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The impact of viscoplastic drops onto viscoplastic substrates characterized by different magni-

tudes of the yield stress is investigated experimentally. The interaction between viscoplastic drops

and surfaces has an important application in additive manufacturing, where a fresh layer of ma-

terial is deposited on a partially cured or dried layer of the same material. So far, no system-

atic studies on this subject have been reported in literature. The impact morphology of different

drop/substrate combinations, with yield stresses ranging from 1.13 Pa to 11.7 Pa, was studied

by high speed imaging for impact Weber numbers between 15 and 85. Experimental data were

compared with one of the existing models for Newtonian drop impact onto liquid surfaces. Results

show the magnitude of the yield stress of drop/substrate strongly affects the final shape of the im-

pacting drop, permanently deformed at the end of impact. The comparison between experimental

data and model predictions suggests the crater evolution model is only valid when predicting the

evolution of the crater at sufficiently high Weber numbers.

1 Introduction

Viscoplastic fluids are an important type of non-Newtonian flu-
ids, which respond like an elastic solid when the applied stress
is below a threshold value (called the yield stress), and start to
flow when the yield stress is overcome. In practice, many soft
materials in industrial or everyday products exhibit such prop-
erty, including slurries and suspensions, crystallizing lavas, some
polymer solutions, muds and clays, heavy oils, cosmetic creams,
hair gel, liquid chocolate, and toothpaste1,2. Due to this special
property viscoplastic fluids have important applications in vari-
ous fields ranging from the oil and chemical industries, to food
processing, cosmetics, and geophysical fluid dynamics. Currently,
there is a growing interest in studying the behaviour of viscoplas-
tic fluids in the drop-on-demand process3–6 because it is relevant
to additive manufacturing (3D printing). Consequently a better
understanding of the mechanism of viscoplastic drop formation
and its interaction with target surfaces is necessary.

Besides their numerous applications in industry, viscoplastic
fluids have also attracted much academic interest in recent years.
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The literature has shown that the formation of a viscoplastic drop
from a capillary nozzle and the interactions between the vis-
coplastic drops and solid surfaces are significantly affected by the
magnitude of the yield stress4,7–10. These phenomena, where
both the fluid yield stress and surface tension are important, can
be often characterised in terms of the Bingham-capillary num-
ber, B = t0D0/s , where t0 is the yield stress and s the sur-
face tension, which compares the yield stress and the Laplace
pressure11. Spreading of viscoplastic drops (Carbopol solutions)
over treated/ untreated glass surfaces were experimentally inves-
tigated using a confocal microscopy system and the apparent slip
was observed by measuring the vertical profile of radial velocity
over untreated surface12. The impact of yield stress fluid drops
on horizontal surfaces coated with a layer of the same material
was studied experimentally13; in this study, impact events were
categorized and a single dimensionless parameter was introduced
to reduce the impact regime map. The deformation and breakup
of coal-water slurry drops (characterised by Bingham viscoplas-
tic model) in a continuous air jet were studied using numerical
simulation and the results show good predictions for the breakup
regimes14. The encapsulation of droplets within a viscoplastic
fluid for the purpose of transportation was explored both analyt-
ically and computationally and it was found that the stability of
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the encapsulated droplets was governed by the length scale of the
flow and yield stress of the encapsulating fluid15. More recently
a lattice Boltzmann model was used to simulate multiphase vis-
coplastic fluid flow16. Good agreements between the simulation
results and the corresponding theoretical solutions were obtained
for different cases, including droplet(s) falling and interaction in
Bingham fluid, and sessile viscoplastic droplet motion.

The interactions between impacting drops and liquid layers are
related to various engineering applications, ranging from sec-
ondary atomization by collision with a wall, spray deposition,
coating to spray cooling. In these applications, the crater forma-
tion by drop impact plays an important role because of its rela-
tion to several basic impacting outcomes (e.g. maximum spread-
ing, penetration depth, splashing behaviour etc.). It was found
that deep liquid splashing was determined by both the Froude
and the Weber numbers, while shallow liquid splashing was de-
termined essentially by the Weber number. The impact of a wa-
ter drop onto a water surface was experimentally studied trough
high-speed imaging in17. A map showing different regimes of
cavity and impact drop behaviour based on Weber and Froude
numbers was constructed. The impact of a drop on liquid surface
(water & aqueous glycerol solution) was studied experimentally
and theoretically in the region of the fully developed splashing18.
A theoretical model for crater evolution was presented and it was
shown that the maximum crater radius and the crater collapse
time depend on both the Froude number and the dimensionless
capillary length. The amount of entrained air during the impact
of a drop/solid sphere on to a deep liquid pool was investigated
numerically by Hendrix et al19. The results were compared with
various experimental data and excellent agreement was found.
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where U% żc is the velocity of the sphere translation. This
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Pressure can now be determined using the nonstationary
Bernoulli equation, which has to include an additional term
accounting for the acceleration of the moving coordinate sys-
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It contains two unknown functions, a#t$ and zc#t$, which
have to be determined from the dynamic boundary condi-
tions at the crater surface accounting for the capillary forces
and gravity.

B. Crater evolution at times t%2D ÕV

1. Inviscid flow

At large times the pressure gradient in the thin drop
spreading on the expanding crater is negligibly small. The
Young-Laplace equation applied to the crater surface, pcr
+2& /a=0, cannot be satisfied exactly over the entire cavity
surface. On the other hand expression #4$ can be linearized
near the cavity bottom, !)0. The dynamic boundary condi-
tion can then be written in the form,
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+ aä +

2&

$a

+ *9U2

4
+ ga +

aU̇

2
+

3ȧU
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It should be noted that at large times U' ȧ since in all the
considered cases the Froude number is small, therefore the
last term in Eq. #5$ is negligibly small in comparison with
other terms.

Denote the dimensionless crater radius and axial coordi-
nate of the center of the sphere as ( and ). The dimension-
less penetration depth is expressed as *=)+(. Condition #5$
yields a system of ordinary differential equations for (#+$
and )#+$ which can be written in dimensionless form,
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The evolution of the crater can be now evaluated by numeri-
cal integration of the system of ordinary differential Eqs. #6$
and #7$, subject to the initial conditions which will be con-
sidered later.

It can be shown that in the limiting case We!", Fr
!" the system 'Eq. #6$( can be reduced to
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one partial solution of which is
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where C1 and C2 are constants determined from the initial
conditions. The relation (5/2, t has been previously pro-
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More recent works investigated the effect of the liquid pool
depth21 and of the impingement angle22, while others analysed

the coalescence process of droplets impacting on polymeric liq-
uid layers23. Recently, an experimental and theoretical investi-
gation on the crater formed by impact of a single drop onto a
semi-infinite target of the same liquid led to a theoretical model
which is able to predict the temporal variation of crater depth
for various impact parameters20. Generally, the whole process
of crater evolution is divided into two phases, illustrated in Fig-
ure 1 (note dimensionless time l = uit/D0, is used here). During
the first stage (l < l ⇤), the material interface between the drop
and the substrate is not visible and the penetration velocity of the
crater is 0.44ui, which was derived from a modified quasistation-
ary model of initial drop penetration. Thus, the dimensionless
crater depth, D, grows linearly with respect to the dimension-
less time: D = 0.44l . During the second phase (l > l ⇤), the
shape of the crater can be well approximated by the shape of the
drop/target interface due to a very thin residual liquid layer of the
drop material on the crater surface. The evolution of the crater
was obtained from the balance of stresses at the crater interface,
accounting for inertia, gravity, and surface tension. In the present
work, this model was modified to account for the viscoplastic be-
haviour of the fluids through a different definition of the Reynolds
number, and compared with experimental results.

2 Experimental method

Viscoplastic fluids were prepared by dispersing Carbopol 940
powder (Lubrizol, true density: r = 1400 kg/m3) into de-ionised
water (Barnstead Easypure); aqueous NaOH solution (30% w/w)
was then used to neutralise the Carbopol dispersions24,25. Flu-
ids with three different concentrations of Carbopol (Ca 0.067%,
0.079% and 0.1% w/w, respectively) were prepared in order to
study the effect of large variations of the yield stress on drop im-
pact behaviour. Viscosities of the model viscoplastic fluids were
measured using a rotational rheometer (TA Instruments AR 1000)
with a parallel plate geometry (diameter: 40 mm) with rough
surfaces to avoid wall slip artefacts. To identify the yield stress,
viscosity data obtained for shear stresses above the yield point
were fitted with the Herschel-Bulkley (H-B) model, following the
well-established procedure25.

t = t0 + kġn. (1)

where t is the shear stress, t0 the yield stress, ġ the shear rate,
k the consistency index, and n the flow index. The resulting yield
stress values for Carbopol solutions of different concentrations
were shown in Table 1, which is consistent with values reported
in the reference literature25.

Recent works suggest Carbopol dispersions may exhibit anoma-
lous time-dependent behaviours departing significantly from the
Herschel–Bulkley model26–30, however these phenomena are still
under debate and require further investigation. Therefore we ad-
here to one of the established fluid characterisation procedures.
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Table 1 Properties of model viscoplastic fluids

Ca 0.067% 0.079% 0.1%

Yield stress

(Pa)

1.13 3.64 11.7

Surface tension

(mN/m)

66 66 66

Density

(⇥103
kg/m

3
)

1 1 1

Equilibrium drop

diameter (mm)

3.04±0.08 2.99±0.04 2.95±0.12

The experimental setup is conceptually similar to those used
in previous drop impact studies8,10,31. Drops were released from
a blunt hypodermic needle (gauge 21, i.d. 0.495 mm) and im-
pacted on a viscoplastic fluid layer contained in a cubic trans-
parent plastic box (10cm⇥10cm⇥10cm). Drop weight measure-
ments made with a precision balance (Mettler PM 100) allowed
calculation of the drop diameter at equilibrium, D0 =

3
p

6m/(pr).
Values of equilibrium drop diameters were obtained from aver-
ages over 50 samples (see Table 1). The depth of the liquid
substrate was always set to 1 cm since in preliminary experi-
ments it was found that the substrate depth had negligible effect
on the morphology of drop impact if the depth was more than
three times the equilibrium drop diameter. Adjusting the posi-
tion of the dispensing needle with a digital height gauge allowed
changing the impact velocity hence the impact Weber number,
We = rD0u2

i /s , which expresses the competition between kinetic
energy and surface energy. For falling heights smaller than 15 cm,
the impact velocity is almost identical to the theoretical free fall
velocity, ui =

p
2g(H0 �D0)

31, so that the Weber number can be
calculated as

We = 2grD0(H0 �D0)/s . (2)

A systematic investigation on the measurements of the surface
tension of viscoplastic fluids by Boujlel et al. showed that Car-
bopol gels appear to have almost the same value (0.066 N/m) of
surface tension irrespective of their yield stress, but this value is
only about 10% smaller than that of pure water at ambient tem-
perature32. This value of the surface tension of Carbopol gels is
used in the calculation of Weber number in the present work since
our experiments were conducted at controlled ambient tempera-
ture of 20 oC.

The impacts of single drops were recorded using a high-speed
CMOS camera (Phantom v9000) at the rate of 4000 frames per
second; this yields an uncertainty on time, and in particular on
the impact time, t0, of ±0.125 ms. The camera was horizontally
aligned with the impact surface in order to measure the dimen-
sions of both drop fluid and crater with precision. Corrections of
measured data were properly made by considering the magnifi-
cation change due to the variation of the refraction index (from

Fig. 2 Schematic of the digital image processing:

background-subtracted image (left); processed image using

self-developed Matlab code (right).

the substrate, through the plastic wall, to the air). Back-to-front
illumination was provided by an LED lamp (Philips Accent LED),
which ensured a uniform intensity in the field of view. Drops were
dyed with 0.1% (w/w) black ink in order to distinguish the drop
fluid from the substrate/crater; the effect oof the dye on the fluid
yield stress and surface tension was negligible.

Drop impact movies were analysed by digital image process-
ing in two stages: in the first stage, the background is subtracted
from each frame and the image brightness, contrast, gamma cor-
rection, and digital gain were adjusted manually in order to get
clear profiles of both the crater and the drop fluid, represented by
the dark and grey regions in the left part of Figure 2, respectively.
In the second stage, the image is processed further to capture both
the profiles of the crater and the drop fluid through basic image
segmentation algorithms; in particular, boundaries were identi-
fied as the lines corresponding to maximum intensity gradients as
shown by the close-ups in Figure 2. Three different colours are
used to denote different regions (red: crater; dark blue: drop;
& light blue: substrate). The measurements of the crater dimen-
sions (Wcrater, Dcrater) and drop fluid dimensions (Wdrop, Ddrop)
can be easily obtained from the processed image displayed in the
right part of Figure 2.

3 Results and Discussion

3.1 Morphology

The impact morphology of viscoplastic drops onto viscoplastic
substrates is shown in Figure 3. In particular, six cases are se-
lected: (a) an impacting drop with yield stress t0 = 1.13 Pa on
substrate with the same yield stress at impact Weber number 15;
(b) an impacting drop with yield stress t0 = 1.13 Pa on substrate
with the same yield stress at impact Weber number 85; (c) an
impacting drop with yield stress t0 = 3.64 Pa on substrate with
the same yield stress at impact Weber number 15; (d) an im-
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pacting drop with yield stress t0 = 3.64 Pa on substrate with the
same yield stress at impact Weber number 85; (e) an impacting
drop with yield stress t0 = 1.13 Pa on substrate with t0 = 3.64 Pa
at impact Weber number 50; (f) an impacting drop with yield
stress t0 = 3.64 Pa on substrate with t0 = 1.13 Pa at impact Weber
number 50. From these image sequences the common feature of
the morphology of a viscoplastic drop impacting on a viscoplastic
substrate can be summarized: first, the drop fluid penetrates the
substrate with an approximately hemispherical shape; second, a
crater is developed due to the large kinetic energy of the impact-
ing drop which deforms the free surface; last, the crater retracts
due to the combined effects of buoyancy and surface energy min-
imisation and finally disappears, however some of the drop fluid
remains permanently nestled into the substrate (see the last two
images for each case).

Although the interface between the gel substrate and air is of
difficult interpretation, both because of the change in the refrac-
tive index and because of some blurring due to background sub-
traction, one can observe capillary waves33 propagating in the ra-
dial direction from the impact point. Previous studies showed that
viscoplastic drops may have highly non-spherical shapes prior to
impact4,6,8, which may affect significantly the crater evolution;
however the relatively low yield stresses of the fluids used in the
present work ensure the drop shape before impact is spherical ir-
respective of the Weber number, as shown in Figure 4 (note that
the optical system is focused on the drop profile below the surface
so the drop profile above the liquid surface is less sharp).

The morphology of a softer drop impacting on a harder surface
is compared with that of a harder drop impacting on a softer sur-
face at the same impact Weber number in Figures 3e and 3f. The
initial development is almost identical. However a larger crater
is formed for the case of harder-drop/softer-surface combination
due to the softness of the surface which leads to greater deforma-
tion. The final shape at the end of impact becomes asymmetric
compared to the softer-drop/harder-surface case (note this asym-
metry is observed systematically in repeated experiments).

Figure 5 plots the temporal variations of the normalised dimen-
sions (D & W) with respect to equilibrium drop diameter of both
the drop fluid and the crater for four different cases. An almost
linear increase of the depth of both the crater and the drop fluid
with respect to time is observed in the initial stage for all cases.
The growth rate of the crater depth is higher than that of the drop
fluid in case of low Weber numbers (Figure 5a & Figure 5b) whilst
the growth rates are almost the same at high impact We numbers
(Figure 5c & Figure 5d). A systematic comparison between the
experimental data and the prediction of crater evolution model
for Newtonian drops by Bisighini. et al.20 will be discussed in the
following sections.

An interesting phenomenon observed here is the permanent
nestling of the drop fluid in the substrate under the impact point.

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 3 Impact morphology of viscoplastic drops onto gel substrates: (a)

drop (t0 = 1.13 Pa), substrate (t0 = 1.13 Pa) & We = 15; (b) drop

(t0 = 1.13 Pa), substrate (t0 = 1.13 Pa) & We = 85; (c) drop (t0 = 3.64 Pa),

substrate (t0 = 3.64 Pa) & We = 15; (d) drop (t0 = 3.64 Pa), substrate

(t0 = 3.64 Pa) & We = 85; (e) drop (t0 = 1.13 Pa), substrate (t0 = 3.64 Pa)

& We = 50; (f) drop (t0 = 3.64 Pa), substrate (t0 = 1.13 Pa) & We = 50.

The first row displays original images and the second row the same

images after processing; the time after impact is indicated at the bottom.

The drop fluid remains confined within a volume with either con-
ical, irregular, or spherical-cap shape, which is preserved in time
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Fig. 4 Drop shapes before impact. Impact Weber number We=15 & 85..

due to the intrinsic yield-stress nature of both the drop and the
substrate, which reduces significantly molecular diffusion and ad-
vection in comparison with low-viscosity Newtonian fluids. The
final shape of a drop deposited onto a partially cured substrate
is of great importance in the inkjet manufacturing process. For
this reason, the final profiles of the impacting drops for different
drop/surface yield stress combinations and different Weber num-
bers (We = 15, 50&85) are displayed in Figure 6. One can observe
that the final shape of the impacting drops has is approximately
a spherical cap at low Weber numbers, but tends to evolve into a
conical or truncated-conical shape as the Weber number increases
for all combinations of drop/substrate yield stresses.

The depth of the impacting drop grows with the Weber num-
ber for drop impacts on harder substrate (t0 = 11.7 Pa), however
for softer substrates (e.g., t0 = 1.13 Pa) the impacting drop ex-
pands horizontally instead of penetrating vertically at high im-
pact Weber numbers. As a consequence, in the case of softer sub-
strates the penetration depth of the impacting drop surprisingly
decreases with respect to the increase of the Weber number, as
shown in Figure 7, which plots the depth of final profiles of im-
pacting drops as a function of the yield stress at three different
Weber numbers. The experimental data averaged over five ex-
periments per set are divided into three groups according to the
stiffness of the substrate (soft: t0 = 1.13 Pa in Figure 7a, interme-
diate :t0 = 3.64 Pa in Figure 7b and hard: t0 = 11.7 Pa in Figure
7c). As shown in Figure 7, the depth of the impacting drop in-
creases monotonically as the drop becomes harder (i.e. higher
yield stress) except in the case of the intermediate substrate at
We = 85, which does not show significant changes.

3.2 Volume of final shape

The volume of the final shape of the drop fluid underneath the
surface of the substrate can be estimated through the digital in-
formation extracted from the processed images (Figure 3) at the
end of impact. Under the assumption that the final shape is ax-
isymmetric, the total volume of the depositing drop material be-
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Fig. 5 The normalised dimensions (D & W) of both drop fluid (open

symbols) and crater (filled symbols) as a function of dimensionless time

(l ) for four different cases: (a) t0,drop = 1.13 Pa, t0,substrate = 1.13 Pa,

We = 15; (b) t0,drop = 3.64 Pa, t0,substrate = 3.64 Pa, We = 15; (c)

t0,drop = 1.13 Pa, t0,substrate = 1.13 Pa, We = 85; (d) t0,drop = 3.64 Pa,

t0,substrate = 3.64 Pa, We = 85.

low the substrate surface can be calculated from the sum of the
volumes of several thin disks as shown in Figure 8. The integral
expression of the total volume can be discretized by the sum of
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1.13 Pa 3.64 Pa 11.7 Pa 

We = 15 
We = 50 
We = 85 

Fig. 6 The morphology map of impacting drops for different

drop/substrate combinations at low (We=15, blue line), intermediate

(We=50, green line) and high (We=85, red line) Weber numbers. The

top row indicates the yield stress values of the substrate while the

column on the left denotes the values of impacting drops.

finite small disks with thickness of one pixel:

Vfinal =
Z Xdepth

0
dV =

Z Xdepth

0

pD2(x)
4

dx ⇡
n

Â
i=1

pD2(i)
4

Dx, (3)

where D(i) denotes the local diameter of the disk measured by
image processing, Dx the thickness of the disk (size of one pixel)
and n the number of disks.

The ratio of this quantity to the original volume of the drop re-
leased from the needle (Vfinal/V0) can be used as an indicator of
the degree of penetration or diffusion. For a case of Vfinal/V0 < 1,
the drop partially penetrates the substrate leaving a part of the
original fluid material over the surface of the substrate (a bump
over the substrate surface is observed). However if Vfinal/V0 ⇡ 1,
it is suggested all the drop material is immersed in the substrate
(i.e. full penetration), which which occurs when the apparent
drop volume (calculated from the grey region, see Figure 2) is al-
most the same as the volume of the original drop. This quantity is
closely related to two parameters: (i) the impact Weber number
(We= rD0u2

i /s); (ii) the ratio of the yield stress magnitude of the
drop to that of the substrate (b = t0, drp/t0, sub). The former ex-
presses the magnitude of kinetic energy carried by the impacting
drop since the surface tension is approximately the same for all
model fluids (Table 1). The latter indicates the relative stiffness of
the impacting drop compared to the substrate. At higher impact
Weber numbers, a high value of Vfinal/V0 is expected due to the
large crater formation induced by high kinetic energy. Since the
substrate is more likely to deform if the relatively stiffness of the
drop is higher, it is anticipated that Vfinal/V0 grows as the yield
stress ratio, b , increases.

Figure 9 shows the normalized drop volume beneath the sur-
face as a function of the yield stress ratio at different impact
Weber numbers. These data suggest the amount of drop fluid

penetrated into the substrate increases as a function of the yield
stress ratio; this becomes more evident when data correspond-
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Fig. 7 Depth of final profiles of impact drops as a function of the yield

stress of impacting drops at three different Weber numbers: (a) soft

substrate (t0 = 1.13 Pa); (b) intermediate substrate (t0 = 3.64 Pa); (c)

stiff substrate (t0 = 11.7 Pa).
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ing to drop/substrate combinations with similar values of b (e.g.
the combination with t0, drp/t0, sub = 1.13/3.64 ⇡ 0.310 and the
combination with t0, drp/t0, sub = 3.64/11.7 ⇡ 0.311) are grouped
together, as shown in Figure 10. The horizontal dashed line is
provided as a guide to the eye to distinguish the ’full penetration’
(Vfinal/V0 ⇡ 1) regime and the ’partial penetration’ (Vfinal/V0 < 1)
regime. As expected, Vfinal/V0 increases monotonically with re-
spect to both We and b , therefore this quantity can be conve-
niently re-plotted as a function of a single dimensionless pa-
rameter, i.e. the product (bWe); the experimental data of nor-
malized drop volume as a function of bWe is plotted in Fig-
ure 11. Considering a function representing these experimental
data Vfinal/V0 = f (bWe) with the following asymptotic properties,
limbWe!0 Vfinal/V0 = 0 and limbWe!• Vfinal/V0 = 1, one can propose
an empirical correlation:

Vfinal/V0 =
1

1+m(bWe)�n , (4)

where m and n are constants obtained from least-squares fit-
ting, and their numerical values are m = 1.2 & n = 0.82, with a
correlation coefficient 0.92.

3.3 Crater evolution

Experimental data are compared with the prediction of a crater
evolution model developed for Newtonian fluids20. Since the
model assumes the same fluid for the drop and the impact sur-
face, only the drop/substrate combinations with the same yield
stress are considered. The temporal evolution of the dimension-
less diameter (or width), W, during the initial stage can be ap-
proximated as:

W ⇡ 2
q

(a0 +0.17l )2 � (0.27l �a0)2, (5)

where l is the dimensionless time and a0 a constant associated
with the initial cavity radius. Measurements of the temporal evo-
lution of the crater and drop fluid diameters in the initial stage
reported in Figure 5 above were fitted to Equation 5 separately,

O 

X 

Substrate surface 

Final profile of 
impacting drop 

D(x) 

dx 

dV = (πD2(x)/4) dx  

x 

Xdepth 

Fig. 8 Schematic of the volume calculation of drop fluid.
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Fig. 9 Normalized drop volume beneath the surface as a function of b
at different impact Weber numbers.

as shown in Figure 12 (note dimensionless time is used). Fitting
experimental data relative to Newtonian fluids using the same
model yields a constant a0 = 0.7720. Here, a constant a0 = 0.71
with standard error 0.011 (Figure 12a) was obtained for the tem-
poral evolution of drop fluid diameter, while a value a0 = 0.85
with standard error 0.027 (Figure 12b) for the crater diameter
evolution. Thus, the model is in better agreement with the drop
fluid diameter rather than the crater diameter.

In the crater evolution model, the dimensionless depth grows
linearly with respect to dimensionless time in the initial stage
(l < l ⇤):

D = 0.44l . (6)

In the second stage (l > l ⇤) the crater evolution for inviscid flow
can be described by the following differential equations (where
D = a +z ):

ä = �3
2

ȧ2

a
� 2

a2We
� 1

Fr
z
a
+

7
4

ż 2

a
, (7)

z̈ = �3
ȧż
a

� 9
2

ż 2

a
� 2

Fr
. (8)

Viscous effects can be taken into account by introducing the vis-
cous energy dissipation terms into Equation 7 and Equation 8:

ä = �3
2

ȧ2

a
� 2

a2We
� 1

Fr
z
a
+

7
4

ż 2

a
� 4ȧ

a2Re
, (9)

z̈ = �3
ȧż
a

� 9
2

ż 2

a
� 2

Fr
� 12ż

a2Re
. (10)

Initial conditions can be obtained from the linear approximation

1–10 | 7



0.05 0.1 1 10 20
0.5

1

1.5

stiffer drop

 We = 15
 We = 50
 We = 85

fully penetration

V f
in
al
/V

0 (
-)

β (−)

partial penetration

Fig. 10 Normalized drop volume beneath the surface as a function of b
at different impact Weber numbers. Data with close values of yield

stress ratios are grouped together for clarity.

in the first stage of impact20:

ȧ ⇡ 0.17, a ⇡ a0 +0.17l , ż ⇡ 0.27, z ⇡ �a0 +0.27l . (11)

The model prediction of the crater evolution can be calculated
by numerical integration of the system of ordinary differential
Equations 7 and 8 (Equations 9 and 10 if considering viscous
effects) using the initial condition from Equation 11 at l = l ⇤.
For instance l ⇤ = 1.3 is observed for the case of the evolution
of drop fluid in Figure 5a. Together with a0 = 0.72 obtained
from the diameter evolution model fit for drop fluid (Figure
12a), the initial condition for this case can be calculated as:
ȧ(1.3) = 0.17, a(1.3) = 0.941, ż (1.3) = 0.27, z (1.3) = �0.369.
The predicted dimensionless depth as a function of dimension-
less time is compared with the experimental data for both drop
fluid and crater in Figure 13. The Reynolds numbers in Equa-
tion 9 and 10 are calculated using the generalized definition of
Reynolds number for the flow of a Herschel-Bulkley fluid derived
by Madlener et al.34:

ReHB =
ru2�n

i Dn
0

(t0/8)(D0/ui)n +K((3m+1)/(4m))n8n�1 . (12)

where K and n are flow parameters in Equation 1, ui the impact
velocity and m = (nK(8ui/D0)

n)/(t0 +K(8ui/D0)
n). As shown in

Figure 13a and 13c, the agreement between the experimental
data the model prediction for the dimension of the drop fluid
is reasonable at least in the first stage. The linear growth pre-
dicted by the model (Eq. 6) in the first stage is observed and
the maximum depth is also correctly predicted. However for

1 10 100 1000
0.4

1

1.5

 Experimental data
 Empirical fit

fully penetration

V f
in
al
/V

0 (
-)

βWe (−)

partial penetration

Fig. 11 Normalized drop volume beneath the surface as a function of

bWe. Experimental data are represented by open circles while solid line

indicates the empirical fit.

the case of crater dimension (Figure 13b and 13d), the depth
grows faster than the model prediction in the first stage at low
impact Weber number (see the filled square symbols in Figure
13b and 13d). Also the crater evolution model underpredicts the
maximum crater depth at We = 15 while at a higher impact We-
ber number the maximum depth is overpredicted. The discrep-
ancy between the model predictions of inviscid flow and those
obtained considering viscous effect is negligibly small, therefore
viscous effects do not play a major role in the model, which is
not obvious a priori. Nevertheless the fact that the maximum
depth for both cases of drop fluid and crater decreases as the
yield stress increases indicates the magnitude of yield stress still
plays an important role in case of viscoplastic fluids. The overall
agreement between the experimental data and model prediction
is better when describing the dimension of drop fluid than the
crater.

At high impact Weber number, the drop fluid distributes al-
most uniformly over the large surface of the crater, forming a thin
layer; thus, the difference between the dimensions of the crater
and those of the drop fluid are negligibly small. For this reason,
the crater evolution model is better at predicting the crater evo-
lution at high impact Weber numbers, where the crater and the
drop fluid are almost coincident. However, when the impact We-
ber number is low the drop forms a thick layer, hence there are
greater differences between the evolution of the crater and that
of the drop fluid. This behaviour was not observed in previous
studies using low-viscosity Newtonian fluids, where there is an
almost instantaneous mixing of the drop into the liquid substrate.
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4 Conclusions

The impact of viscoplastic drops onto viscoplastic substrates
characterized by different magnitudes of yield stress was in-
vestigated experimentally. The impact morphology of different
drop/substrate combinations, with yield stresses ranging from
1.13 Pa to 11.7 Pa, was studied through high speed imaging for
impact Weber numbers between 15 and 85. A map showing the
final profiles of the impacting drops for different combinations of
drops and substrates with different magnitudes of yield stresses at
three Weber numbers (We = 15, 50&85) was constructed. It was
observed that the final profiles of the impacting drops transform
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Fig. 12 Temporal evolution of the dimensionless diameter of drop/crater

for different impact parameters and the fit curve by crater evolution

model: (a) drop fluid; (b) crater.

from a semicircle (a hemisphere in 3D) to a triangle (a cone in
3D) as the Weber number increases for all combinations. Also the
magnitude of the yield stress of the substrate strongly affected the
penetration depth of drop fluid: depth increases as the impact We-
ber number grows for stiff surface while decreases for soft surface.
The volumes of the final shapes for different impact parameters
were calculated through image processing. A single dimension-
less parameter was introduced by the product of drop/substrate
yield stress ratio and Weber number (bWe) to reduce the regime
map of behaviour from two parameters to one. Experimental data
of the temporal crater evolution were fitted to one of the existing
models on crater evolution. The comparison between experimen-
tal data and model prediction implies the crater evolution model
is more suitable to describe the dimension of the drop fluid rather
than the crater.
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