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Steady laminar flow over a rounded-tip 2 : 1 elliptic cone of 0.86 m length at zero
angle of attack and yaw has been computed at Mach number 7.45 and unit Reynolds
number Re′= 1.015× 107 m−1. The flow conditions are selected to match the planned
flight of the Hypersonic Flight Research Experimentation HIFiRE-5 test geometry
at an altitude of 21.8 km. Spatial linear BiGlobal modal instability analysis of this
flow has been performed at selected streamwise locations on planes normal to the
cone symmetry axis, resolving the entire flow domain in a coupled manner while
exploiting flow symmetries. Four amplified classes of linear eigenmodes have been
unravelled. The shear layer formed near the cone minor-axis centreline gives rise
to amplified symmetric and antisymmetric centreline instability modes, classified
as shear-layer instabilities. At the attachment line formed along the major axis of
the cone, both symmetric and antisymmetric instabilities are also discovered and
identified as boundary-layer second Mack modes. In both cases of centreline and
attachment-line modes, symmetric instabilities are found to be more unstable than
their antisymmetric counterparts. Furthermore, spatial BiGlobal analysis is used for
the first time to resolve oblique second modes and cross-flow instabilities in the
boundary layer between the major- and minor-axis meridians. Contrary to predictions
for the incompressible regime for swept infinite wing flow, the cross-flow instabilities
are not found to be linked to the attachment-line instabilities. In fact, cross-flow
modes peak along most of the surface of the cone, but vanish towards the attachment
line. On the other hand, the leading oblique second modes peak near the leading
edge and their associated frequencies are in the range of the attachment-line instability
frequencies. Consequently, the attachment-line instabilities are observed to be related
to oblique second modes at the major-axis meridian. The linear amplification of
centreline and attachment-line instability modes is found to be strong enough to
lead to laminar–turbulent flow transition within the length of the test object. The
predictions of global linear theory are compared with those of local instability analysis,
also performed here under the assumption of locally parallel flow, where use of this
assumption is permissible. Fair agreement is obtained for symmetric centreline and
symmetric attachment-line modes, while for all other classes of linear disturbances
use of the proposed global analysis methodology is warranted for accurate linear
instability predictions.
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1. Introduction

Prediction of laminar–turbulent flow transition and the associated heat transfer in
high-speed flows, as well as control of both phenomena, is key to optimizing the
performance of next-generation aerospace vehicles. While the instability mechanisms
leading to transition on essentially two-dimensional flows, such as the flat-plate
boundary layer or flow around a circular cone at zero angle of attack, are well
studied both experimentally and theoretically (Mack 1984; Stetson & Kimmel
1992; Schneider 2004; Fedorov 2011; Schneider 2015), instability analyses of
three-dimensional boundary layers in hypersonic flow have only commenced recently.
The distinction must be made here regarding boundary-layer flows in which the
velocity vector comprises all three components, which are functions of the single
inhomogeneous spatial direction, namely along the wall-normal (e.g. infinite swept
wing boundary-layer flow), and flows in which two essentially inhomogeneous spatial
directions exist. Confusingly, both classes of such flows are referred to in the literature
as three-dimensional boundary layers. However, while classic local linear stability
theory (LST) (Mack 1984) and parabolized stability equations (PSE) (Herbert 1997)
are appropriate tools to study the flow instability in the former class of flows,
multi-dimensional global linear theory (Theofilis 2011) must be used in the context
of the latter class of flows.

Study of instability mechanisms in three-dimensional boundary layers is essential in
order to advance current understanding of the transition process on realistic vehicles,
since a number of differences exist between three-dimensional and two-dimensional
and axisymmetric geometries. Instabilities other than the plane waves typically
amplified in two-dimensional and axisymmetric flows may become unstable and
lead three-dimensional boundary-layer flow to transition; cross-flow instabilities are a
prime example of this class (Reed & Saric 1989; Reed, Saric & Arnal 1996; Saric,
Reed & White 2003; Li & Choudhari 2011). In addition, high-frequency second-mode
instabilities are also present in three-dimensional boundary layers. Balakumar & Reed
(1991) identified oblique second Mack modes in the three-dimensional supersonic
boundary layer formed over a rotating cone at zero angle of attack and Mach
numbers 5 and 8.

The mentioned classes of three-dimensional boundary-layer flow instabilities
co-exist in the elliptic cone. Figure 1 shows near-wall streamlines on the elliptic
cone at the conditions presently studied. The three-dimensionality of the geometry
inevitably produces spanwise (azimuthal in the present geometry) pressure gradients
which, in turn, induce cross-flow, that is fluid from the leading edge being moved
towards the centreline. Streamlines diverge from the attachment line towards the
minor-axis centreline, where a pair of counter-rotating vortices is formed. In the area
of the cone between the attachment line and the centreline, the low-momentum fluid
near the surface is deflected more than the fluid near the edge of the boundary layer,
resulting in a inflectional velocity profile. Under these conditions, cross-flow vortices
may be established inside the three-dimensional boundary layer, and on occasion
dominate the transition process.

The hypersonic international flight research experimentation (HIFiRE) programme
(Kimmel et al. 2010) has employed two conical geometries in both flight testing and
ground experiments. The HIFiRE-5 test vehicle is a 2 : 1 elliptic cone model with
a rounded nose tip. The main property of this geometry is that a three-dimensional
boundary layer develops at zero angles of attack and yaw. The present analysis focuses
on this configuration.
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FIGURE 1. Near-wall streamlines along an aspect ratio 2 : 1 elliptic cone, showing motion
of the fluid from the attachment line towards the centreline. The roll-up of streamlines
over the centreline leads to a strongly and azimuthally non-parallel flow near the minor
axis. Also shown is one of the planes on which spatial BiGlobal instability analysis has
been performed.

Efforts to understand laminar–turbulent transition on elliptic cones have mostly
employed cones of aspect ratios 2 : 1 and 4 : 1, exposed at zero angle of attack to
oncoming flows for Mach numbers (M) between 4 and 8. Early experimentation of
Schmisseur, Schneider & Collicott (1998, 1999) reported that the minor-axis centreline
area was the most receptive to amplification of perturbations in a 4 : 1 elliptic cone
at M = 4. The experiments of Poggie & Kimmel (1998) produced evidence of
the classical cross-flow and second Mack mode instabilities in a 2 : 1 elliptic cone
at M = 8; they observed early transition near the semi-minor-axis centreline and
delayed transition near the leading edge. Huntley & Smits (2000) and Huntley (2000)
employed filtered Rayleigh scattering and produced images of the early stages of
transition on sharp-nosed 4 : 1 and 2 : 1 elliptic cones also at M = 8, demonstrating
that transition begins with the emergence of small-scale structures near the minor-axis
centreline of the cone, rather than in the outboard cross-flow or leading-edge regions.

More recently, great insight has been provided by the ground experiments carried
out in the Boeing/AFOSR Mach-6 Quiet Tunnel at Purdue University (Schneider
2008). Juliano & Schneider (2010) presented the first wind-tunnel results of the
HIFiRE-5 geometry on this experimental facility. They measured heat flux and
boundary-layer transition by means of temperature-sensitive paint. Transition was
observed along the centreline and roughly half-way between the centreline and
leading edge. The transition on the centreline was suspected to arise from the
amplification of second-mode waves in the inflected centreline boundary-layer profile,
while the second case was suspected to be due to the breakdown of cross-flow
vortices. These observations were restated in a later work by Juliano, Borg &
Schneider (2015b), in which they included the increase of the angle of attack from 0
to 4 deg, observing how the transition front induced by cross-flow instability moved
downstream on the windward side for increasing angle of attack. Further experiments
in the same quiet tunnel were conducted by Borg, Kimmel & Stanfield (2011),
who reported stationary and travelling cross-flow waves under quiet flow conditions.
Roughness-induced transition was also investigated on the attachment line, concluding
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that three-dimensional roughness elements destabilize more than two-dimensional
roughness elements. Borg, Kimmel & Stanfield (2012) focused on the study of
cross-flow disturbances. While stationary and travelling waves were simultaneously
observed under quiet flow conditions, no travelling disturbances were detected with
noisy flow.

Later on, Borg, Kimmel & Stanfield (2015) continued the study of travelling
cross-flow disturbances in the same Mach-6 quiet tunnel. The phase speed and wave
angle were calculated from the cross-spectra of three pressure sensors located in the
area of the cone between the leading edge and the centreline. Both quantities showed
good agreement with classic LST. An interesting finding was that when running the
experimental facility in noisy flow conditions, transition along the surface of the
cone occurred for a much lower Reynolds number than in quiet flow. The authors
reported that breakdown of travelling cross-flow instabilities was not the primary
transition mechanism under noisy conditions. The instability mechanism that causes
laminar–turbulent transition at noisy flow conditions is still unclear.

A remarkable effort is the HIFiRE-5 flight test in April 2012. Although the
upper stage of the sounding rocket failed to ignite, achieving a peak Mach number
of approximately 3 instead of the target of 7, previous experimental and numerical
predictions were confirmed. The analysis of the collected flight data was first reported
by Kimmel, Adamczak & Juliano (2013). They showed a transition pattern consistent
with prior wind-tunnel measurements and numerical studies. The results confirmed
early transition along the minor-axis meridian, while the leading edge experienced
transition at higher Reynolds numbers. Juliano, Adamczak & Kimmel (2014) presented
the analysis of the heat flux, which was calculated from paired thermocouples,
identifying boundary-layer transition locations from the heating rates. Recently,
Juliano, Adamczak & Kimmel (2015a) reported a thorough analysis of the flight
data, concluding that two boundary-layer transition mechanisms were encountered
during the supersonic descent. One mode caused transition over the minor-axis
surface of the vehicle and correlated well with body length Reynolds number Rex,
while the other mechanism caused the leading-edge transition to advance rapidly over
a small range of free stream Re′. These findings increased confidence in the success
of a second flight test that is expected to validate the theoretical predictions at flight
conditions.

Parallel, large-scale computations performed by Bartkowicz, Subbareddy & Candler
(2010) and Dinzl & Candler (2015) have indicated the high level of grid refinement
and associated computational requirements needed to study transition phenomena
in hypersonic three-dimensional boundary layers, and specifically on the HIFiRE-5
geometry, using direct numerical simulations (DNS). Efficient linear and nonlinear
flow instability analyses are required to identify critical conditions for flow instability
and to study modal and non-modal scenarios that might produce transition.

In an early effort to analyse flow instability mechanisms on the elliptic cone,
Theofilis (2002) developed the first global inviscid instability analysis of a compressi-
ble flow by solving the appropriate two-dimensional Rayleigh equation. Members
of the different branches of the spectrum obtained were identified as modes of
hydrodynamic or of aeroacoustic origin in subsonic and supersonic flow, respectively.
More recently, Choudhari et al. (2009) performed a thorough stability analysis of
the viscous hypersonic flow over the HIFiRE-5 geometry at ground and flight test
conditions using local LST, PSE and spatial BiGlobal analysis. The local LST and
PSE stability results, which base the transition prediction on N-factor integration
along streamlines and grid lines of the elliptic cone, are briefly discussed next.
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Under flight conditions at an altitude of 18 km, M = 7, and Re′ = 1.85 × 107 m−1,
the N-factor reached values above N = 40 at the end of the cone and along the
centreline, attachment line and cross-flow paths. At the higher altitude of 33 km, at
which the Re′ is 11 times smaller, the overall N-factors were considerably lower, not
exceeding the typical transition threshold of approximately N = 15 required in quiet
environment conditions (Li et al. 2015).

Choudhari et al. (2009) also studied the HIFiRE-5 model at wind-tunnel conditions,
i.e. M= 6 and Re′= 107 m−1. The model used is 38.1 % scale of the flight test article.
In this case, N-factors along centreline, attachment line, and cross-flow paths were
found to be marginally above 10 at the end for the geometry. This work was
continued by Li et al. (2012), who focused on ground testing conditions. A grid
convergence of the mean flow was conducted and N-factors based on travelling
cross-flow instabilities were computed through local LST and PSE. Good agreement
was observed by comparing with the experimental results of Borg et al. (2011). In
the same context, Gosse, Kimmel & Johnson (2010), Gosse, Kimmel & Johnson
(2014) performed PSE instability analysis of the HIFiRE-5 configuration at four
altitudes, i.e. 21.8, 25.0, 28.3 and 33.0 km, to provide insights for the flight tests.
These authors focused on the major- and minor-axis meridians, finding the same trend
of increasing N-factors as the altitude decreased and the free-stream unit Reynolds
number, Re′, increased. N-factor values were found to be high enough to cause
transition along both the centreline and the attachment-line symmetry planes only for
the lowest altitude of 21.8 km. In the present work, the mean flow analysed from a
global LST point of view is the flow computed by Gosse et al. (2010, 2014) at the
most relevant altitude case, 21.8 km, in which all the possible instability mechanisms
are expected to play a role in the laminar–turbulent transition process.

Focusing now on BiGlobal instability analysis results, Choudhari et al. (2009)
were the first to recover centreline instabilities on the elliptic cone, specifically
on the HIFiRE-5 geometry at flight flow conditions for an altitude of 18 km and
Re′ = 1.85 × 107 m−1, by solving a BiGlobal stability eigenvalue problem without
curvature effects of the flow in the vicinity of the centreline. They presented the
shape functions of four centreline instabilities at a unique axial station, x∗ = 0.7 m,
and remarked that these modes are a consequence of the three-dimensional high-shear
layer surrounding the low-velocity streak formed on the centreline. For the same
flight flow conditions, they reported unstable attachment-line instabilities and
observed that their amplified frequencies corresponded to second Mack mode
frequencies. More recently, Paredes & Theofilis (2015) performed a spatial BiGlobal
study of the HIFiRE-5 model including the curvature effects of the elliptic cone
geometry. The flight flow conditions used correspond to an altitude of 33 km and
Re′= 1.89× 106 m−1. At this lower Re′, and in line with the predictions of Choudhari
et al. (2009), attachment-line instabilities were not observed. Indeed, they were not
expected to be amplified because the attachment-line Reynolds number correlation
(Malik, Li & Choudhari 2007) did not exceed the threshold. The study by Paredes &
Theofilis (2015) focused on the centreline instabilities, which at these flow conditions
peaked adjacent to the mushroom-like centreline structure at the same locations of
maximum base flow shear. Furthermore, oblique second modes were reported in the
boundary layer located in the vicinity of the minor-axis meridian in the range of
frequencies of the centreline instabilities.

In the present work the spatial BiGlobal analysis technique is used to study
the modal instabilities amplified in the hypersonic flow over the HIFiRE-5 elliptic
cone geometry. The flow parameters are selected to simulate high-Reynolds-number
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flight conditions at an altitude of 21.8 km, M = 7.45, and Re′ = 1.015 × 107 m−1.
BiGlobal analysis theory assumes that the base flow is quasi-parallel, i.e. the base
flow components are assumed to be independent of the streamwise coordinate. The
present analysis has been performed using an in-house-developed multi-dimensional
stability code. This code has been verified against DNS, analysing instability of
the wake behind an isolated roughness element in supersonic flow (De Tullio et al.
2013). In the latter work, the first demonstrated plane-marching or three-dimensional
parabolized stability equations (PSE-3D) analysis technique (Paredes 2014; Paredes
et al. 2015) for high-speed flows was performed, showing excellent agreement of
spatial BiGlobal and PSE-3D results when compared with DNS results in the linear
regime. Furthermore, Paredes et al. (2014) used the spatial BiGlobal stability analysis
code to identify high-frequency or second-mode instabilities responsible for transition
on the windward face of a 7◦ half-angle circular cone at a 6◦ angle of attack, M= 6,
and Re′ = 1.009 × 107 m−1. The results agreed well with previous classic LST and
PSE calculations by Perez, Reed & Kuehl (2012) and the experimental measurements
of Kroonenberg et al. (2010).

The spatial BiGlobal equations are introduced for compressible flows and applied
to the elliptic cone geometry in § 2. Details of the analysed base flow are discussed
in § 3. In the same section, spatial BiGlobal instability analysis results are shown
for a wide range of frequencies at different distances from the cone tip. The study
mainly focuses on the areas close to the minor-axis and major-axis meridians of the
body. Furthermore, multi-dimensional instability analysis tools have been employed
for the first time to obtain results on the cross-flow and oblique second Mack mode
disturbances, both of which are amplified along the entire surface of the geometry.
A summary and concluding remarks are offered in § 4.

2. Instability analysis theory
The analysis of flow stability is based on the compressible equations of motion,

written in dimensionless form as

∂ρ

∂t
+∇ · (ρV)= 0, (2.1)

ρ

[
∂V
∂t
+ (V · ∇)V

]
=−∇p+ 1

Re

{
∇[λ(∇ ·V)] +∇ · [µ((∇V)+ (∇V)T)]} , (2.2)

ρ

[
∂T
∂t
+ (V · ∇)T

]
= 1

Re Pr
∇ · (κ∇T)+ (γ − 1)M2

[
∂p
∂t
+ (V · ∇)p

]
+ (γ − 1)M2

Re

{
λ(∇ ·V)2 + µ

2
[(∇V)+ (∇V)T]2

}
(2.3)

where V is the velocity vector, ρ the density, p the pressure, T the temperature, M the
Mach number, Re the Reynolds number, Pr the Prandtl number, γ the specific heat
coefficient, κ the thermal conductivity, µ the first coefficient of viscosity and λ the
second coefficient of viscosity. Reference values are taken at the free stream and are
referenced with the subscript ( )∞. The viscosity coefficients are related by Stokes’ law,
λ=−2/3µ. The equation of state is given by the perfect gas relation, p= ρT/(γM2).
Sutherland’s law is used for the viscosity coefficient

µ= T3/2 1+CS

T +CS
(2.4)
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with CS = 110.4 K/T∗∞ for air in standard conditions. The Prandtl number is fixed to
Pr= 0.72 and the specific heat coefficient to γ = 1.4.

The development in time and space of small-amplitude perturbations superposed
upon a given flow can be described by the linearized Navier–Stokes (LNS) equations.
Linearization of the equations of motion is performed around a laminar steady flow,
here denoted as base flow, q̄ = (ρ̄, ū, v̄, w̄, T̄)T. The small-amplitude perturbations
superimposed on the base flow is denoted as the vector q̃(x, y, z, t)= (ρ̃, ũ, ṽ, w̃, T̃)T,
comprising the perturbation functions of density, velocity components and temperature
variables. Therefore, flow quantities, q(x, t), are decomposed according to

q(x, t)= q̄(x)+ εq̃(x, t), ε� 1. (2.5)

2.1. Spatial BiGlobal analysis
Spatial BiGlobal analysis is the two-dimensional analogue of the classic local spatial
LST. In this case, two inhomogeneous spatial directions are resolved simultaneously
on a plane, while the third direction is considered locally homogeneous or quasi-
parallel. This assumption can be considered here because the flow around the elliptic
cone exhibits mild variations along the streamwise direction tangential to the wall,
which is denoted by ξ :

Lξ � Lη, Lζ , ∂( )/∂ξ � ∂( )/∂η, ∂( )/∂ζ , (2.6)

where Lξ , Lη and Lζ are the characteristic lengths on the streamwise or axial and
normal to it spatial directions. Summarizing, the base flow is assumed to be locally
independent of the spatial coordinate ξ , but strongly dependent on the other two
spatial directions, η and ζ . Thus, one may write

q̃(ξ , η, ζ , t)= q̂(η, ζ ) exp[i(αξ −ωt)] + c.c. (2.7)

The linear disturbance equations of spatial BiGlobal stability analysis are obtained
by substituting equation (2.5) into the governing equations (2.1)–(2.3) and linearizing
with respect to the base flow. In the present spatial framework, ω is a real
angular frequency parameter. The complex eigenvalues, α, and the related complex
eigenvectors, i.e. the two-dimensional amplitude functions, q̂(η, ζ ) are sought for a
given frequency and axial position. The real part of the eigenvalue αr is related to the
wavenumber of the eigenmode along the homogeneous spatial direction ξ , αr= 2π/Lξ ,
while the imaginary part is its growth/damping rate; a negative value of αi indicates
exponential growth of q̃ in space, while αi > 0 denotes decay of q̃ in space.

The resulting two-dimensional partial derivative equations (PDE) generalized
eigenvalue problem (GEVP) is nonlinear on eigenvalue α, but it is converted into
a linear eigenvalue problem larger in size by using the companion matrix method
(Theofilis 1995; Bridges & Morris 1984). This method consists in the introduction of
an auxiliary vector, q̂+ = [ρ̂, û, v̂, ŵ, T̂, αû, αv̂, αŵ, αT̂]T, and the resulting GEVP is
written as

A2Dq̂+ = αB2Dq̂+. (2.8)

The entries of the matrix operators A2D and B2D are found in Paredes (2014).
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2.2. Elliptic cone coordinate transformation
The computational coordinate system (ξ , η, ζ ) is transformed into the desired physical
coordinate system (x, y, z) by using a modified confocal elliptic transformation, written
as follows,

x= ξ, y= cξ sinh(η0 + sp(ζ )η) sin ζ , z= cξ cosh(η0 + sp(ζ )η) cos ζ , (2.9a−c)

where c sets the half-angle of the cone minor axis, θ , by c= tan θ/ sinh η0, sp(ζ ) is a
fitting polynomial function chosen to truncate the domain above the shock layer, and
η0 is a parameter controlling the Aspect Ratio (AR) of the cone, η0 = atanh(1/AR).

The coordinate transformation of equation (2.9) is introduced into the compressi-
ble LNS equations following the method explained by Paredes (2014) and Paredes
& Theofilis (2015). Summarizing, first- and second-order differentiation matrices
with respect to real physical directions are defined as functions of the differentiation
matrices with respect to computational directions, obtained by using the chain rule
of partial differentiation and the vector that discretizes the Jacobian of the coordinate
transformation.

2.3. Eigenvalue solution and spatial discretization
The elliptic spatial BiGlobal problem, written as a GEVP in (2.8), is solved using
the shift-and-invert Arnoldi (1951) algorithm (Saad 1980), delivering a number of
eigenvalues (200–400 in the present computations) in the vicinity of a specific
estimated value. The real part of the estimated value is defined by the slow acoustic
phase speed and the growth rate (imaginary part) is set to zero. Computational
cost is substantially reduced when employing the Arnoldi’s algorithm instead of
seeking the entire eigenspectrum as done by the classical QZ method (Wilkinson
1965). More details can be found in the literature (e.g. Theofilis 2003). In terms
of computational requirements, for this class of problems the bottleneck of the
algorithm is the inversion of the matrices discretizing the two-dimensional PDE of
the spatial BiGlobal analysis GEVP, having leading dimensions of O(104–105). This
inversion is performed using the parallelized sparse matrix linear algebra package
MUMPS (Amestoy et al. 2001, 2006). This library exploits the high level of sparsity
pattern offered by the finite-difference spatial differentiation, improving numerical
efficiency substantially while maintaining accuracy. Therefore, the (η, ζ ) directions
are discretized in a coupled manner using the stable high-order finite-difference
numerical schemes of order q, FD-q (Hermanns & Hernández 2008), as discussed by
Paredes et al. (2013).

Appropriate mappings between the finite-difference grids (η†, ζ † ∈ [−1, 1]) and
the computational domain coordinates (η, ζ ) are needed. Since the boundary-layer
problem requires clustering of points at the wall, the equation used to map the
calculation domain grid η ∈ [0, 1] into the FD-q grid is

ηj = l
1− η†

j

1+ s+ η†
j

, s= 2l, l= ηh

1− 2ηh
, (2.10)

ηh being the domain location that splits in two halves the number of discretization
points. This parameter was set to ηh=0.25 for the centreline computations, while ηh=
0.10 was used for the attachment-line solutions. In the spanwise/azimuthal direction,
the same transformation is used to map the calculation domain grid, ζ ∈ [0, π/2],
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Centreline, ζ =π/2 Attachment line, ζ = 0

S (ρ̂ζ , ûζ , v̂ζ , ŵ, T̂ζ )T = 0 (ρ̂ζ , ûζ , v̂, ŵζ , T̂ζ )T = 0
A (ρ̂, û, v̂, ŵζ , T̂)T = 0 (ρ̂, û, v̂ζ , ŵ, T̂)T = 0

TABLE 1. Boundary conditions used in the spatial BiGlobal stability analysis. Note that
S and A refers to symmetric and antisymmetric conditions, respectively. Also, note that
qζ ≡ ∂q/∂ζ .

into the FD-q grid and cluster points near either the centreline with ζh = 2π/5 or
the attachment line with ζh =π/10. The cross-flow instabilities are present along the
entire surface of the cone, and therefore, a linear mapping is used in this direction.
The number of discretization points in the present spatial BiGlobal GEVP solution
was checked for convergence. The needed number of points varied from Nζ = 241
and Nη = 181 at x∗ = 0.22 m through Nζ = 401 and Nη = 401 at x∗ = 0.72 m for
centreline instabilities. A similar resolution was used to solve the attachment line and
second Mack mode instabilities, while a larger resolution of Nζ = 1001 and Nη = 221
was used for the cross-flow instability results. A sixth-order FD-q scheme was used
to discretize both directions.

2.4. Boundary conditions
The elliptic eigenvalue problem (2.8) must be complemented with adequate boundary
conditions for the disturbance variables. Dealing first with the azimuthal direction,
ζ , the symmetries of the problem at hand, namely zero angle of attack and yaw,
are exploited in order to reduce the computational requirements. Symmetric or
antisymmetric boundary conditions are imposed at ζ = π/2 and ζ = 0. This
work focuses on centreline and attachment-line instabilities, whose flow variables
decay far from the minor-axis or major-axis meridian, respectively, and therefore
homogeneous Dirichlet boundary conditions can be imposed at the opposite boundary.
The symmetric, S, and antisymmetric, A, boundary conditions are specified in table 1.
For the wall-normal direction, the perturbations are forced to decay through the
imposition of a sponge region outside the shock layer in the free-stream region, and
therefore homogeneous Dirichlet boundary conditions are used at η = 1. The main
objective of the sponge region is to avoid spurious reflections. This is achieved by
artificially decreasing the local Reynolds number using a smoothing function. At
the wall, η = 0, no-slip conditions are imposed by setting homogeneous Dirichlet
boundary conditions and the same condition is set for temperature amplitude function.
No boundary condition needs to be imposed for the density amplitude function at the
wall, because the linearized continuity equation is satisfied at η= 0.

3. Results
3.1. Base flow

The HIFiRE-5 test payload consists of a blunt-nosed elliptic cone of 2 : 1 ellipticity
and L∗c = 0.86 m length. The nose tip cross-section in the minor axis describes
a 2.5 mm radius circular arc, tangent to the cone ray describing the minor axis,
and retains a 2 : 1 elliptical cross-section to the tip. Flight flow conditions were
calculated for a Mach 7.45 flow at an altitude of 21.0 km. The free-stream velocity is
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FIGURE 2. (Colour online) (a) Streamwise Mach number, Mx, and (b) dimensionless base
flow streamwise mass flux, ρ̄ū, at axial positions x∗= 0.22, 0.42 and 0.82 m. The vicinity
of the minor-axis meridian at x∗ = 0.82 m is shown in detail.

ū∗∞ = 2207.18 m s−1, the free-stream temperature is T̄∗∞ = 218.45 K and the
corresponding unit Reynolds number is Re′ = 1.015 × 107 m−1. The surface or
wall temperature distribution, T̄w, was defined using a prescribed temperature based
on heat conduction analysis of an estimated trajectory for the vehicle. The wall
temperature near the nose is approximately 650 K and varies between 300 and
400 K over most of the surface of the cone. Downstream of the nose, the ratio
between the wall temperature and the corresponding adiabatic wall temperature is
T̄w/T̄a,w < 0.3. More details about the definition of the wall temperature are given by
Gosse et al. (2014). The steady laminar flow solution was calculated using the US3D
non-equilibrium solver with shock fitting algorithm (Nompelis, Drayna & Candler
2005) by Gosse et al. (2010) and is used to extract the base flow analysed here at
different distances from the cone vertex. High-enthalpy effects were not considered at
the present relatively low hypersonic Mach number. The mesh resolution was based
on a previous grid resolution study of a sharp elliptic cone and on a study conducted
by Choudhari et al. (2009) and Li et al. (2012), who both conducted stability analysis
of the laminar flow over the HIFiRE-5 vehicle. The grid used was 450× 300× 300
(body length by surface normal by radial). A further description of the computation
of the base flow as well as some characteristic of its topology are found in Gosse
et al. (2010, 2014). Furthermore, the authors showed a good qualitative agreement of
the calculated heat transfer with experiments conducted in a hypersonic quiet tunnel
(Juliano & Schneider 2010; Borg et al. 2011) at similar conditions.

Figure 2 shows contours of streamwise Mach number, Mx, and base flow streamwise
mass flux, ρ̄ū, at different intermediate axial sections of the cone. In the same figure,
the stationary mushroom-like vortical structure formed in the vicinity of the minor-axis
meridian is shown in detail. The figure shows the spanwise variation of streamwise
Mach number and mass flux in the inviscid region between the boundary-layer edge
and shock layer. As previously mentioned, the three-dimensional shape of the elliptic
cone inevitably produces spanwise pressure gradients, which induce cross-flow, and
the flow direction of the interior of the boundary layer is no longer co-planar with the
edge velocity vector, unlike circular cones at zero angle of attack. The low-momentum
boundary-layer fluid near the surface is deflected from the leading-edge or major-axis
meridian towards the minor-axis meridian or centreline. This produces a lift-up
of low-momentum boundary-layer fluid at the centreline, generating a low-velocity
streak away from the wall, as is observed in figure 3. This figure shows shaded
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FIGURE 3. (Colour online) Contours of streamwise velocity shear, ūs, showing the
localized shear generated at the minor-axis meridian. (a), (b), (c) and (d) correspond to
x∗ = 0.22, 0.42, 0.62 and 0.82 m, respectively. Solid lines refer to isolines of ū = 0.1 :
(0.1) : 0.9.

contours of streamwise velocity shear, ūs = [(∂ ū/∂y)2 + (∂ ū/∂z)2]1/2, superimposed
with contour lines of ū at four different axial positions; namely, x∗= 0.22, 0.42, 0.62
and 0.82 m, which correspond to x/Lc = 0.26, 0.49, 0.72 and 0.95, respectively. As
the low-velocity streak forms, it induces a three-dimensional detached high-shear layer
in its surroundings. A priori, the analysis of such flow structure is only accessible
to the present multi-dimensional stability analysis, because classic LST or PSE
cannot consider base flows with spanwise gradients of the same order as wall-normal
gradients.

3.2. Instability analysis
The spatial BiGlobal analysis is performed here at a broad range of axial positions
and frequencies. As discussed in § 2, the symmetries of the elliptic cone geometry
allow the reduction of the discretized domain to one quarter of the cone, using
either symmetric or antisymmetric boundary conditions on the major- and minor-axis
meridians, as explained in table 1. The symmetric and antisymmetric centreline
modes are associated with varicose or sinuous deformations of the low-velocity streak
formed in the centreline; they are a consequence of the instability developing in the
three-dimensional shear layer. On the opposite side, and at this high-Reynolds-number
flow condition, symmetric and antisymmetric high-frequency boundary-layer modes
are also amplified in the attachment-line region. Cross-flow and oblique second modes
are also observed in the spatial BiGlobal spectrum for low and high frequencies,
respectively. The amplitude functions of these modes peak at azimuthal locations
along the cone, where the azimuthal variations of the base flow are smaller than
wall-normal variations. These modes present an azimuthal sinusoidal shape, which
indicates the obliqueness of the instability wave.

3.2.1. Centreline instabilities
The centreline instabilities are obtained using spatial BiGlobal analysis at distances

from the cone tip equal to x∗ = 0.28, 0.36, 0.52 and 0.72 m, which correspond to
x/Lc = 0.33, 0.42, 0.60 and 0.84, respectively, and for the broad range of amplified
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FIGURE 4. (Colour online) Growth rates of leading symmetric (S) and antisymmetric (A)
centreline modes computed with the spatial BiGlobal technique. Additionally, growth rates
resulting from LST analysis (L) of the profile over the centreline are included.

frequencies, F∗ ∈ (0, 550) kHz. Multiple unstable centreline instability modes are
found for each combination of x and F. For simplicity, only the overall most amplified
modes are considered next. Figure 4 shows the growth rate of the most amplified
centreline modes with symmetric and antisymmetric boundary conditions applied. The
symmetric centreline mode is more unstable than the antisymmetric mode for all the
x positions and frequencies studied. The most amplified frequencies at each axial
position for symmetric and antisymmetric modes are similar. Although the range of
amplified frequencies is broad, the maximum amplified frequency remains in a narrow
band between 150 and 250 kHz along the cone. The maximum growth is achieved
at x∗ = 0.36 m and F∗ ≈ 220 kHz for both symmetric and antisymmetric modes.
Although the BiGlobal eigenvalue problem, which does not consider non-parallel
effects, is used here, the resulting growth rates can be integrated along the axial
positions as solving an spatial initial value problem in a similar way as made in the
solution of the PSE-3D analysis (Paredes 2014; Paredes et al. 2015). Doing this, the
N-factors reach values larger than N= 20 at x∗= 0.72 m for frequencies between 150
and 250 kHz. A N-factor of N = 20 means that external perturbations are amplified
by a factor of e20 ≈ 5× 108, and therefore the transition threshold would be reached
even for quiet environmental flight conditions.

Since, to the authors’ knowledge, detailed experiments or direct numerical
simulations are not available for the centreline instability problem, the well-known
one-dimensional local LST with surface curvature effects is used on the inflectional
centreline profile, and results are used as reference values and are included in the same
figure 4. LST analysis assumes axisymmetric flow and geometry, neglecting the strong
azimuthal variations of the centreline vortical structure. Contrary to expectations, the
LST predictions of amplified frequencies and growth rates at each axial position are
in fair agreement with the BiGlobal results. The LST results approximate BiGlobal
symmetric mode growth rates for increasing axial positions.

Several differences are found when comparing these results with the analogous study
at a lower Reynolds number, Re′ = 1.89 × 106 m−1, by Paredes & Theofilis (2015).
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FIGURE 5. (Colour online) Streamwise velocity magnitude, |û|, of leading symmetric
centreline modes at maximum amplified frequencies for each axial position. Namely,
(a) x∗ = 0.28 m and F∗ = 140 kHz, (b) x∗ = 0.36 m and F∗ = 220 kHz, (c) x∗ = 0.52 m
and F∗ = 230 kHz and (d) x∗ = 0.72 m and F∗ = 250 kHz. The colour map varies from
|û| = 0 (light yellow) to |û| = 1 (dark red). The black isolines correspond to ū= 0 : (0.1) :
0.9 and the thicker blue lines indicate the critical layers.
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FIGURE 6. (Colour online) Streamwise velocity magnitude, |û|, of leading antisymmetric
centreline modes at maximum amplified frequencies for each axial position. Namely,
(a) x∗ = 0.28 m and F∗ = 140 kHz, (b) x∗ = 0.36 m and F∗ = 220 kHz, (c) x∗ = 0.52 m
and F∗ = 220 kHz and (d) x∗ = 0.72 m and F∗ = 220 kHz. The colour map varies from
|û|=0 (light yellow) to |û|= 1 (dark red). The black isolines correspond to ū= 0 : (0.1) : 0.9
and the thicker blue lines indicate the critical layers.

In that case, the growth rates of symmetric and antisymmetric modes were almost
coincident because the near-centreline instabilities peaked adjacent to the centreline
symmetry plane. The amplitude functions of these components decayed to zero at
the centreline symmetry plane. The streamwise velocity magnitude of symmetric
and antisymmetric centreline modes is plotted in figures 5 and 6, respectively,
for the corresponding most amplified frequencies at each axial location. Obeying
their physical nature, the shear layer modes peak over the critical layer (ū = cph,
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FIGURE 7. Comparison of normalized streamwise velocity magnitude of centreline
symmetric perturbation from spatial BiGlobal analysis (solid line) with the LST mode
(dashed line) at the minor-axis meridian for the same frequencies and axial positions as
in figure 5, i.e. (a) x∗ = 0.28 m and F∗ = 140 kHz, (b) x∗ = 0.36 m and F∗ = 220 kHz,
(c) x∗ = 0.52 m and F∗ = 220 kHz and (d) x∗ = 0.72 m and F∗ = 220 kHz.

where cph = ω/αr is the phase speed of the instability modes). Unlike the lower
Reynolds number case of Paredes & Theofilis (2015), here the maximum value of the
amplitude function of the most unstable centreline modes is located at the minor-axis
meridian, z = 0. Also, figure 5 shows how this mode becomes more localized on
the wall-normal centreline shear layer at the top of the vortical structure further
downstream. A similar observation is found for the antisymmetric modes in figure 6,
in which their amplitude functions peak also in the near vicinity of the centreline.
In this case, because of the imposed antisymmetric boundary conditions, only the ŵ
amplitude function peaks on the centreline. while the rest are zero at the symmetry
plane. Amplitude functions of the other components are zero on the symmetry plane.
This feature of the antisymmetric modes is a consequence of the imposed centreline
boundary conditions, and is distinct from the low-Reynolds-number behaviour of the
symmetric and antisymmetric near-centreline modes, which both decayed to zero well
away from the centreline.

In order to understand the agreement between the LST and BiGlobal predictions
of figure 4, the amplitude function of the streamwise velocity component of the most
amplified perturbations is plotted in figure 7. Results for LST and BiGlobal analysis
are compared. Similar amplitude function profiles are found on the centreline for the
four axial locations studied. Again, as in the comparison of growth rate predictions
of figure 4, the profiles become more similar as the axial position increases and the
amplitude of the BiGlobal eigenfunction becomes more localized on the symmetry
plane. It is important to notice that the centreline instabilities are not second Mack
mode boundary-layer modes as has been reported in the literature; instead, they
correspond to a shear layer or Kelvin–Helmholtz type of instability.

3.2.2. Attachment-line instabilities
Unlike the centreline modes, which have been shown to be driven by the detached

high-shear regions of the complex vortical structure formed in the centreline region,
attachment-line modes are defined as boundary-layer instabilities. In similarity with

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.536
Downloaded from http:/www.cambridge.org/core. University of Liverpool Library, on 13 Sep 2016 at 19:19:07, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.536
http:/www.cambridge.org/core


456 P. Paredes, R. Gosse, V. Theofilis and R. Kimmel

100

0

20

40

60

80

120

140

–20

–40

1000 1500 2000 2500 3000 3500 4000

F (kHz)

FIGURE 8. (Colour online) Growth rates of leading symmetric and antisymmetric
attachment-line modes. The growth rates resulting from LST analysis on profiles over the
major-axis meridian, y= 0, are added for comparison.

the centreline region, the attachment line also exhibits non-negligible variations of
the base flow components with respect to the spanwise or azimuthal direction. This
occurs mainly on the ζ =0 symmetry plane, where the streamlines diverge as shown in
figure 1. Furthermore, the real surface curvature around the attachment line enhances
the three-dimensionality of the flow in this region. Both effects can only be taken into
account by the present BiGlobal or two-dimensional stability analysis technique.

Attachment-line instabilities are computed using spatial BiGlobal analysis by
discretizing a complete (η, ζ )-plane from the major-axis, ζ = 0, to the minor-axis,
ζ = π/2, meridians of the cone, and clustering points towards the wall, η = 0,
as explained in § 2.3. Results are shown at distances from the cone tip equal to
x∗ = 0.12, 0.22, 0.32, 0.52 and 0.72 m, equal to x∗ = 0.28, 0.36, 0.52 and 0.72 m,
which correspond to x/Lc = 0.14, 0.26, 0.37, 0.60 and 0.84, respectively, and for
the very broad range of amplified frequencies, F∗ ∈ (0, 4000) kHz. Figure 8 shows
the growth rate of the most amplified attachment-line modes with symmetric and
antisymmetric boundary conditions. The symmetric mode is more unstable than the
antisymmetric mode for all the x-positions and frequencies studied. As expected
for second Mack modes, the amplified frequency band at each position is narrow
and moves towards lower frequencies for increasing x-position and the associated
increase of the boundary-layer thickness. The frequencies corresponding to maximum
growth rates at each axial location are slightly lower for the antisymmetric modes
than for the symmetric modes. The narrow amplified frequency band at each axial
position translates to a short streamwise amplification domain. Large growth rates are
associated with these disturbances. The maximum growth rate observed in figure 8 is
−α∗i ≈ 120 m−1 at x∗ = 0.32 m. The resulting N-factors reach values above N = 10
from x∗ = 0.4 m, which is in agreement with the results obtained by Gosse et al.
(2014), who solved the PSE analysis along the leading-edge grid line. Confidence in
their results is supported by the good prediction given by LST analysis, as shown
in figure 8. One-dimensional local LST is used to analyse the boundary-layer profile
at the leading edge, similar to the analysis previously performed for the centreline
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FIGURE 9. (Colour online) Streamwise velocity magnitude, |û|, of attachment-line
symmetric perturbation at maximum amplified frequency for each x positions. Namely,
(a) x∗= 0.22 m and F∗= 2620 kHz, (b) x∗= 0.32 m and F∗= 2180 kHz, (c) x∗= 0.52 m
and F∗= 1730 kHz and (d) x∗= 0.72 m and F∗= 1480 kHz. The colour map varies from
|û| = 0 (light yellow) to |û| = 1 (dark red). The black isolines correspond to ū= 0 and 0.9

instability case. Results compare favourably with symmetric attachment-line modes.
Although LST analysis slightly overpredicts the growth rates, the values of the
amplified frequencies are well predicted. The small differences observed between the
local LST and BiGlobal growth rates must be due to the real surface curvature and
the azimuthal gradients of the base flow variables in this region, which are accounted
for only by the BiGlobal analysis.

Figures 9 and 10 show the absolute value of the streamwise velocity of the most
amplified attachment-line symmetric and antisymmetric perturbations, respectively. It
is observed that the isolines of ū= 0 and ū= 0.9 represent the surface wall and the
boundary-layer thickness, respectively. The amplitude functions of both symmetric and
antisymmetric modes are concentrated inside the boundary layer, as is expected for
second Mack mode instabilities (Mack 1984). The main difference between symmetric
and antisymmetric modes is that all the components but the azimuthal velocity of the
symmetric mode peak on the major-axis meridian, while all the components but the
azimuthal velocity of the antisymmetric mode are zero at the symmetry plane, ζ = 0.
The different axial stations display a mild modification of these modes downstream.
The maxima of the shape functions of these modes are localized in a small azimuthal
region near the attachment line. The antisymmetric modes extend farther from the
attachment line than the symmetric modes.

Figure 11 shows the streamwise wave reconstruction of the disturbance density
component at the wall, ρ̃ =Re(ρ̂ exp(iα(ξ − ξ0))). The most amplified symmetric and
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FIGURE 10. (Colour online) Streamwise velocity magnitude, |û|, of attachment-line
antisymmetric perturbation at maximum amplified frequency for each x position. Namely,
(a) x∗= 0.22 m and F∗= 2600 kHz, (b) x∗= 0.32 m and F∗= 2160 kHz, (c) x∗= 0.52 m
and F∗= 1710 kHz and (d) x∗= 0.72 m and F∗= 1480 kHz. The colour map varies from
|û| = 0 (light yellow) to |û| = 1 (dark red). The black isolines correspond to ū = 0 and
0.9.

antisymmetric attachment-line modes at ξ ∗0 = x∗ = 0.32 m are plotted. Although the
base flow and shape functions change along x∗, this variation is negligible for the
streamwise range shown in the figure, ξ ∗− ξ ∗0 ∈ (0, 0.004) m. It is observed that both
the symmetric and antisymmetric attachment-line modes become oblique for ζ 6= 0.
Their obliqueness, defined as the angle with respect to the inviscid streamlines, which
correspond to grid lines of constant ζ , increases for larger ζ as the direction of the
near-wall streamlines diverge from the inviscid streamlines towards the centreline.

The good agreement between the growth rates predicted by LST and BiGlobal
analysis observed in figure 8 is supported by the comparison of the shape functions
of the most amplified modes in figure 12. This figure shows the streamwise velocity
absolute value profiles at the leading-edge symmetry plane of the same symmetric
perturbations shown in figure 9. They are compared with their LST analogues. Both
profiles are almost coincident.

3.2.3. Oblique second modes
Oblique second modes in the HIFiRE-5 elliptic cone model were already found

by Paredes & Theofilis (2015) for a lower Reynolds number Re′ = 1.89 × 106 m−1.
In that work, the authors focused their BiGlobal analysis study on the vicinity
of the centreline, where ‘baby’ vortices develop. These vortices produce local
strong spanwise gradients and thick boundary layers. Under these circumstances,
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FIGURE 11. (Colour online) Contours of attachment-line disturbance density component,
ρ̃, at the wall, η = 0, in the vicinity of the attachment line (ζ = 0) and streamwise
coordinate ξ ∗0 = x∗ = 0.32 m. The disturbance frequencies are (a) F∗ = 2180 kHz for
symmetric and (b) F∗= 2160 kHz for antisymmetric boundary conditions. The colour map
varies from ρ̃ =−1 (white) to ρ̃ = 1 (black).
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FIGURE 12. Comparison of normalized streamwise velocity magnitude of attachment-line
symmetric perturbation from spatial BiGlobal analysis (solid line) with the LST mode
(dashed line) at the major-axis meridian for the same frequencies and axial positions as
in figure 9.

discrete oblique second modes were observed at frequencies in the range of those
of the centreline instabilities. Here, oblique second modes close to the centreline
were also observed, but their growth rates were lower than for oblique modes
closer to the attachment-line region. For this high-Reynolds-number flow condition,
Re′= 1.015× 107 m−1, the most amplified second modes are the previously mentioned
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FIGURE 13. (Colour online) Contours of oblique second-mode disturbance density
component, ρ̃, at the wall, η = 0, in the vicinity of the attachment line (ζ = 0) and
streamwise coordinate ξ ∗0 = x∗ = 0.32 m. The disturbance frequency is F∗ = 2000 kHz.
The colour map varies from ρ̃ =−1 (white) to ρ̃ = 1 (black).

attachment-line instabilities. At each axial position, less amplified oblique second
modes are found for lower frequencies. In agreement with second Mack mode
theory (Mack 1984), the frequency of the second modes decreases with increasing
boundary-layer thickness. It was observed that by decreasing the frequency, the
location of the amplitude function peak moves from the vicinity of the attachment
line, ζ = 0, towards the centreline, ζ =π/2. Also, the maximum growth rates decrease
as frequency decreases. Therefore, the maximum amplified oblique second modes are
found in the proximity of the attachment line. An example of these instabilities is
shown in figure 13. This mode is found at an axial position x∗= 0.32 m (x/Lc= 0.37)
and frequency F∗ = 2000 kHz, which approximately corresponds to the maximum
amplified frequency of this mode at this axial position. The growth rate of this
instability mode is −α∗i = 61.27 m−1, which is around a half of the maximum growth
rate for the attachment-line instability at the same axial position (see figure 8). The
obliqueness of this instability is demonstrated in the same figure 13. Based on the
amplitude function shape, the authors think that this particular oblique second mode
is a discrete mode, i.e. isolated in the spectrum, because the spanwise characteristic
length corresponding to the change of the geometry curvature is of the same order
as the spanwise wavelength of this instability. Approximately the same α and q̂ are
recovered for both symmetric and antisymmetric boundary conditions because the
amplitude function has already decayed at the symmetry plane, ζ = 0. Because of
the similarities of the oblique second modes with the attachment-line modes, both of
which are found to be second Mack instabilities, the attachment-line modes can be
identified as the oblique second modes at the leading edge.
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3.2.4. Cross-flow instabilities
The cross-flow instabilities are caused by the inflectional three-dimensional

boundary-layer profile formed over the surface of the cone between the minor-
and major-axis meridians. Therefore, their shape functions are present over most
of the surface of the cone. Because of this, large resolutions are needed to solve
these modes using the BiGlobal analysis technique. Two resolutions were used to
ensure convergence of results, (Nζ , Nη) = (601, 181) and (Nζ , Nη) = (1001, 221).
Although the eigenvalues of the cross-flow branch depend on the resolution, the
number of points used was found to be good enough to recover smooth solutions of
the cross-flow modes up to a certain wavenumber. The boundary condition imposed
at the centreline has a small effect on these modes, although it is not negligible. On
the other hand, the boundary condition at the attachment-line boundary has no effect
on the eigenvalues and eigenfunctions of the cross-flow modes because the modes
vanish towards ζ = 0. This fact implies that the cross-flow modes are not linked to
attachment-line instabilities in this hypersonic flow problem, which is contradictory
to what has been observed at the incompressible regime for swept infinite wings
(Bertolotti 2000). In that incompressible context, these authors found that cross-flow
instabilities are fed by their attachment-line counterparts, which is not the case here.

The mode plotted in figure 14 was recovered using symmetric boundary conditions
at axial location x∗ = 0.32 m (x/Lc = 0.37) and frequency F∗ = 60 kHz. Its axial
wavenumber is α∗r = 492.01 m−1 and growth rate is −α∗i = 1.34 m−1. A similar
shape was found with antisymmetric boundary conditions. The extension of the
shape function up to the centreline explains the observed mild effect of the boundary
condition at the centreline, ζ = π/2. The axial growth rate, −αi, of the cross-flow
modes is much smaller than the one associated with the previously listed instabilities.
The cross-flow mode shown in figure 14 corresponds to one of the continuous
cross-flow branch of modes that appears in the BiGlobal spectrum. Note that the
minor-axis centreline is located at the left side of figure 14(a,b). Also, its high
obliqueness is clearly visible, which translates into a small azimuthal wavelength.
The associated small wavelength together with the mild variation of the base flow
with respect to the azimuthal direction, far from the symmetry planes, ζ = 0 and
ζ = π/2, suggests that other more efficient instability analysis techniques could be
employed to study these instabilities for this type of flow problem. For example, the
quasi-3D or surface-marching PSE (Chang 2004; Mughal 2006; Johnson & Candler
2010) would be a good candidate for this purpose because it includes the effect
of mild variations of the base flow variables with respect to both streamwise and
spanwise directions.

4. Summary and conclusions

A systematic parametric study is presented of the modal global linear instability
of boundary-layer flow over the HIFiRE-5 geometry elliptic cone in hypersonic
Ma = 7.45 flow at zero angle of attack, a flight altitude of 21.8 km and unit
Reynolds number Re′ = 1.015 × 107 m−1. The analysis is performed using the
spatial BiGlobal model, which fully resolves the base flow and its perturbations at
selected streamwise locations on planes normal to the cone axis. The parametric
study consists of examining the broad range of frequencies from 0 to 4 MHz in
order to unravel different types of amplified modal instabilities. Results show that
four classes of amplified global eigenmodes exist: (1) centreline modes centred in the
shear layer at the minor-axis meridian, (2) attachment-line instabilities in the vicinity
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FIGURE 14. (Colour online) Cross-flow mode at x∗ = 0.32 m and F∗ = 60 kHz with
symmetric boundary condition. (a) Contours of Re(û) in the plane of computational
coordinates (ζ , η). The black lines correspond to ū = 0.3, 0.6 and 0.9. (b) Three-
dimensional view of Re(û) in physical space with axes (z, y, Re(û)). The colour map of
part (a) varies from |û| =−1 (white) to |û| = 1 (black).

of the major axis, as well as (3) cross-flow and (4) oblique second-mode instabilities
in the three-dimensional boundary-layer area in between the minor- and major-axis
meridians.

Due to the high shear at the minor-axis centreline symmetry plane at this high
Re′, both symmetric and antisymmetric centreline instability modes are amplified
in this area. The symmetric mode is found to be more unstable at the studied
streamwise positions, reaching N-factor values larger than N = 20 from x∗ ≈ 0.7 m
for frequencies between 150 and 250 kHz. Owing to the localized wall-normal
shear over the symmetry plane, classic linear stability analysis, employed upon the
one-dimensional profiles at the symmetry plane, is fairly successful in recovering
the eigenvalues (streamwise wavenumbers and growth rates) and eigenfunctions
(wall-normal profiles). The eigenfunctions are here compared to the wall-normal
portion of the two-dimensional eigenfunction of the leading symmetric centreline
global mode.

It is worth noting in this context that Juliano et al. (2015b) observed transition
on HIFiRE-5 at zero angle of attack at Rex = 2.8× 106 under quiet flow conditions.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/jfm.2016.536
Downloaded from http:/www.cambridge.org/core. University of Liverpool Library, on 13 Sep 2016 at 19:19:07, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/jfm.2016.536
http:/www.cambridge.org/core


Modal instabilities of hypersonic flow over an elliptic cone 463

In the earlier related work of Paredes & Theofilis (2015) at a lower unit Reynolds
number, Re′= 1.89× 106 m−1, a different modal instability scenario was identified. At
those conditions, the highest shear is located adjacent to the centreline flow structure.
Consequently, the leading centreline instabilities in those conditions peak over the
highest shear regions and vanish towards the plane of symmetry. This relatively lower
Reynolds number regime is perhaps more relevant to transition prediction along
the centreline, since the rapid growth of centreline instabilities lead to transition
at relatively low Reynolds numbers. Under those conditions, classic linear stability
theory or PSE, both of which assume lateral homogeneity of the base flow profile, are
not expected to yield useful predictions, and use of global instability theory becomes
mandatory.

At the attachment line formed near the major-axis meridian, both symmetric and
antisymmetric instabilities have been discovered. The symmetric modes are found
to be more unstable than their antisymmetric counterparts. Taking into account their
instability characteristics, namely, phase velocities close to the slow acoustic speed,
high frequencies larger than 1 MHz, and narrow amplified frequency bands at each
axial position, it is concluded that the attachment-line instabilities can be catalogued
as second Mack modes. Local linear stability theory results also approximate closely
the symmetric mode shape function at the plane of symmetry and predict well the
range of amplified frequencies, although growth rates are slightly overestimated by
the classic analysis.

Spatial BiGlobal instability analysis has been used here for the first time to
study the boundary-layer modes amplified over the surface of the cone between the
leading edge and centreline. At low frequencies, stationary and travelling cross-flow
instabilities have been recovered. Cross-flow modes away from the attachment line
appear to be distinct from the attachment-line instabilities. Cross-flow instabilities are
present on most of the surface but vanish towards the attachment line. This contrasts
with the experience with swept infinite wings at the incompressible limit (Bertolotti
2000) and the related swept cylinder problem in supersonic flow (Mack, Schmid &
Sesterhenn 2008). In these cases, the attachment-line instabilities in the leading-edge
region connected with cross-flow modes further away from the attachment line.

Oblique second Mack modes are also amplified along the surface of the cone. Their
growth rates decrease as the modes peak farther from the leading-edge symmetry
plane. Close to the leading edge, the oblique second modes have a frequency slightly
below those of attachment-line instabilities, but are much less amplified, e.g. the
growth rate of the most unstable oblique second mode at x∗ = 0.32 m is nearly half
of the growth rate corresponding to the symmetric attachment-line mode at the same
axial location.

Overall, at the conditions examined, the centreline modes are the strongest
candidates to lead to transition. Such an assertion has to be verified by additional
analysis work employing PSE-3D, which has been shown to predict linear (De Tullio
et al. 2013) and nonlinear (Paredes et al. 2015) direct numerical simulation results
at a much lower level of computing effort compared with DNS. At the same time,
PSE-3D can also address flow instability at non-zero angles of attack and yaw, and
thus yield predictions for additional flight regimes of the elliptic cone. Work is
underway to address these issues, and results will be reported in due course.
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