
Compressive sensing with an adaptive wavelet basis for

structural system response and reliability analysis under

missing data

L. Comerforda, H.A. Jensenb, F. Mayorgab, M. Beera,c,d, I. A.
Kougioumtzogloue,

aInstitute for Risk and Reliability, Leibniz University Hannover, Germany
bDept. of Civil Engineering, Santa Maria University, Valparaiso, Chile

cInstitute for Risk and Uncertainty, University of Liverpool, Liverpool, L69 3GH, UK
dSchool of Civil Engineering & Shanghai Institute of Disaster Prevention and Relief,

Tongji University, China
eDepartment of Civil Engineering and Engineering Mechanics, Columbia University,

USA

Abstract

The challenge of determining response and reliability statistics of large-scale
structural systems under earthquake induced stochastic excitations is consid-
ered where the source load data records are incomplete. To this aim, a com-
pressive sensing based framework in conjunction with an adaptive wavelet
basis is presented for reconstructing the samples with missing data and es-
timating the underlying process EPS. In this regard, novel insights are pro-
vided whereas certain conceptual, numerical, and practical implementation
aspects of the technique are presented in detail. A numerical example per-
taining to the stochastic response and reliability analysis of an eight floor
reinforced concrete building structural system demonstrates the effectiveness
of the proposed methodology.
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1. Introduction

Numerical simulations for the analysis of structural systems subject to
random dynamic excitations require realistic stochastic models of the system
excitation processes. Such systems may be highly sensitive to the nature of
these excitations and so simulation accuracy is dependant upon a reliable
excitation process model.

A reliable spectral model providing frequency dependant information can
be of significant importance in investigating the response of an engineer-
ing system to stochastic input such as earthquakes. Further, spectral mod-
els may be utilized for generating stochastic process records, fitting with
the frequency dependant statistics of the given model, for use in numerical
Monte-Carlo analyses e.g. [1, 2, 3]. However, a basic spectral model such as
that based on a non-windowed discrete Fourier transform (DFT) may only
describe a stationary process, i.e. one in which the spectral content does not
change over time. This assumption of stationarity may give a poor approx-
imation of the true process, especially in the case of earthquake excitations
in which the frequency content can change dramatically over their duration.
Hence, in many cases, realization of time-dependant properties of stochastic
processes is also considered central to defining reliable spectral models. In
this regard, the concept of the evolutionary power spectrum (EPS) [4, 5] pro-
vides an appealing model for capturing the statistics and the time-varying
frequency content of the underlying non-stationary stochastic processes. Fur-
ther, they can be used as a basis for joint time-frequency system response
analysis [6, 7], or efficient stochastic simulation utilizing advanced Monte
Carlo techniques.

In an ideal scenario, such a model could be avoided entirely in the case
where extremely large data banks of real recorded excitation processes of
interest were available. Unfortunately, particularly in the field of earthquake
engineering, this is seldom the case. Instead, process models are often es-
timated, based partially or entirely on a small set of relevant recorded pro-
cesses. Numerous approaches exist for EPS estimation based on time records
including short-time Fourier transforms, wavelet [8, 9, 10] & chirplet [11]
transforms. Harmonic wavelets [12, 13] are concentrated on in this paper
due in part to their box-shaped frequency spectrum, ideal for identifying
specific bands of energy and for the fact that they constitute an orthogonal
basis, which is ideal for the compressive sensing approach applied herein.

It is logical to assume that the more data upon which such a model is
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based, the more statistically accurate/relevant numerical simulation results
are likely to be. As the available data may be quite limited, it is important
that it is utilized to the fullest extent, which in some cases includes working
with problematic data sets. In this regard, when analyzing real earthquake
excitation data, coupled with the problem of limited numbers of samples or
shorter than ideal sample lengths, is the potential major issue of missing data.
Practical reasons for having limited data include for example, equipment
failure (if a sensor becomes damaged, perhaps even as a result of the process
itself, data may be lost) and sensor thresholding limitations (high fidelity
sensors with a wide operational range can be expensive, and so in some cases
the equipment used to record a process may not be able to capture extreme
features). Numerous other issues including sensor maintenance, bandwidth
limitations, usage & data acquisition restrictions as well as data corruption
may also lead to missing data.

Under these conditions, when working with limited and/or missing data,
standard Fourier techniques for spectral estimation, will frequently demon-
strate poor performance. Although there exist many algorithms and proce-
dures in the literature that provide spectral estimates in the presence of miss-
ing data, these alternatives come with certain drawbacks and often impose
significant assumptions on the statistics of the underlying stochastic process.
For instance, autoregressive methods may be applied under the assumption
that source time-histories are relatively long and that the missing data are
grouped [14, 15]. Further, least-squares sinusoid fitting and zero-padded gaps
[16, 17, 18] offer efficient solutions for re-constructing the Fourier spectrum
in the presence of missing data but suffer, in general, from falsely detected
peaks, spectral leakage and significant loss of power as the number of miss-
ing data increases. Similar issues are faced when applying these methods to
wavelet transforms in the case of EPS estimation, and specific approaches for
non-stationary signal reconstruction are uncommon. However, recent devel-
opments have been made in the area of EPS estimation subject to missing
data including applications of artificial neural networks [19] and compres-
sive sensing (CS) [20]. The latter is applied herein, utilizing the relative
band-limited nature of evolutionary earthquake spectra. To further improve
the spectrum estimation, the CS approach is applied in conjunction with an
adaptive basis re-weighting procedure, building on ideas introduced in [21],
which is useful in the case where process record ensembles are available.

The organization of this contribution is as follows. A brief introduction
to CS theory is provided in Section 2 with references to further reading.
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Section 3 highlights the differences between the methods applied herein and
established CS theory. The novel adaptive basis re-weighting procedure for
signal reconstruction from multiple records is detailed in Section 4. In Section
5, discrete orthogonal Harmonic Wavelets are introduced briefly, along with
commonly encountered practical wavelet transform issues, before being set
in the context of the CS-based reconstruction problem. Section 6 deals with
the estimation of ground excitation power spectra from simulated earthquake
records with various missing data configurations for which response statistics
and system reliability of a large structural model subject to such excitations
are compared. The work closes with some conclusions and final remarks.

2. Compressive sensing

CS [22, 23] is a signal reconstruction method that is commonly used in
image processing and becoming a widely used tool in civil and mechanical
engineering. CS, when applied to missing data problems requires several
important assumptions to be made concerning the nature of the process of
interest. However, in many problem cases, especially those related to envi-
ronmental processes (and in particular spectral representation of earthquake
excitations), these assumptions can be made with confidence. In the group
of missing data problems for which CS is applicable, significant gains in spec-
trum estimation accuracy and computational efficiency can be achieved over
alternative reconstruction methods.

2.1. CS background

The Shannon-Nyquist theorem states that a time-dependent signal with
maximum frequency f can be completely determined when sampled at time
intervals of f

2
or smaller. This maximum sampling frequency is commonly

known as the Shannon-Nyquist rate. Compressive sensing is a signal pro-
cessing technique that allows for signal reconstruction even if the maximum
frequency f present in the signal is greater than half the signal’s sampling
rate [24].

2.2. CS requirements

For robust compressive sensing, several properties concerning the source
signal and transformation basis are required. Most importantly the signal
must be sparse in a known basis, and obey properties of incoherence and
restricted isometry (RIP). The last two requirements are discussed in detail
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in any introductory text on CS theory (eg. [25].) For clarity and complete-
ness in notation a brief description of sparsity is provided in the following
subsections.

2.2.1. Signal sparsity

For a sampled signal to exhibit sparsity in some known basis, it must be
possible to represent that signal with far fewer coefficients than the number
determined by the Shannon-Nyquist rate. A discrete time signal, x may be
viewed as an N by 1 column vector. Given an orthogonal N by N basis matrix
A in which the columns Ai are the basis functions, x may be represented in
terms of this basis via a set of N by 1 basis coefficients y, i.e.,

x =
N∑
i=1

Aiyi, (1)

The vector x is said to be K-sparse in the basis A if y has K non-zero entries
and K < N , i.e.,

x =
K∑
i=1

Ani
yni
, (2)

where ni are the integer locations of the K non-zero entries in y. Hence y is
an N by 1 column vector with only K non-zero elements. Therefore,

|y|L0 = K, (3)

where |.|Lp denotes the Lp norm defined as

|y|Lp =

(∑
i

|yi|p
) 1

p

. (4)

The L0 norm used in Eq.3 is defined as the limit of the Lp norm as p → 0.
In general the L0 norm is the total number of non zero elements in a vector,

|y|L0 =
∑
i

{
1 yi 6= 0
0 otherwise

(5)

It is important to note that for real signals, it is highly unlikely that they are
exactly sparse in any orthogonal basis. Even a minimal amount of random
noise on top of an otherwise K-sparse signal will produce non zero coefficients
for all N . However, a large number of coefficients may be very small and in
this case the signal is considered to be compressible.
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2.2.2. Sparse solution via L1 minimization

If it is known that a signal is sparse in a particular basis, then the aim
of CS is to attempt to find the sparsest representation in that basis for the
given data; this may be achieved by L1 norm (absolute value) minimization.

In principle, the sparsest solution of an under-determined system of equa-
tions occurs when the L0 norm is minimized (the minimum number of non-
zero coefficients). This optimization problem is non-convex with no known
exact solution [23]. However, a viable alternative exists in minimizing the L1
norm instead. L1 norm minimization promotes sparsity and will often yield
the same result as L0 norm minimization in many cases [26]. Further, the
problem becomes convex, and may be set in a convenient linear programming
form, i.e.

min |y|L1 subject to x = Ay (6)

Eq. 6 describes a basis pursuit optimization problem and can be easily
solved via a gradient-based optimization method, e.g. [27]. Unfortunately,
real signals are rarely ever truly sparse; even low levels of noise will produce
small coefficients across most bases. Hence, a tolerance, e, relative to the
variance of the noise is included and Eq. 6 may be re-cast in the form,

min |y|L1 subject to |Ay − x|L2 ≤ e. (7)

For the cases where either the signal is not sparse enough or the missing data
are too extensive for L1 minimization to exactly reconstruct the original sig-
nal, it is important to note that there may still be significant advantages
over a minimum L2 solution. In spectral estimation, minimizing the L2
norm (similar to zero-padding) is likely to spread the solution over many fre-
quencies; this is because individually, large coefficients are heavily penalized.
Minimizing the L1 norm however is far more likely to yield larger individual
coefficients, having the effect of producing sharp, well-defined peaks at the
key frequencies.

3. CS application to missing data

CS is mostly applied in situations where some saving in data capture
time or data size is useful. For example, if a series of sensors capture data
for real-time structural health monitoring, data may need to be compressed
to adhere to bandwidth limitations, after which most of the captured data is
lost. Instead, the sensors could be designed to only capture a fraction of the
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data, reducing manufacturing cost. By utilizing CS with the compression
basis (in which the signal has a sparse representation), data series with far
higher resolution than those originally captured could be reconstructed (e.g.
[28, 29, 30, 31, 32]). Not only would the sensors not need to capture as
much data, but also the stored data would have a small file size, negating
the requirement for compression processing at the sensor.

3.1. Generalization of CS

It is clear at this point that CS techniques have a wide range of potential
applications in the area of load sensing/modelling when considering that in
many cases, particularly for environmental loads such as those produced by
earthquakes (including structural responses to these effects), can be charac-
terized by a relatively small space of dominant frequencies in the frequency
domain.

Nevertheless, applying CS theory to the problem of missing data differs
primarily in one respect to standard CS applications; i.e., missing data are
not commonly intentional. Unfortunately this removes control over one im-
portant step of CS: the arrangement of the sampling matrix. When applying
CS to pre-recorded data series with missing data that were not originally
sampled in the context of a CS framework, the sampling matrix is fixed as a
series pulses of magnitude 1 in the sampling domain. Hence in the sampling
domain, the signal of interest must be non-sparse. Fortunately, harmonic
signals sampled in the time domain exhibit this property, especially those
with narrow band spectra due to the fact that the Fourier and time domains
are maximally incoherent.

3.2. Illustrative example

As an example, consider a situation in which a harmonic signal (Eq. 8)
is captured in the time domain but where some of the samples are randomly
missing.

xf (t) = cos(6t) + cos(12t) (8)

For compression, the DFT would be highly applicable in this case, produc-
ing only two coefficients. Figure 1 depicts the sensing process if the entire
signal of length N = 32 were captured. Here, the sensing matrix Φ is the
square identity matrix, representing a series of Dirac pulses in the discrete
time domain, xf is the full signal shown in Eq. 8 and Af is a real Fourier
matrix (composed of cosines). If the sampling matrix is arranged to simulate
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Figure 1: Signal acquisition of Eq. 8 at every point in N . Note that xf is sparse in
the Fourier matrix Af , hence y has only two entries (one representing cos(6t) and one
representing cos(12t))
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Figure 2: Eq. 8 with N
2 uniformly distributed missing data over xf set in CS framework

with a Fourier basis

missing data in a recorded process realization, it would appear with ordered
rows as in Figure 2. Uniform random Fourier matrices obey the RIP with
high probability when data are sparse [22, 23]; similarly, random harmonic
wavelet matrices may reconstruct sparse non-stationary signals exactly (how-
ever, there is lower incoherence between the wavelet and time domains which
decreases with frequency resolution). Unfortunately, the missing data may
not be uniformly distributed over the record; when using Fourier or har-
monic wavelet matrices, regular or large gaps of missing data leads to ’lower’
orthogonality between random columns of the sampling matrix. Depend-
ing on the arrangement of the missing data, the result may be that greater
numbers of measurements are required for reliable reconstruction. Despite
these problems, CS reconstruction based on the assumption of sparsity is
often still advantageous over more common least-squares/zero-padding ap-
proaches. This is because, despite massive data loss (in some cases > 90%),
CS can still identify sharp spectral peaks at dominant frequencies.
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4. Adaptive basis re-weighting procedure

Herein, CS techniques are applied in conjunction with an adaptive iter-
ative algorithm for basis re-weighting. This method imposes similar basic
restrictions on the nature of the data as standard CS reconstruction in the
previous section. Primarily, the process is assumed to be sparse in the basis
chosen to represent the power spectrum. However, a further requirement of
this modified approach is that several process realizations must be available.
This is because the method relies on the ability to apply CS to multiple pro-
cess records iteratively, utilizing the cumulative information from all records
for the purpose of seeking a sparse representation in the average sense over
an ensemble. By introducing this iterative process to alter basis coefficients,
significant gains in spectral estimation accuracy over standard CS can be
achieved. When multiple process records are not available, but the single
time-history is large with respect to the total bandwidth of its frequency
content, records may be down-sampled into several shorter records to enable
the use of this method. For non-stationary processes, this down-sampling
also requires that the maximum frequency of the important spectral content
is far from the Nyquist frequency defined by the original sampling rate.

4.1. Formulation based on weighting matrix

It is shown in [20] that CS with an appropriate basis alone can be applied
to the problem of missing data when estimating power spectra, which can
deliver significant improvements over least-squares and other more complex
methods. However, when the target spectrum is estimated from a process
record ensemble, there are further improvements to be gained. The improve-
ments to the estimated spectrum are achieved by re-weighting columns of
the basis matrix and can be found in [21]. This section expands on the afore-
mentioned presentation of the adaptive basis method for additional clarity,
while at the same time provides with novel insights and details on practical
implementation issues.

The motivation behind this adaptive basis approach comes from the fact
that when utilizing an ensemble of process records for producing a single
power spectrum estimate, for sharp (narrow-banded) spectra, CS should as-
sume sparsity in the mean sense, rather than sparsity for each individual
record. Further, L1 minimization, unlike L0, does not guarantee the sparsest
solution and will yield different solutions if columns of the basis matrix are
assigned different weights. Hence it was proposed that weights could be used
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to alter individual L1 solutions to missing data problems, possibly reduc-
ing sparsity of individual solutions but enhancing sparsity in the mean. [21]
demonstrates the effect of re-weighting the basis matrix visually for a simple
3-dimensional problem. By introducing a diagonal matrix of weights W , Eq.
6 is recast in the form,

min |y|L1 subject to x = AWy; (9)

The weighting matrix is updated iteratively by solving Eq. 9 in a least-
squares sense rather than with L1 minimization. When compared to L1
minimisation, not only does this decrease the computational effort of the
re-weighting to a large extent, but also reduces the possibility of very large
false peaks affecting the weights; a least-squares solution is more likely to
underestimate the power of the key frequencies and also create significant
noise elsewhere. These features are not desirable for the final power spec-
trum estimation, especially when the spectrum is assumed to be relatively
sparse. However, as long as least-squares minimization is able to identify
key frequencies as being higher than other unwanted frequencies, it proves
to be a reliable source for updating the re-weighting matrix. Therefore, the
approach taken is to use the ensemble power spectrum estimated via least-
squares to iteratively update the re-weighting matrix, before finally ceasing
the procedure once the weights have stabilized. The final re-weighting matrix
can next be utilized to appropriately modify the basis. L1 minimization is
then used to estimate the final power spectrum.

4.2. Proposed procedure

The re-weighting procedure is described in detail in the following with
reference to Figure 3

1. Two temporary re-weighting matrices are required for the iterative pro-
cedures. These are both initialized as square identity matrices.

2. The re-weighting matrix is generated iteratively. The termination cri-
teria for the re-weighting iterations is based here on a minimum sum of
the difference between previous re-weighting matrix and current one.
Essentially, when the re-weighting matrix is only experiencing minor
changes in each iteration, the loop is terminated. Other termination
criteria could be used as well.

3. This first step in the while-loop sets the ‘active’ re-weighting matrix W
equal to the last one generated in the loop W2. W2 is then set equal
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to a matrix of zeros, ready to be populated with new re-weighting
coefficients.

4. During the least-squares re-weighting phase, the re-weighting matrix
is based on a least-squares spectrum estimation. For multiple records,
the least squares spectrum estimation for the entire process involves
taking the expectation of all individual transformed signals across the
ensemble (e.g. for wavelet based EPS estimation see Eq. 14). Hence,
the next iteration of the re-weighting matrix is built up over a loop of
all process records in the ensemble.

5. Each individual record must undergo least squares spectrum estima-
tion, weighted by the previous re-weighting matrix. This is shown in
the diagram using the Moore-Penrose pseudoinverse of AW where A is
the reduced basis matrix.

6. Here, the basis matrix A is assumed to be made up of odd and even
functions (e.g. DFT or ”generalized harmonic wavelet transform” (GHWT)).
As the power spectrum model is not dependant on phase, the weighting
of odd and even function components separately is not desired. Hence,
the individual coefficients are split into pairs.

7. The Euclidean norm for these pairs is taken to convert them into
frequency-only dependant coefficients.

8. The coefficients are then duplicated to make identical weighting pairs
and fed into a diagonal matrix (i.e., entries outside the i = j counting
from top left to bottom right are zero). The effect of using identical
pairs will weight odd and even components of the same function equally
on the next iteration. These diagonal coefficients are added for each
record in the ensemble.

9. Once the loop at point 4. has ended, the re-weighting matrix is normal-
ized by its mean, and summed with a pre-defined constant bias. Next,
the re-weighting matrix is set equal to the filled W2 and then W2 is
once again set to zero and the loop repeats. Hence, a new re-weighting
matrix is used each time the entire process record ensemble is iterated
through.

10. Finally L1-minimization is used upon the weighted basis to compute
the final basis coefficients.

In Figure 3, step 9 shows that a bias has been added to the weights, to
prevent zero valued coefficients. Zero-valued coefficients impose sparsity by
removing low-valued peaks. Once these are removed, the iterative algorithm
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Figure 3: Mechanization of approach based on CS with adaptive basis
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is forced to use remaining coefficients to represent the records. In many cases
this will lead to false peaks in seemingly random locations, except when the
signal is extremely sparse in the transform domain. The optimal choice of
bias is problem dependant; in some cases a very low bias can lead to highly
accurate spectrum estimates. However, as accuracy cannot be validated in
real problems, a bias of unity is used in the upcoming examples. This,
effectively prevents weights from decreasing in magnitude with the possibility
of growing to one standard deviation from the weight mean when combined
with the mean normalization, also shown in step 9. Note that as the bias
increases, the solution tends towards that of non-re-weighted CS.

5. Evolutionary power spectrum representation via harmonic wavelets

In the previous section CS was applied with a basis matrix in which the
signal must have a sparse representation. In order to apply CS for reconstruc-
tion of non-stationary process records, an appropriate non-stationary basis
must be defined. In this regard, [33] developed a framework for representing
non-stationary stochastic processes by utilizing a time/frequency-localized
wavelet basis, as opposed a stationary Fourier decomposition. The represen-
tation reads

X (t) =
∑
j

∑
k

wj,kψj,k (t) ξj,k, (10)

where ψj,k (t) is the chosen family of wavelets, j and k represent the different
scales and translation levels respectively and ξj,k is a stochastic orthonormal
increment sequence (in which pairs of ξj,k where j and k are not equal are
uncorrelated). The local contribution to the variance of the process of Eq.
10 is given by |wj,k|2.

The wavelet-based model of Eq. 10 relies on the theory of locally station-
ary processes (see also [34]).

Next, utilizing the family of generalized harmonic wavelets [12, 13], it can
be shown that Eq. 10 may be written in terms of its evolutionary power spec-
tral density function (see [35]). Defined in the frequency domain, generalized
harmonic wavelets exhibit the following form,

ΨG
(m,n),k (ω) =

{
1

(n−m)∆ω
e(−iω

kT0
n−m), m∆ω ≤ ω ≤ n∆ω

0, otherwise
, (11)
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Figure 4: Harmonic wavelets in the frequency domain with n−m = 8Hz

where m,n and k are considered to be positive integers and ∆ω = 2π
T0

, and
where T0 is the total time duration of the signal under consideration. Har-
monic wavelets of the form of Eq. 11 span frequency bands defined by m and
n as shown in Figure 4. An orthogonal set of harmonic wavelets are produced
when n and m define adjacent non-overlapping intervals for all wavelets in
the set. Substituting generalized harmonic wavelets into Eq. 10 (see [35]),
the process may be written as,

X(m,n),k (t) =
√
SX(m,n),k (n−m) ∆ωψ(m,n),k (t) ξ(m,n),k. (12)

Eq. 12 represents a localized process at scale (m,n) and translation (k) de-

fined in the intervals [m∆ω, n∆ω] and
[
kT0
n−m ,

(k+1)T0
n−m

]
, whereas SX(m,n),k rep-

resents the spectrum SX (ω, t) at scale (m,n) and translation (k). Further, it
has been shown that realizations compatible with SX (ω, t) can be generated
in the following way (see [5])

X (t) =
N−1∑
j=0

√
4SX (ωj, t) ∆ω sin (ωjt+ Φj) , (13)

where Φj are uniformly distributed random phase angles in the range 0 ≤
Φj < 2π.

5.1. Harmonic wavelets based power spectrum estimation

Regarding the problem of estimating the EPS of a non-stationary stochas-
tic process based on available/measured realizations, a wavelet process based
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compatible estimation approach advocates that the EPS SX (ω, t) of the pro-
cess X (t) is estimated by [36, 35]

SX (ω, t) = SX(m,n),k =
E
(
|WG

(m,n),k
[X]|2

)
(n−m)∆ω

, m∆ω ≤ ω ≤ n∆ω, kT0
n−m ≤ t ≤ (k+1)T0

n−m ,

(14)
where SX(m,n),k represents the EPS of the process X (t), assumed to have a

constant value in the intervals [m∆ω, n∆ω] and
[
kT0
n−m ,

(k+1)T0
n−m

]
. Thus, the

EPS can be estimated as the ensemble average of the square of the wavelet
coefficients.

5.2. Practical issues relating to wavelet transforms

5.2.1. Time-frequency resolution trade-off with the wavelet transform

As previously shown, harmonic wavelets are defined by their bounds n and
m in the frequency domain (Figure 4). As n−m nears 1, the wavelet tends
towards a single harmonic (high frequency resolution); however, as n − m
increases, the wavelet becomes more compressed in the time domain and
hence offers higher resolution in time (Figure 5). The analyst may choose a
single value of m−n for the entire wavelet set, defining a fixed time-frequency
resolution for the wavelet transform or vary n −m to increase, or decrease
band-dependant time-frequency resolution.

5.2.2. Mitigation of ’end effects’ due to the wavelet transform

When using real or simulated discrete data for spectral analysis, all possi-
ble signals that might be chosen for analysis will be time-limited (i.e. of finite
length). Without further knowledge of the underlying process from which a
discrete sample signal is drawn, it is impossible to know with certainty the
nature of the signal beyond the measured interval. In discrete linear trans-
forms performed by circular convolution (such as the DFT and GHWT), this
property of signal termination is accounted for by the fact that the transform
assumes that the measured signal repeats itself indefinitely. This is seldom
true, because even if the signal itself is periodic within the measured inter-
val, the interval must be a multiple of the period for the transform to give
coefficients directly representing only the original components of the signal.
The consequence of this fact is sometimes known as spectral leakage.

Because the GHWT resolves a signal’s frequency content in time, end-
effects can be seen in the wavelet domain more predominantly at the begin-
ning and end of the sample. The area of the wavelet spectrum most effected

16



Figure 5: Comparison of Harmonic wavelets in the time domain for high
(top) and low (bottom) resolution in time

by these end effects is referred to as the ”cone of influence” [37]. Basic
practical methods of preventing the signal from wrapping around onto itself
include padding the time domain signal with zeros at the beginning and end
or to pad the original signal with its reverse on both sides. For high fre-
quency resolution wavelets, padding with zeros can significantly reduce the
mean estimated spectral power, reverse signal padding is less likely to suffer
from this problem, hence, the latter is utilized in the upcoming numerical
examples.

5.3. Harmonic wavelet basis matrices for compressive sensing

In this paper, for CS process reconstruction, harmonic wavelet basis ma-
trices are utilized. However, in practise a wide range of suitable bases could
be considered depending on the nature of the problem; in any case the basis
matrix construction would follow the same fundamental steps as highlighted
in this section.

For harmonic wavelet basis construction, wavelet scales must first be de-
fined; that is, a set of non-overlapping frequency intervals corresponding to
n−m. In most cases these are chosen to be equally spaced with an interval
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Figure 6: Non-redundant orthogonal Harmonic wavelet basis construction using IFFT and
nested for-loops

size that gives the desired trade-off between time and frequency resolutions.
However, should finer frequency or time resolutions over specific frequency
bands be required, the basis matrix can be altered accordingly. The har-
monic wavelet basis components may be generated efficiently via the Inverse
Fast Fourier Transform (IFFT) as shown in [38]. However, a single harmonic
wavelet must be shifted n−m times in the time domain to form an orthogonal
basis. The process used to build this square harmonic wavelet basis matrix
is depicted in Figure 6. Rows must be removed corresponding to the missing
data, yielding a sampling matrix with more columns than rows (Figure 7).

With the basis formed, the CS reconstruction may be solved. Note that
due to the requirement of incoherence between the signal domain and trans-
form domain for CS, the harmonic wavelets should occupy relatively narrow
frequency bands. I.e., as n-m increases, incoherence decreases.

6. Application Problem

The objective of the application problem is to evaluate the performance
of the proposed methodology in treating missing data. In particular, the
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Figure 7: Harmonic wavelet sampling matrix construction with missing data
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Floor 1 2 3 4
Mass (ton) 204.7 202.7 198.9 195.6

Floor 5 6 7 8
Mass (ton) 192.2 188.9 186.7 175.5

Table 1: Total mass of the different floors

effect of estimated spectra on the response statistics and reliability of a large
structural model under earthquake excitation is investigated.

6.1. Model Description

The structural model shown in Figure 8 is considered for analysis. It
consists of an eight floor, three-dimensional reinforced concrete building
model under stochastic ground acceleration. Material properties of the re-
inforced concrete structure have been assumed as follows: Young’s modulus
E = 2.56 × 1010 N/m2; Poisson ratio ν = 0.2; and mass density ρ = 2500
kg/m3. The total mass of the different floors is given in Table 1. The height
of each floor is 3.5 m leading to a total height of 28.0 m for the structure.
The floors are modeled with shell elements with a thickness of 0.2 m. Ad-
ditionally, beam and column elements are used in the finite element model,
which has 102960 degrees of freedom. A 5% of critical damping for the
modal damping ratios is introduced to the model. The building is excited
horizontally by a ground acceleration applied at 35o with respect to the axis
x. The ground excitation is modeled as indicated in the following section.
For an improved earthquake performance the structural system is enforced
with twelve vibration control devices. In particular, vibration control devices
composed of a series of metallic U-shaped flexural plates (UFP) are consid-
ered in this study [39]. The vibration control devices are connected to the
structure every four floors as indicated in Figure 8. A typical configuration
of the vibration control device is shown in Figure 9 (left picture). It consists
of brace and plate elements where a series of UFP’s (40 in total) are located
between the plates as shown in Figure 9 (right picture).

Each UFP exhibits a one-dimensional hysteretic type of non-linearity
modeled by the restoring force law

rd(t) = α ke δ(t) + (1− α) keU
y z(t) (15)
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Figure 8: Isometric view of the finite element model

Figure 9: Left picture: typical configuration of a vibration control device. Right picture:
dissipators in the form of metallic U-shaped flexural plates (UFP).

where ke is the pre-yield stiffness, Uy is the yield displacement, α is the
factor which defines the extent to which the restoring force is linear, z(t)
is a dimensionless hysteretic variable, and δ(t) is the relative displacement
between the upper and lower surfaces of the device. The hysteretic variable
z(t) satisfies the first-order non-linear differential equation
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ż(t) = δ̇(t)
[
β1 − z(t)2[β2 + β3sgn(z(t)δ̇(t))]

]
(16)

where β1, β2 and β3 are dimensionless quantities that characterize the prop-
erties of the hysteretic behavior, sgn(·) is the sign function, and all other
terms have been previously defined. The quantities β1, β1 and β3 correspond
to scale, loop fatness and loop pinching parameters, respectively. The above
characterization of the hysteretic behavior corresponds to the Bouc-Wen type
model [40]. The following values for the dissipation model parameters are
used in this case: ke = 2.5 × 106 N/m; Uy = 5 × 10−3m; α = 0.1; β1 = 1.5;
β2 = 0.5; and β3 = 0.5. A typical displacement-restoring force curve of one
of the U-shaped flexural plates under seismic load is shown in Figure 10. The
non-linear restoring force of each device acts between the floors where it is
placed with the same orientation of the device.

Figure 10: Typical displacement-restoring force curve of one of the U-shaped flexural
plates

6.2. Excitation Model

A non-stationary ground acceleration process defined in terms of the
Clough-Penzien power spectrum is used to generate synthetic ground mo-
tions in this application problem. Based on these records, a number of
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scenarios with respect to the magnitude of missing data are constructed.
The non-stationary ground acceleration process is characterized as Sa(t, ω) =
h2(t,Mm, r)Sa(ω), where h(·) is an envelope function of time and Sa(·) is the
Clough-Penzien power spectrum [41]. The envelope function suggested in
[42] is considered in the present formulation. Such function is given by

h(t,Mm, r) = a1

(
t

tn

)a2
· exp

(
−a3 ·

t

tn

)
(17)

where the parameters a1, a2 and a3 are defined as

a1 =
( e
λ

)a2
, a2 =

−λ ln(η)

1 + λ · (ln(λ)− 1)
, a3 =

a2

λ
(18)

The envelope function has a peak equal to unity at t = λ · tn and equal
to η at t = tn where tn = 2Tn. The parameter Tn, which corresponds
to the duration of ground motion, can be expressed as a sum of a path
dependent and source dependent component [43]. More specifically, Tn =
0.05

√
r2 + r2

z + 0.5
fa

where r is the epicentral distance, rz is the pseudo-depth

given by log(rz) = 0.15·Mm−0.05, where Mm is the moment magnitude, and
fa is the so-called corner frequency defined as log(fa) = 2.181 − 0.496 ·Mm

[44]. The values λ = 0.2, η = 0.05, r = 25 km, and Mm = 7.0 are considered
in the present study. On the other hand, the Clough-Penzien power spectrum
is characterized as

Sa(ω) = S0 ·
ω4

(ω2
f − ω2)2 + 4 ξ2

f ω
2
f ω

2

ω4
g + 4 ξ2

g ω
2
g ω

2

(ω2
g − ω2)2 + 4 ξ2

g ω
2
g ω

2
(19)

where S0 is the amplitude of the white noise bedrock excitation spectrum,
ωf , ξf , ωg, and ξg are parameters related to soil conditions. The values S0 =
0.02[m2/s3], ωf = 1.5[rad/s], ξf = 0.6, ωg = 15.0[rad/s], and ξg = 0.6 are
used in the current application. These values correspond to ground motions
of regular intensity on firm soil conditions. The synthetic ground motions
are generated in the time domain via Eq. 13 in which

SX (ωj, t) = h(t,Mm, r)
2Sa(ωj). (20)

and where Eq. 13 is implemented with parameters ∆ω = 2.28 and N =
48. The synthetic ground motions are discretized at time intervals equal
to ∆t = 0.0293s with a total duration of T = 30.0s given samples of length
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equal to 1024 points. In [20], reconstruction of stationary and non-stationary
power spectra via CS even without an adaptive basis procedure was shown
to be robust in the presence of noise, due to a tolerance term, e in the L1
minimization procedure, shown in Eq. 7. Therefore, additional noise on
the ground excitations is omitted for simplicity. The EPS and a sample
realization are shown in Figures 11 and 12 respectively.

Figure 11: Evolutionary power spectrum based on the Clough-Penzien spectrum (Eq. 20)

6.3. Estimation of Power Spectrum

Recall that harmonic wavelets are used as a basis for the CS procedure,
the coefficients of which may in turn be used to estimate the EPS. Due to
the limitations previously discussed, such as time-frequency resolution trade-
off and end-effects, the estimated EPS does not perfectly match the original
evolutionary power spectrum. Further, the EPS estimation via the GHWT
is drawn from expected values of wavelet coefficients as shown in Eq. 14.
Hence, estimation accuracy is dependent upon the number of sample time
histories available. To visualize the impact of these properties, the harmonic
wavelet estimated EPS of the spectrum defined in Eq. 20 is shown in Figure
13 with a constant wavelet resolution, n−m = 16 and reverse signal padding
on both sides totalling half the signal length for 80 time-histories. Although
the shape is not as smooth, it is clear that Figure 13 is a good approximation
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Figure 12: Time history sample realization of a ground motion obtained from the evolu-
tionary power spectrum based on the Clough-Penzien spectrum (Eq. 20)

Figure 13: Harmonic wavelet based power spectrum estimation of the power spectrum
defined in Eq. 20

to Figure 11, capturing the high frequency time-dependent tail and location
of the peak power.

It is clear that even in the case where no missing data are present, the
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choice of EPS estimation method will influence the results. Even within
the presented CS framework, different resolutions and even alternative ba-
sis functions could have been utilized. The accuracy of such approaches in
the context of EPS estimation has been the subject of extensive studies e.g.
[36, 45, 46]. Therefore, it is important to note that the objective in this sec-
tion is to assess the merit of the reconstruction technique through comparing
estimated response statistics and system reliability. Hence the GHWT esti-
mated EPS with no missing data is used as a control case against which the
missing data reconstructions are compared, rather than against the original
specified ground excitation spectrum model. In this manner, the effect of the
EPS estimation is isolated for comparison purposes.

6.4. Simulation of Missing Data

Two different arrangements of missing data are considered. The first case
simulates missing data at random locations while the second case simulates
missing data that occur in groups (intervals) positioned at random locations.
The random locations are defined by a procedure based on the generation of
random numbers drawn from a uniform distribution of the time index [19]. In
the context of the present application missing data is simulated for multiple
process records used for the same spectral estimate. For the case of missing
data at random locations the missing sample points are re-generated for each
sample. However, for the case of missing data over intervals the missing data
encompasses the intervals of all smaller interval cases for that set e.g. the
20% missing data case is an extension of missing data in the time domain
from the 10% missing data case. Figures A.21 and A.20 show sample time
histories with interval gaps with and without reconstructed data.

Sets of 80 time histories are generated from the aforementioned Clough-
Penzien spectrum of length equal to 1024 points. From these sets of records,
8 separate configurations of missing data across the ensemble were simulated
independently. In particular four cases, corresponding to 10%, 20%, 30 % and
40% of the data removed at random locations and over 10 constant intervals
are considered. To evaluate the effectiveness of the reconstruction potential
of CS, the estimated spectra corresponding to the cases of maximum missing
data (40%) for the two different arrangements of missing data, i.e. randomly
scattered and over 10 intervals, are shown in Figures 14 and 15, respectively.
It is observed that even with a relatively large numbers of missing data
the method produces non-stationary power spectra that fit very well with
the shape of the target spectrum (Figure 13) over time as well as over the
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Figure 14: Harmonic wavelet based power spectrum estimation of the evolutionary power
spectrum based on the Clough-Penzien spectrum (Eq. 20) with 40% missing data in
uniformly distributed random locations

frequency domain. Based on the previous results it is seen that the spectra
are reconstructed with sufficient accuracy.

Figure 15: Harmonic wavelet based power spectrum estimation of the evolutionary power
spectrum based on the Clough-Penzien spectrum (Eq. 20) with 40% missing data over 10
constant intervals

27



6.5. Effect on Response Statistics

The effect of estimated spectra on the response statistics of the struc-
tural system is investigated in this section. To this end the performance of
the structural system is defined in terms of its response at 48 control points.
The control points are located over the height of the structure at five different
corners and at the center of mass of each floor. Some of these points, repre-
sented as dots, are shown in Figure 8. The responses to be monitored are the
interstory drift ratios (absolute value of relative displacement between floors)
in the x direction (δxi) and y direction (δyi) at the different control points
(i = 1, ..., 48). Based on these responses a measure of the overall system
performance r is defined. It is characterized as the maximum interstory drift
response in time over the 48 control points, that is

r = maxt∈[0,T ]maxi=1,...,48{| δxi(t,φ) |, | δyi(t,φ) |} (21)

where φ is the vector of random variables involved in the characterization of
the excitation (see Eq. 13). Note that the interstory drift ratios are functions
of time (due to the dynamic nature of the excitation) and the random vector
φ. For each arrangement of missing data and percentage of data removed
synthetic seismic excitations are generated from the corresponding estimated
spectra. Then, the overall system performance parameter r is computed for
each ground motion generated. Based on a number of independent runs,
100 in this case, some statistics are estimated. In particular, the sample
mean and standard deviation of the overall system performance parameter
is considered in the present analysis. Tables 2 and 3 show the sample mean,
standard deviation, and coefficient of variation of the overall system perfor-
mance parameter obtained from the estimated spectra corresponding to the
two arrangements of missing data defined in the previous section. That is,
data removed in uniformly distributed random locations and over 10 constant
intervals positioned at random locations.

Each table shows the results of the four cases corresponding to 10%, 20%,
30% and 40% of the data removed as well as the no-missing data case. Note
that the no-missing data case corresponds to results obtained from the recon-
structed spectrum defined in Eq. 20, and shown in Figure 13. For comparison
purposes such spectrum is considered as the target spectrum. It is seen that
the sample mean and standard deviation of the overall system performance
parameter corresponding to the missing data cases are very similar to the
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Data removed Mean(cm) Standard deviation(cm) C.O.V
0%(no-missing data) 2.33 1.02 0.437

10% 2.33 1.02 0.437
20% 2.32 1.02 0.437
30% 2.31 1.01 0.436
40% 2.24 0.97 0.434

Table 2: Sample mean and standard deviation of the overall system performance parameter
r. Case of data removed in uniformly distributed random locations.

ones obtained from the no-missing data case for both arrangements of miss-
ing data. In other words, the quality of the response statistics obtained from
estimated spectra is very good as compared to the one obtained from the
target spectrum (no-missing data case).

Data removed Mean(cm) Standard deviation(cm) C.O.V
0%(no-missing data) 2.33 1.02 0.437

10% 2.42 1.06 0.438
20% 2.39 1.05 0.439
30% 2.37 1.04 0.438
40% 2.26 0.98 0.435

Table 3: Sample mean and standard deviation of the overall system performance parameter
r. Case of data removed over 10 constant intervals positioned at random locations.

Based on the previous statistics the 5%, 68% and 95% quantiles of the
mean value are estimated. Note that the 68% quantile corresponds to the
interval defined by the mean value plus/minus one standard deviation. Figure
16 presents the 5%, 68% and 95% credible intervals for the mean of the
overall system performance parameter. The four cases corresponding to 10%,
20%, 30% and 40% of the data removed at random locations as well as the
no-missing data case are shown in the figure. In addition, the statistical
mean is also indicated in the figure (represented as dot). The corresponding
information for the cases of data removed over 10 constant intervals is given
in Figure 17.

It is observed from both figures that the accuracy in the prediction of the
5%, 68% and 10% quantiles, compare with the one obtained from the no-
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Figure 16: Statistics (sample mean, 5% quantile, 68% quantile and 95% quantile) for the
mean of the overall system performance measure. A: no-missing data case. B,C,D, and
E: 10%, 20%, 30% and 40% of missing data cases, respectively. Case of data removed in
uniformly distributed random locations.

Figure 17: Statistics (sample mean, 5% quantile, 68% quantile and 95% quantile) for the
mean of the overall system performance measure. A: no-missing data case. B,C,D, and E:
10%, 20%, 30% and 40% of missing data cases, respectively. Case of data removed over
10 constant intervals positioned at random locations
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missing data case, is quite satisfactory even for high percentage of missing
data (40%). Additional calculations have also shown the effectiveness of the
proposed method for even more severe arrangements of missing data. For
example an arrangement based on data removed over 5 constant intervals
with 10%, 20%, 30% and 40% of missing data was also tested. The qual-
ity of the response statistics obtained from the estimated spectra was very
good. Thus, the power spectrum reconstruction capability of the proposed
methodology, in the context of response statistics, is apparent.

6.6. Effect on System Reliability

The impact of estimated spectra on the reliability of the structural sys-
tem is considered in this section. For structural systems under stochastic
excitation the probability that performance conditions are satisfied within a
particular reference period T provides a useful reliability measure [47]. Such
measure is referred as the first excursion probability. In this context, the fail-
ure event F is defined as F = d(t,φ) > 1, where d is the so-called normalized
demand function defined as

d(t,φ) = maxt∈[0,T ]maxi=1,...,48{
| δxi(t,φ) |

δ∗
,
| δyi(t,φ) |

δ∗
} (22)

where as previously pointed out δxi(t,φ) and δyi(t,φ) represent the interstory
drift response in the x and y direction at control point i, respectively, and δ∗

is the corresponding acceptable response level (threshold). Note that there
are 96 response functions associated with the failure event F . The probability
of failure is formally defined as

PF = P [maxt∈[0,T ]maxi=1,...,48{
| δxi(t,φ) |

δ∗
,
| δyi(t,φ) |

δ∗
} > 1] (23)

where P [·] is the probability that the expression in parenthesis is true. Equiv-
alently, the failure probability can be written in terms of the multidimensional
probability integral

PF =

∫
d(t,φ)>1

p(φ)dφ (24)

where p(φ) is the probability density function that characterized the random
variables φ. Note that the corresponding reliability problem is a high di-
mensional problem since there are 48 random variables that characterize the
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excitation (number of random variables in Eq. 13). The failure probability is
estimated by Subset simulation [48, 49]. In this well known advanced simu-
lation technique the failure probabilities are expressed as a product of condi-
tional probabilities of some chosen intermediate failure events, the evaluation
of which only requires simulation of more frequent events. The intermediate
failure events are chosen adaptively using information from simulated sam-
ples so that they correspond to some specified values of conditional failure
probabilities. Therefore, a rare event simulation problem is converted into
a sequence of more frequent event simulation problems. The method uses a
Markov chain Monte Carlo method based on the Metropolis algorithm for
sampling from the conditional probabilities [50]. This is the most widely
applicable simulation technique because it is not based on any geometrical
assumption about the topology of the failure domain. In fact, validation cal-
culations have shown that subset simulation can be applied efficiently to a
wide range of dynamical systems including general linear and non-linear sys-
tems [49, 51, 52]. For a detailed description of subset simulation the reader
is referred to [48, 49]
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Figure 18: Failure probability in terms of the threshold level for different estimated spectra.
Case of data removed in uniformly distributed random locations

Figure 18 shows the failure probability in terms of the response level
(threshold) for the cases of 10%, 20%, 30% and 40% of the data removed at
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Figure 19: Failure probability in terms of the threshold level for different estimated spectra.
Case of data removed over 10 constant intervals positioned at random locations

random locations. Also the results obtained from the no-missing data case
are shown in the figure for comparison purposes. Similar information for the
cases of 10%, 20%, 30% and 40% of the data removed over 10 constant in-
tervals is shown in Figure 19. The different curves of the figures correspond
to an average of 10 independent runs of subset simulation. It is seen that
the reliability curves corresponding to the missing data cases almost coincide
with the reliability curve of the no-missing data case (target curve) for both
arrangements of missing data. This coincidence is particularly evident for
the cases corresponding to 10%, 20% and 30% of missing data. Thus, the
probability estimates corresponding to the missing data cases with missing
data up 30% are quite accurate even for low failure probabilities, i.e less than
10−4. For the case of 40% of data removed some minor differences are ob-
served with respect to the target failure probability curve. Further, it can be
seen that with some of the cases, the failure probability is over-estimated and
in others under-estimated. This can be attributed in part to random effects
contributed by the arrangement of missing data and nature of the specific
generated signals. However, as the number of missing data becomes more
significant in comparison to the sparsity of the process in the chosen wavelet
basis, lower power estimates, comprising fewer wavelets will become more
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likely in the proposed CS reconstruction framework. Realizations generated
from these estimated spectra are in turn more likely to lead to lower failure
probabilities. This can be observed by the fact that both of the 40% cases
under-estimate failure probability.

As previously pointed out, the uncertainty involved in the problem is due
to the characterization of the excitation model. In this regard, the potential
effect of system uncertainty on the results is independent of the spectrum
reconstruction process. In this situation, the effect of system variability
should be considered explicitly in the estimation of the system reliability
(or response statistics) for all cases, i.e. missing and no missing data cases.
Thus, for comparison purposes such effect would be unimportant.

Based on the results obtained in this section it is concluded that the
performance of the proposed methodology in treating missing data is quite
satisfactory in the context of reliability analysis for intermediate levels of
missing data. For more severe arrangements of missing data validation cal-
culations have shown that the reconstructed spectra have some difficulties
in reproducing reliability estimates with sufficient accuracy. These limita-
tions are primarily due to poor spectrum estimates occurring as a result
of the same difficulties previously discussed for the 40% missing data case.
These issues with higher numbers of missing data call for further examination
and enhancement of the proposed methodology in connection with reliability
analysis. Such study is topic for future research.

7. Conclusions

The issue of determining structural system response and reliability statis-
tics subject to excitation realizations with missing data has been addressed.
To this aim, a compressive sensing based framework coupled with an adap-
tive basis has been presented for reconstructing the samples with missing
data and estimating the underlying process. In this regard, novel insights
have been provided whereas certain conceptual, numerical, and practical im-
plementation aspects of the technique have been presented in detail.

Numerical results pertaining to the stochastic response and reliability
analysis of a large-scale structural system have shown that the response
statistics obtained by utilizing estimated spectra compare very well with
results obtained by using the target spectrum (no-missing data case). Like-
wise, the reliability assessment with missing data is in very good agreement
with the results derived from the target power spectrum. Based on these
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results it is concluded that CS with adaptive basis is potentially an effective
tool for performing stochastic response and reliability analyses of real-size
structures under incomplete earthquake records with intermediate levels of
missing data. Note that the main assumption of the methodology relates
to the available records exhibiting relative sparsity on the harmonic wavelet
domain. The effectiveness of the proposed approach in the context of more
severe arrangements of missing data, including long gaps, as well as in the
presence of real records with missing data is left for future research efforts.
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Appendix A. Example missing data records

Figure A.20: Example earthquake realization with 30% missing data on 10 randomly
positioned intervals

Figure A.21: Example earthquake realization with 30% missing data on 10 randomly
positioned intervals including source and reconstructed data
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