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ABSTRACT  1 

Cold atmospheric plasma (CAP) has proved to have great potential as a mild food 2 

decontamination technology. Different process parameters, including food intrinsic factors, 3 

are known to influence the resistance of the cells towards the treatment. The importance of 4 

osmotic stress (0, 2, 6% (w/v) NaCl) and suboptimal pH (5.5, 6.5, 7.4) on the CAP efficacy to 5 

inactivate Salmonella Typhimurium and Listeria monocytogenes is studied for various food 6 

structures. The helium-oxygen plasma was generated by a dielectric barrier discharge reactor, 7 

treating samples up to ten minutes. If grown under osmotic stress or at suboptimal pH, 8 

microbial cells adapt and become more resistant during CAP treatment (stress hardening). 9 

Additionally, the microorganisms and the food structures also influence the inactivation 10 

results. This study illustrates the importance of increasing knowledge on food intrinsic 11 

factors, to be able to predict the final CAP inactivation result. 12 

Keywords: cold atmospheric gas plasma; osmotic stress; suboptimal pH; food structure; 13 

growth morphology. 14 

15 
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1. INTRODUCTION  16 

Despite all efforts, more than 300,000 food poisonings are still reported every year in the EU 17 

(EFSA and ECDC, 2015). Combined with an increasing consumer demand for minimally 18 

processed foods, this encourages the development of innovative mild decontamination 19 

techniques, like Cold Atmospheric Plasma (CAP). By applying a voltage to a gas stream, the 20 

gas atoms or molecules become ionized once the breakdown voltage is exceeded, creating 21 

plasma. The plasma phase of matter consists of a mixture of electrons, ions, atomic species, 22 

free radicals and UV photons, all able to inactivate microorganisms (Deng, Shi, & Kong, 23 

2006; Perni et al., 2007). The CAP mode of action for inactivation of microbial cells may be 24 

explained at different levels (Fernandez & Thompson, 2012; Laroussi & Leipold, 2004; 25 

Moisan et al., 2002; Niemira, 2012). Reactive oxygen and nitrogen species interact with 26 

macromolecules, like lipids, amino acids and nucleic acids, and cause changes that lead to 27 

microbial death or injury. Next to this, charged particles accumulate at the surface of the cell 28 

membrane and induce its rupture. In addition, UV photons modify the DNA of the 29 

microorganisms. However, Deng et al. (2006) demonstrated that reactive plasma species play 30 

a dominant role as compared to the effect of charged particles and UV. When studying the 31 

influence of the reactive gas species on the inactivation of Bacillus subtilis spores using a 32 

helium-(oxygen) plasma, oxygen atoms, metastable oxygen molecules, OH, nitrogen 33 

containing species and ozone are responsible for spore inactivation. The low temperature 34 

during the CAP treatment, short treatment times, together with the fact that no residues 35 

remain on the product after the treatment (Moisan et al., 2001), sum up some of the most 36 

important advantages of using CAP for food treatment. However, as plasma is able to adapt 37 

bacteria at a cellular level, cells can become sublethally injured as a result from the treatment. 38 

This possible disadvantage may pose public health concerns since sublethal injured cells are 39 

susceptible to recovery (Noriega, Velliou, Van Derlinden, Mertens, & Van Impe, 2014). 40 
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Different process parameters influence the efficacy of the plasma treatment. First of all, all 41 

plasma characteristics play an important role, like the treatment time, the plasma power, the 42 

voltage and frequency applied, together with the gas flow rate and gas composition (Deng et 43 

al., 2007; Han, Patil, Keener, Cullen, & Bourke, 2014; Lerouge, Wertheimer, & Yahia, 2001). 44 

The CAP set-up itself also has an impact on the decontamination efficacy, as plasma can be 45 

produced using, e.g., a plasma jet or a dielectric barrier discharge (DBD) electrode, and a 46 

sample can be treated directly or indirectly (Ehlbeck et al., 2011; Fernandez & Thompson, 47 

2012; Fridman et al., 2007). Finally, both the microorganism treated and the sample itself, 48 

influence the efficacy of the treatment (Afshari & Hosseini, 2012; Fernandez & Thompson, 49 

2012). The species of the microorganism, together with its microbial load and the growth 50 

phase of the treated cells, play an important role during the CAP inactivation, as reported in 51 

literature (Fernandez & Thompson, 2012; Fernandez, Shearer, Wilson, & Thompson, 2012; 52 

Lerouge et al., 2001). Preservation of the sample, prior to CAP treatment, also affects the 53 

inactivation efficacy. For example, prolonged storage times may trigger the formation of 54 

biofilms, resulting in the production of polysaccharide matrices (Giaouris, Chorianopoulos, & 55 

Nychas, 2005). These matrices shield the cells against the CAP produced, promoting 56 

resistance towards the inactivation treatment (Laroussi, 2009; Vleugels et al., 2005). 57 

Regarding the treated sample itself, studies often focus on the CAP inactivation of cells on a 58 

specific food product (Fernandez, Noriega, & Thompson, 2013; Gurol, Ekinci, Aslan, & 59 

Korachi, 2012; Kim et al., 2011; Selcuk, Oksuz, & Basaran, 2008). General studies taking 60 

into account the influence of the (food) sample, or its preservation, on the CAP efficacy are 61 

limited. 62 

However, food intrinsic factors affect the resistance of the microorganisms towards CAP 63 

treatment as well. For example, regarding the influence of the intrinsic food structure of the 64 

sample on the CAP efficacy, two different factors can play an important role. First, as a 65 
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consequence of the food structure, the growth morphology of the cells affects the efficacy of 66 

the treatment. Colony immobilization results in cells that are more resistant towards CAP as 67 

compared to treatment of cells grown planktonically (Smet et al., 2016). Secondly, the carrier 68 

on which cells are deposited during the treatment is important, influencing the CAP efficacy 69 

(Lerouge et al., 2001). The interference of plasma species with the cells depends on the type 70 

of carrier. In Smet et al. (2016), the CAP inactivation for S. Typhimurium and 71 

L. monocytogenes cells on a liquid carrier, a solid(like) surface and a filter were compared. 72 

Cells dispersed inside a liquid carrier are the most difficult to inactivate as most highly 73 

reactive plasma species are not able to penetrate the liquid. Additionally, food surfaces can 74 

have complex topographies, protecting the cells against plasma-generated species (Fernandez 75 

et al., 2013). Next, the acidity of the sample influences the CAP treatment. S. Enteritidis cells 76 

on agar containing microscope slides were more susceptible towards CAP treatment at pH 5 77 

as compared to pH 7 (Kayes et al., 2007). For the same microorganism inactivated in a liquid 78 

carrier, an increasing acidity results in a decreasing CAP resistance (Rowan et al., 2007a).   79 

 In the present work, the role of food intrinsic factors on the efficacy of CAP inactivation is 80 

further investigated by focusing on the influence of osmotic stress, in combination with 81 

suboptimal pH values. These stresses are respectively represented by growth of Salmonella 82 

Typhimurium and Listeria monocytogenes cells in model systems at different salt 83 

concentrations (0, 2, 6% (w/v) NaCl) and pH values (5.5, 6.5, 7.4). Additionally, sublethal 84 

injury resulting from CAP treatment is assessed for all experimental conditions. 85 

 86 

2. MATERIALS AND METHODS 87 

2.1 Experimental plan 88 

The influence of osmotic stress and suboptimal pH on the CAP efficacy to inactivate 89 

Salmonella Typhimurium and Listeria monocytogenes was studied.  Cells were grown under 90 



 6 

different salt concentrations (0, 2, 6% (w/v) NaCl) and pH values (5.5, 6.5, 7.4). The 91 

suboptimal pH range was selected to mimic pH values representing most food products. A 92 

broad range of salt levels were examined, also taking into account very salty food products. 93 

Additionally, a third intrinsic factor, the influence of the food structure, was studied.  Two 94 

growth morphologies, planktonic cells or surface colonies, are a consequence of the intrinsic 95 

food structure. Surface colonies were promoted by the addition of 5% (w/v) gelatin to the 96 

growth medium, an amount often found in food products (e.g., meat). During inactivation, 97 

cells were CAP treated in a liquid carrier or on a solid(like) surface, mimicking treatment of 98 

solid and liquid food products. Figure 1 summarizes this experimental plan. As indicated on 99 

the figure, different combinations regarding the food structure, thus growth morphology and 100 

inactivation support system, were investigated. The logical combinations are (1) cells grown 101 

planktonically, followed by inactivation in a liquid carrier and (2) cells grown as surface 102 

colonies which are also CAP inactivated on a solid(like) surface. This situation arises when 103 

cells have grown in a certain food product, which is treated by CAP. However, two less 104 

evident combinations were also studied. First, cells grown planktonically that are inactivated 105 

on a solid(like) surface. For example, this situation can appear when microorganisms grow in 106 

water used to rinse of dirt from fresh produce, and attach to the food product which is plasma 107 

treated. Secondly, cells grown as surface colonies that are inactivated in a liquid carrier. This 108 

last scenario holds for cells grown on the surface of the food product, e.g., fresh produce, 109 

which is further on in the process blended into a juice and treated with plasma. 110 

 111 

2.2 Microorganisms and pre-culture conditions 112 

Salmonella enterica serovar Typhimurium SL1344 was kindly provided by the Institute of 113 

Food Research (IFR, Norwich, UK). The culture was stored at -80°C in Tryptone Soya Broth 114 

(TSB (Oxoid LTd., Basingstoke, UK)) supplemented with 25% (v/v) glycerol (Acros 115 
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Organics, NJ, USA). For every experiment, a fresh purity plate was prepared from the frozen 116 

stock culture by spreading a loopful onto a Tryptone Soya Agar plate (TSA (Oxoid Ltd., 117 

Basingstoke, UK)) incubated at 37°C for 24 h. One colony from this plate was transferred into 118 

20 mL TSB and incubated under static conditions at 37°C for 8 h (Binder KB series 119 

incubator; Binder Inc., NY, USA). Next, 200 µL from this stationary phase culture was added 120 

to 20 mL of fresh TSB and incubated under the same conditions for 16 h. 121 

Listeria monocytogenes LMG 13305 was obtained from the Belgian Co-ordinated Collections 122 

of Microorganisms (BCCM, Ghent, Belgium). The culture was stored at -80°C in TSB 123 

supplemented with 0.6% (w/v) yeast extract (Merck, Darmstadt, Germany) (TSBYE). For 124 

each experiment, a new purity plate was prepared on Brain Heart Infusion (BHI (Oxoid Ltd., 125 

Basingstoke, UK)) supplemented with 1.2% (w/v) agar (Agar technical n°3, Oxoid Ltd., 126 

Basingstoke, UK) and incubated for 24 h at 37°C. One colony from the purity plate was 127 

transferred into 20 mL BHI, incubated at 37°C for 8 h under static conditions, refreshed in 128 

BHI and incubated again for 16 h.  129 

Cell cultivation under the above defined conditions yielded early-stationary phase populations 130 

for both S. Typhimurium and L. monocytogenes, at about 10
9
 CFU/mL. These cultures were 131 

used to inoculate the corresponding media at the appropriate concentration.  132 

 133 

2.3 Growth stage prior to CAP inactivation 134 

During cell growth, the effect of the food structure results in different growth morphologies.  135 

Planktonic cells or surface colonies were grown under different experimental conditions of 136 

salt concentrations and pH until the early stationary phase was reached. Results from 137 

preliminary growth experiments were used to verify this point on the growth curve (Smet, 138 

Noriega, Van Mierlo, Valdramidis, & Van Impe, 2015). The preparation and the growth 139 
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conditions of both the liquid system (planktonic cells) and solid(like) system (surface 140 

colonies) are discussed below.  141 

 142 

2.3.1 Liquid systems: preparation and planktonic growth conditions 143 

For S. Typhimurium, the appropriate amount of salt (0, 2, 6% (w/v) NaCl, Sigma Aldrich, 144 

MO, USA) was added to TSB without dextrose (Becton, NJ, USA) and the pH (DocuMeter, 145 

Sartorius, Goettingen, Germany) was adapted by the addition of 5 M HCl (Acros Organics, 146 

NJ, USA). BHI was used for L. monocytogenes. Cells were grown in petri dishes (diameter 147 

5.5 cm) filled with 7 mL of the medium inoculated at 10
3
 CFU/mL. This cell density was 148 

obtained by serial decimal dilutions of stationary phase cells, using dilution medium with the 149 

same pH and amount of salt as the final growth conditions. After shaking, the inoculated 150 

growth medium was dispensed into petri dishes and placed, under static conditions, in a 151 

temperature controlled incubator (KB 8182, Termaks, Bergen, Norway) at 20°C, mimicking 152 

the temperature during the CAP treatment. Cells were grown until the early stationary phase 153 

was reached. 154 

 155 

2.3.2 Solid(like) systems: preparation and (surface) colonial growth conditions 156 

Together with the appropriate amount of NaCl, gelatin at 5% (w/v) (gelatin from bovine skin, 157 

type B, Sigma-Aldrich, MO, USA) was added to TSB or BHI. After heating for 20 min at 158 

60°C in a thermostatic water bath (GR150-S12, Grant Instruments Ltd, Shepreth, UK), the 159 

gelatin melted and the medium was adapted to the appropriate pH. The gelled medium was 160 

then filter-sterilized using a 0.2 mm filter (Filtertop, 150 mL filter volume, 0.22 µm, TPP, 161 

Switzerland), kept liquid at 60°C, and 7 mL was pipetted into sterile petri dishes (diameter 5.5 162 

cm), which was left to solidify. Next, the solid(like) plates were surface inoculated at 163 

approximately 3.0 x 10
2
 CFU/cm

2
 (surface area 23.8 cm

2
, corresponding to 10

3
 CFU/mL), by 164 
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using serial decimal dilution of stationary phase cells with the appropriate dilution medium. 165 

Following this step, 20 μL of the corresponding dilution was spread onto each petri dish. 166 

After being sealed, plates were placed in a temperature controlled incubator at 20°C under 167 

static conditions and grown until the early stationary phase was reached.  168 

 169 

2.4 Sample inoculation for CAP inactivation 170 

Early stationary phase cells were CAP treated as these cells have the highest resistance and 171 

are predominantly encountered in a natural environment (Hurst, 1977; Rees, Dodd, Gibson, 172 

Booth, & Stewart, 1995).  173 

When the planktonic cells or surface colonies reached the early stationary phase, samples 174 

were again diluted, using dilution medium with the same NaCl concentration and pH value, 175 

and were again inoculated in/on the selected support system. When inactivated in a liquid 176 

carrier, the sample was properly diluted (or re-melted in case of surface colonies) to obtain a 177 

cell density of 5.5 log(CFU/mL), and 100 µL was pipetted on empty 5 cm petri dishes, which 178 

were closed until CAP treatment. Regarding inactivation on a solid(like) surface, the gelled 179 

surface was prepared in a 5 cm petri dish (surface area 19.6 cm
2
), at similar experimental 180 

conditions regarding salt level and pH as the initial growth medium. Following this, 50 µL of 181 

the appropriately diluted sample of either planktonic or surface colony cells was pipetted and 182 

spread on the gelled surface, which was allowed to dry for 40 min in the laminar flow cabinet 183 

(Telstar Laboratory Equipment, Woerden, the Netherlands). This results in a final cell density 184 

of 5.5 log(CFU/cm
2
) before inactivation. Cell inoculation on a (membrane) filter (cyclopore 185 

PC circles, 0.2 μm, diameter 2.5 cm, Whatman, Maidstone, UK) was identical to the 186 

procedure for solid(like) surfaces, except that only 12.5 µL was pipetted and spread on the 187 

filter area (4.9 cm
2
), resulting again in a final inoculum density of 5.5 log(CFU/cm

2
).  188 

 189 
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2.5 CAP: equipment and inactivation procedure 190 

The dielectric barrier discharge reactor used to study microbial inactivation is illustrated in 191 

Figure 2. The discharge was generated between two electrodes (diameter 5.5 cm), covered by 192 

a dielectric layer (diameter 7.5 cm). In this set-up, the electrode gap can be varied from 0 to 1 193 

cm (fixed at 1 cm in these experiments). An enclosure (22.5 cm x 13.5 cm x 10 cm) around 194 

the electrode increases the residence time of the plasma species around the sample while also 195 

providing a more controlled environment. The enclosure was not airtight, and so oxygen and 196 

nitrogen from the environment were present. The plasma power supply transforms a low 197 

voltage DC input (0-60V) into a high voltage AC signal (0-20kV), at a frequency up to 30 198 

kHz. 199 

The plasma was generated in a gas mixture of helium (purity 99.996%, at a flow rate of 4 200 

L/min) and oxygen (purity ≥ 99.995%, at a flow rate of 40 mL/min). The two flows were 201 

mixed before entering the plasma chamber (total flow rate 4.04 L/min). Thus, a 1% (v/v) 202 

admixture of oxygen was added to the helium. For this flow rate, the residence time in the 203 

enclosure was approximately 45 s. Due to the use of this helium/oxygen mixture, the key 204 

reactive gas species generated are: helium metastables (He*, He2*), atomic oxygen (O), 205 

excited atomic oxygen: O(1D), O(1S), exited oxygen: O2(1D), O2(1S), vibrationally excited 206 

oxygen: O2(v=1-4), ozone (O3), hydrogen species (H, OH, HO2, H2O2), nitrogen oxides (NO, 207 

NO2, NO3, N2O) and oxygen ions (O2
+
, O4

+
, O

-
,O2

-
,O3

-
, O4

-
) (Murakami, Niemi, Gans, 208 

O’Connell & Graham, 2014).   209 

Samples were placed between the 0.8 cm gap of the DBD electrodes, and after flushing the 210 

reactor with the helium-oxygen gas mixture for 4 min, the high-voltage power source was 211 

energized and the plasma was generated. Both electrical and optical methods of 212 

characterization were employed to ensure a stable plasma discharge. Samples were treated up 213 

to 10 minutes (3 min for the filters) at a peak-to-peak voltage around 7 kV, frequency of 214 
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15 kHz and dissipated plasma power of 9.6 W. For these experimental conditions, the 215 

temperature increase of the sample, measured directly after treatment, was about 2°C. 216 

Additionally, as was reported in Smet et al. (2016), at longer treatment times (≥ 5 min) the 217 

liquid carrier significantly evaporated due to the CAP generated, at a rate of 0.0087 ± 0.0006 218 

g/sec. Control tests confirmed the evaporation was not due to the gas flow, as for tests 219 

executed without any current the sample volume remained intact.   220 

 221 

2.6 Cell recovery and microbiological analysis 222 

To detect the cell density following CAP inactivation, the viable plate counting technique was 223 

used. Following the CAP treatment, some cells might be sublethally injured. Sublethal injury 224 

(SI) was defined as a consequence of exposure to a chemical or physical process that damages 225 

but does not kill a microorganism (Hurst, 1977). In order to calculate the percentage of 226 

sublethal injury (% SI) resulting from CAP treatment, viable plate counting on both general 227 

and selective media was performed to determine the cell density after CAP treatment. For 228 

cells inactivated in a liquid carrier, 900 µL of saline solution (0.85% (w/v) NaCl) was added 229 

to the sample. Afterwards, the diluted sample (1 mL) was collected from the petri dish and 230 

transferred to a sterile Eppendorf, in order to prepare serial decimal dilutions. For cells 231 

inactivated on the solid(like) surface, the content of the petri dish was transferred to a 232 

stomacher bag, liquefied in a thermostatic water bath at 37°C and homogenized in the 233 

stomacher for 30 seconds. 1 mL was taken from this bag, and serial decimal dilutions were 234 

prepared with saline solution. Regarding inactivation on a filter, the filter was transferred to a 235 

stomacher bag containing 5 mL of the saline solution and homogenized in the stomacher for 236 

30 seconds. Similarly, 1 mL was pipetted from this bag, to prepare serial decimal dilutions. 237 

For each sample, 2-4 dilutions were plated (49.2 µL) onto TSA or BHI-Agar plates (general 238 

media) and XLD-Agar (S. Typhimurium, Xylose Lysine Deoxycholate Agar, Merck & Co, 239 
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New Jersey, USA) or PALCAM-Agar (L. monocytogenes, VWR Chemicals, Leuven, 240 

Belgium) plates (selective media) using a spiral plater (Eddy-Jet, IUL Instruments). Plates 241 

with general media were placed at 37°C for 24 h before counting, while selective plates were 242 

stored up to 48 h at 30°C. Cell counts shown in the figures are the mean of all countable 243 

dilutions for each sample.  244 

 245 

2.7 Modelling, parameter estimation and estimation of sublethal injury 246 

The model of Geeraerd, Herremans and Van Impe (2000), was used to fit experimental data. 247 

This model describes a microbial inactivation curve consisting of a shoulder, a loglinear 248 

inactivation phase and a tail: 249 

𝑁(𝑡) = (𝑁0 − 𝑁𝑟𝑒𝑠) ∙ exp(−𝑘𝑚𝑎𝑥 ∙ 𝑡) ∙ (
exp(𝑘𝑚𝑎𝑥.𝑡𝑙)

1+(exp(𝑘𝑚𝑎𝑥.𝑡𝑙)−1)∙exp(−𝑘𝑚𝑎𝑥∙𝑡)
) + 𝑁𝑟𝑒𝑠  (1)                                                                                   250 

with N(t) [CFU/mL] the cell density at time t [s], N0 [CFU/mL] the initial cell density, 251 

Nres [CFU/mL] a more resistant subpopulation, kmax [1/s] the maximum specific inactivation 252 

rate and tl [s] the length of the shoulder. The regression analysis was performed using the log 253 

transformation of Equation 1. The final log reduction is calculated from the difference 254 

between log N0 and log Nres, using log N(t=600 sec)(or log N(t=180 sec), for inactivation on a 255 

filter) if log Nres was not yet reached. 256 

Parameters of the Geeraerd et al. (2000) model were estimated via the minimization of the 257 

sum of square errors (SSE), using the lsqnonlin routine of the Optimization Toolbox of 258 

Matlab (The Mathworks Inc.). Simultaneous with parameter estimation, the parameter 259 

estimation errors were determined based on the Jacobian matrix. The Root Mean Squared 260 

Error (RMSE) was added as an absolute measure of the goodness of the model fit to the actual 261 

observed data.  262 

In order to calculate the percentage of sublethal injury (% SI), theoretical concentrations 263 

obtained from the model were used. The percentage of injured survivors after exposure to 264 
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CAP treatment was determined using the following equation (Busch & Donnelly, 1992), 265 

providing the extent of the injured population at each exposure time, and the obtained values 266 

were used to simulate the percentage of sublethal injury with respect to treatment time: 267 

%SublethalInjury =
countsonnonselectivemedium−countsonselectivemedium

countsonnonselectivemedium
. 100               (2) 268 

 269 

2.8 Statistical analysis 270 

Analysis of variance (ANOVA) test was performed to determine whether there were 271 

significant differences amongst means of logarithmically transformed viable counts, at a 272 

95.0% confidence level (α = 0.05). The Fisher´s Least Significant Difference (LSD) test was 273 

used to distinguish which means were significantly different from which others. Standardized 274 

skewness and standardized kurtosis were used to assess if data sets came from normal 275 

distributions. These analyses were performed using Statgraphics Centurion XVI.I Package 276 

(Statistical Graphics, Washington, USA). Test statistics were regarded as significant when P 277 

was ≤ 0.05.   278 

 279 

3. RESULTS AND DISCUSSION 280 

Figure 3 and 4 represent the inactivation curves of stationary phase S. Typhimurium and 281 

L. monocytogenes cells exposed to CAP treatment. For each microorganism, cells were 282 

inactivated in a liquid carrier (a, b, c), on a solid(like) surface (d, e, f) or on a filter (g, h, i). 283 

Prior to the CAP treatment, cells were grown at three different experimental conditions, in 284 

order to assess the influence of osmotic stress in combination with a suboptimal pH: pH 7.4, 285 

0% (w/v) NaCl (a, d, g), pH 6.5, 2% (w/v) NaCl (b, e, h) or pH 5.5, 6% (w/v) NaCl (c, f, i). 286 

Additionally, different food structures of the model system result in cells grown 287 

planktonically or as surface colonies. As a control, for the most optimal experimental 288 
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condition at pH 7.4 and 0% (w/v) NaCl (a, d, g), cells from the pre-culture were also directly 289 

treated. The experimental data were fitted with the Geeraerd et al. (2000) model. Table 1 and 290 

2 summarize the estimated main inactivation parameters from the Geeraerd model, i.e., the 291 

length of the shoulder phase tl, the inactivation rate kmax, the cell density in the tail log Nres, the 292 

overall log reduction and the corresponding statistical analysis.  293 

 294 

Regarding the response of both microorganisms to CAP exposure, under optimal 295 

experimental conditions inactivation kinetics of the Gram-negative S. Typhimurium and 296 

Gram-positive L. monocytogenes have similar shapes. However, L. monocytogenes is more 297 

resistant to the CAP treatment, resulting in the observation of lower inactivation efficacies. As 298 

previously discussed by Smet et al. (2016), the diversity in the CAP efficacy can be explained 299 

by the different cell wall structures of the two microorganisms. Gram-positive bacteria are 300 

often found to be more resistant towards CAP treatment than Gram-negative bacteria 301 

(Ermolaeva et al., 2011; Lee, Paek, Ju, & Lee., 2006). The addition of osmotic stress or 302 

suboptimal pH to the cell environment does not change this observation, as also at pH 6.5, 2% 303 

(w/v) NaCl (b, e, h) and pH 5.5, 6% (w/v) NaCl (c, f, i) L. monocytogenes has a lower 304 

inactivation efficacy as compared to S. Typhimurium (Figure 3 and 4).   305 

 306 

3.1 Effect of osmotic stress and suboptimal pH on CAP inactivation efficacy 307 

3.1.1 Effect of osmotic stress and suboptimal pH for cells inactivated in a liquid carrier 308 

For all experimental conditions, the inactivation curves of S. Typhimurium cells treated in a 309 

liquid carrier (a, b, c) present a long shoulder phase followed by a log linear inactivation 310 

phase, regardless their growth morphology. This long shoulder phase reflects a resistant 311 

population and implies that the microorganisms need to have a certain CAP treatment level 312 

before the cells are lethally damaged. As the stress level rises due to an increase of the salt 313 
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level in combination with a decrease of the pH value, the reduction in cell density due to CAP 314 

treatment reduces. This trend is very significant when comparing kinetics for cells grown 315 

under optimal conditions (pH 7.4, 0% (w/v) NaCl (a)) with the inactivation dynamics of cells 316 

grown under high environmental stress (pH 5.5, 6% (w/v) NaCl (c)). Regarding the 317 

inactivation parameters for S. Typhimurium, no significant differences are observed for tl 318 

values between the three experimental conditions when the cells are grown planktonically. 319 

For cells grown as surface colonies, the length of the shoulder phase increases under high 320 

osmotic and acidic stresses. The inactivation rate, kmax, tends to decrease when the 321 

environmental stress level increases, irrespective of the growth morphology. No tailing phase 322 

is present for cells inactivated in a liquid carrier, thus log Nres is undefined. Finally, log 323 

reductions for cells inactivated in a liquid carrier tend to be the lowest at pH 5.5, 6% (w/v) 324 

NaCl (c), which is valid for both planktonic cells and surface colonies.  325 

In case of L. monocytogenes, most survival curves exhibit again a long shoulder phase 326 

followed by the log linear inactivation. In all cases, the final reduction is limited, especially in 327 

comparison to results for S. Typhimurium. Especially at the most stressing condition, pH 5.5 328 

and 6% (w/v) NaCl, almost no reduction in cell concentration is observed. No shoulder is 329 

present in the kinetics at pH 5.5, 6% (w/v) NaCl (c) for both growth morphologies, or at pH 330 

7.4, 0% (a) NaCl for planktonic cells. Therefore, no conclusion can be made regarding the 331 

influence of osmotic stress and suboptimal pH on the inactivation parameter tl for 332 

L. monocytogenes cells inactivated in a liquid carrier (a, b, c). Similar to the results for 333 

S. Typhimurium and regardless the growth morphology of the L. monocytogenes cells, kmax 334 

and the log reduction are the lowest for more stressing experimental conditions, while Nres is 335 

undefined. 336 

 337 
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3.1.2 Effect of osmotic stress and suboptimal pH for cells inactivated on a solid(like) surface 338 

For S. Typhimurium cells inactivated on a solid(like) surface (d, e, f), a shoulder phase is 339 

detected for low stress levels (pH 7.4, 0% (w/v) NaCl (d) and pH 6.5, 2% (w/v) NaCl (e)). 340 

Following the log linear inactivation phase, sometimes also a tailing phase is present, 341 

indicating the presence of a CAP resistant population. This tail was again observed for all 342 

growth morphologies at the optimal experimental condition (d), and for planktonic cells at the 343 

most severe environmental stresses (e, f). Although no significant differences are present, the 344 

inactivation rate decreases slightly when the stress level increases, which is observed for all 345 

growth morphologies. A tailing phase is often observed for cells inactivated on a solid(like) 346 

surface, but no general trend for Nres concerning the influence of the pH value or salt 347 

concentration is found. Concerning the influences of osmotic stress and a suboptimal pH on 348 

the log reductions for S. Typhimurium cells inactivated on a solid(like) surface, the reduction 349 

tends to be the highest at optimal conditions (d). As the shoulder was not detected for all 350 

experimental cases, no conclusion regarding its length can be drawn. 351 

Inactivation kinetics for L. monocytogenes cells inactivated on a solid(like) surface follow a 352 

similar trend (d, e, f). While a shoulder is never observed, and thus tl is undefined, the linear 353 

inactivation phase is always followed by a long tail. As for S. Typhimurium, kmax values of 354 

L. monocytogenes decrease when environmental stresses increase, while Nres values tend to 355 

increase at high osmotic and acidic stresses. Also at pH 5.5, 6% (w/v) NaCl (f), log reductions 356 

are lower.  357 

 358 

3.1.3 Effect of osmotic stress and suboptimal pH for cells inactivated on a filter 359 

For S. Typhimurium cells inactivated on a filter (g, h, i), the inactivation kinetics do not 360 

follow any specific trend. A shoulder phase is only observed for low (pH 7.4, 0% (w/v) NaCl 361 

(g)) and medium stress levels (pH 6.5, 2% (w/v) NaCl (h)), so no general conclusion 362 
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regarding the length of this shoulder can be drawn. Again, kmax values for both growth 363 

morphologies decrease slightly when the stress level increases. Nres is undefined as most 364 

conditions do not have a tail. Again, log reductions tend to be the lowest at pH 5.5, 6% (w/v) 365 

NaCl (i). 366 

When L. monocytogenes cells are inactivated on a filter (g, h, i), a tail is always observed 367 

while the shoulder phase is mainly present at high stress levels. Regarding the inactivation 368 

parameters, tl is often undefined. The decrease in log reduction and kmax with increasing 369 

environmental stress is very limited, and regarding the inactivation rate no significant 370 

differences are observed. The tailing phase is always present, and Nres slightly increases with 371 

an increase of the environmental stress. 372 

 373 

Growth conditions or intrinsic factors do not only influence microbial growth, but are also 374 

able to affect the stress response of microorganisms towards CAP treatment. Regardless the 375 

inactivation support or the growth morphology, the more stressing the growth conditions 376 

concerning pH value and NaCl concentration, the more resistant the microorganisms are 377 

towards CAP treatment, resulting in lower inactivation efficacies. For example, if a 378 

microorganism would be able to grow in a salty food product (e.g., cheese), CAP treatment 379 

might not be sufficient to ensure the food safety. Many bacteria interpret osmotic stress as a 380 

signal to prepare for more stringent conditions in the future by inducing a general system of 381 

stress protection (O’Byrne & Booth, 2002). Similarly, acid-adapted cells were found to have 382 

increased tolerance towards various stresses, including thermal and osmotic stress (Leyer & 383 

Johnson, 1993). As a non-thermal technology, CAP is the optimal choice to treat (acid) fruits. 384 

However, acid adaption of cells raises problems when the CAP treatment is not able to 385 

inactivate them. These stress related phenomena can be explained by cross protection or stress 386 

hardening, which refers to an increased resistance to lethal factors, e.g. CAP, after adaptation 387 
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to environmental stresses (Lou & Yousef, 1997). More specifically, the adaptation to different 388 

environmental stresses (acid, ethanol, H2O2, heat, NaCl) was reported to increase the 389 

resistance of L. monocytogenes to hydrogen peroxide. This can be explained by the induction 390 

of a sigma factor, accounting for the general resistance to environmental stresses in microbial 391 

cells (Wesche, Gurtler, Marks, & Reyser, 2009).  392 

Limited research is available on the influence of intrinsic or extrinsic factors on the CAP 393 

efficacy. Fernandez et al. (2013) studied the effect of the growth temperature on the CAP 394 

inactivation of S. Typhimurium. In the observed range of temperatures from 20°C to 45°C, 395 

the growth temperature did not significantly affect the resistance of the microorganism 396 

towards the CAP treatment. However, an increased resistance to CAP treatment, after 397 

adaptation to environmental stress has been previously reported. For example, in Smet et al. 398 

(2016), the influence of the intrinsic food structure on the CAP efficacy to inactivate 399 

S. Typhimurium and L. monocytogenes was studied. During bacterial growth, different growth 400 

morphologies arise as a direct consequence of the intrinsic food structure. As reported, the 401 

type of growth morphology influences the CAP efficacy. CAP inactivation experiments with 402 

cells grown as surface colonies result in lower log reductions as compared to experiments 403 

with planktonic cells, indicating an increased resistance of the surface colonies towards CAP. 404 

Starvation stress, resulting from nutrient limitations which surface colonies endure, can create 405 

cells resistant to the subsequent CAP inactivation treatment (Li, Sakai, Watanabe, Hotta, & 406 

Wachi, 2013). Similar to stress due to the intrinsic food structure or growth temperature, cross 407 

protection plays an important role on the CAP inactivation efficacy if cells are grown under 408 

osmotic stress or at suboptimal pH values. All environmental stresses, due to the pH, salt 409 

level, food structure or growth temperature can result in an increased resistance towards a 410 

subsequent CAP treatment. 411 

 412 
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3.2 Effect of food structure on CAP inactivation efficacy for environmental conditions 413 

under osmotic stress at suboptimal pH 414 

The food structure can affect the CAP inactivation on two different levels. The growth 415 

morphology of the cells, a direct consequence of the intrinsic food structure, influences the 416 

CAP inactivation efficacy. Secondly, the food structure plays an important role during the 417 

treatment itself, by means of the inactivation support system in/on which the cells are 418 

deposited.  419 

In most cases, these two levels regarding food structure are related. A liquid food product 420 

(e.g., a juice) where cells have grown planktonically, can be treated directly and thus the cells 421 

are also treated in a liquid carrier. This holds as well if the inactivation support is a solid(like) 422 

surface (e.g., meat, fruits, vegetables) infected with surface colonies. However, due to food 423 

processing, exceptions can arise. For example, planktonic cells can grow in the washing water 424 

used during processing. This could result in cross-contamination onto the food products, 425 

which are afterwards treated with CAP. Similarly, all surfaces that come into contact with a 426 

(liquid or solid(like)) food product, form a potential risk for contamination if infected with 427 

colonies. Finally, if colonies have grown on a the surface of a fruit or vegetable, and this 428 

product is blended into a juice, the resulting fruit or vegetable juice itself can be treated with 429 

CAP (liquid carrier). 430 

This section discusses, on both levels, the effect of the food structure on the CAP inactivation 431 

efficacy for the different (stressing) experimental conditions. 432 

 433 

3.2.1 Effect of the growth morphology on the CAP inactivation efficacy 434 

In Smet et al. (2016), the influence of the food structure on the CAP efficacy was examined 435 

under optimal experimental conditions regarding osmotic and acidic stress (pH 7.4, 0% (w/v) 436 

NaCl (a, d, g)). The influence of food structure during growth was studied by investigating the 437 
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role of the growth morphology in the CAP inactivation efficacy, indicating cells were grown 438 

planktonically in a liquid environment or as surface colonies on a solid(like) surface. Lower 439 

inactivation efficacies for cells grown as surface colonies at pH 7.4, 0% (w/v) NaCl (a, d, g), 440 

regardless of the inactivation support system, indicate an increased resistance of these 441 

immobilized cells towards CAP inactivation of both S. Typhimurium and L. monocytogenes. 442 

This conclusion still holds when the environmental stress is more severe (Figure 3 and 4). If 443 

cells of both microorganisms are inactivated in a liquid carrier and grown at pH 6.5, 2% (w/v) 444 

NaCl (b) or pH 5.5, 6% (w/v) NaCl (c), the CAP inactivation is again the highest for 445 

planktonic cells, although in some cases the inactivation parameters do not indicate 446 

statistically significant differences. In a stressing environment, cells inactivated on the 447 

solid(like) surface exhibit lower log reductions when grown as surface colonies as compared 448 

to cells grown planktonically. Next to this, the inactivation rate follows the order kmax, planktonic 449 

cells ≥ kmax, surface colonies while log Nres is always lower for cells grown planktonically. A similar 450 

behavior was detected for cells grown under stressing conditions and CAP treated on a filter. 451 

In a solid(like) environment growth takes place as (surface) colonies and the transport is 452 

based on diffusion, limiting among others the nutrient delivery (Antwi et al., 2006; Malakar et 453 

al., 2000; Wimpenny & Coombs, 1983). This nutrient limitation results in starvation stress, 454 

indicating the survival of bacteria in oligotrophic conditions (Wesche et al., 2009), which can 455 

promote the resistance of the cells against the subsequent CAP treatment (Li et al., 2013). 456 

 457 

3.2.2 Effect of the inactivation support system on the CAP inactivation efficacy 458 

The effect of the food structure during the CAP treatments is studied in Smet et al. (2016) by 459 

assessing the kinetics of cells, grown under optimal experimental conditions (pH 7.4, 0% 460 

(w/v) NaCl (a, d, g)). In the current work cells are inactivated on three different inactivation 461 

support systems: a liquid carrier, a solid(like) surface or a filter. Regardless if S. Typhimurium 462 
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or L. monocytogenes cells are grown under optimal environmental conditions (a, d, g), or at 463 

more stressing pH values and salt levels (b, c, e, f, h, i), the effect of the intrinsic food 464 

structure during the treatment on the CAP efficacy remains the same (Figure 3, 4). At optimal 465 

environmental conditions, the lack of a shoulder phase for cells inactivated on a solid(like) 466 

surface or on a filter leads to a very rapid inactivation as compared to cells inactivated inside a 467 

liquid carrier. These different shapes in survival curves are always observed for the different 468 

inactivation support systems, independent of the environmental growth condition. Regarding 469 

the inactivation parameters, as expected kmax values are either similar or slightly lower for 470 

cells inactivated in a liquid carrier, grown at pH 6.5, 2% (w/v) NaCl (b, e, h) or pH 5.5, 6% 471 

(w/v) NaCl (c, f, i). Therefore, also under more severe environmental stress, cells in a liquid 472 

carrier prove to be more difficult to inactivate. As many highly reactive plasma species 473 

already react at the plasma-liquid interface and do not penetrate very deep into the liquid 474 

medium, cells in a liquid carrier are more challenging to inactivate. Cells treated on a 475 

solid(like) surface or on a filter are easily attained by the plasma species during the treatment, 476 

resulting in a higher inactivation efficacy (Oehmigen et al., 2010). As commented in Section 477 

2.5, the liquid carrier partly evaporates at longer treatment times (≥ 5 min). This could 478 

possibly result in a shift of treatment of cells on the plastic petri dish instead of in the liquid 479 

carrier which can contribute to the fact that inactivation of cells in the liquid carrier only starts 480 

at longer treatment times.  481 

 482 

As previously mentioned, food products containing high salt concentrations or products with 483 

lower pH values might not be well suited to be CAP treated as cells could be able to adapt to 484 

these environmental stresses and gain resistance towards subsequent CAP treatment. The 485 

above findings regarding the influence of the food structure indicate this effect might be 486 

magnified if cells are either grown as surface colonies or inactivated in a liquid carrier. 487 
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 488 

3.3 CAP and sublethal injury of cells: effect of osmotic and acidic stress 489 

As sublethal injured cells are able to recover or even gain resistance, they pose major public 490 

health concerns. Thus it is important to investigate the relation between novel inactivation 491 

technologies and SI of cells (Noriega et al., 2014). Sublethal injury of cells treated with CAP 492 

was studied by plating the treated cells on both general and selective plating media. The 493 

percentage of sublethal injury (SI) as a function of treatment time is illustrated in Figure 5 and 494 

6.  495 

Most studies focus on enumerating the microbial survivors on general media while limited 496 

research has been performed focusing on the sublethal injury of cells following CAP 497 

treatment. By using respiratory staining (RS), Rowan et al. (2007b) proved the existence and 498 

rapidly quantified the extent of sublethal injury for CAP treated pathogens. As discussed in 499 

Smet et al. (2016), under optimal conditions (pH 7.4, 0% (w/v) NaCl) the SI of 500 

S. Typhimurium cells is higher than for L. monocytogenes. This trend can be extended to the 501 

more stressing experimental conditions at pH 6.5, 2% (w/v) NaCl (b, e, h) and pH 5.5, 6% 502 

(w/v) NaCl (c, f, i), as the SI detected for L. monocytogenes will always be the lowest.  503 

Regardless the environmental growth condition, a maximum for the SI evolution in time is 504 

often detected. This maximum illustrates the phenomenon of injury accumulation finally 505 

culminating into cell death (Noriega, Velliou, Van Derlinden, Mertens, & Van Impe., 2013), 506 

and coincides to the start of a new phase in the inactivation kinetics. As for most 507 

L. monocytogenes experiments the kinetics show a tailing phase, the maximum in the SI 508 

evolution corresponds to the transition into this last phase. In case of S. Typhimurium, a 509 

maximum is detected at optimal conditions (a, d, g) or moderately stressing environmental 510 

conditions (pH 6.5, 2% (w/v) NaCl (b, e, h)). Also for this microorganism, the maximum 511 

coincides with the transition to either the linear inactivation phase or the tailing phase, if 512 
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present. However, at more stressing environmental conditions, different trends are sometimes 513 

observed, and the evolution of SI with treatment time is still increasing. This holds for 514 

S. Typhimurium at the most stressing condition (c, f, i), as for these experiments no tail is 515 

(yet) reached. Finally, for experiments with a limited overall reduction, the SI evolution with 516 

treatment time remains constant 517 

As reported in Smet et al. (2016), no trend regarding the influence of the food structure on the 518 

SI evolution after CAP treatment is present, which is again valid in a stressed environment. 519 

However, there is a direct influence of the osmotic stress and suboptimal pH on the SI as a 520 

function of the CAP treatment time. In general, if the stress level increases due to prior 521 

growth at high salt concentrations and low pH values, also the level of SI during CAP 522 

inactivation increases. For instance, for S. Typhimurium at pH 5.5, 6% (w/v) NaCl (c, f, i), 523 

some cells are even sublethally injured prior to the CAP treatment, which can be explained 524 

due to the high salt concentrations present in the media during growth.  525 

 526 

4. CONCLUSION 527 

The role of food intrinsic factors on the efficacy of CAP inactivation is further investigated by 528 

focusing on the influence of osmotic stress and suboptimal pH on the inactivation kinetics of 529 

S. Typhimurium and L. monocytogenes. The presence of high salt concentrations in the 530 

growth medium or suboptimal pH values, induces stress hardening, creating cells resistant 531 

towards the subsequent CAP treatment. Additionally, regardless the osmotic stress level or the 532 

pH value in the system, both the type of microorganism and the food structure remain to 533 

influence the inactivation results. The maximum in the SI evolution as a function of the 534 

treatment time, indicates an injury accumulation of the treated cells that finally culminates 535 

into cell death. This research again confirms that food intrinsic factors, influence the CAP 536 

inactivation efficacy. This indicates the importance of knowledge on the different food 537 
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intrinsic factors or thus the food properties, e.g., regarding salt concentration, pH value or 538 

intrinsic food structure, to be able to predict the final CAP inactivation result. This knowledge 539 

makes it possible to assess whether or not CAP can be an efficient mild technology to treat a 540 

specific food product.  541 
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 689 

Figure 1: Different combinations tested at each experimental condition. Cells were inactivated 690 

in a liquid carrier (a, b, c), on a solid(like) surface (d, e, f) and on a filter (g, h, i). Prior to 691 

CAP treatment, cells were grown at  pH 7.4, 0% (w/v) NaCl (a, d, g), pH 6.5, 2% (w/v) NaCl 692 

(b, e, h)  or pH 5.5, 6% (w/v) NaCl (c, f, i), and either planktonically or as surface colonies. 693 

For pH 7.4, 0% (w/v) NaCl (a, d, g), as a control, cells from the preculture were directly 694 

treated. (b) Examples for the different combinations.  695 
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 696 

Figure 2: (a) the CAP set up: (1) plasma power source, (2) Dielectric Barrier Discharge 697 

reactor (22.5 cm x 13.5 cm x 10 cm), (3) DC power supply, (4) oscilloscope and (5) function 698 

generator. (b) DBD electrode inside reactor (electrode: diameter 5.5 cm, dielectric: 7.5 cm) 699 

petri dish containing sample: petri dish with diameter 5 cm). (c) Schematic representation 700 

DBD electrode with sample.  701 
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 702 

Figure 3: Survival curves of stationary phase S. Typhimurium after exposure to CAP. Cells 703 

were inactivated in a liquid carrier (a, b, c), on a solid(like) surface (d, e, f) and on a filter (g, 704 

h, i). Prior to CAP treatment, cells were grown at pH 7.4, 0% (w/v) NaCl (a, d, g), pH 6.5, 2% 705 

(w/v) NaCl (b, e, h)  or pH 5.5, 6% (w/v) NaCl (c, f, i), and either planktonically or as surface 706 

colonies. For pH 7.4, 0% (w/v) NaCl (a, d, g), as a control, cells from the preculture were 707 
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directly treated. Experimental data (symbols) and global fit (line) of the Geeraerd et al. (2000) 708 

model: total viable population (o, solid line) and uninjured viable population (x, dashed line).  709 
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 710 

Figure 4: Survival curves of stationary phase L. monocytogenes after exposure to CAP. Cells 711 

were inactivated in a liquid carrier (a, b, c), on a solid(like) surface (d, e, f) and on a filter (g, 712 

h, i). Prior to CAP treatment, cells were grown at  pH 7.4, 0% (w/v) NaCl (a, d, g), pH 6.5, 713 

2% (w/v) NaCl (b, e, h)  or pH 5.5, 6% (w/v) NaCl (c, f, i), and either planktonically or as 714 

surface colonies. For pH 7.4, 0% (w/v) NaCl (a, d, g), as a control, cells from the preculture 715 

were directly treated.  Experimental data (symbols) and global fit (line) of the Geeraerd et al. 716 
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(2000) model: total viable population (o, solid line) and uninjured viable population (x, 717 

dashed line).  718 
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 719 

Figure 5: Evolution with time of the sublethal injury (%) of S. Typhimurium towards the 720 

exposure time to CAP. Cells were inactivated as a liquid (a, b, c), on a solid(like) surface (d, 721 

e, f) and on a filter (g, h, i). Prior to CAP treatment, cells were grown at  pH 7.4, 0% (w/v) 722 

NaCl (a, d, g), pH 6.5, 2% (w/v) NaCl (b, e, h)  or pH 5.5, 6% (w/v) NaCl (c, f, i), and either 723 

planktonically or as surface colonies. For pH 7.4, 0% (w/v) NaCl (a, d, g), as a control, cells 724 

from the preculture were directly treated.   725 
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 726 

Figure 6: Evolution with time of the sublethal injury (%) of L. monocytogenes towards the 727 

exposure time to CAP. Cells were inactivated as a liquid (a, b, c), on a solid(like) surface (d, 728 

e, f) and on a filter (g, h, i). Prior to CAP treatment, cells were grown at  pH 7.4, 0% (w/v) 729 

NaCl (a, d, g), pH 6.5, 2% (w/v) NaCl (b, e, h)  or pH 5.5, 6% (w/v) NaCl (c, f, i), and either 730 

planktonically or as surface colonies. For pH 7.4, 0% (w/v) NaCl (a, d, g), as a control, cells 731 

from the preculture were directly treated. 732 
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Table 1. Inactivation parameters of the Geeraerd et al. (2000) model for S. Typhimurium after exposure to CAP. Cells were inactivated on a 733 

liquid carrier, on a solid(like) surface and on a filter. Prior to CAP treatment, cells were grown at pH 7.4, 0% (w/v) NaCl, pH 6.5, 2% (w/v) NaCl 734 

or pH 5.5, 6% (w/v) NaCl, and either planktonically, as surface colonies, or as the direct preculture (only for pH 7.4, 0% (w/v) NaCl). 735 

Inactivation 
support 
system 

Growth conditions 

Growth morphology Population 

Inactivation parameters 

RMSE 1log reduction2
3

 
pH (-) 

NaCl (% 
(w/v)) 

Reference 

1log N0 (log 
(CFU/mL))2

3
 / 

1log N0 (log 
(CFU/cm

2
))2

3 

1tl (s)2
3

 1kmax (1/s)2
3

 

1log Nres 
(log(CFU/mL))2

3
 / 

1log Nres (log 
(CFU/cm

2
))2

3
 

liq
u

id
 

7.4 0 a Preculture Total 5.4 ± 0.0A (b)392.2 ± 21.1B (a)0.017 ± 0.002B - 0.1122 ≈ (b)1.6 ± 0.0B 

 
  

 
Uninjured 5.4 ± 0.1A (b)220.6 ± 41.5A (a)0.012 ± 0.002A - 0.1996 ≈ (a)2.0 ± 0.1A 

 
  Planktonic cells Total 5.6 ± 0.1B

b
 (b)238.3 ± 74.3A

a
 (a)0.014 ± 0.003AB

a
 - 0.4204 ≈ (a)2.3 ± 0.1C

b
 

 
  

 
Uninjured 5.6 ± 0.2AB

b
 (b)196.8 ± 58.7A

a
 (a)0.017 ± 0.003B

b
 - 0.4567 ≈ (b)2.9 ± 0.2C

c
 

 
  Surface colonies Total 5.6 ± 0.1B

c
 (b)296.8 ± 47.5AB

a
 (a)0.010 ± 0.002A

a
 - 0.1567 ≈ (a)1.3 ± 0.1A

b
 

 
  

 
Uninjured 5.7 ± 0.1B

c
 177.4 ± 34.9A

a
 (a)0.014 ± 0.001AB

a
 - 0.2061 ≈ (c)2.5 ± 0.1B

b
 

6.5 2 b Planktonic cells Total 5.3 ± 0.1A
a
 325.4 ± 31.6A

a
 (a)0.020 ± 0.003A

b
 - 0.2167 ≈ (c)2.3 ± 0.1A

b
 

 
  

 
Uninjured 5.3 ± 0.1A

a
 150.2 ± 60.0A

a
 (a)0.013 ± 0.002A

ab
 - 0.3217 ≈ (b)2.4 ± 0.1A

b
 

 
  Surface colonies Total 5.3 ± 0.0A

b
 (b)378.4 ± 18.7A

b
 (a)0.029 ± 0.003B

b
 - 0.1833 ≈ (c)2.7 ± 0.0B

c
 

 
  

 
Uninjured 5.3 ± 0.0A

b
 255.5 ± 17.3B

a
 (a)0.020 ± 0.001B

b
 - 0.1443 ≈ (c)3.0 ± 0.0B

c
 

5.5 6 c Planktonic cells Total 5.4 ± 0.1B
a
 271.8 ± 96.4A

a
 (a)0.010 ± 0.003A

a
 - 0.3326 ≈ (a)1.5 ± 0.1B

a
 

 
  

 
Uninjured 5.3 ± 0.1B

a
 174.0 ± 64.0A

a
 (a)0.011 ± 0.002A

a
 - 0.2697 ≈ (a)2.0 ± 0.1B

a
 

 
  Surface colonies Total 5.0 ± 0.0A

a
 473.7 ± 41.5B

c
 (a)0.009 ± 0.003A

a
 - 0.1079 ≈ (a)0.5 ± 0.0A

a
 

 
  

 
Uninjured 5.0 ± 0.1A

a
 351.1 ± 70.1B

b
 (b)0.011 ± 0.003A

a
 - 0.2391 ≈ (b)1.2 ± 0.1A

a
 

so
lid

(l
ik

e)
 s

u
rf

a
ce

 7.4 0 d Preculture Total 5.5 ± 0.1A (a)88.9 ± 21.4A (b)0.057 ± 0.019B 3.1 ± 0.1A 0.3386 (c)2.4 ± 0.1B 

 
  

 
Uninjured 5.4 ± 0.1A (a)61.8 ± 12.9A (b)0.065 ± 0.014B 3.0 ± 0.1A 0.1970 (b)2.4 ± 0.1B 

 
  Planktonic cells Total 5.6 ± 0.2A

b
 (a)95.8 ± 54.3A (a)0.026 ± 0.010A

a
 3.3 ± 0.2A

a
 0.4455 (a)2.3 ± 0.3B

c
 

 
  

 
Uninjured 5.7 ± 0.2AB

b
 (a)33.0 ± 57.6A (a)0.023 ± 0.008A

a
 3.3 ± 0.2A

ab
 0.3842 (a)2.4 ± 0.3B

b
 

 
  Surface colonies Total 5.6 ± 0.2A

b
 (a)117.1 ± 113.5A

a
 (ab)0.017 ± 0.015A

a
 4.4 ± 0.3B 0.4549 (a)1.2 ± 0.4A

b
 

 
  

 
Uninjured 5.8 ± 0.2B

c
 - (a)0.017 ± 0.005A

b
 4.4 ± 0.2B 0.3666 (a)1.4 ± 0.3A

b
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6.5 2 e Planktonic cells Total 5.2 ± 0.1A
a
 180.2 ± 14.8A (a)0.073 ± 0.063A

a
 4.1 ± 0.1 

b
 0.2571 (a)1.1 ± 0.1A

a
 

 
  

 
Uninjured 5.1 ± 0.1A

a
 - (a)0.013 ± 0.003A

a
 3.6 ± 0.2A

b
 0.3446 (a)1.5 ± 0.2B

a
 

 
  Surface colonies Total 5.6 ± 0.1B

b
 (ab)140.7 ± 199.4A

a
 (a)0.004 ± 0.002A

a
 - 0.1514 ≈ (a)0.9 ± 0.1A

ab
 

 
  

 
Uninjured 5.5 ± 0.1B

b
 214.0 ± 40.4 (a)0.014 ± 0.007A

b
 4.6 ± 0.1B 0.1377 (a)0.9 ± 0.1A

a
 

5.5 6 f Planktonic cells Total 5.4 ± 0.1B
ab

 - (a)0.009 ± 0.002A
a
 3.8 ± 0.2 

b
 0.2830 (a)1.6 ± 0.2B

b
 

 
  

 
Uninjured 5.2 ± 0.1B

a
 - (b)0.018 ± 0.003B

a
 3.1 ± 0.2 

a
 0.3246 (a)2.1 ± 0.2B

b
 

 
  Surface colonies Total 5.1 ± 0.1A

a
 350.3 ± 189.6 

a
 (a)0.005 ± 0.003A

a
 - 0.1919 ≈ (a)0.6 ± 0.1A

a
 

 
  

 
Uninjured 4.9 ± 0.1A

a
 - (a)0.004 ± 0.000A

a
 - 0.3223 ≈ (b)1.1 ± 0.1A

ab
 

 f
ilt

er
 

7.4 0 g Preculture Total 5.5 ± 0.2A (a)2.2 ± 163.3A (a)0.014 ± 0.011A - 0.2917 ≈ (a)1.0 ± 0.2A 

 
  

 
Uninjured 5.5 ± 0.1A (a)13.6 ± 32.6A (a)0.027 ± 0.005A - 0.2149 ≈ (a)2.0 ± 0.1A 

 
  Planktonic cells Total 5.7 ± 0.1A

b
 (a)12.4 ± 15.1A (b)0.057 ± 0.017B

b
 3.5 ± 0.1 0.1482 (a)2.2 ± 0.1C

b
 

 
  

 
Uninjured 5.6 ± 0.1A

b
 (a)10.1 ± 7.6A (b)0.097 ± 0.019B

ab
 3.4 ± 0.1 0.1699 (a)2.2 ± 0.1A

a
 

 
  Surface colonies Total 5.5 ± 0.1A

b
 (a)89.0 ± 47.6A (b)0.045 ± 0.022AB

a
 - 0.2613 ≈ (b)1.8 ± 0.1B

c
 

 
  

 
Uninjured 5.5 ± 0.2A

b
 20.1 ± 52.6A (b)0.029 ± 0.009A

b
 - 0.3880 ≈ (b)2.0 ± 0.2A

c
 

6.5 2 h Planktonic cells Total 5.5 ± 0.2A
ab

 - (a)0.021 ± 0.004A
a
 - 0.3967 ≈ (b)1.7 ± 0.2A

a
 

 
  

 
Uninjured 5.4 ± 0.2A

b
 25.4 ± 15.5 (b)0.118 ± 0.063B

b
 3.5 ± 0.3 0.4374 (ab)1.9 ± 0.4A

a
 

 
  Surface colonies Total 5.8 ± 0.0A

c
 (a)115.1 ± 79.7 (a)0.049 ± 0.059A

a
 - 0.2019 ≈ (b)1.4 ± 0.0A

b
 

 
  

 
Uninjured 5.8 ± 0.2A

b
 - (a)0.014 ± 0.005A

a
 - 0.4058 ≈ (b)1.2 ± 0.2A

b
 

5.5 6 i Planktonic cells Total 5.3 ± 0.1A
a
 25.1 ± 49.0 (b)0.022 ± 0.007B

a
 - 0.2178 ≈ (a)1.5 ± 0.1B

a
 

 
  

 
Uninjured 5.0 ± 0.1A

a
 - (c)0.028 ± 0.003B

a
 - 0.2775 ≈ (a)2.2 ± 0.1B

a
 

 
  Surface colonies Total 5.2 ± 0.1A

a
 - (a)0.006 ± 0.003A

a
 - 0.2667 ≈ (a)0.5 ± 0.1A

a
 

 
  

 
Uninjured 4.7 ± 0.2A

a
 - (ab)0.007 ± 0.005A

a
 - 0.4573 ≈ (a)0.5 ± 0.2A

a
 

 736 

  737 1 
For each experimental condition, growth morphology and population type, parameters of the Geeraerd model bearing different subscripts (no lowercase letters in common) are 

significantly different (P ≤ 0.05) 
2 

For each inactivation support, experimental condition and population type, parameters of the Geeraerd model bearing different subscripts (no uppercase letters in common) are 

significantly different (P ≤ 0.05) 
3 

For each inactivation support, growth morphology and population type, parameters of the Geeraerd model bearing different superscripts (no lowercase letters in common) are 

significantly different (P ≤ 0.05) 
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Table 2. Inactivation parameters of the Geeraerd et al. (2002) model for L. monocytogenes after exposure to CAP. Cells were inactivated on a 738 

liquid carrier, on a solid(like) surface and on a filter. Prior to CAP treatment, cells were grown at pH 7.4, 0% (w/v) NaCl, pH 6.5, 2% (w/v) NaCl 739 

or pH 5.5, 6% (w/v) NaCl, and either planktonically, as surface colonies, or as the direct preculture (only for pH 7.4, 0% (w/v) NaCl). 740 

Inactivation 
support 
system 

Growth conditions 

Growth morphology Population 

Kinetic parameters 

RMSE 1log reduction2
3

 
pH (-) 

NaCl (% 
(w/v)) 

Reference 1log N0 

(log(CFU/mL))2
3
/ 

1log N0 (log 
(CFU/cm

2
))2

3
 

1tl (s)2
3

 1kmax (1/s)2
3

 

1log Nres (log 
(CFU/mL))2

3
 / 

1log Nres (log 
(CFU/cm

2
))2

3
 

Li
q

u
id

 

7.4 0 a Preculture Total 5.4 ± 0.0A 511.9 ± 18.0 (a)0.011 ± 0.002B - 0.0557 ≈ (a)0.6 ± 0.0B 

 
  

 
Uninjured 5.4 ± 0.0A 438.0 ± 30.5 (a)0.010 ± 0.002A - 0.0822 ≈ (a)0.8 ± 0.0C 

 
  Planktonic cells Total 5.8 ± 0.1C

a
 - (a)0.001 ± 0.000A

a
 - 0.1818 ≈ (a)0.2 ± 0.1A

a
 

 
  

 
Uninjured 5.9 ± 0.1B

b
 - (a)0.001 ± 0.000A

a
 - 0.1633 ≈ (a)0.3 ± 0.1A

a
 

 
  Surface colonies Total 5.6 ± 0.1B

a
 493.0 ± 70.0 (a)0.009 ± 0.005B

ab
 - 0.1840 ≈ (a)0.6 ± 0.1B

b
 

 
  

 
Uninjured 5.5 ± 0.1A

a
 540.0 ± 53.5 (a)0.015 ± 0.012A

b
 - 0.2031 ≈ (a)0.5 ± 0.1B

b
 

6.5 2 b Planktonic cells Total 5.7 ± 0.1A
a
 369.3 ± 108.7A (a)0.008 ± 0.004A

b
 - 0.2638 ≈ (a)0.9 ± 0.1B

b
 

 
  

 
Uninjured 5.6 ± 0.1A

a
 407.6 ± 91.4A (a)0.009 ± 0.004A

b
 - 0.2403 ≈ (a)0.8 ± 0.1B

b
 

 
  Surface colonies Total 5.6 ± 0.0A

a
 546.3 ± 24.4A (a)0.014 ± 0.005A

b
 - 0.0919 ≈ (a)0.5 ± 0.0A

b
 

 
  

 
Uninjured 5.5 ± 0.0A

a
 598.8 ± 2.2B (b)0.123 ± 0.001B

c
 - 0.0872 ≈ (a)0.4 ± 0.0A

ab
 

5.5 6 c Planktonic cells Total 5.7 ± 0.0B
a
 - (a)0.001 ± 0.000A

a
 - 0.0815 ≈ (a)0.3 ± 0.0B

a
 

 
  

 
Uninjured 5.6 ± 0.1A

a
 - (a)0.001 ± 0.000A

a
 - 0.1691 ≈ (a)0.3 ± 0.1A

a
 

 
  Surface colonies Total 5.5 ± 0.0A

a
 - (a)0.001 ± 0.000A

a
 - 0.0581 ≈ (a)0.2 ± 0.0A

a
 

 
  

 
Uninjured 5.6 ± 0.0A

a
 - (a)0.001 ± 0.000A

a
 - 0.1382  ≈ (a)0.3 ± 0.0A

a
 

so
lid

(l
ik

e)
 s

u
rf

a
ce

 7.4 0 d Preculture Total 5.3 ± 0.3A 20.5 ± 27.6 (a)0.219 ± 0.576A 3.1 ± 0.1A 0.4751 (b)2.2 ± 0.3B 

 
  

 
Uninjured 5.2 ± 0.3A 9.8 ± 19.5 (ab)0.119 ± 0.088A 3.1 ± 0.1A 0.5108 (c)2.1 ± 0.3B 

 
  Planktonic cells Total 5.7 ± 0.2A

a
 - (c)0.355 ± 0.096A

b
 3.8 ± 0.1B

a 
0.3335 (b)1.9 ± 0.2B

b 

 
  

 
Uninjured 5.7 ± 0.2B

b
 - (a)1.000 ± 13.908A

a
 3.7 ± 0.1B

a 
0.3103 (b)2.0 ± 0.2B

b 

 
  Surface colonies Total 5.5 ± 0.2A

a
 - (a)0.070 ± 0.031A

b
 4.5 ± 0.1C

a
 0.2594 (b)1.0 ± 0.2A

b
 

 
  

 
Uninjured 5.4 ± 0.2AB

a
 - (a)0.077 ± 0.048A

b
 4.5 ± 0.1C

a
 0.3503 (b)0.9 ± 0.2A

a
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6.5 2 e Planktonic cells Total 5.5 ± 0.2A
a
 - (b)0.088 ± 0.021B

a
 3.8 ± 0.1A

a
 0.2568 (b)1.7 ± 0.2B

b
 

 
  

 
Uninjured 5.3 ± 0.2A

a
 - (b)0.120 ± 0.035B

a
 3.8 ± 0.1A

a
 0.2820 (c)1.5 ± 0.2B

a
 

 
  Surface colonies Total 5.6 ± 0.1A

a
 - (a)0.023 ± 0.017A

a
 5.1 ± 0.1B

b
 0.2629 (a)0.5 ± 0.1A

a
 

 
  

 
Uninjured 5.6 ± 0.1A

a
 - (a)0.010 ± 0.006A

a
 4.8 ± 0.2B

b
 0.3169 (b)0.8 ± 0.2A

a
 

5.5 6 f Planktonic cells Total 5.5 ± 0.1A
a
 - (a)0.027 ± 0.008A

a
 4.3 ± 0.1A

b
 0.2646 (c)1.2 ± 0.1B

a
 

 
  

 
Uninjured 5.5 ± 0.2A

ab
 - (a)0.046 ± 0.018B

a
 4.2 ± 0.1A

b
 0.3330 (c)1.3 ± 0.2B

a
 

 
  Surface colonies Total 5.6 ± 0.1A

a
 - (a)0.012 ± 0.007A

a
 5.0 ± 0.1B

b
 0.2442 (b)0.6 ± 0.1A

a
 

 
  

 
Uninjured 5.6 ± 0.1A

a
 - (a)0.013 ± 0.007A

a
 4.8 ± 0.1B

b
 0.2807 (b)0.8 ± 0.1A

a
 

fi
lt

er
 

7.4 0 g Preculture Total 5.9 ± 0.2A - (a)0.127 ± 0.030A 4.0 ± 0.1A 0.2721 (b)1.9 ± 0.2B 

 
  

 
Uninjured 5.6 ± 0.3A - (b)0.252 ± 0.100A 4.0 ± 0.1A 0.3586 (b)1.6 ± 0.3A 

 
  Planktonic cells Total 5.9 ± 0.2A

b
 - (b)0.190 ± 0.067AB

a
 4.2 ± 0.1B

a
 0.2804 (b)1.7 ± 0.2AB

b
 

 
  

 
Uninjured 5.8 ± 0.2A

b
 - (a)0.333 ± 0.085A

a
 4.1 ± 0.1A

a
 0.2820 (b)1.7 ± 0.2A

b
 

 
  Surface colonies Total 5.9 ± 0.1A

b
 - (b)0.235 ± 0.051B

a
 4.4 ± 0.1C

a
 0.1876 (c)1.5 ± 0.1A

c
 

 
  

 
Uninjured 6.0 ± 0.1A

b
 - (b)0.265 ± 0.042A

a
 4.3 ± 0.1B

a
 0.1516 (c)1.7 ± 0.1A

b
 

6.5 2 h Planktonic cells Total 5.4 ± 0.2A
a
 - (b)0.075 ± 0.035A

a
 4.4 ± 0.2A

a
 0.2764 (a)1.1 ± 0.3A

a
 

 
  

 
Uninjured 5.4 ± 0.1A

a
 - (b)0.100 ± 0.037A

a
 4.3 ± 0.1A

b
 0.2167 (b)1.1 ± 0.1B

a
 

 
  Surface colonies Total 5.3 ± 0.1A

a
 53.0 ± 31.3 (a)0.158 ± 0.666A

a
 4.5 ± 0.2A

a
 0.2123 (b)0.8 ± 0.2A

b
 

 
  

 
Uninjured 5.2 ± 0.1A

a
 50.4 ± 23.0 (ab)0.060 ± 0.093A

a
 4.4 ± 0.1A

a
 0.1915 (b)0.8 ± 0.1A

a
 

5.5 6 i Planktonic cells Total 5.3 ± 0.1A
a
 29.7 ± 5.6 (a)0.205 ± 0.888A

a
 4.3 ± 0.1A

a
 0.2097 (b)1.0 ± 0.1A

a
 

 
  

 
Uninjured 5.4 ± 0.1A

a
 20.2 ± 12.9 (a)0.203 ± 0.240A

a
 4.2 ± 0.1A

ab
 0.1866 (b)1.2 ± 0.1B

a
 

 
  Surface colonies Total 5.5 ± 0.2A

a
 - (a)0.113 ± 0.164A

a
 5.0 ± 0.2B

b
 0.3343 (ab)0.5 ± 0.3A

a
 

 
  

 
Uninjured 5.4 ± 0.3A

a
 - (a)0.199 ± 0.302A

a
 4.9 ± 0.2B

b
 0.3817 (ab)0.5 ± 0.4A

a
 

 741 

 742 

 743 
1 

For each experimental condition, growth morphology and population type, parameters of the Geeraerd model bearing different subscripts (no lowercase letters in common) are 

significantly different (P ≤ 0.05) 
2 

For each inactivation support, experimental condition and population type, parameters of the Geeraerd model bearing different subscripts (no uppercase letters in common) are 

significantly different (P ≤ 0.05) 
3 

For each inactivation support, growth morphology and population type, parameters of the Geeraerd model bearing different superscripts (no lowercase letters in common) are 

significantly different (P ≤ 0.05) 

 

 


