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Abstract

A key step in gradient-based aerodynamic shape optimisation using the

Reynolds-averaged Navier–Stokes equations is to compute the adjoint so-

lution. Adjoint equations inherit the linear stability and the stiffness of the

nonlinear flow equations. Therefore for industrial cases with complex geome-

tries at off-design flow conditions, solving the resulting stiff adjoint equation

can be challenging. In this paper, Krylov subspace solvers enhanced by

subspace recycling and preconditioned with incomplete lower-upper factori-

sation are used to solve the stiff adjoint equations arising from typical design

and off-design conditions. Compared to the baseline matrix-forming adjoint

solver based on the generalized minimal residual method, the proposed algo-

rithm achieved memory reduction of up to a factor of two and convergence

speedup of up to a factor of three, on industry-relevant cases. These test

cases include the DLR-F6 and DLR-F11 configurations, a wing-body config-

uration in pre-shock buffet and a large civil aircraft with mesh sizes ranging

from 3 to 30 million. The proposed method seems to be particularly effective
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for the more difficult flow conditions.

Keywords: adjoint method, Krylov solvers, subspace recycling,

GCRO-DR, RANS equations

1. Introduction

Over the past few decades, adjoint-based aerodynamic shape optimisa-

tion using computational fluid dynamics (CFD) has been widely used for the

design of automobiles [1], aeroplanes [2, 3, 4, 5] and turbomachines [6, 7, 8].

It was first proposed in [9] to use the adjoint equations to efficiently com-

pute the design gradient for aerodynamic shape optimisation. The method

was later extended to configurations of increasing complexity such as the

redesign of the wing of a transonic business jet using Euler equations on

multiblock structured meshes [2] as well as for Navier–Stokes equations on

unstructured meshes to capture the viscous effect on complex shapes [10, 11].

A comprehensive strategy for developing and implementing discrete adjoint

methods for aerodynamic shape optimisation problems is presented in [12]

and demonstrated in a three-dimensional unstructured Reynolds-averaged

Navier–Stokes (RANS) adjoint solver on several cases including a high-lift

configuration and a modern transport configuration. The methodology was

later extended in [13, 14] to include multigrid in the line-implicit adjoint

solver for better convergence and applied to the drag-reduction optimisation

of a wing body configuration.

With the maturing of the adjoint method, applications nowadays are more

focused on realistic configurations under both design and off-design condi-

tions. The increased complexity in both geometry and flow conditions can
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pose significant computational challenges for the adjoint solver. Flow and

adjoint solvers using well-established fixed-point iterations, either explicit or

implicit, could have difficulty converging. One such example is reported in

[15] for a transonic viscous case with a mesh consisting of 69,000 points with

stretched cells in the boundary layer. Similar issues are reported for more

realistic cases in [16], where the DLR-TAU adjoint solver is used to optimise

the DLR-F6 wing body configuration and the DLR-F11 high-lift configura-

tion. For the DLR-F6 case, side-of-body separation near the trailing edge

destabilises fixed-point iteration and recursive projection method (RPM) [17]

is applied to stabilise the adjoint. However, RPM fails to stabilise the ad-

joint for DLR-F11 [16] because the unstable fixed point iteration diverged

too fast, and generalised minimal residual method (GMRES) [18] was used

to successfully converge the case.

The numerical stiffness discussed above is mainly due to the ill-conditioned

coefficient matrix in the adjoint equations. The issue could be alleviated to

some extent by using an approximate instead of exact flow Jacobian matrix.

Essentially, one is trading accuracy for solver efficiency and robustness. One

typical remedy is to use the frozen turbulence assumption when solving the

adjoint RANS equations as it is well known that coupling the turbulence

equation with the mean flow equation significantly increases the numerical

stiffness and sometimes it even destabilises the time marching scheme. The

effect of various other approximations of the Jacobian matrix on the gradient

accuracy and the optimisation results is investigated in detail in [19].

Alternatively, one could adhere to the exact Jacobian matrix and solve the

stiff adjoint equations more efficiently so that the resulting adjoint solution,
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and consequently the design gradient, remains accurate. To avoid the linear

instability issue of any fixed-point iterative solver, Krylov solvers are usually

preferred for solving the stiff and marginally stable adjoint equations. It

is proposed that the Jacobian-free Newton–Krylov method is preferred for

critical aerodynamic simulations and shape optimisation applications where

numerical stiffness constantly causes convergence difficulties [20, 21]. A few

key aspects on the efficient implementation of the method are also highlighted

to show that once properly implemented, superior efficiency and reliability

can be achieved, compared with other more well-established solution methods

such as multi-stage explicit schemes, point or block implicit procedure and

implicit factorisation methods. The method has been successfully applied to

solve adjoint equations arising from aerodynamic shape optimisaion [22] and

error estimation [23].

Krylov solvers are also affected by the conditioning of the system matrix.

For example, restarted GMRES could suffer from convergence stagnation for

challenging problems unless m is sufficiently large, which would then result

in prohibitively high memory overhead. An obvious remedy to alleviate the

memory bottleneck of the Krylov solver for difficult cases is to use a stronger

preconditioner. For example, a clean wing geometry for the common research

model at cruise condition is studied in [24] using a mesh with 28 million

points. For this case, incomplete lower-upper (ILU) factorisation with fill-in

level of two, i.e., ILU(2), is necessary to effectively precondition GMRES,

which is then able to converge with m of 200. Had a weaker preconditioner

such as ILU(0) been used, the Krylov solver would have required many more

vectors to converge.
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The fundamental reason for the convergence stagnation of GMRES(m) is

that the restarted subspace is often close to the previous subspace. Gener-

alised conjugate residual with optimal truncation (GCROT) [25], its simpli-

fied and flexible variant [26] and generalised conjugate residual with deflated

restarting (GCRO-DR) [27] have been proposed to address this shortcoming

by recycling a selected subspace from one cycle to the next. The subspace

recycling technique allows the solvers to converge without stagnation with

much lower memory requirement. GCRO-DR was shown to be effective in

both lowering the stagnation memory threshold and accelerating the conver-

gence for large scale linearised aerodynamics analysis [28].

In this paper, we replace the baseline GMRES solver within the DLR-

TAU adjoint solver with GCRO-DR. The proposed method is applied to solve

the adjoint equations to demonstrate its effectiveness in both reducing mem-

ory overhead and accelerating convergence for solving the adjoint equations

arising from industry-relevant cases with complex geometries under both de-

sign and off-design flow conditions.

The remainder of the paper is organized as follows. The mathematical for-

mulation of the flow and adjoint equations is explained in Sec. 2. The details

of the Krylov solvers are given in Sec. 3 and the preconditioning technique

is discussed in Sec. 4. The application of the proposed method to five test

cases is presented in Sec. 5. A comprehensive comparison between GMRES,

GCROT and GCRO-DR is first given for a small, yet stiff, two-dimensional

aerofoil case for a parameter study. Both GCRO-DR and GMRES are then

applied to several more realistic three-dimensional industry-relevant cases.
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2. Nonlinear flow and adjoint solvers

2.1. Nonlinear flow solver

The DLR-TAU code is a CFD software package widely used as produc-

tion code in the European aerospace industry as well as a research code for

method development [29, 30]. The RANS equations are solved with a finite-

volume discretisation on unstructured grids with various options of spatial

and temporal discretisation schemes and turbulence models. In this paper,

the mean flow is by default discretised with the Jameson–Schmidt–Turkel

(JST) scheme [31] with matrix dissipation [32], unless stated otherwise. The

Spalart–Allmaras model [33] is discretised using first-order accurate Roe

scheme [34]. The nonlinear flow equations are pseudo time marched using the

first-order backward Euler implicit scheme. At each pseudo time step, ag-

glomeration multigrid is used to accelerate the convergence with lower-upper

symmetric-Gauss–Seidel [35] as the multigrid smoother.

2.2. Adjoint solver

The cost function for optimisation J := (J1, J2, ..., JN)T is a function of

the flow solution U, the coordinates of the computational mesh points X and

the design variable α := (α1, α2, ..., αM)T . To evaluate the design gradient,

the cost function is linearised as

dJ

dα
=
∂J

∂α
+ vT f

where v is the solution to the adjoint equation

(
∂R

∂U

)T

v = g (1)
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with f and g defined as

f := −∂R

∂α
and gT :=

∂J

∂U

and R is the nonlinear residual vector. Note that the design variables do not

appear in the adjoint equation thus Eq. (1) needs to be solved only as many

times as the number of cost functions. For aerodynamic applications, the cost

functions are usually limited to a handful, such as lift, drag and moment,

while the design variables could be many more. The adjoint approach is

therefore very efficient.

The adjoint equation is solved using a Jacobian-forming Newton-Krylov

approach. The exact flow Jacobian matrix corresponding to the second-order

accurate spatial discretisation is computed using the hand-differentiated non-

linear residual subroutine. The Jacobian matrix is stored in block compressed

sparse row format, with each block containing a 6-by-6 dense matrix. The

Jacobian matrix is then transposed to obtain the coefficient matrix for the

adjoint equation. Computing the Jacobian matrix and its transpose are done

in parallel with negligible computational time compared to the adjoint solu-

tion time for all the cases considered in this work. The right-hand side for

each cost function is computed using the linearised subroutine that computes

the cost function. No simplification such as frozen turbulence is used in this

work so that an exact dual adjoint solution is solved. Once the coefficient

matrix and the right-hand side are formed, the resulting large sparse linear

system of equations is then solved using ILU preconditioned Krylov solvers,

which are explained in detail in the following two sections.
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3. Krylov subspace solvers and subspace recycling

3.1. Basic Krylov solver GMRES

To solve the adjoint problem in Eq. (1), or to be more general, to solve a

linear system of equations

Ax = b

with A denoting the coefficient matrix, x the solution vector and b the right-

hand side vector, Krylov subspace solvers can be used. These solvers approx-

imate the solution in the Krylov subspace

Km(A,b) := span{b, Ab, A2b, . . . , Am−1b}

with the constraint that the resulting residual should be perpendicular to the

subspace AKm.

In GMRES, one of the most popular Krylov solvers, Arnoldi procedure is

used to generate a vector basis, Vm := [v1,v2, . . . ,vm], that spans the Krylov

subspace. A by-product of the Arnoldi procedure is the upper Hessenberg

matrix H̄m satisfying the Arnoldi relation

AVm ≡ Vm+1H̄m

where Vm+1 := [Vm,vm+1]. Then the solution is approximated using the

linear combination of the basis vectors

x = Vmdm
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and the coefficient vector dm is the minimiser of the resulting residual norm

minimize
dm

‖r(dm)‖ := ‖b− AVmdm‖ (2)

An equivalent formulation for finding the minimiser dm is to use the definition

of the Krylov method, i.e., the resulting residual needs to be perpendicular

to AKm, which is spanned by the column vectors of Vm+1. Therefore dm can

be solved from

V H
m+1r(dm) = 0

Using the Arnoldi relation, the left-hand side can be reduced to V H
m+1b −

H̄mdm. Therefore, the coefficient vector dm is simply the least square solution

of

H̄mdm = V H
m+1b. (3)

which is a system of much lower dimension compared to Eq. (2). In practice,

Givens rotation is used to compute dm in Eq. (3). The matrix H̄m is an upper

Hessenberg matrix of dimension (m+ 1)-by-m and it can be diagonalised via

Givens rotation to an upper triangular matrix of dimension m-by-m with

an additional row of all zeros at the bottom. Discard the last row, and the

solution dm is computed by back-substitution.

To limit the memory use, restarted GMRES, denoted by GMRES(m),

is used. Once a maximum of m Krylov vectors are built, the solution is

updated, and GMRES is restarted using the updated solution and residual

vectors. Although GMRES(m) is very robust for many problems, it often

encounters convergence stagnation unless m is large enough.
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3.2. Nested Krylov solver GCRO

The deflated solver proposed in this work is a type of the nested Krylov

solvers. To better illustrate it, we first introduce the GCRO solver as a

framework for nested solvers that use generalised conjugate residual solver

(GCR) for the outer loop and another Krylov solver such as GMRES for the

inner loop. GCR is mathematically equivalent to GMRES but the numerical

procedure is different and more flexible. In GCR, two vector bases

Uk = [u1,u2, . . . ,uk] and Ck = [c1, c2, . . . , ck]

satisfying

Ck = AUk and CH
k Ck = Ik (4)

are constructed. For the numerical procedure regarding the construction of

the vector bases, refer to [36]. The solution is then approximated on the

subspace spanned by the column vectors of Uk

xk = x0 + Ukdk

subject to the constraint that the resulting residual is perpendicular to the

subspace spanned by the column vectors of AUk, or equivalently, Ck, i.e.,

CH
k r = CH

k (r0 − AUkdk) = 0

which leads to

dk = CH
k r0
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Consequently the residual is updated as

rk = r0 − AUkdk = (I − CkC
H
k )r0

The nested solver GCRO wraps GCR around another Krylov solver such

as GMRES. After Uk and Ck are constructed and the residual is updated as

rk ← (I − CkC
H
k )r0,

instead of setting

uk+1 ← rk,

as in GCR, we set

uk+1 ← x̃,

where x̃ is the approximate solution to

(I − CkC
H
k )Ax̃ = rk (5)

solved with a few GMRES iterations. Intuitively, it can be seen that com-

pared with rk, x̃ is a better approximation for the final solution. In fact, if

Eq. (5) is solved exactly, then the outer loop is also fully converged.

3.2.1. GCRO-DR

The GCRO solver offers a flexible framework for solving the linear system

of equations in a nested approach. Different from GMRES where the vector

basis Vm has to span a Krylov subspace, GCR is flexible in the sense that

the vector basis Uk can be any combination as long as the relation in Eq. (4)
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holds. As shown in [27], recycling the approximate interior eigenvectors from

each inner GMRES cycle to form the Uk and Ck vector bases seems to be

very effective in improving the performance. Because the recycled subspace

is related to the eigenvectors, the resulting algorithm is a deflated solver, thus

‘deflated restarting’ in its name. Deflation itself is an established technique

to reduce the condition number of a matrix by removing eigenvectors with

extreme eigenvalues. Its use has been popular in improving the convergence

of the conjugate gradient (CG) iteration when solving the pressure-Poisson

equation [37] in incompressible flows. GCRO-DR uses the deflation technique

by recycling a set of approximate interior eigenvectors from one cycle to the

next. More specifically, GCRO-DR(m, k) extracts a subspace of dimension k

(usually much smaller than m) from the Krylov subspace formed within the

inner GMRES cycle, and uses the ‘recycled’ small subspace to construct the

Uk and Ck vector bases in the outer loop and then continue with the next

cycle with (m− k) iterations of GMRES.

The algorithm of GCRO-DR begins with a start-up GMRES cycle with m

Arnoldi iterations which produces the upper Hessenberg matrix H̄m and the

Krylov vectors Vm. The solution x and residual vectors r are first updated

as in GMRES. After that, an additional step to extract the approximate

interior eigenvectors {y1,y2, . . . ,yk} of the matrix A is taken. To compute

these approximate interior eigenvectors, the eigenvalue problem

(Hm + h2m+1,mH
−H
m emeH

m)pi = θipi, i = 1, . . . ,m (6)

is first solved, where the square matrix Hm is H̄m without the last row and
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hm+1,m is the non-zero entry of H̄m on its last row. Set

[y1,y2, . . . ,yk] =: Yk ← VmPk

where Pk = [p1,p2, . . . ,pk] are the eigenvectors corresponding to the k small-

est eigenvalues θ. The matrices Ck and Uk are constructed from Yk by setting

Ck ← Vm+1Q and Uk ← YkR
−1 (7)

where [Q,R] is the QR-factorisation of H̄mPk. It can be verified that the

resulting Ck and Uk satisfy the condition in Eq. (4). The start-up cycle is

followed by a deflated GMRES cycle in which we perform (m − k) Arnoldi

iterations starting with v1 = r/‖r‖ using the linear operator (I − CkC
H
k )A

such that the Krylov vectors to be formed are orthogonal to Ck. Matrices Uk

and Vm−k are then combined to form a subspace to approximate the solution.

Define

V̂m = [UkDk, Vm−k], Ŵm+1 = [Ck, Vm−k+1], Ḡm =

 Dk Bm−k

0 H̄m−k


which satisfy the generalised Arnoldi relation

AV̂m = Ŵm+1Ḡm

where Dk = diag(‖u1‖−1, ‖u2‖−1, . . . , ‖uk‖−1) and Bm−k = CH
k AVm−k. The

solution update δx is approximated over the subspace spanned by the columns

of V̂m and we solve for the coefficient vector dm that minimises the norm of
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the resulting residual ‖r − AV̂mdm‖, which, due to the Arnoldi relation, is

equivalent to ‖ŴH
m+1r − Ḡmdm‖. The minimiser can be found by solving a

least square problem of very low dimension. According to [36], a more effi-

cient alternative is to first solve for the last (m− k) components of dm using

H̄m−k only and then solve for the first k components of dm that correspond

to the basis vectors Uk. This alternative approach could be more accurate

for some cases, although no notable difference is observed in our work. The

solution and residual vectors are then updated with dm. In addition, we

compute θi and pi of the generalised eigenvalue problem

ḠH
mḠmpi = θiḠ

H
mŴ

H
m+1V̂mpi, i = 1, . . . ,m

similar to Eq. (6). The approximate interior eigenvectors of the coefficient

matrix are Yk = V̂mPk with Pk containing the k interior eigenvectors as its

columns. To form Ck and Uk, first perform QR-factorisation of ḠmPk and

then set

Ck ← Ŵm+1Q and Uk ← YkR
−1.

similar to Eq. (7). The deflated GMRES cycle is repeated using the most

recent solution and residual vectors until the stopping criterion is met.

Upgrading an existing GMRES solver to GCRO-DR is straightforward,

involving only the solution of a few low-dimensional eigenvalue problems of

size m. This task can be done using off-the-shelf linear algebra libraries, such

as LAPACK [38]. Details of the GCRO-DR solver and its implementation in

DLR-TAU code have previously been presented in [28] for solving a complex-

valued forward problem.
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3.2.2. GCROT

Similar to GCRO-DR, GCROT [25] is another Krylov solver that takes

advantage of subspace recycling technique. It recycles a smaller subspace

from the subspace generated by the inner GMRES cycle such that the loss

of orthogonality with respect to the truncated space in minimised. The orig-

inal version relies on singular-value-decomposition technique both to select

the subspace to recycle and to determine which subspace to discard during

truncation. A simplified and flexible variant denoted by GCROT(m, k) is

proposed in [26], in which only the residual update vector is recycled to re-

place the oldest vector in Ck in the outer loop. It is also flexible in that

a non-stationary preconditioner, such as approximate-Schur method, can be

used which is found to outperform the additive-Schwarz method when solving

the adjoint equations [39].

4. ILU preconditioner based on blended Jacobian

Incomplete lower-upper factorisation is used in this work to precondition

the Krylov solvers. The ILU preconditioner is based on the blended Jacobian

matrix. Denoting the transposed Jacobian matrices for spatial discretisation

of first- and second-order accuracy as A2ndO and A1stO, the blended Jacobian

matrix is a linear interpolation of the two as

Ablend(β) = (1− β)A1stO + βA2ndO (8)

The incomplete factorisation based purely on A2ndO is not very effective un-

less a large fill-in level is used [40, 41]. However, the preconditioning effect

of ILU significantly improves if β is sufficiently away from unity [42]. To
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Figure 1: CPU time comparison of GMRES and GCRO-DR for different β values. The
CPU time is normalised by that of GCRO-DR(40,10) for β = 0.6.

demonstrate this, Fig. 1 shows the CPU time variation of the Krylov solvers

when different values of β are used. The results are based on case 2a which

is investigated more thoroughly in the results section. The preconditioning

effect drastically worsens when a value close to unity is chosen for β. Both

solvers suffer from stagnation when a purely second-order Jacobian matrix

based ILU is used. The exact β value is case-dependent. The curves are flat

in the center, we thus chose β = 0.5 as the default value for all the cases

studied in this paper.

The incomplete factorisation with p fill-in levels, denoted by ILU(p),

means that the resulting ILU matrix has the sparsity pattern of the coef-

ficient matrix to the power of p + 1. Intuitively, a larger value for p usually

provides better preconditioning effect, but at the cost of both larger memory

overhead due to the extra fill-ins and larger CPU time per iterations due to

the extra floating-point operations. The optimal value of p to achieve the best

CPU time vs. memory is highly case-dependent. We will explore this in de-
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tail for a two-dimensional aerofoil case in Sec. 5, which indicates that ILU(0)

seems to be the sweet spot and is thus used for all other three-dimensional

test cases.

4.1. Parallel scalability of local ILU

For parallel implementation, the ILU preconditioning matrices are com-

puted for each partition without considering the exchange of information

between partitions. The decoupled approach allows a simple and essentially

sequential ILU implementation for each partition at the cost of deteriorating

convergence rate with increased number of partitions. The parallel scala-

bility of the ILU(0)-preconditioned GCRO-DR is studied for case 5a (detail

of this case can be found in the results section) using 20 to 200 cores on

Westmere and Ivy Bridge CPUs. Shown in Fig. 2 is the parallel speedup

on both architectures and the iteration numbers for converging ten orders

of magnitude. The linear solver is shown to scale poorly for more than 100

cores. This is mainly due to the communication latency of the global sum op-

eration required in each iteration for orthogonalisation and normalisation of

the Krylov base vectors [43] as well as the suboptimal partitioning algorithm

that is de facto chosen to achieve load balancing for computing the nonlinear

flow solution. Contrary to conventional wisdom, the poor parallel scalabil-

ity does not seem to be mainly caused by the local ILU preconditioner. As

shown in Fig. 2, a maximum of ±10% fluctuation is observed for the number

of iterations, indicating the adverse decoupling effect of the local ILU is rela-

tively small. Therefore, replacing the current local ILU preconditioner with a

more global variant would not improve the parallel scalability much, if at all,

since it would require additional inter-core communication and would involve
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Figure 2: Parallel scalability and normalised iteration number variation of ILU(0)-
preconditioned GCRO-DR for DLR-F11 (case 5a). The iteration numbers are normalised
against the average value of all the 10 data points. Each Westmere node has 12 cores
while each Ivy Bridge node has 16.

more floating-point operations for the matrix-vector product at the precon-

ditioning step. For industry-relevant cases, the local ILU preconditioning

seems to be a good compromise between solver performance and simplicity

of implementation. To allow a more generalised comparison, the red vertical

line indicates the core number for which approximately 200,000 grid points

are assigned to each core, excluding the additional halo points at partition

boundaries.

4.2. Additive-Schwarz vs. approxiamte-Schur preconditioning

Two popular paradigms of applying the preconditioner in the distributed

manner are additive-Schwarz [44] and approximate Schur [45]. The former

computes the preconditioning matrix based on the diagonal block of the

system matrix that is local to each parallel partition and the off-diagonal

block matrices are omitted. Due to this decoupling, the preconditioning

effectiveness often degenerates as the number of partitions increases. The
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approximate-Schur preconditioning is devised to maintain a strong coupling

to allow better parallel scalability for massively parallel computations. The

approximate-Schur approach combined with a flexible Krylov solver such as

flexible GMRES (FGMRES) or flexible GCROT have been shown previously

to outperform additive-Schwarz in previous studies [26, 39]. However, the

approximate-Schur preconditioner is less straightforward to implement com-

pared to additive-Schwarz.

The local ILU preconditioner described in the previous section belongs to

the category of additive-Schwarz type preconditioner. We chose this based

on the following considerations. First, it is easy to implement, involving

only applying the sequential ILU factorisation algorithm to the diagonal

block Jacobian matrix that is local to each partition. Secondly, as shown

in Fig. 2 (right), the performance degeneration due to the decoupling among

the parallel partitions is not critical for the cases investigated in this work.

Thirdly, for massively parallel computations, for example, with over 1000

cores, the parallel efficiency is likely to be limited by the Krylov solver it-

self. In that case, using a communication-avoiding Krylov solver seems to

be a more urgent task [46]. Lastly, although not completely independent

of each other, the Krylov solver and the preconditioning method are rela-

tively separately aspects of the linear solver, and in this work we concentrate

on the improvement of the Krylov solver itself, assuming that if a better

preconditioning approach is used, the beneficial effect could be multiplied.

19



5. Results

Different Krylov solvers, namely, GMRES, GCRO-DR and GCROT, are

applied to the computation of the adjoint solutions for a two-dimensional

aerofoil case and four three-dimensional industry-relevant test cases at both

design and off-design flow conditions to demonstrate the improvement re-

garding both the CPU time and memory requirement. The off-design cases

used to demonstrate the computational challenges include a half wing-body

model at large angle of attack, a wing-body model near buffet-onset and a

high-lift configuration. For all the cases considered in the paper, the adjoint

convergence behaviour for either drag or lift coefficient as the cost function is

very similar and thus the lift coefficient is used as the cost function through-

out.

5.1. NACA 0012 aerofoil

The first test case is a two-dimensional NACA 0012 aerofoil in transonic

flow. The freestream Mach number is 0.76 with a Reynolds number of 10

million. Fully turbulent flow is assumed. The angles of attack used are 0◦ and

3.5◦ which are referred to as cases 1a and 1b respectively. For case 1b, the flow

condition is near buffet onset. The two-dimensional computational domain

is meshed using mixed elements of quadrilateral and triangular type with a

total of 30,000 points. To compute the steady-state nonlinear flow solution

at both angles of attack, the solution is initialised using freestream condition

and directly started with ‘4V’ multigrid cycles with Courant-Friedrichs-Lewy

(CFL) number of 100 on fine grid and 20 for all coarse grids. The steady-state

flow solutions are found when the density residual has reduced ten orders of
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Figure 3: Convergence of density residual and lift coefficient at angle of attack of 0◦ (left)
and 3.5◦ (right).

magnitude. Shown in Fig. 3 are the convergence histories for both cases.

Case 1b requires nearly twice number of time steps to converge, presumably

due to the stiffness near the buffet onset.

The adjoint equations are solved using GMRES, GCRO-DR and GCROT,

preconditioned by ILU(0), ILU(1) and ILU(2). Convergence is reached when

the inner residual of the Krylov solvers has dropped ten orders of magnitude.

For this test case, the adjoint solver is run in sequential mode to exclude any

effect due to the partition decoupling. We first run full GMRES to fully

converge each case so that we get the upper bound of the number of Krylov

vectors mmax for benchmarking GMRES. We then gradually decrease m and

measure the number of matrix-vector multiplications and CPU time for dif-

ferent m. When m is sufficiently small, a sudden increase in the iteration

number can be observed, indicating it is reaching the memory threshold for

stagnation. Similar procedure is taken for GCRO-DR and GCROT, with

some slight complication as two parameters are required. We exhaust all
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Figure 4: Iteration vs. Krylov vectors for GMRES, GCRO-DR and GCROT precondi-
tioned by ILU(0), ILU(1) and ILU(2) at angle of attack of 0◦ (left) and 3.5◦ (right)

feasible combinations of m and k for a fixed m+ k value so that the number

of vectors that need to be stored remains constant. We present the iteration

number and CPU time corresponding to the optimal choice of m and k. The

performance of GCRO-DR and GCROT for a fixed value of m + k varies

for different combinations of m and k. We found in our numerical experi-

ment that the variation is much smaller for GCRO-DR than for GCROT,

indicating the robustness of the former method. The number of iterations,

or equivalently, the numbers of matrix vector product, for different Krylov

solvers are plotted in Fig. 4. For all solvers, ILU with larger fill-in level al-

ways reduces the iteration number for the same number of Krylov vectors.

Both solvers with recycling outperform GMRES with GCRO-DR consistently

being the most efficient and robust one.

Besides the iteration numbers, we are more concerned with CPU time vs.

memory. In Fig. 5 the CPU time is plotted against the memory requirement
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Figure 5: CPU time vs. memory required (bottom) for GMRES, GCRO-DR and GCROT
preconditioned by ILU(0), ILU(1) and ILU(2) at angle of attack of 0◦ (left) and 3.5◦

(right). The memory required is normalised by the memory for storing one Krylov vector.

of each linear solver, including the Jacobian matrix, ILU preconditioning

matrix and the Krylov vectors. The memory requirement is normalised by

the memory for storing one flow solution or Krylov vector. The memory

required by other auxiliary components of the solver such as the mesh metrics

and the flow solution is negligible compared to the core linear solver and is

thus not accounted for in the plot. This case has 180,000 degrees of freedom.

Both the Jacobian matrix and ILU(0) have 9.8 million non-zero entries, while

ILU(1) and ILU(2) have 21.0 and 35.7 million non-zero entries respectively.

Therefore, the solvers preconditioned by ILU(0), ILU(1) and ILU(2), besides

storing their respective Krylov vectors, require additional memory equivalent

to 109, 171 and 253 Krylov vectors, to store both the Jacobian matrix and

ILU preconditioning matrix. Therefore, compared to Fig. 4, the curves in

Fig. 5 are shifted to the right accordingly. After taking into account the
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additional memory of more fill-ins in ILU, the optimal solver option regarding

CPU time vs. memory is then obviously ILU(0) preconditioned GCRO-

DR. Furthermore, it also has the lowest memory threshold for convergence

stagnation and is thus the most robust.

Although it is found in our numerical experiments that GCRO-DR seems

to constantly outperform GCROT, it should be pointed out that there is no

consensus in the research community regarding which is better [27]. In fact,

Newton–Krylov type nonlinear flow and adjoint solvers using GCROT as its

core Krylov solver have been successfully applied in [22, 47] with challenging

applications of aircraft aerodynamic optimisation with realistic configura-

tions. That the superior performance reported therein is not observed in

our work is possibly due to the low fill in used in ILU. As shown in Fig. 4,

the performance curve for GCROT does get less oscillatory (some indication

of insensitivity to parameter change and thus increased robustness) when

ILU fill-in level increases from 0 to 2, suggesting that GCROT be used in

combination with ILU with high fill-in level.

5.2. DLR-F6 wing-body configuration

The DLR-F6 half wing-body model was used in the second AIAA CFD

Drag Prediction Workshop to assess the state-of-the-art computational meth-

ods as practical aerodynamic tools for force and moment prediction on in-

creasingly complex airframe geometries. The emphasis is on drag predic-

tion accuracy [48]. The case has a mean aerodynamic chord of 141.2 mm

and projected half-span of 585.647 mm. The wing is defined by four aero-

foil sections. The DLR-F6 model is available both as wing-body-only and

wing-body-nacelle-pylon configuration in order to assess the accuracy of the
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computed interference drag due to installation. Nacelle and pylon are not

included here for simplicity, although the inclusion of them does add to the

complexity of the resulting flows which could potentially increase the stiff-

ness of the equations. The computational mesh used can be found in the

workshop’s online resources. The mesh is unstructured with mixed-type ele-

ments and prisms in the boundary layers and consists of a total of 2.4 million

points. The final wall-normal spacing is around 1, in wall units, and the cell

growth is limited to be no larger than 1.25. The far field boundary is located

100 reference chord lengths away.

The flow conditions are a freestream Mach number of 0.75 and a Reynolds

number based on mean aerodynamic chord of 3 million. Fully turbulent flow

is assumed. Steady state flow solutions are calculated for angles of attack

–4, –3.5, ..., 1.5, 2 and 4.5◦, while the adjoint solution with lift coefficient as

the cost function is computed only at angle of attack of 0 (case 2a) and 4.5◦

(case 2b). The zero angle of attack is considered as a representative design

condition, while 4.5◦ describes a typical off-design condition.

To compute the steady-state nonlinear flow solutions, a total of 2000 iter-

ations are first performed on the fine grid before switching to ‘4V’ multigrid

cycles. The CFL number is 100 for the fine and 20 for all coarse grid levels.

Flow solutions are obtained by converging the density residual five orders

of magnitude. Steady-state flow solutions at 0 and 4.5◦ angle of attack are

shown in Figs. 6 and 7 along with the convergence histories of the nonlinear

flow solver. Both cases reveal a separation zone at the wing-fuselage junction

toward the trailing edge of the wing and the separation is significantly larger

for 4.5◦ angle of attack. It also took 50% longer time to converge the 4.5◦
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Figure 6: Left: convergence history of the nonlinear flow solver. Right: pressure coeffi-
cient and skin-friction lines based on surface shear force vector of DLR-F6 at 0◦ angle of
attack.
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Figure 7: Left: convergence history of the nonlinear flow solver. Right: pressure coeffi-
cient and skin-friction lines based on surface shear force vector of DLR-F6 at 4.5◦ angle
of attack.

angle of attack case, an indication of the numerical stiffness associated with

the larger separation.

Lift and drag coefficients are compared with the experimental data in

Fig. 8 with good agreement. Experimental data is available up to 1.82◦

angle of attack [49], thus only computational results for up to 2◦ angle of
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Figure 8: Lift curve and drag polar of DLR-F6 compared with experimental data.

attack are used for comparison. Since the focus of this work is on solving the

stiff adjoint equation at off-design condition rather than the accuracy of the

nonlinear flow solution. We assume the flow solution for 4.5◦ angle of attack

is reasonably representative of the flows one would expect at such off-design

conditions and compute its adjoint anyway.

The convergence performance for the adjoint solver to converge ten orders

of magnitude is presented in Fig. 9 where the CPU time is plotted against the

numbers of Krylov vectors. For 0◦ angle of attack GCRO-DR converged on

average twice as fast as GMRES. The improvement is much more significant

at 4.5◦ angle of attack. In contrast to GMRES which requires a minimum of

400 Krylov vectors to converge within five hours of CPU time, GCRO-DR

converges in less than two hours with only 80 vectors.

All calculations, both flow and adjoint, are performed on 48 cores. The

memory overhead for various solvers and CPU time information with their

respective optimal options, regarding both CPU time and memory require-
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Figure 9: Adjoint convergence behaviour of DLR-F6 at 0◦ and 4.5◦ angle of attack.

Table 1: Solver performance for case 2a (2.4 million mesh points)

Solver
Memory (GB)

Cores CPU time (hr)
Other JAC ILU(0) Krylov

Flow 5 — — — 48 2.5

Adj
GMRES(200) — 34.5 34.5 23.0 48 0.58

GCRO-DR(40,10) — 34.5 34.5 5.7 48 0.39

Table 2: Solver performance for case 2b (2.4 million mesh points)

Solver
Memory (GB)

Cores CPU time(hr)
Other JAC ILU(0) Krylov

Flow 5 — — — 48 4

Adj
GMRES(1000) — 34.5 34.5 115 48 3.1

GCRO-DR(80,20) — 34.5 34.5 11.5 48 1.2

ment, are shown in Tables 1 and 2, illustrating the significant reduction of

the memory overhead and convergence acceleration, especially for the high

angle of attack condition.
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5.3. Half wing-body configuration near transonic buffet

The third test case is another half wing-body model. The flow condition

for this case is just below the onset of transonic shock buffet. The main

flow parameters are a freestream Mach number of 0.8, a chord Reynolds

number of 3.75 million and an angle of attack of 3◦. This configuration has

recently been investigated both numerically and experimentally to study the

shock buffet phenomenon [50, 51, 52]. The model has a span of 1.10 m

and a mean aerodynamic chord of about 0.279 m. The local chord lengths

corresponding to the centre line and wing tip are 0.592 m and 0.099 m,

respectively. The wing is twisted, tapered and has a constant sweep angle of

25◦. The mesh with 2.7 million grid points is the same as the one used in a

previous study [50].

The JST scheme with scalar artificial dissipation, instead of the default

matrix dissipation option, was applied to evaluate the inviscid fluxes of the

mean flow equations, due to the significant convergence difficulty when the

latter was used. Multigrid is not used. To converge the density residual by

ten orders of magnitude, 5000 iterations were taken at angle of attack of 1◦

and 2◦, respectively, before another 71636 iterations were taken at 3◦ angle

of attack, with a constant CFL number of 30. The flow solver converged in

1.39 hours on 144 cores. The converged flow solution is shown in Fig. 10

along with the convergence history of both the density residual and the lift

coefficient.

The CPU time for converging the adjoint equation by ten orders of magni-

tude using different solvers is plotted against the number of Krylov vectors in

Fig. 11. The trough-to-trough CPU time ratio is around two, while GCRO-
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Figure 10: Convergence history of the flow solver and pressure coefficient at 3◦ angle of
attack of half wing-body configuration.
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Figure 11: Adjoint convergence behaviour of pre-buffet half wing-body configuration at
3◦ angle of attack.

DR needs to store only half as many Krylov vectors compared to GMRES.

The adjoint solution is computed on 144 cores. The memory required is 104

GB for the fastest GCRO-DR(180,20) compared with 143 GB for the best

performing GMRES(500) as shown in Table 3.
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Table 3: Solver performance for case 3 (2.7 million mesh points)

Solver
Memory (GB)

Cores CPU time (hr)
Other JAC ILU(0) Krylov

Flow 5.6 — — — 144 1.39

Adj
GMRES(500) — 39 39 65 144 1.36

GCRO-DR(180,20) — 39 39 26 144 0.91

5.4. Civil aircraft configuration

The fourth test case is a civil aircraft wing-body-pylon-nacelle config-

uration with both horizontal and vertical tail planes. The engine uses a

flow-through boundary condition. The mesh used has about 3 million grid

points in total with 42 prism layers off the viscous walls. The flow is com-

puted at a freestream Mach number and Reynolds number that are typical

of a transonic cruise condition. The angle of attack is set to around 3◦ to

achieve the target lift coefficient CL0.

A ‘4V’ multigrid scheme is used for convergence acceleration with CFL

numbers of 5 for the fine grid and 1 for all three coarse grid levels. The density

residual is reduced by five orders of magnitude and is believed to have entered

the asymptotic convergence regime. The surface pressure coefficient of the

civil aircraft configuration is shown in Fig. 12 along with the convergence

history of the flow solver.

The adjoint solution is computed for the converged flow field. A few

representative convergence curves are shown in Fig. 13 for both linear solvers

with different numbers of Krylov vectors. At least 400 Krylov vectors are

needed for GMRES to converge by ten orders of magnitude within two hours,

while GCRO-DR with a total of only 50 vectors converges in a third of an

hour. In addition, the memory saved due to the reduced number of vectors
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Figure 12: Left: convergence history of the flow solver and lift coefficient normalised
against CL0. Right: surface pressure coefficient of the civil aircraft configuration at 3◦

angle of attack.

0.0 0.5 1.0 1.5 2.0
CPU time (hr)

10

8

6

4

2

0

Lo
g
1
0
(I

n
n
e
r 

re
si

d
u
a
l 
n
o
rm

) GMRES(300)

GMRES(400)

GMRES(500)

GCRO-DR(40,10)

Figure 13: Adjoint convergence histories of civil aircraft configuration at 3◦ angle of attack.

is nearly one order of magnitude. All calculations, both flow and adjoint,

are performed on 144 cores. Statistics regarding the memory breakdown and

CPU time is shown in Table 4.
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Table 4: Solver performance for case 4 (3.0 million mesh points)

Solver
Memory (GB)

Cores CPU time (hr)
Other JAC ILU(0) Krylov

Flow 6.25 — — — 144 0.52

Adj
GMRES(400) — 43 43 57.5 144 1.74

GCRO-DR(40,10) — 43 43 7.2 144 0.33

5.5. DLR-F11 high-lift configuration

The DLR-F11 high-lift configuration is used in the second AIAA CFD

High Lift Prediction Workshop. This model is a wide-body Airbus-type re-

search configuration with a half span of 1.4 m. In this work configuration 4 is

used featuring a slat at 26.5◦ and flap at 32.0◦ with both slat and flap track

fairings included. The computational mesh has a total of 32.4 million grid

points with 1.4 million surface elements. The boundary layer is captured

using 23 layers of prismatic elements above the viscous walls. The Reynolds

number used is 15.1 million and the freestream Mach number is 0.175. Three

angles of attack of 0, 10 and 20◦ are considered for the nonlinear flow solu-

tions, while the adjoint solution is only computed for angle of attack of 0◦

(case 5a) and 20◦ (case 5b).

At 0◦ angle of attack, the uniformly initialized flow is first iterated with

CFL number of 1 for 2000 iterations before switching to ‘4V’ multigrid with

CFL numbers of 20 and 1.8 for fine and coarse grids, respectively. After

about 30,000 iterations, the convergence seems to have entered limit-cycle

oscillation (LCO) at residual level of about 10−6. This turns out to be a

transient behaviour. After additional 100,000 iterations with a CFL number

of 10 on the fine grid and 1.8 for coarse grids, the tolerance of 10−8 is reached.

Three-dimensional high-lift configurations often exhibit some transient con-

33



1e+05 2e+05 3e+05 4e+05
Iteration

8

6

4

2

0

Lo
g
1

0
(r

e
s)

AoA=0 deg AoA=10 deg AoA=20 deg

1

2

3

4

Li
ft

 c
o
e
ff

ic
ie

n
t

Figure 14: Convergence history of the three nonlinear flow solves and the evolution of the
lift coefficient.

vergence stall at low residual level (in this case 10−6) while global integral

values such as lift and drag are far from fully converged. A tighter resid-

ual tolerance is thus needed for an accurate resolution of the flow physics.

Similar findings on the necessity of converging the flow to very low residual

level are repoted in [53]. Similar procedure is taken for finding the flow so-

lutions for 10 and 20◦ angle of attack, which are both initialised using the

converged solutions at lower angle of attack. The entire convergence history

for the angle of attack sweep of 0◦, 10◦ and 20◦ is shown in Fig. 14 for both

density residual and lift coefficient. The convergence history becomes more

and more oscillatory with increased angle of attack, presumably related to

the more and more pronounced flow separation The skin-friction lines and

pressure coefficient contour plots for 0◦ and 20◦ angle of attack are shown in

Fig. 15. The lift and drag coefficients are compared with the wind tunnel

data in Fig. 16 with reasonable agreement.

The adjoint solutions for both 0 and 20◦ angle of attack can be converged
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Figure 15: Surface pressure coefficient and skin-friction lines of DLR-F11 at 0◦ and 20◦

angle of attack.

0 10 20
Angle of attack (deg)

1

2

3

Li
ft

 c
o
e
ff

ic
ie

n
t

Experiment

DLR-TAU

0.0 0.3 0.6
Drag coefficient

1

2

3
Li

ft
 c

o
e
ff

ic
ie

n
t

Experiment

DLR-TAU

Figure 16: Lift and drag coefficient of DLR-F11 compared with experimental data.

using GCRO-DR while GMRES fails to converge with the settings imposed

by available computing resources. The ILU(0)-preconditioned GMRES solver

using 200 Krylov vectors stagnated after a few hundred iterations at a high

residual level for both cases. As mentioned in the introduction, for a case with

similar mesh size but under more benign flow condition in [24], GMRES(200)

is able to converge efficiently only when it is preconditioned with ILU(2),
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Table 5: Solver performance for case 5a (32.4 million mesh points), DNC=did not converge

Solver
Memory (GB)

Cores CPU time (hr)
Other JAC ILU(0) Krylov

Flow 67.5 — — — 144 20.5

Adj
GMRES(200) — 466.5 466.5 311.0 192 DNC

GCRO-DR(120,20) — 466.5 466.5 217.0 192 16.0

Table 6: Solver performance for case 5b (32.4 million mesh points), DNC=did not converge

Solver
Memory (GB)

Cores CPU time (hr)
Other JAC ILU(0) Krylov

Flow 67.5 — — — 144 28.4

Adj
GMRES(200) — 466.5 466.5 311.0 192 DNC

GCRO-DR(140,20) — 466.5 466.5 248.8 192 12.5

resulting in a total memory overhead of 2 TB (J.R.R.A. Martins, personal

communication, September 19, 2016). Had ILU(2) been used in our DLR-

F11 case, GMRES(200) might have been able to converge as well. However,

in that case, 4 TB of memory would have been required as the hybrid mesh

used in our case results in much denser Jacobian and ILU matrices. Yet, the

computational resources available in this work are limited to 192 cores with

6 GB of memory each, with a total of 1152 GB of memory only. After storing

the Jacobian and ILU(0) matrices and the auxiliary variables associated with

the mesh metrics, a maximum number of 200 Krylov vectors can be used.

For 0◦ angle of attack, GCRO-DR(120,20) converges ten orders of mag-

nitude in 16 hours, while the adjoint solution at 20◦ angle of attack is con-

verged with GCRO-DR(140,20) in 12.5 hours. Statistics regarding the mem-

ory breakdown and CPU time are shown in Tables 5 and 6.
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6. Conclusions

In this paper, a generalized conjugate residual solver with deflated restart-

ing (GCRO-DR) is applied to the solution of the discrete adjoint equation for

typical aeronautical applications under challenging flow conditions. The de-

flation technique recycles a few interior eigenvectors from the Arnoldi cycle to

improve the convergence of the subsequent restarted cycle, which in turn ac-

celerates the convergence of the linear system. Significant improvement over

the baseline Krylov solver, generalized minimal residual (GMRES), regarding

both the memory requirement and CPU time, is demonstrated, highlighting

the potential of the proposed method for enabling aerodynamic design opti-

misation over the whole flight envelope.

The cases investigated include a two-dimensional turbulent transonic aero-

foil, two turbulent transonic half wing-body configurations at both low and

high angles of attack including a pre-shock-buffet point, a large civil aircraft

with engine-pylon-nacelle and both horizontal and vertical tail planes at near

cruise condition, and finally a high lift configuration with deployed slat/flap

settings. These test cases present a wide variety of flow phenomena ranging

from design to off-design conditions. Memory requirement for the entire ad-

joint solver is reduced by up to a factor of two with up to three times speedup

in convergence. In addition, the improvement is particularly pronounced for

the more difficult cases.

A second deflated Krylov solver, generalised conjugate residual with opti-

mal truncation (GCROT), is presented to provide a comprehensive overview

of the state-of-the-art sparse iterative solvers. However, the convergence im-

provement, although still better than GMRES, is less significant compared
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to GCRO-DR for the cases tested in this work. It warrants further investiga-

tion to better assess the performance of GCROT vs. GCRO-DR, including

the effect of more fill-in in the ILU preconditioner, different mesh types and

flow conditions.
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