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Purpose: Corneal dystrophies are a genetically heterogeneous group of disorders. We previously described
a family with an autosomal dominant epithelial recurrent erosion dystrophy (ERED). We aimed to identify the
underlying genetic cause of ERED in this family and 3 additional ERED families. We sought to characterize the
potential function of the candidate genes using the human and zebrafish cornea.

Design: Case series study of 4 white families with a similar ERED. An experimental study was performed on
human and zebrafish tissue to examine the putative biological function of candidate genes.

Participants: Four ERED families, including 28 affected and 17 unaffected individuals.
Methods: HumanLinkage-12 arrays (Illumina, San Diego, CA) were used to genotype 17 family members.

Next-generation exome sequencing was performed on an uncleeniece pair. Segregation of potential causative
mutations was confirmed using Sanger sequencing. Protein expression was determined using immunohisto-
chemistry in human and zebrafish cornea. Gene expression in zebrafish was assessed using whole-mount in situ
hybridization. Morpholino-induced transient gene knockdown was performed in zebrafish embryos.

Main Outcome Measures: Linkage microarray, exome analysis, DNA sequence analysis, immunohisto-
chemistry, in situ hybridization, and morpholino-induced genetic knockdown results.

Results: Linkage microarray analysis identified a candidate region on chromosome
chr10:12,576,562e112,763,135, and exploration of exome sequencing data identified 8 putative pathogenic
variants in this linkage region. Two variants segregated in 06NZeTRB1 with ERED: COL17A1 c.3156C/T and
DNAJC9 c.334G/A. The COL17A1 c.3156C/T variant segregated in all 4 ERED families. We showed bio-
logically relevant expression of these proteins in human cornea. Both proteins are expressed in the cornea of
zebrafish embryos and adults. Zebrafish lacking Col17a1a and Dnajc9 during development show no gross corneal
phenotype.

Conclusions: The COL17A1 c.3156C/T variant is the likely causative mutation in our recurrent corneal
erosion families, and its presence in 4 independent families suggests that it is prevalent in ERED. This same
COL17A1 c.3156C/T variant recently was identified in a separate pedigree with ERED. Our study expands the
phenotypic spectrum of COL17A1 disease from autosomal recessive epidermolysis bullosa to autosomal
dominant ERED and identifies COL17A1 as a key protein in maintaining integrity of the corneal
epithelium. Ophthalmology 2016;-:1e14 ª 2016 by the American Academy of Ophthalmology. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Supplemental material is available at www.aaojournal.org.
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Technological advances in the clinic and laboratory have
allowed us a greater appreciation of the phenotypic and
genetic diversity of corneal dystrophies. The International
Committee for Classification of Corneal Dystrophies1,2 has
responded to this newfound diversity by developing a clear
classification system, considering both clinical features and
the underlying genetic cause in its categorical designations.
We previously described a 3-generation New Zealand
family (06NZ-TRB1) with a unique autosomal dominant
corneal dystrophy. Members of the 06NZ-TRB1 family
experienced frequent, painful, recurrent corneal erosions
� 2016 by the American Academy of Ophthalmology
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from the age of 5 years. The corneal features include small,
fine grey anterior stromal flecks, with more unique larger
grey-white opacities at the level of the Bowman layer and
the immediately subjacent anterior stroma, with increased
prominence of the corneal nerves.3 This corneal appearance
is distinct from classic Fleck dystrophy (Online Mendelian
Inheritance in Man identifier, 121850), and patients with
Fleck dystrophy typically are relatively asymptomatic.
Painful recurrent corneal erosions in this family ceased in
the patients’ second decade, although the resulting
accumulation of corneal scarring impaired vision in some
1http://dx.doi.org/10.1016/j.ophtha.2015.12.008
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patients. Because the precise genetic change was unknown,
the phenotype was assigned as a category 3 under the
International Committee for Classification of Corneal
Dystrophies classification, which accommodates disease
variants in which no genetic locus has been identified (and
therefore no known causative gene has been identified,
either).1,4

Autosomal dominant bilateral corneal dystrophies
involving the anterior corneal layers typically are associated
with mutations in TGFBI5 or PIP5K3.6 We previously
excluded mutations in these and other known corneal
dystrophy genes in our family via a combination of
microarray technology, direct Sanger sequencing, and
linkage analysis.3 A corneal dystrophy remarkably similar
to the one observed in our New Zealand family recently
was described as epithelial recurrent erosion dystrophy
(ERED; Online Mendelian Inheritance in Man identifier,
122400).1 Epithelial recurrent erosion dystrophy was
described first by Franceschetti and Klein7 and
Franceschetti8 in a large family. Genetic analysis of its
members excluded the candidate corneal dystrophy genes
TGFBI and TACSTD2.9 Investigations into a similar
phenotype in another family (originally described as Thiel-
Behnke corneal dystrophy; Online Mendelian Inheritance
in Man identifier, 602082)10e12 linked the candidate genetic
loci to chromosome 10q23e24,12 although no causative
mutation was identified.

Next-generation DNA sequencing technology has revo-
lutionized the field of human genetics, allowing single base-
pair resolution of DNA variants at the protein-coding
(exome) or whole-genome level. Recently, next-generation
sequencing facilitated the association of ERED with a
missense mutation in COL17A1 (Online Mendelian Inheri-
tance in Man identifier, 113811).13 In this article, we
describe the identification of a heterozygous COL17A1
c.3156C/T mutation in the 06NZ-TRB1 ERED family
via single nucleotide polymorphism microarray linkage
analysis and next-generation exome sequencing. Segrega-
tion of the c.3156C/T COL17A1 mutation, which is pre-
dicted to be splice altering, was confirmed in additional
06NZ-TRB1 family members, as well as in 3 families
located elsewhere in New Zealand, Tasmania, and the
United Kingdom. We also identified a cosegregating, non-
synonymous variant in the DNAJC9 gene in our NZ06-
TRB1 family that may modify disease presentation in
these individuals. Finally, we confirmed functionally rele-
vant expression of COL17A1 and DNAJC9 in both the
human and zebrafish cornea.
Methods

Collection of DNA Samples

This study adhered to the principles of the Declaration of Helsinki
and received institutional ethics approval (Northern A Health and
Disability Ethics Committee, NTX/06/12/161; Northern Ireland
Office for Research Ethics Committee, 350/03). After obtaining
informed consent, genomic DNA was extracted from peripheral
venous blood or saliva as described previously.3 Samples were
collected from 17 members of the 06NZ-TRB1 family
2

(7 affected and 10 unaffected members) and from 4 members of
the 15NZ-LED1 family (3 affected members and 1 member with
unknown status). Samples from the additional families were
received as genomic DNA from Tasmania (11 affected and 4
unaffected members) and the United Kingdom (7 affected and 2
unaffected members).

Clinical Examination of Patients

All family members underwent a comprehensive clinical examina-
tion to determine the presence or absence of disease (described
previously3). This included visual acuity, slit-lamp examination,
intraocular pressure (Goldmann applanation tonometry), and, in
selected affected individuals, clinical photography and in vivo
confocal microscopy (IVCM) with the Heidelberg Retina Tomo-
graph 2 Rostock Cornea Module (Heidelberg Engineering GMBH,
Heidelberg, Germany).3,14 Representative IVCM images from all
corneal layers were selected for the United Kingdom family
(UKOGA) by 2 experienced examiners (B.S., V.R.) for analysis of
pathologic changes. A validated IVCM grading scale for the quan-
tification of anterior corneal stromal haze and fibrosis was applied.15

Linkage Analysis Using HumanLinkage-12 Arrays

HumanLinkage-12 arrays (Illumina, San Diego, CA) were used to
genotype 17 06NZ-TRB1 family members (7 affected and 8 un-
affected members and 2 members with unknown status subse-
quently confirmed as unaffected). Genotypes were imported into
ALOHOMORA16 for subsequent manipulation. Mendelian errors
were identified with PedCheck,17 and unlikely close-recombinant
genotypes were identified with Merlin18 and were removed
before multipoint parametric linkage analysis with Allegro
version 219 using the deCODE genetic map.20

Screening of Candidate Genes

Proteineprotein interactions were analyzed with Search Tool for
the Retrieval of Interacting Genes/Proteins (STRING).21 This
created functional protein association networks among known
corneal dystrophy genes located within the reduced interval of
the linkage region, identifying 8 genes of interest. Primer pairs
for amplicons spanning at least 1 full exon, and its 50 and 30
introneexon boundaries, were designed with the National Center
for Biotechnology Information’s Primer-BLAST (available at
www.ncbi.nlm.nih.gov/tools/primer-blast/) for all coding exons
within the identified genes of interest, as shown in Supplemental
Table 1 (available at www.aaojournal.org). Sanger sequencing
was performed on an ABI 3700 sequencer (Applied Biosystems,
Waltham, MA) as previously described.3,22 Sequence chromato-
grams were compared with reference sequences in CodonCode
Aligner version 4.2.3 (CodonCode Corporation, Centerville, MA).

Exome Sequencing and Bioinformatic Analysis

DNA from 2 affected individuals (II.5 and III.3, an uncleeniece
pair; Fig 1A) was sent to the Otago Genomics Facility (New
Zealand Genomics Ltd.) for library preparation, exome
enrichment, and Illumina HiSeq sequencing (Illumina, Inc., San
Diego, CA). Illumina TruSeq DNA sequencing libraries and
TruSeq 64Mb exome enrichment were carried out according to
the manufacturer’s instructions. Exomes were subjected to 100-
bp paired-end sequencing using the Illumina HiSeq2000
instrument.

Reads were aligned to the human reference GRCh37 with
Burrows-Wheeler Alignment tool (BWA).23 Aligned reads then
were marked for duplicates with Picard,24 and base quality score
recalibration and realignment of local insertions and deletions
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Figure 1. Pedigrees of 4 families with phenotypically similar epithelial recurrent erosion dystrophy and segregation of the identified COL17A1 and
DNAJC9 variants. A, 06NZ-TRB1 family from New Zealand.3 B, UKOGA family from the United Kingdom. C, 15NZ-LED1 family from New Zealand. D,
CDTAS1 family from Tasmania, Australia. Males are represented as squares, and females are represented as circles. Unaffected family members are shaded
white, affected family members are shaded black, unknown status members are shaded grey, and a presumed affected family member (based on genetic
analysis) is shaded white with a black center. The probands in each family are indicated by an arrow.
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were performed with the Genome Analysis Toolkit.25 Recalibrated
reads were genotyped with the Genome Analysis Toolkit unified
genotyper,26 and variant quality scores were readjusted to
standard hard filtering parameters.

Variants were annotated with SnpEff to identify genes, loca-
tions within genes, and possible impact on genes,27 and then were
filtered by the critical region (as defined by linkage), by
heterozygosity in both affected family members, and finally by
population allele frequency in ESP650028 and the 1000 Genomes
data sets.29 MutationTaster,30 MutationTaster2,31 and Human
Splicing Factor32 were used to predict the effect of variants on
splicing. MutationTaster30,31 and PolyPhen-233 were used to
predict pathogenicity of missense variants.

Sanger Sequencing Confirmation

Primer pairs flanking the variants of interest were designed with Pri-
mer3Plus (available at: primer3plus.com/) and the National Center for
Biotechnology Information’s BLAST (Basic LocalAlignment Search
Tool; www.ncbi.nlm.nih.gov/BLAST). Primers for COL17A1
c.3156C/T were 50-CGTGGGGAGAACATGTCC-30 (forward)
and 50-AAAGTCTCGCCTGTGATGGT-30 (reverse) and those for
DNAJC9 c. 334 G/A were F: 50-CCCTTCCCTGGTCCCTAGTT-
30 (forward) and 50-CTTGATGAACTGGTATGCCCA-30 (reverse).
Polymerase chain reaction (PCR) analysis was performed using the
AmpliTaq Gold DNA polymerase (Life Technologies, Waltham,
MA), with a final MgCl2 concentration of 1.5 mmol/L. Polymerase
chain reaction amplicons were purified using the DNA Clean &
Concentrator-5 PCR Purification Kit (Zymo Research, Irvine, CA)
according to the manufacturer’s instructions. Sanger sequencing was
performed on an ABI 3700 sequencer as described previously.3,22

Sequence data were compared with the National Center for Biotech-
nology Information reference sequence NM_000494.3 with Codon-
Code Aligner Software version 4.2.3 (CodonCode Corporation).

Microsatellite Marker Analysis

Microsatellite markers were identified adjacent to COL17A1
with the UCSC Genome Browser microsatellite track. Microsat-
ellite repeats were identified within COL17A1 (19�CA repeat;
chr10:105815203e105815240, GRCh37) and OBFC1 (20�AT
repeat; chr10:105674094e105674133), as shown in Supplemental
Figure 1 (available at www.aaojournal.org). Primers were designed
with Primer3Plus. Primers for COL17A1 (19�CA) were
50-HEX-CCAAGACTGTGGTCCCACTT-30 (forward) and
50-ACTCACTTCCAACTGCAGGA-30 (reverse; 60� C annealing
temperature). Primers for OBFC1 (20�AT) were 50-FAM-
TGATTGTACCACTGCCTTCCA-30 (forward) and 50-TCCACA
3
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ACCACAGCAAGACA-30 (reverse; 63� C annealing temperature).
Polymerase chain reaction was performed on 250 ng DNA in a 50-
ml reaction with AmpliTaq Gold DNA Polymerase (Life
Technologies) according to the manufacturer’s guidelines.
Polymerase chain reaction products were cleaned with the DNA
Clean & Concentrator-5 PCR Purification Kit (Zymo Research)
according to the manufacturer’s instructions. The purified samples
were run alongside a 500 LIZ Size Standard (Applied Biosystems)
on an ABI 3730 capillary sequencer (Applied Biosystems). The
microsatellite results were allele binned with the STRand analysis
freeware (available at: www.vgl.ucdavis.edu/STRand).

Immunohistochemistry

Immunohistochemistry was performed to show expression of
COL17A1 and DNAJC9 in both human and zebrafish cornea.
Cryosections of 16 to 20 mm were prepared from fresh keratoconic
human corneal buttons (collected during corneal transplant sur-
geries; New Zealand Eye Bank, www.eyebank.org.nz/) and 4%
paraformaldehydeetreated zebrafish tissue (isolated adult eyes and
whole embryos) as follows. Tissues were processed though a su-
crose gradient, embedded in a 2:1 25% sucroseeO.C.T. compound
media (Tissue-Tek; Sakura Finetek U.S.A., Inc., Torrance, CA)
and snap-frozen on dry ice, then stored at �80� C until use. Cry-
osections were mounted on Superfrost Plus Microscope Slides
(Fisher Scientific, Hampton, NH) and dried overnight. For immu-
nohistochemistry, sections were rehydrated in 0.1 M phosphate-
buffered saline (PBS), then digested with 2 mg/ml testicular
hyaluronidase for 1 hour at 37� C. Sections were permeabilized
in �20� C methanol for 20 minutes, washed with 0.1 M PBS, and
treated in 20 mmol/L glycine for 30 minutes. Sections then were
blocked with 2% normal goat serum in PBS (plus 0.1% Triton
X-100) for 30 minutes at room temperature before labelling. A
mouse monoclonal antibody raised against the NC16a-domain of
human COL17A1 (catalog no. ab79878; Abcam, Cambridge, UK)
was used at a dilution of 1:40 for both species. For DNAJC9, a
rabbit monoclonal antibody raised against a synthetic peptide
corresponding to residues in human DNAJC9 (catalog no.
EPR9856; Abcam) was used at a dilution of 1:100 for both species.
A polyclonal rabbit antimouse laminin (laminin, a 1) primary
antibody (catalog no. L-9393; Sigma-Aldrich, St. Louis, MO) was
used at 1:60 (8.3 ng/ml) to label the basement membrane.34 The
primary antibody was incubated overnight at 4� C in a
humidifying chamber. Sections were washed with 0.1 M PBS
before secondary antibody application. For COL17A1 detection,
goat antimouse immunoglobulin G Alexa-546 (catalog no.
A11003; Molecular Probes, Eugene, OR) at 1:1000 for human
tissue and 1:400 for zebrafish tissue were used. Goat antirabbit
immunoglobulin G Alexa-488 (catalog no. A11031; Life Tech-
nologies) was used at 1:300 (6.7 ng/ml) for laminin and DNAJC9
detection in both human and zebrafish tissue. Secondary antibody
labelling was performed for 2 hours at room temperature in the
dark to prevent quenching of the conjugated fluorophores. Un-
bound secondary antibody was removed by washing sections with
0.1 M PBS. Sections then were stained with 40,6-diamidino-2-
phenylindole to show cell nuclei and were mounted in Citiflour
Antifadent-mounted media (Citifluor Ltd, London, UK). Labelling
was visualized using confocal microscopy.

Zebrafish Whole-Mount In Situ Hybridization

Zebrafish were used with institutional ethics approval from the
University of Auckland Animal Ethics Committee (reference no.
001343). Hybridization of antisense RNA probes specific to a
transcript of interest were used to visualize expression via
antibody-conjugated alkaline phosphatase staining.35 Digoxigenin
4

(Roche, Penzberg, Germany)elabelled antisense RNA probes
were produced against zebrafish orthologs of COL17A1 (Col17a1a
and Col17a1b, as previously published36) and Dnacj9 (Ensembl
transcript ENSDART00000137643, drDNAJC9_WISH_F2:
AGAAGCTCCAGACTCGGAGA and drDNAJC9_WISH_R2:
GCCCATCTCCTCCTGCATTT). Reverse-transcriptase PCR was
performed on cDNA from embryos 8 days after fertilization to
amplify the region of interest. The PCR products then were ligated
into the pCR II-TOPO vector (Life Technologies), linearized with
SpeI, NotI, or BamHI (NEB; New England Biolabs, Ipswich, MA),
and transcribed with T7 or Sp6 polymerase. Embryos were pre-
pared by fixation in 4% paraformaldehyde (ProSciTech, Thur-
ingowa Central, Australia) overnight and stored in 100% methanol.
An established whole-mount in situ hybridization protocol was
followed as previously described.35 Posthybridization staining
was performed using an alkaline phosphataseeconjugated anti-
digoxigenin (DIG) antibody. Samples were imaged under a Leica
MZ16FA stereomicroscope with a Leica DC490 camera and soft-
ware (Leica, Wetzlar, Germany).

Morpholino Microinjections

Morpholinos were designed and synthesized by GeneTools LLC
(Philomath, OR): Col17a1a_TB:TGGTTGTTGTTAGCTTGTC-
CATTCC to target NM_001145565.1 and DNAJC9_SB_Disea-
se:GTAATCTGCGGCAGAAGTGTCACAA to target exon 2 of
ENSDART00000044150. The Standard Control Morpholino from
GeneTools LLC was used as a control. Morpholinos were resus-
pended to 5-mmol/L stock solutions, from which 0.25-mmol/L
(Col17a1a) and 0.5-mmol/L (Dnajc9 and control) injection
mixes were made, including 2X Phenol Red dye. One nanoliter of
morpholino was injected into single-cell embryos. Embryos were
grown in the dark at 28� C and examined using a Zeiss Discover
V20 stereo microscope and camera (Zeiss, Oberkochen, Germany).
Results

Phenotype Description

Four white families with suspected autosomal dominant ERED
were identified independently (Fig 1). These families are not
knowingly related to each other, nor to an ERED family
previously described in New Zealand.37 The phenotype of the
index New Zealand family (06NZ-TRB1; Fig 1A), as previously
described,3 was remarkably similar to the other 3 families
(Table 1). In all families, affected individuals presented between
5 and 7 years of age for recurrent significant corneal epithelial
erosions. As the individuals aged, these episodes tended to
decrease in frequency and eventually burnt out, variably from the
third to fourth decade. Symptoms continuing beyond the
cessation of erosions predominantly were foreign body sensation,
photophobia, and a variable reduction in vision.

All families had features on slit-lamp biomicroscopy similar to
those described in the index family, additional examples of which
are shown in Supplemental Figure 2 (available at
www.aaojournal.org).3 The key features of this 06NZ-TRB1
New Zealand corneal phenotype are a small number of focal,
disc-shaped, circular, or wreath-like grey-white opacities (typi-
cally 0.2e1.5 mm in diameter) involving the Bowman layer and
adjacent anterior stroma on a relatively subtle background of
numerous smaller (<100 mm) grey flecks limited to the anterior
20% of the stroma (Fig 2). The earliest lesions are similar in
general appearance to the minor Bowman layer scarring that
follows small, superficial corneal foreign bodies. Symptoms of
recurrent corneal erosions typically commence at approximately
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Table 1. Clinical Features of the 4 Epithelial Recurrent Erosion Dystrophy Families: 06NZ-TRB1, UKOGA, 15NZ-LED1, and CDTAS1

Family
Identification

Patient
Identification Affected Status

Genotype

Sex

Age (yrs) Visual Acuity Corneal Findings

COL17A1 DNAJC9
At Last

Examination At Onset At Offset
Right
Eye Left Eye Right Eye Left Eye

06NZ-TRB1 I.2 Affected d d M 64 “Childhood” ? 6/7.5e1 6/7.5e 3Vincent et al 3Vincent et al
II.2 Affected C/T G/A M 41 10 21 6/12 6/7.5 3Vincent et al 3Vincent et al
II.3 Affected C/T G/A M 39 6 13 6/6þ 6/6 3Vincent et al 3Vincent et al
II.5 Affected C/T G/A M 38 5 22 6/6 6/6þ1 3Vincent et al 3Vincent et al
III.2 Affected C/T G/A F 14 5 Continuing 6/5 6/5 3Vincent et al 3Vincent et al
III.3 Affected C/T G/A F 12 5 Continuing 6/5 6/5e1 3Vincent et al 3Vincent et al
III.6 Affected C/T G/A M 10 5 d 6/6 6/6 3Vincent et al 3Vincent et al

UKOGA I.1 Affected C/T G/G F 75 7 ? 6/9 6/12 3e4 Minor attacks per year in both eyes
II.2 Affected C/T G/G F 42 7 Continuing 6/9 6/5 PTK 1997 in both eyes
II.3 Affected C/T G/G F 55 7 Continuing 6/6 6/9 PTK 2011 in both eyes reduced frequency and severity
II.7 Putative affected d d M 30 ? (4e6) 6/12 6/5 Almost MDF pattern in

central area at mild
superficial stromal
granularity; prominent
corneal nerves

Mild discrete granularity
in superficial stroma; 2
wreath-like lesions

II.9 Affected C/T G/G F 37 6 35 (After excimer) 6/4 6/4 PTK 2006/2010
III.1 Affected C/T G/G M 25 7 Continuing 6/5 6/5 2 Attacks per year
III.2 Affected C/T G/G M 21 7 Continuing 6/4 6/4 One attack per 18 months
III.3 Affected d d F 10 10 Continuing d d d d
III.4 Affected C/T G/G F 17 6e7 13 6/6 6/9 Scar after BCL-related

microbial keratitis
15NZ-LED1 II.2 Affected d d M d d d d d d d

II.3 Affected C/T G/G F 30 ? (<8) ? d d Faint stromal scar and
healing epithelial
defect

III.1 Affected d d M d d d d d d d
III.2 Affected C/T G/G F 10 8.3 Continuing 6/6þ1 6/18ph Both eyes L>R, clear corneas nil noted on

examination
III.3 Affected C/T G/G F 9 8.5 Continuing 6/6 6/6 Subepithelial cysts/

vacuoles (mild)
III.4 Predicted affected C/T G/G M d d d d d d d

CDTAS1 II.2 Affected C/T G/G F d d d d d d d
III.2 Affected C/T G/G F 61 30 d HM 6/12 Marked opacification Anterior stromal haze
IV.2 Affected C/T G/G M 41 5 d 6/6 6/9 Stromal scarring and

anterior stromal haze
Stromal scarring and
anterior stromal haze

IV.4 Affected C/T G/G F 40 28 d 6/9 6/9 Mild anterior stromal haze Mild anterior stromal haze
IV.10 Affected C/T G/G F d d d d d d d
IV.11 Affected C/T G/G F 44 6 d 6/5 6/5 Mild anterior stromal haze Mild anterior stromal haze
IV.14 Affected C/T G/G F 42 6 d 6/5 6/6 Both eyes anterior stromal haze; prominent nerves
V.1 Affected C/T G/G M 4 12 d 6/5 6/9 Anterior stromal haze Anterior stromal haze
V.2 Affected C/T G/G F 7 19 d 6/4 6/5 Mild anterior stromal haze Mild anterior stromal haze
V.3 Affected C/T G/G F 6 16 d 6/9 6/9 Mild anterior stromal haze Mild anterior stromal haze
V.9 Affected C/T G/G M 5 18 d 6/5 6/4 Anterior stromal haze Anterior stromal haze
V.13 Affected d d F 6 12 d 6/4 6/6 Clear Clear
V.14 Affected d d F 6 9 d 6/5 6/5 Anterior stromal haze Anterior stromal haze

BCL ¼ B-cell lymphoma; F ¼ female; L ¼ left; M ¼ male; MDF ¼ map-dot-fingerprint dystrophy; ph ¼ pinhole; PTK ¼ protein tyrosine kinase; R ¼ right; d ¼ no information available; ? ¼ unsure.
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Figure 2. Slit-lamp photographs showing the clinical phenotype observed in the UKOGA family. A, Individual I.1 showing generalized superficial stromal
haze shown as a grayish haze across the pupillary zone. B, Individual II.9 showing discrete, grayish, white oval-round or wreath-like opacities with distinct
margins at the level of the Bowman layer or superficial stroma. C, Individual II.3 showing small discrete flecks in the superficial stroma with a larger round
opacity and superficial stromal haze. D, Individual III.4 showing round and wreath-like opacities with distinct margins at the level of the Bowman layer or
superficial stroma with small discrete flecks in the superficial stroma.
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6 years of age and seem to precede these corneal clinical signs.
Although there was a tendency for stromal opacities to appear
and gradually increase throughout life, variable expression was
present within family members. The phenotypic variability
observed in the United Kingdom family in 4 individuals
spanning 3 generations is demonstrated in Figure 2.

In vivo confocal microscopy examination in the UKOGA
family showed features similar to those in the index 06NZ-TRB1
New Zealand family: brightly hyperreflective polymorphous
intraepithelial opacities were present in the epithelium, although
invisible on biomicroscopic examination (Fig 3A). Areas with
clinically visible disc-like opacities showed bowl-like epithelial
thickening extending into the anterior stroma, with complete
destruction of Bowman layer and the subepithelial nerve plexus
(Fig 3B). The adjacent anterior stroma was remarkable for diffuse
accumulation of anterior stromal extracellular matrix (grade 2; Fig
3C). Although anterior stromal extracellular matrix accumulation
was limited to focal clinical lesions in younger patients, it was
not limited to these lesions in older individuals (Fig 3D). Also,
the corneal stroma in younger patients did not yield any
abnormal findings, whereas patients older than 60 years were
found to show needle-like stromal opacities affecting the anterior
more than the posterior stroma (Fig 3E), resembling findings
previously described in granular and Reis-Bückler corneal
dystropy.15,38 The corneal endothelium was not affected. Only
single endothelial guttae were found in 1 female patient who was
74 years of age (Fig 3F).

Single Nucleotide Polymorphism Arrays Identify
a Linkage Region

Genome-wide analysis of haplotypes conserved between 7 affected
06NZ-TRB1 family members identified a single peak on chromo-
some 10 reaching themaximum logarithm of the odds score of 2.7, as
6

depicted in Supplemental Figure 3 (available at
www.aaojournal.org). The linkage region corresponded to
haplotypes between single nucleotide polymorphisms rs1111060
and rs11195400 (specifically, chr10:12,576,562e112,763,135,
GRCh37) and covered 100.14 Mb, as shown in Supplemental
Figure 4 (green haplotype; available at www.aaojournal.org). All 7
affected 06NZ-TRB1 individuals we examined carried this
haplotype. Two individuals of unknown status (too young to have
demonstrated disease) did not carry this haplotype and, by 10
years of age, did not demonstrate recurrent erosions. These
individuals retrospectively had their status reassigned to
unaffected, bringing themaximum logarithmof the odds score to 3.3.

Candidate Gene Screen in 06NZ-TRB1

The100-Mblinkage region identifiedonchr10:12,576,562e112,763,135
contains approximately 996 genes. To identify candidate disease-causing
genes,we created functional protein associationnetworks betweenknown
corneal genes and those within our chr10:12,576,562e112,763,135
linkage region.21 This identified 8 strong candidate genes of interest that
are located within the reduced interval, expressed in the cornea, make
biological sense, and interact with other known corneal proteins, as
shown in Supplemental Table 2 (available at www.aaojournal.org).
Sanger sequencing of all coding exons of these 8 candidate genes was
performed on 2 brothers discordant for disease from the 06NZ-TRB1
family. No sequence variants were found in the genomic DNA
sequences examined between these 2 individuals.

Exome Sequencing Results in 06NZ-TRB1

Given the size of the linkage region and the number of genes it
contained, exome sequencing was performed on 2 affected in-
dividuals (Fig 1A, II.5 and III.3, an uncleeniece pair).
Bioinformatic filtering identified 46 heterozygous variants with
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Figure 3. In vivo confocal microscopy images throughout the cornea of affected UKOGA family members: (A) epithelium in II.9, (B) epithelium stromal
interface in III.4, (C) anterior stroma in III.4, (D) anterior stroma in I.1, (E) stroma in II.9, and (F) endothelium in I.1.

Oliver et al � COL17A1 Splice-Altering Mutation in ERED
allele frequencies of less than 0.001 in the National Heart, Lung, and
Blood Institute ESP Exome Variant Server and 1000 Genomes
databases,28,29 as shown in Supplemental Table 3 (available at
www.aaojournal.org).39 MutationTaster was used to predict
pathogenicity of all heterozygous variants, as provided in
Supplemental Table 3 (available at www.aaojournal.org).30,31 The
evidence supporting 4 of the variants was poor because of low read
depth; therefore, these variants were given a low priority and were
not investigated further. Of the remaining 42 variants, 10 were ho-
mozygous in more than 4 individuals and a further 8 were hetero-
zygous in more than 20 individuals in the 1000 Genomes Project
data.39 In total, we identified 8 potential disease-causing variants in
our whole-genome exome sequencing data, as shown in Table 2 and
Supplemental Table 4 (available at www.aaojournal.org).

Previously, Sullivan et al40 identified an ERED
phenotypeeassociated linkage region between markers D10S677
(chr10:95,964,310) and D10S1671 (chr10:106,852,499) in a fam-
ily originally described as having Thiel-Behnke corneal dystro-
phy.12 Four of our potential disease-causing variants lie in genes
found within this region: ARHGAP19, COL17A1, GBF1, and
SLIT1. COL17A1 previously was excluded as the causative gene in
this previously described corneal dystrophy family.40 However, the
COL17A1 variant c.3156C/T, which superficially seems to
produce a synonymous substitution in codon 1052 encoding
glycine (chr10:105,797,446, GRCh37; ENST00000353479;
NM_000494), segregated with disease in our original New
Zealand family (06NZ-TRB1; 7 affected and 10 unaffected
individuals), as confirmed by Sanger sequencing (Fig 1;
Table 1). This variant is present only once in the Exome
Aggregation Consortium database (available at
exac.broadinsititute.org/), with an allele frequency of 8.249e-
06.41 Jonsson et al13 predicted (using a minigene splicing assay
and in vitro mutagenesis) that the c.3156C/T variant leads to
the introduction of a splice donor site and causes truncation of
exon 46, resulting in the hypothesized insertion of 1 amino acid
and deletion of 17 amino acids; (p.Gly1052_Thr1070delinsAla).

The only in silicoepredicted missense variant detected by
whole-exome sequencing was in DNAJC9 (c.334G/A, p.D112N,
chr10:75,005,922, GRCh37; NM_015190, exon 3), later confirmed
by Sanger sequencing. This aspartic acid is conserved among all
species (MutationTaster2),31 and the change to asparagine is
predicted to be probably damaging, with a PolyPhen-2 score of
0.999. We confirmed segregation of this variant with disease in all
17 of the 06NZ-TRB1 family members analyzed (7 affected and 10
unaffected individuals). This variant was allocated the dbSNP
identifier rs200630658 and was reported at a heterozygote (C/T)
frequency of 0.002 in exome sequencing data from 662 individuals
(The ClinSeq Project42). It is present twice in the Exome
Aggregation Consortium database with an allele frequency of
1.65e-05.41

COL17A1 and DNAJC9 Variant Screening in
Additional Pedigrees

Members from 3 subsequently identified ERED families underwent
genetic screening at COL17A1 c.3156C/T and DNAJC9
7
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Table 2. Candidate Heterozygous Variants at COL17A1 and DNAJC9 Observed in 2 Affected Individuals within the chr10: 12,576,562-
112,763,135 Linkage Region by Exome Sequencing (Positive DNA Strand)

Gene
Symbol Gene Name

Chr10 Position
(GRCh37)

Observed
Allele

Reference
Allele Alteration Type Coverage

COL17A1 Collagen, type XVII, alpha 1 105797446 A G Single base substitution in CDS; gain of
splice donor site

27

DNAJC9 DnaJ (Hsp40) homolog, subfamily C,
member 9

75005922 T C Nonsynonymous missense mutation causing
substitution D112N; this amino acid is
highly conserved in all species

33
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c.334G/A, because segregation with disease status was
confirmed in the 06NZ-TRB1 family at these 2 loci. A second
affected family was identified in Tasmania, Australia (identifier,
CDTAS1; Fig 1; Table 1). Clinically affected individuals in this
pedigree showed recurrent ERED with a progressive increase in
anterior stromal haze, similar to the 06NZ-TRB1 and UKOGA
families (described above). The allelic status of 15 members of
this family (10 affected and 5 unaffected individuals) for
the COL17A1 variant c.3156C/T (p.Gly1052Gly,
chr10:105,797,446, GRCh37; ENST00000353479; NM_000494)
and DNAJC9 variant c.334G/A (p.D112N, chr10:75,005,922,
GRCh37; NM_015190; Fig 1; Table 1) was determined with
Sanger sequencing. All affected family members were
heterozygous for the COL17A1 variant (C/T), whereas unaffected
family members were homozygous (C/C). However, at the
DNAJC9 variant c.334G/A, all individuals examined (10
affected and 5 unaffected) were homozygous for the wild-type
c.334G allele. These results suggest that COL17A1 is causative
of disease in this family.

A third affected family was identified in Hamilton, New Zea-
land (identifier, 15NZ-LED1; Fig 1; Table 1). This family
demonstrated clinical features consistent with ERED. Of the 4
family members tested, 3 were affected and 1 was considered
typically too young, at 6 years of age, to demonstrate symptoms.
All 4 family members tested were heterozygous for the aberrant
COL17A1 variant c.3156C/T. The DNAJC9 variant
c.334G/A was not present in the 15NZ-LED1 family. Our
results suggest that the youngest family member, although
currently asymptomatic, likely will demonstrate signs of the
disease in the near future.

The fourth family with ERED was identified in the United
Kingdom (identifier, UKOGA; Fig 1; Table 1). Analysis of the
variant loci confirmed segregation of COL17A1 c.3156C/T
with disease (present in 7 affected members and absent in 2
unaffected members), but not DNAJC9 c.334G/A, which was
not present in any family members.

Microsatellite Screening across Epithelial
Recurrent Erosion Dystrophy Families

Two microsatellite markers flanking the COL17A1 c.3156C/T
variantdCOL17A1 (20�AT) and OBFC1 (19�CA), as shown in
Supplemental Figure 1 (available at www.aaojournal.org)d
indicate segregation of the haplotype COL17A1 number 7 allele
(C7; 7 repeats) and the OBFC1 number 12 allele (012; 12
repeats) in affected individuals in all 4 families (provided in
Supplemental Table 5, available at www.aaojournal.org). In the
06NZ-TRB1 family, 5 of 5 affected family members and 2 of 4
unaffected family members carry the C7/012 haplotype. All
UKOGA family members tested carry the C7/012 haplotype (3
affected and 2 unaffected individuals), as with the 15NZ-LED1
family (3 affected individuals). In the CDTAS1 family, 9 of 9
affected family members carry the C7/012 haplotype, compared
with only 1 of 4 unaffected family members.
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Expression of COL17A1 and DNAJC9 in Human
Corneal Tissue

Immunohistochemistry analysis was used to examine expression of
COL17A1 and DNAJC9 in a fresh keratoconic cornea (Fig 4).
COL17A1 is expressed in both corneal epithelial cells and the
Bowman layer (basement membrane; Fig 4, red), whereas
DNAJC9 is expressed in the Bowman layer of the corneal
epithelium (Fig 4, green). The pattern of DNAJC9 localization is
distinct from that of COL17A1.

Expression of Col17a1 and Dnajc9 Proteins in
Zebrafish

The Dnajc9 and Col17a1 staining in our adult (13 months after
fertilization) zebrafish samples suggests protein presence in the
external surface membranes of cells in the superficial squamous
layer (Fig 5). In embryonic fish 3 days after fertilization, Dnajc9
and Col17a1 are present throughout the 2-cell layer of the devel-
oping cornea (Fig 5). Dnajc9 staining also appears to be present in
the migrating endothelial cells, which at 3 days after fertilization
are moving from the limbus to the cornea.43 Both Col17a1 and
Dnajc9 are expressed in different corneal layers in the adult
zebrafish compared with human keratoconic tissue.

Expression of C0117a1 and Dnajc9 Transcripts in
Zebrafish

At 50 hours after fertilization, the Col17a1a transcript is present in
a punctate pattern on epithelial cells across the embryo, including
the cornea (Fig 6). The Col17a1b transcript is expressed within
neuromast cells, consistent with previous observations by Kim
et al,36 and is absent in the cornea.

At 50 hours after fertilization, Dnajc9 is expressed throughout
the head region of the embryo, including in the retinal proliferative
zone, as described previously (Fig 6).44 There is no clear evidence
to support corneal expression of Dnajc9 in embryos 50 hours after
fertilization. However, under stress conditions induced by ethanol
exposure, we observe upregulation of Dnacj9 in the head of
embryos 2 days after fertilization, including the cornea, as shown
in Supplemental Figure 5 (available at www.aaojournal.org).

Transient Knockdown of Col17a1a and Dnajc9
with Morpholinos

We transiently knocked down Col17a1a using a translation-
blocking morpholino. At 3 days after fertilization, we observed
morphant embryos with atypical tail morphologic features, where
the tip of the tail is distended compared with embryos injected with
the standard morpholino control (Fig 7). Several morphants
demonstrated heart edema and spinal curvature (Fig 7, arrow).
No obvious changes were present in the morphant eye, although
phenotypic characterization is limited by the sensitivity of this
tissue to disruption during microdissection.
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Figure 4. Localization of DNAJC9 (green), COL17A1 (red), and laminin (green) proteins in fresh human keratoconic cornea. DNAJC9 localizes to the
Bowman layer (Bl). COL17A1 protein localizes to the Bowman layer and throughout the epithelial cells. Laminin marks the Bowman layer and adhering
epithelial cells. epi ¼ Epithelium; kt ¼ keratocytes; st ¼ stroma.

Oliver et al � COL17A1 Splice-Altering Mutation in ERED
When we transiently knocked down Dnajc9 with a splice-
blocking morpholino, embryos 3 days after fertilization demon-
strated a bent spine phenotype, which was not observed in
control-injected morphants (Fig 7). No obvious ocular phenotype
was observed in the Dnajc9 morphants.

Discussion

In this study, we used genetic linkage to identify a
haplotype on chr10:12,576,562e112,763,135 associated
with autosomal dominant corneal ERED. Further charac-
terization of the area with exome sequencing allowed us to
show independently that the COL17A1 genomic variant
c.3156C/T segregates with affected individuals and is
likely to be causative of disease in the 06NZ-TRB1 family.
The presence of this same variant in a further 3 white
Figure 5. Immunohistochemistry staining results for Dnajc9 and Col17a1 prote
present in the dual cell layers of the developing zebrafish cornea (3 days after fert
[m.p.f.]), Dnajc9 and Col17a1 expression is restricted to the external surface m
staining (blue) indicates cell nuclei. cn ¼ Cornea; epi ¼ epithelium; ln ¼ lens
ERED families (15NZ-LED1, CDTAS1, and UKOGA)
suggests that it is highly likely to be the causative mutation
and is prevalent in autosomal dominant ERED. Jonsson
et al13 recently identified a missense mutation in COL17A1
(c.2816C/T, p.T939I) in a Northern Swedish family with
ERED. A sequence variant in COL17A1 (c.3156C/T)
identified in the misclassified Thiel-Benhke dystrophy12

was reported as a nonpathogenic synonymous variant40;
however, Jonsson et al predicted that this variant leads to
the introduction of a splice donor site and causes
truncation of exon 46 (p.(Gly1052_Thr1070delinsAla)),
and therefore is highly likely to be pathogenic.
Combined with the findings in our 4 families described
here, the c.3156C/T COL17A1 variant is causative and
COL17A1 is an integral player in the pathogenesis of
corneal ERED.
in in zebrafish cornea. Both Dnajc9 (green) and Col17a1 (red) proteins are
ilization [d.p.f.]). In the adult zebrafish cornea (13 months after fertilization
embrane of the superficial epithelial cells. 40,6-Diamidino-2-phenylindole
; rt ¼ retina; st ¼ stroma.
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Figure 6. Photomicrographs obtained after whole-mount in situ hybridization was performed using antisense probes to the Col17a1a, Col17a1b, and Dnajc9
genes on embryos 50 hours after fertilization and visualized with alkaline phosphataseemediated staining. Col17a1a is observed in a punctate pattern on the
epithelium, including over the developing cornea. Col17a1b transcripts are evident in the neuromast cells. Diffuse staining for Dnajc9 transcript was
observed in the head region and retinal proliferative zone of the zebrafish embryos (lateral and dorsal views shown).
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In the index 06NZ-TRB1 New Zealand family, although
numerous fine, small (25e100 mm), grey stromal flecks are
present, it is the larger grey-white opacities at the level of
the Bowman layer and immediately subjacent anterior
stroma that distinguish the corneal phenotype from other
corneal fleck dystrophies. Subtle corneal flecks are common
yet asymptomatic and can be associated with contact lens
wear, drugs, and inherited corneal dystrophies. Although on
clinical biomicroscopy such flecks may appear to have a
predominantly preeDescemet membrane stromal location
(e.g., Maeder Danos) or anterior stromal location (e.g.,
Francois Neetans), more typically, and especially on
assessment by in vivo confocal microscopy, these flecks are
variably distributed throughout the stroma.45,46 Because
these flecks typically are asymptomatic, there are few his-
tologic data available, but they may represent enlarged or
metabolically altered keratocytes or stromal deposits.45e47

In the index 06NZ-TRB1 New Zealand family, the small
grey flecks are limited to the very anterior 20% of stroma
(clinically and by IVCM) and extend from the central to
peripheral cornea. But these flecks are not in isolation
unique to, or diagnostic of, the corneal phenotype. However,
the larger, focal grey-white, predominantly disk-shaped,
circular, or wreath-like lesions (with central clarity), which
vary from 0.2 to 1.5 mm in diameter, in conjunction with
these aforementioned small, grey anterior stromal flecks,
seem to be clinically diagnostic of this variant fleck and
anterior membrane dystrophy (see Supplemental Fig 2,
available at www.aaojournal.org). The larger grey-white
lesions typically are few (range, 5e10). Prominent corneal
nerves are present variably, but this is not a feature unique to
this dystrophy.

Based on the available genealogic information, the 4
ERED families we have described are not knowingly related
to each other. Our haplotype analysis with flanking micro-
satellite markers suggests that a C7/012 haplotype cose-
gregates with the c.3156C/T COL17A1 variant in affected
10
individuals. The discovery of this haplotype is consistent
with a founder effect. Because the white population in
Australia and New Zealand is derived largely from United
Kingdom emigrants, it is possible that these families share a
common ancestor.

There is biological evidence supporting an essential role
of COL17A1 in the cornea. COL17A1, a member of the
collagen family, is an integral part of the hemidesmosome
structure. Our observed expression of COL17A1 in the
corneal epithelium is consistent with its reported role as a
hemidesmosome protein,48,49 suggesting a function biolog-
ically relevant to the ERED phenotype. Furthermore,
COL17A1 is associated with other diseases characterized by
compromised epithelial attachment. Autoimmunity against
COL17A1 produces the skin-blistering disease bullous
pemphigoid,50 whereas mutations in COL17A1 cause the
recessive, mechanically induced skin-blistering disease
junctional epidermolysis bullosa,51 which manifests as
corneal erosion in many patients.52 COL17A1 is linked to
keratinocyte mobility,53 and increased levels of COL17A1
have been observed during corneal wound healing,54

suggesting it plays a crucial role not only in maintaining
epithelial attachment, but also in recovering from injury.53

Our expression analysis of human keratoconic corneal
samples indicates that COL17A1 is present in the
Bowman layer and around the epithelial cells, which is
comparable with previous corneal findings.13,55,56

Although our expression analysis was performed on kera-
toconic cornea, no difference in COL17A1 expression is
found between keratoconic and normal corneal tissue.13,56

We identified a second potentially pathogenic variant in
our original New Zealand family (06NZ-TRB1) in the
DNAJC9 gene (c.334G/A, p.D112N); this is the only
variant identified in our exome sequencing data set (after
filtering) that is a clear missense change. DNAJC9 is a
member of the heat shock (HSP40) family of proteins and is
purported to have a role in the molecular chaperoning of
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Figure 7. Photographs of zebrafish injected with 0.25 pmol Col17a1 TB morpholino (MO), 0.5 pmol Dnajc9 SB (disease exon) MO, or 0.5 pmol control
MO obtained 3 days after fertilization (dpf). Col17a1a TB morphants present with morphologic changes in the shape of the tail tip and occasional heart
edema (arrow). Although most Dnajc9 SB (disease exon) morphants appear unaffected, several demonstrated spine curvature (arrow).

Oliver et al � COL17A1 Splice-Altering Mutation in ERED
HSP70 family members. In human tissue, DNAJC9 is
expressed ubiquitously and is upregulated in response to
stress.57 Because the nonsynonymous DNAJC9 variant is
found in only 1 of the 4 ERED families (06NZ-TRB1),
we conclude that it is not necessary for ERED corneal
disease, but it cannot be excluded as a modifier of disease
severity. Of note, disease presentation in the 06NZ-TRB1
family trended toward an earlier age at onset than in the
11
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additional 3 families (Table 1). DNAJC9 expression has not
been characterized previously in the human cornea. The
expression pattern within the human keratoconic cornea is
consistent with a potential role in corneal adhesion.
Colocalization of DNAJC9 and COL17A1 in both human
and zebrafish cornea is suggestive of a potential
interaction between the 2 proteins, possibly with regard to
response to injury and tissue regeneration. We hypothesize
that under stress conditions, such as mild trauma, mutant
DNAJC9 protein may not adequately perform its roles in
regulating cell proliferation, survival, and apoptosis by
chaperoning HSP70s.

In addition, we examined the expression pattern of
COL17A1 and DNAJC9 orthologs (protein and transcript) in
the zebrafish. The zebrafish cornea contains all 5 of the
major corneal layers (including the Bowman layer) and is
readily visible early in development.43 The mature zebrafish
corneal epithelium is 4 to 6 cells deep, constituting
approximately 60% of the corneal thickness, whereas the
stroma comprises a further 30%.43 Although we did
observe Col17a1 and Dnajc9 in the zebrafish cornea, these
proteins appeared to be localized to the squamous
epithelial cells on the surface of the cornea. The difference
in protein localization between the zebrafish and human
corneas may be attributed to the differences in cornea
between these 2 species; the zebrafish cornea presumably
is under less mechanical stress than the human cornea
(absence of eyelids in the fish). Therefore, zebrafish
epithelial cells may not require the same tight anchoring
to the Bowman layer. The zebrafish has undergone
historical genome duplication,58 resulting in 2 copies of
many genes, some of which have undergone functional
divergence. Whole-mount in situ hybridization analysis of
gene expression was used to identify the zebrafish corneal
ortholog of human COL17A1 in zebrafish embryos. The
expression of the COL17A1 homologs has been assessed
previously in zebrafish with regard to junctional
epidermolysis bullosa mutations.36 We confirmed the
previously published expression patterns of the zebrafish
orthologs of COL17A1:Col17a1a and Col17a1b,36,44 and
established that Col17a1a is likely to be the functional
ortholog in zebrafish cornea. We did not observe high
expression of Dnajc9 in embryos; however, as a member of
the heat shock protein family, high expression is not
necessarily expected from embryos in the absence of stress.
Under stress conditions induced by ethanol exposure,59 we
noted increased Dnajc9 expression in the zebrafish cornea.
When Col17a1a was knocked down transiently during
early development, we observed changes to tail
morphologic features, but no obvious alteration to the
gross corneal or ocular phenotype. A similar tail
distension phenotype was characterized by Kim et al,36

who identified the phenotype as resulting from
vacuolization in the epidermis and attributed it to
compromised hemidesmosomes. Transient knockdown of
Dnajc9 caused spinal curvature in some morphants.
Accurate characterization of the cornea of the developing
zebrafish is challenging because morphologic artefacts are
introduced readily during the microdissection process. As
a further limitation, the zebrafish cornea is not developed
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fully until adulthood,43 challenging the feasibility of
transient, morpholino-induced gene knockdowns.

Until recently, morpholinos were considered the gold
standard approach; however, phenotypic discrepancies now
are known to be common between morphant and knockout
zebrafish.60 The CRISPR/Cas9 genome-editing technique
opens up exciting opportunities to introduce (via homology-
directed repair) our identified COL17A1 and DNAJC9 var-
iants into zebrafish,61 establishing lines suitable for
examining the role of these genes in adult zebrafish
cornea using both ophthalmic (e.g., optical coherence
tomography62) and molecular diagnostic tools. We have
found that although the zebrafish is an ideal model for
genetic engineering of the Col17a1a variant c.3156C/T,
it has limitations for use in examining corneal dystrophy
onset during early development.

The rare COL17A1 disease-causing variant
(c.3156C/T) occurring in our 4 families with phenotypi-
cally similar disease replicates the association of a
COL17A1 missense mutation (c.2816C/T) in the Swedish
ERED family.13 It also suggests that the phenotype
described as Thiel-Behnke by Yee et al12 is the result of
the same COL17A1 disease-causing variant detected in our
families. This study expands the phenotypic spectrum of
COL17A1 disease from autosomal recessive epidermolysis
bullosa to autosomal dominant ERED and suggests that
COL17A1 is a key protein in maintaining corneal epithe-
lium integrity.
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