

G =



1 0 0

0 1 0

0 1 0

0 0 1


.

A11 How informative is a snapshot about long-term

site properties?

Denote the true state of a randomly-chosen site at a given time by x, and the

corresponding stationary mean for that site by µ∗. Under the model of Equation A.6, µ∗

has covariance matrix Z∗ (Equation A.9). Write the true state as x = µ∗ + ∆, where ∆ is

the deviation from the stationary mean, which has covariance matrix Σ∗ (Equation A.10).

The correlation ρk between the kth component xk of x and the corresponding component

µ∗k of µ∗ is an obvious way to measure how informative the snapshot will be for this

component. This is

ρk = cov(µ∗k + ∆k, µ
∗
k)√

V [µ∗k + ∆k]V [µ∗k]

= V [µ∗k] + cov(µ∗k,∆k)√
V [µ∗k + ∆k]V [µ∗k]

= V [µ∗k]√
(V [µ∗k] + V [∆k])V [µ∗k]

(because α and ε assumed independent)

=
(

ζ∗kk
ζ∗kk + σ∗kk

)1/2

,
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where ζ∗kk is the kth diagonal element of Z∗, and σ∗kk is the kth diagonal element of Σ∗. If

ρk is far from zero, a snapshot will be a reliable guide to the long-term value of the kth

component of transformed reef composition. On the other hand, if ρk is close to zero, a

snapshot will be unreliable. Thus ρk measures the extent to which conservation and

management decisions could be based on observations at a single time point. We computed

both ρ1 which tells us how much we could learn about the log of the ratio of algae to coral

and ρ2, which tells us how much we could learn about the log of the ratio of other to the

geometric mean of coral and algae.

A12 Dynamics

Consistent with the patterns suggesting negative feedbacks that will tend to maintain fairly

stable reef composition, every set of sampled parameters led to a stationary distribution

(Figure A43: all sampled eigenvalues of B fell inside the unit circle in the complex plane,

with maximum magnitude 0.84). In 27% of iterations, there was evidence for oscillations

on the approach to the stationary distribution, because the eigenvalues were complex. In

such cases, the oscillations had a long period (posterior mean 113 years, 95% HPD interval

[21, 284] years), but their amplitude more than halved within three years because the

magnitudes of the eigenvalues involved were small (original posterior mean magnitude of

complex eigenvalues 0.59, 95% credible interval [0.51, 0.67], cubed posterior mean

magnitude 0.21, 95% HPD interval [0.13, 0.30]). The distribution of eigenvalues was very

different from that of the Great Barrier Reef (Cooper et al., 2015, Appendix A.10), where

the largest eigenvalue lay close to the point beyond which the stationary distribution would

not exist (bootstrap mean magnitude 0.95), and there was no evidence for oscillations (no

bootstrap replicates had complex eigenvalues). However, a different estimation method was

used in Cooper et al. (2015), so the eigenvalues may not be directly comparable.
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A13 Probability of low coral cover: signs of

derivatives

Here, we explain the signs of the derivatives of the probability of low coral cover with

respect to each parameter. We concentrate on coral cover threshold 0.1. The overall

stationary mean µ∗ lies in the region where coral cover is greater than 0.1 for all iterations

(Figure A42, black circle, shows a point estimate for µ∗, based on the stationary means of

a and B). The shaded region of Figure A42 has coral cover ≤ 0.1. Because of the shape of

the boundary of the shaded region, either increasing µ∗1 (increasing the ratio of algae to

coral) or increasing µ∗2 (increasing the ratio of other to the geometric mean of coral and

algae) will move the stationary mean closer to this region. Also, since the stationary mean

lies outside the region of interest, increasing the variability in the stationary distribution by

increasing the elements of Σ∗ or Z∗ will increase the probability of falling in the region of

interest. Hence the derivatives of q0.1 with respect to µ∗, Σ∗, Z∗ contain only positive

elements.

It is then intuitively obvious that the derivatives of q0.1 with respect to Σ and Z will

contain only positive elements. Increasing the amount of year-to-year temporal variability

or among-site variability will increase the variability in the stationary distribution, and

hence the long-term probability of coral cover less than or equal to 0.1.

The signs of the derivatives of q0.1 with respect to a are also easy to understand. The

components a1, a2 represent the rates of increase of x1 and x2 respectively, so we would

expect that increasing either of them will increase the corresponding component of the

stationary mean. Thus the derivatives of µ∗ with respect to a will be positive, and from

Figure A42, increasing either component of µ∗ will increase the probability of coral cover

≤ 0.1.

The derivatives of q0.1 with respect to B are a little harder to understand. They are

(predominantly) negative with respect to b11 and b21, but positive with respect to b12 and
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b22. Since B affects both the stationary mean (Equation A.8) and the stationary

covariance, which is the sum of Σ∗ (Equation A.10) and Z∗ (Equation A.9), all of these

effects could be important. However, in 93% of iterations,

|Dq0.1(µ∗)Dµ∗(B)| � |Dq0.1(Σ∗)DΣ∗(B) +Dq0.1(Z∗)DZ∗(B)|,

where � is an elementwise inequality, and |D| indicates the elementwise magnitude, such

that for two matrices D and E with the same dimensions, |D| � |E| if and only if the

magnitude of every dij is greater than the magnitude of the corresponding eij. In other

words, in almost all iterations, the sign of the effect of B on q0.1 via µ∗ determines the sign

of the overall effect of B on q0.1. We therefore concentrate on understanding how B affects

µ∗.

To understand the signs of the effects of b11 and b22 on µ∗, consider the one-dimensional

deterministic analogue

xt+1 = a+ bxt.

Iterating this gives

xt = a
(
1 + b+ b2 + . . .+ bt−1

)
+ btx0.

For 0 < b < 1, the term btx0 → 0 as t→∞. Then the derivative of x∞ with respect to b

has the same sign as a. In our system, a1 < 0 and a2 > 0, so we expect the signs of

derivatives of µ∗ with respect to b11 to be negative, and the signs of derivatives of µ∗ with

respect to b22 to be positive.

To understand the signs of the effects of b12 and b21 on µ∗, recall that b12 is the effect of

component 2 (which typically takes positive values) on component 1, and b21 is the effect of

component 1 (which typically takes negative values) on component 2. If, as in our system,

b12 and b21 are both positive, and the system is linear, we would expect that the signs of
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their effects on µ∗ will be the same as the signs of components 2 and 1 respectively.

Then, by the graphical argument above (Figure A42), we expect the signs of the

derivatives of q0.1 with respect to b11, b21, b12 and b22 to be −,−,+,+ respectively.

A14 Probability of low coral cover: rank order and

other thresholds

For threshold 0.05, the signs of the effects of b11 and b21 were not clearly negative. The four

most important parameters were (in descending order: Figure A47) ζ21, ζ22, b22 and b12

(the same four as for threshold 0.1, but in a different order). For threshold 0.2, the signs

were as for threshold 0.1, but the four most important parameters were (in descending

order) b22, b21, b12 and ζ21 (with ζ22 now in fifth place: Figure A49). Thus, while the details

depend to some extent on the threshold, the overall conclusion that both internal dynamics

and among-site variability are the most important factors affecting the probability of low

coral cover is robust.

The effects of within-site temporal variability on the probability of low coral cover were

always relatively unimportant (threshold 0.1, Figure A45, three of the last four positions in

the ranked list; threshold 0.05, Figure A47, three of the last five positions; threshold 0.20,

Figure A49, last three positions).
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Auger-Méthé, M., Field, C., Albertsen, C. M., Derocher, A. E., Lewis, M. A., Jonsen, I. D.,

and Mills Flemming, J. (2015). State-space models’ dirty little secrets: even simple

linear Gaussian models can have estimation problems. unpublished, arXiv:1508.04325v1.

Baker, A. C., Glynn, P. W., and Riegl, B. (2008). Climate change and coral reef bleaching:

an ecological assessment of long-term impacts, recovery trends and future outlook.

Estuarine, Coastal and Shelf Science, 80:435–471.

Bjørnstad, O. N. and Falck, W. (2001). Nonparametric spatial covariance functions:

Estimation and testing. Environmental and Ecological Statistics, 8:53–70.

Brook, B. W., O’Grady, J. J., Chapman, A. P., Burgman, M. A., Akçakaya, H. R., and
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Piessens, R., de Doncker-Kapenga, E., Überhuber, C. W., and Kahaner, D. (1983).

QUADPACK: a subroutine package for automatic integration. Springer-Verlag, Berlin.

R Core Team (2015). R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna, Austria.

Riley, K. F., Hobson, M. P., and Bence, S. J. (2002). Mathematical methods for physics and

engineering. Cambridge University Press, Cambridge, second edition.

Roff, G., Zhao, J.-X., and Mumby, P. J. (2015). Decadal-scale rates of reef erosion

following El Niño-related mass coral mortality. Global Change Biology, 21:4415–4424.

46



Royston, J. (1982). An extension of Shapiro and Wilk’s W test for normality to large

samples. Applied Statistics, 31:115–124.

Sandin, S. A., Smith, J. E., DeMartini, E. E., Dinsdale, E. A., Donner, S. D., Friedlander,

A. M., Konotchick, T., Malay, M., Maragos, J. E., Obura, D., Pantos, O., Paulay, G.,

Richie, M., Rohwer, F., Schroeder, R. E., Walsh, S., Jackson, J. B. C., Knowlton, N.,

and Sala, E. (2008). Baselines and degradation of coral reefs in the Northern Line

Islands. PLoS ONE, 3(2):e1548.

Stan Development Team (2015a). Stan: A C++ library for probability and sampling,

version 2.7.0.

Stan Development Team (2015b). Stan Modeling Language Users Guide and Reference

Manual, Version 2.7.0.

Vehtari, A., Gelman, A., and Gabry, J. (2015). Efficient implementation of leave-one-out

cross-validation and WAIC for evaluating fitted Bayesian models. unpublished,

arXiv:1507.04544v1.

Vercelloni, J., Caley, M. J., Kayal, M., Low-Choy, S., and Mengersen, K. (2014).

Understanding uncertainties in non-linear population trajectories: a Bayesian

semi-parametric hierarchical approach to large-scale surveys of coral cover. PLoS ONE,

9(11):e110968.

Wilks, S. S. (1932). Certain generalizations in the analysis of variance. Biometrika,

24:471–494.
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Figure A7: Map of study sites, showing fringing reefs (triangles) and patch reefs (circles),
shaded by the site-specific long-term probability q0.1,i of coral cover ≤ 0.1 (for reefs with one
site) or the mean of site-specific probabilities (for reefs with two sites).
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Figure A8: The ilr transformation given by Equation A.5. (a) The open 2-simplex S3, in
which three-part compositions lie. The dot represents the composition with equal relative
abundances of coral, algae and other. Lines are contours of constant relative abundance of
one part. (b) The ilr-transformed composition in R2, with dot and contours as in (a).
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Figure A9: Posterior distributions of parameters estimated from simulated data. Thick green
vertical lines: parameter values used to generate simulated data (posterior means from real
data). Black lines: kernel density estimates of posterior distributions from 100 simulated
data sets, each with the same number of sites, number and spacing of observation times, and
numbers of transects at each observation time, as the real data. Number of simulated data
sets in which true value was within 95% HPD interval: 89 (a1), 95 (a2), 97 (b11), 91 (b21),
95 (b12), 90 (b22), 99 (σ11), 96 (σ21), 93 (σ22), 96 (ζ11), 93 (ζ21), 98 (ζ22), 93 (η11), 93 (η21),
96 (η22), 93 (ν).
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Figure A10: Fitted values against Bayesian residuals for component 1. Each panel is a
single randomly-chosen Monte Carlo iteration. Dots represent Bayesian residuals against
fitted values for individual transects. The green line is a loess smoother. The orange line is
the minimum possible value for component 1 residuals.
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Figure A11: Fitted values against residuals for component 2. Each panel is a single randomly-
chosen Monte Carlo iteration. Dots represent Bayesian residuals against fitted values for
individual transects. The green line is a loess smoother.

59



1990 1994 1998 2002 2006 2010 2014

0
.0

0
.5

1
.0

Bongoyo1(a)

c
o
ra

l

1990 1994 1998 2002 2006 2010 2014

0
.0

0
.5

1
.0

(b)

a
lg

a
e

1990 1994 1998 2002 2006 2010 2014

0
.0

0
.5

1
.0

year

(c)

o
th

e
r

Figure A12: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Bon-
goyo1. Circles are observations from individual transects. Grey lines join back-transformed
posterior mean true states from Equation A.6 and the shaded region is a 95% HPD interval.
The stationary mean composition for the site is the black dot after the time series and the
bar is a 95% HPD interval.
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Figure A13: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Bon-
goyo2. See Figure A12 legend for explanation.
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Figure A14: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Changale1. See Figure A12 legend for explanation.
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Figure A15: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Changuu1. See Figure A12 legend for explanation.
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Figure A16: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Chap-
wani1. See Figure A12 legend for explanation.
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Figure A17: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Chumbe1. See Figure A12 legend for explanation.
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Figure A18: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Chumbe2. See Figure A12 legend for explanation.
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Figure A19: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Diani1.
See Figure A12 legend for explanation.
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Figure A20: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Diani2.
See Figure A12 legend for explanation.
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Figure A21: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Fun-
guni1. See Figure A12 legend for explanation.
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Figure A22: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kana-
mai1. See Figure A12 legend for explanation.
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Figure A23: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kana-
mai2. See Figure A12 legend for explanation.
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Figure A24: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kisite1.
See Figure A12 legend for explanation.
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Figure A25: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Kisite2.
See Figure A12 legend for explanation.
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Figure A26: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Makome1. See Figure A12 legend for explanation.
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Figure A27: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Malindi1.
See Figure A12 legend for explanation.
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Figure A28: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Malindi2.
See Figure A12 legend for explanation.
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Figure A29: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Mbudya1. See Figure A12 legend for explanation.
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Figure A30: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Mbudya2. See Figure A12 legend for explanation.
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Figure A31: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mom-
basa1. See Figure A12 legend for explanation.
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Figure A32: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mom-
basa2. See Figure A12 legend for explanation.
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Figure A33: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Mradi1.
See Figure A12 legend for explanation.
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Figure A34: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Nyali1.
See Figure A12 legend for explanation.
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Figure A35: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Nyali2.
See Figure A12 legend for explanation.
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Figure A36: Time series for cover of hard corals (a), macroalgae (b) and other (c) at RasI-
watine1. See Figure A12 legend for explanation.
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Figure A37: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Taa1.
See Figure A12 legend for explanation.
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Figure A38: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Tiwi-
Inside1. See Figure A12 legend for explanation.
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Figure A39: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Vipingo1.
See Figure A12 legend for explanation.
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Figure A40: Time series for cover of hard corals (a), macroalgae (b) and other (c) at Vipingo2.
See Figure A12 legend for explanation.
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Figure A41: Time series for cover of hard corals (a), macroalgae (b) and other (c) at
Watamu1. See Figure A12 legend for explanation.
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Figure A42: Effects of the elements of B on the location of the stationary mean µ∗. Axes:
the two components of isometric logratio transformed benthic composition (Equation A.5).
Component x1 is proportional to the log of the ratio of algae to coral. Component x2 is
proportional to the log of the ratio of other to the geometric mean of algae and coral. Black
dot: point estimate of stationary mean µ∗, calculated from Equation A.8 using posterior
means of a and B. Arrows: directions of derivatives of µ∗ with respect to each element of
B (Equation A.16). Shaded region: coral cover ≤ 0.1.
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Figure A43: Distribution of the two eigenvalues of B in the complex plane. Each Monte
Carlo sample gives a pair of eigenvalues, represented by two points: λ1 (green), posterior
mean magnitude 0.64, 95% HPD interval [0.53, 0.75]; λ2 (orange), posterior mean magnitude
0.53, 95% HPD interval [0.41, 0.66])
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Figure A44: Spline correlogram of spatial autocorrelation in q0,1,i. Grey lines: spline correl-
ograms from each of 20000 Monte Carlo iterations. Thick green lines: 95% highest posterior
density envelope. White horizontal line: zero-correlation reference line.
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Figure A45: Ranks of partial derivatives of the long-term probability of coral cover less
than or equal to 0.1 with respect to elements of the B matrix, the a vector, the covariance
matrix of random temporal variation Σ, and the covariance matrix of among-site variability
Z. Parameters are ranked in descending order of median rank (higher ranks indicate larger
magnitudes of partial derivative). Outliers are indicated as jittered black dots. For the
covariance matrices, the elements σ12 and ζ12 are not shown, because they are constrained
to be equal to σ21 and ζ21 respectively.
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Figure A46: Elements of the gradient vector of partial derivatives of the long-term probability
of coral cover less than or equal to 0.05 with respect to elements of the B matrix, the a vector,
the covariance matrix of random temporal variation Σ, and the covariance matrix of among-
site variability Z. For each parameter, the dot is the posterior mean and the bar is a 95%
HPD interval. For the covariance matrices, the elements σ12 and ζ12 are not shown, because
they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A47: Ranks of partial derivatives of the long-term probability of coral cover less
than or equal to 0.05 with respect to elements of the B matrix, the a vector, the covariance
matrix of random temporal variation Σ, and the covariance matrix of among-site variability
Z. Parameters are ranked in descending order of median rank (higher ranks indicate larger
magnitudes of partial derivative). Outliers are indicated as jittered black dots. For the
covariance matrices, the elements σ12 and ζ12 are not shown, because they are constrained
to be equal to σ21 and ζ21 respectively.
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Figure A48: Elements of the gradient vector of partial derivatives of the long-term probability
of coral cover less than or equal to 0.2 with respect to elements of the B matrix, the a vector,
the covariance matrix of random temporal variation Σ, and the covariance matrix of among-
site variability Z. For each parameter, the dot is the posterior mean and the bar is a 95%
HPD interval. For the covariance matrices, the elements σ12 and ζ12 are not shown, because
they are constrained to be equal to σ21 and ζ21 respectively.
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Figure A49: Ranks of partial derivatives of the long-term probability of coral cover less
than or equal to 0.2 with respect to elements of the B matrix, the a vector, the covariance
matrix of random temporal variation Σ, and the covariance matrix of among-site variability
Z. Parameters are ranked in descending order of median rank (higher ranks indicate larger
magnitudes of partial derivative). Outliers are indicated as jittered black dots. For the
covariance matrices, the elements σ12 and ζ12 are not shown, because they are constrained
to be equal to σ21 and ζ21 respectively.
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