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Fitting Earthquake Spectra: Colored Noise and Incomplete Data

by Stefano Marano, Benjamin Edwards, Graziano Ferrari, and Donat Fih

Abstract Spectral analysis of earthquake recordings provides fundamental seismo-
logical information. It is used for magnitude calculation, estimation of attenuation, and
the determination of fault rupture properties including slip area, stress drop, and radi-
ated energy. Further applications are found in site-effect studies and for the calibration
of simulation and empirically based ground-motion prediction equations.

We identified two main limitations of the spectral fitting methods currently used in
the literature. First, the frequency-dependent noise level is not properly accounted for.
Second, there are no mathematically defensible techniques to fit a parametric spec-
trum to a seismogram with gaps.

When analyzing an earthquake recording, it is well known that the noise level is not
the same at different frequencies, that is, the noise spectrum is colored. The different,
frequency-dependent, noise levels are mainly due to ambient noise and sensor noise.
Methods in the literature do not properly account for the presence of colored noise.

Seismograms with gaps are usually discarded due to the lack of methodologies to
use them. Modern digital seismograms are occasionally clipped at the arrival of the
strongest ground motion. This is also critical in the study of historical earthquakes in
which few seismograms are available and gaps are common, significantly decreasing
the number of useful records.

In this work, we propose a method to overcome these two limitations. We show
that the spectral fitting can be greatly improved and earthquakes with extremely low
signal-to-noise ratio can be fitted. We show that the impact of gaps on the estimated
parameters is minor when a small fraction of the total energy is missing. We also

present a strategy to reconstruct the missing portion of the seismogram.

Introduction

Spectral analysis of earthquake recordings is required
for numerous seismological applications. For example, deter-
mination of source parameters such as magnitude (Ottemol-
ler and Havskov, 2003; Edwards et al., 2010), earthquake
stress drop (Atkinson, 1993; Hough et al., 1999; Goertz-All-
mann and Edwards, 2014), radiated energy (Boatwright ez al.,
2002; Harrington and Brodsky, 2009), and slip area (Ed-
wards ef al., 2015). In particular, the determination of stress
drop for use in the forward modeling of earthquake ground
motion (stochastic simulations, Boore, 2003) has a large im-
pact on seismic hazard for regions of low-to-moderate seis-
micity (Cotton et al., 2013)—because strong-motion data are
not available. Path parameters that can be studied include Q
and geometrical spreading (e.g., Raoof et al., 1999; Allen
et al., 2007) and attenuation (Douglas et al., 2010; Edwards
et al., 2011). In addition, site effects such as amplification
and damping are also considered (e.g., Edwards et al., 2013;
Ktenidou et al., 2013). Spectral analysis is also used in the
calibration of simulation (Douglas et al., 2013; Rietbrock
et al., 2013; Atkinson, 2015) and empirically based (Bora
et al., 2015) ground-motion prediction equations.

Two distinct approaches are used in the spectral analyses
of earthquake signals: the first approach exploits model
redundancy by taking ratios of spectra, and the second ap-
proach fits the recorded spectrum directly. For the latter, sig-
nificantly more data are available, however, modeling these
data suffers more from nonuniqueness and the influence of
noise in the spectrum (Boore et al., 1992). To avoid the in-
fluence of noise, authors often implement signal-to-noise ra-
tio (SNR) criteria and only analyze data passing a defined
threshold. In the past, it was more common to directly ac-
count for the influence of noise in recorded spectra (e.g.,
Boatwright et al., 1991), however, with the improvement
of modern high-quality seismic instrumentation (with low
self-noise and high sensitivity), this is not commonly used.

In this work, we develop a technique for fitting a para-
metric spectrum to earthquake recordings and focus on both
the cases of complete and incomplete data. In the first in-
stance, the whole seismogram is observed. This is the most
commonly encountered situation in modern applications, in
which high quality, reliable digital instrumentation is avail-
able. In the second instance, the recorded seismograms may
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exhibit some gaps. A gap is defined as a short period in
which ground motion is not recorded in the seismogram.
This circumstance is particularly relevant to the study of his-
torical earthquakes, in which old instrumentation may have
intermittently failed, or was unreliable. Moreover, modern
instrumentation may clip around the peak motion.

In general, gaps in historical seismograms are due to the
high velocity of the ground motion that does not allow the
writing device to properly record the motion. For example, in
mechanical instruments the extremely lightweight nib may lift
up from the smoked paper due to aerodynamic effects. In the
case of optical recording, the light beam may move too fast
and not have sufficient time to expose the photographic paper.

As an example, Vannoli ef al. (2015) study an Italian
earthquake from 1930. Out of the 113 seismograms recov-
ered from seismological observatories across Europe, only
11 were used in the final study, mostly due to the fact that
incomplete seismograms could not be analyzed. Recovering
a single seismogram requires a significant amount of resour-
ces and dedication. Therefore, being able to utilize incom-
plete seismograms is of great importance.

In both the case of complete and incomplete data, we are
interested in appropriately accounting for the correlated
nature of the noise. It is well established that not all the fre-
quencies should have the same weight in determining the
spectral fit of earthquake recordings. Certain frequencies
exhibit a higher ambient noise level than others (Cauzzi and
Clinton, 2013). In addition, the spectra exhibit energy spreads
unevenly across frequencies—in which the frequency of re-
corded energy is defined by a combination of earthquake mag-
nitude, fault kinematics, and attenuation.

Concerning the case in which we have complete data, a
common approach for fitting spectral models to a recorded
seismogram is to perform a nonlinear least-squares fit in the
frequency domain. More precisely, the fit of the model to the
logarithm of the spectral amplitude of data is evaluated with a
least-squares criterion. The underlying implicit assumption is
that the spectral amplitudes follow a lognormal distribution.
Such an assumption is, however, incompatible with time-
domain measurements following a Gaussian distribution.

The presence of a different noise level at different
frequencies is typically addressed in the literature with a
threshold mechanism. Let SNR,, denote the SNR at angular
frequency w. The SNR,, is computed as the ratio of Fourier
amplitude and noise level at discrete frequencies. Whenever
SNR,, exceeds a given threshold, the data at that frequency
are used in the fit; otherwise, if it is below the threshold, the
data are completely ignored. For example, a common choice
is to consider frequencies with SNR, > 3 (see, e.g., Oth
et al., 2011). Hard thresholding using SNR is suboptimal for
two reasons. First, certain frequencies are completely
ignored despite the fact that they still carry useful informa-
tion. Second, the frequencies in use are given equal impor-
tance, whereas their different SNR, suggests that they
should be given different levels of importance. Other authors
address this by weighting the least-squares misfit penalty
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function using the SNR. For example, Boatwright er al.
(1991) used SNR-based weighting, limiting the maximum
weight to the equivalent of SNR,, = 2. This approach does
account for low-SNR regions, but also uniformly weights
data above this arbitrary threshold.

Concerning the incomplete data case, we are not aware
of any rigorous methods to fit a spectrum to a seismogram
with gaps. A group of techniques used in the analysis of un-
evenly spaced data are referred to as least-squares spectral
analysis (Lomb, 1976; Scargle, 1982). In these techniques,
one seeks a least-squares fit of sinusoids to measurements. It
will be clear that our approach has some similarities with
these techniques.

In Cadek (1987), it is reported how problematic the pres-
ence of gaps in historical recordings is; and that practically
all the recordings considered present gaps, for example, due
to minute marks, which were used in historical seismograms
for timing. Cadek (1987) reported that several different meth-
ods are used in order to complete the missing part of the re-
cording. Unfortunately, details of the attempted approaches
and of the evaluation are not presented. However, it is men-
tioned that the best results are obtained through filling the
gaps by copying a portion of the signal in the vicinity of
the gap.

The central task addressed in this work is fitting a
parametric spectral model to an observed seismogram. The
proposed approach relies on the maximum-likelihood (ML)
criterion. The likelihood function is used to evaluate the good-
ness of fit of a spectrum to the seismogram and to estimate
model parameters of interest. In contrast with most of the
existing methods, which are working in the frequency domain,
our approach formulates the likelihood in the time domain.
The actual computation is then performed more efficiently
in the frequency domain. The proposed approach improves
methods present in the literature in two different ways: mod-
eling the frequency-dependent noise level due to the correlated
nature of the noise and accounting for the presence of gaps in
the seismogram.

By modeling the correlated noise present in the seismo-
gram, we are able to appropriately weigh the impact of differ-
ent frequencies on the misfit. Frequencies with high SNR are
given more importance in determining the final best-fitting
model. This enables us to use the entire signal and not merely
selected frequencies that satisfy some quality criterion. In
practice, the presence of, for example, high-frequency instru-
ment noise will not significantly affect our estimation. More-
over, we are able to use seismograms with extremely low
SNR that would not be usable with traditional methods.

Within the same framework we also address the pres-
ence of gaps in the seismograms. We do not make any
assumption on the signal during the portions that were not
observed. Only the portion of the seismogram that is ob-
served is used to compute the likelihood, and the unobserved
portion is simply ignored.

We emphasize that the proposed approach allows the
computation of the likelihood of the data for both a paramet-
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Fitting Earthquake Spectra: Colored Noise and Incomplete Data 3

ric spectrum and a nonparametric spectrum. A parametric
spectrum is typically described in closed form and has few
parameters (e.g., Brune, 1970; Madariaga, 1976). A nonpara-
metric spectrum may be computed numerically, for example,
with a numerical modeling of an earthquake rupture.

Outline and Notation

The next sections of this article are organized as follows.
In the Problem Statement and System Model section, the spec-
trum fitting task is formulated mathematically. In the Proposed
Approach section, the proposed approach is presented. Fi-
nally, in the Numerical Examples and Applications section,
several representative applications on real recordings are
showcased. Details pertaining to the numerical implementa-
tion of the proposed techniques are discussed in the Appendix.

We denote deterministic scalars, vectors, and matrices as
a,a, and A, respectively. Random variables are always capi-
talized and the corresponding realization is lowercase, disre-
garding whether they are scalars or vectors. For instance, we
denote with X ~ N (my, Vy) a vector random variable X,
distributed according to a multivariate Gaussian distribution
with mean vector my and covariance matrix Vy. We denote
with N (x;my, V) the value of a multivariate Gaussian dis-
tribution with mean vector my and covariance matrix Vy
evaluated at x, that is,

N(x;mX’VX)

— vyl exp =5 = m TV - m) ). (1)

Problem Statement and System Model

In this work, we present a method for fitting a parametric
spectral model |i(w, @)| to observed time-domain measure-
ments yi,y,, ..., yy. The model is described with a known
function of the parameters @. In most spectral fitting appli-
cations, the phase spectrum is not specified (Hanks and
Mcguire, 1981; Boore, 2003). As an example application of
the proposed method, we present the fitting of the Brune far-
field source model to the seismogram (Brune, 1970). The
Brune model is a widespread approach in the analysis of
earthquakes. We note that the proposed method can work
with any other parametrization of the spectral amplitudes
|it(w, B)| as a function of the parameters 6.

When fitting the spectrum, we also need to consider that
the noise is correlated. Correlated noise is equivalent to the
noise spectral density not being flat, that is, colored noise. By
properly modeling the correlated noise, we can appropriately
weigh how the different frequencies affect the spectral fit. In
practice, frequencies with high SNR drive the resulting fit,
whereas frequencies with low SNR are less important. In this
way, it is possible to account for the high-frequency noise of
certain instruments, for the microseisms, and to fit spectra to
earthquake recordings with very low SNR. As explained in

the following, to fit the time series, it is necessary to jointly
estimate both the spectral parameters of interest 6, control-
ling the amplitude spectrum and the nuisance parameters ¢,
which control the phase spectrum. In addition to the case
of complete data, we are interested in the accounting for
the presence of gaps in the seismogram. This is particularly
relevant to the study of historical earthquakes, in which in-
struments may have not recorded parts of the seismogram.
Throughout this article, we refer to this circumstance as
the incomplete data case.

Measurement and Noise Model
Consider the following measurement model:
Y = u(ty) + Zg. (2)

fork =1,...,N. Here, Y, and Z, are scalar random variables
modeling the measurement and the additive noise, respectively,
at time #;. The time-domain noiseless signal at time #; is de-
noted with u(#;). Samples are uniform f, = (k — 1)T, with
T, as the sampling interval. In vector notation, we denote

the noiseless signal as u = (u(t)), u(ty), ..., u(ty))", the
noisy measurements as ¥ = (Y, Y5, ..., Yy)', and additive
Gaussian noise as Z, that is,

Y=u+2Z, (3)

in which Z ~ N (0,V,).

We model the additive noise Z with a multivariate
Gaussian distribution. The noise is assumed to be wide-sense
stationary and thus is completely described by the (zero)
mean vector and covariance matrix V. The covariance ma-
trix V is, in general, not diagonal. Given the autocovariance
function of the noise y(z), the noise covariance matrix is the
Toeplitz matrix I' with the element in position j, k being

(Tl = vz — 1)) 4)

In the complete data case, that is, when the seismogram has
no gaps, V;, =T

In the incomplete data case, only n < N measurements
are observed. We introduce the measurement matrix
PeR™ having full row-rank, with exactly one entry as
1 on each row and the remaining entries as 0. In other words,
because in the complete data case P = 1, then in the incom-
plete data case the row in P corresponding to a missing meas-
urement is removed, resulting in a nondiagonal matrix.

The system model in the case of incomplete data is
therefore

Y=Pu+Z, (5)

in which Y,Z €R" are random variables. P is the known
measurement matrix. The vector u is the noiseless time-
domain signal. In this case, V, = PT'PT is not Toeplitz. We
emphasize that the missing measurements simply do not
appear in equation (5).
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Figure 1.
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Factor graphs for the (a) complete data and (b) incomplete data cases. The graphs reflect equations (3) and (5). See text for

description of all the mathematical quantities involved. (a) Factor graph of ¥ = Fu + Z. (b) Factor graph of Y = PFU + Z.

Signal Model

In this section, we relate the noiseless time-domain signal
u(t) with the frequency-domain spectrum #(w). The spectrum
may be parametrized with #, that is, u(w) = u(w,n). With
n = (6.¢)", in which @ parametrizes the Fourier amplitudes
and ¢ is a vector of M; elements representing the phase spec-
trum. The real signal u(f) is sampled at N uniform time in-
stants with sampling interval T,. We consider the spectrum of
the signal at frequencies w,, = 2am/NT, form =0, ..., M,.
We have that M, = |[N/2| + 1 and M; = N — M, with | x|
the integer part of x. Because of Hermitian symmetry, only
positive frequencies are modeled.
The noiseless signal u is related with its spectrum z via a
linear transformation F : RY — RY as
u = Fu. (6)
The effect of the matrix F is akin to an inverse Fourier trans-
form. The mth column of F is

[Cos(a)mtl )7 COS(a)mt2)a (XY} Cos(wth)]T

NT,

if me[l,M,] 7
“NT, [sin(w,,t,), sin(@,,1,), ..., sin(w,, tx)]"

if me[M, + 1,N]. (8)

The first column (m = 1) and, when N is even, the column
m = M, are further normalized by a factor of 1/+/2. The
normalization by T ensures that the amplitudes of the dis-
crete spectrum correspond to the amplitudes of the continu-
ous Fourier transform. Given the construction of F, the
vector u is arranged so that the first M, entries correspond
to the real part of the inverse discrete Fourier transform
(DFT) of u and the last M; entries to the imaginary part. This
construction also ensures that the inverse is easily found as

_ NT?

F—l
2

FT. )
Such design of F enables us to avoid complex numbers in our
derivation and dealing with complex Gaussian distributions.
In practice, F can be implemented exploiting the fast Fourier
transform (FFT) algorithm.

Proposed Approach

In this section, we outline the proposed approach for
both the complete data case and the incomplete data case.
Some details regarding the implementation, necessary in or-
der to be able to perform the computations efficiently, are
discussed in the Appendix. The main hindrance being that
for a large number of samples N, naive implementation of
certain matrix operations becomes slow or prohibitive.

In Figure 1, a factor graph provides a graphical depiction
of the quantities described in this section. A factor graph is a
graphical representation of the joint probability density func-
tion (PDF) of all the quantities of interest (Loeliger et al.,
2007). Boxes represent joint PDFs. The edges connecting
the boxes represent random variables, either observed or
unknown. A random variable appears as an argument of a
certain PDF if, and only if, the corresponding edge is con-
nected to the corresponding box. The sum—product algorithm
is a popular algorithm for solving inference tasks on factor
graphs (Kschischang et al., 2001; Loeliger et al., 2007).

In the following, we do not discuss the estimation of the
covariance matrix V. Many approaches for the estimation of
covariance matrices exist. In this work, we simply consider the
sample covariance matrix computed from a sufficiently long
portion of noise observed before the earthquake’s first arrival.

Complete Data

In the complete data case, all N samples of the signal are
observed and the noise covariance matrix is V, = I'. The
measurement matrix P will not appear in this section pertain-
ing to complete data.

We are interested in computing the likelihood of measure-
ments ¥ =y for a given nonparametric spectrum u. From
equations (3) and (6), the conditional PDF of Y given u is

p(Y|a) = N (Y;Fit, V). (10)

Using a given measurement y of Y, it is possible to compute
the likelihood of the observations p(Y = y|u) from equa-
tion (10). Using basic probability rules or message passing
on the factor graph of Figure 1a, we can rewrite the likelihood
in a more convenient form as

p(Y =ylu) = BN (F'y;u, FIV,FT), (11)

in which f is a constant. This latter expression enables us to
evaluate the likelihood function for a different # without the
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Fitting Earthquake Spectra: Colored Noise and Incomplete Data 5

Table 1

Algorithms for Parametric Spectrum Fitting, Complete and Incomplete Data Case

Algorithm 1 (complete data)
1: ayy, = argmax; p(Y = ylu)
2 = Lty
3: repeat .
4: 0 =argmaxyp(Y =y|0,9)
5 = argmaxgp(¥ = yl0.¢p)
6: until Convergence criterion is satisfied

Algorithm 2 (incomplete data)
1: Gy, = argmax, p(¥Y = yla)
2 ifMAP = argmax; p(@|Y =y, ay)
3: ¢ = Zumap
4: repeat .
5 @ =argmaxgp(¥Y =y\0A, P)
6: ¢ = argmax,p(Y = y|0.¢)
7: until Convergence criterion is satisfied

Find ML estimate of spectrum u
Get initial phases estimate

Find best fitting 6 by maximizing (11)
Refine estimates of ¢p and improve fit

Find ML estimate of regularization constant
Find MAP estimate of spectrum #
Get initial phases estimate

Find best fitting & by maximizing (27)
Refine estimates of ¢p and improve fit

MAP, maximum a posteriori.

need of evaluating the matrix—vector product Fu appearing in
equation (10). From equation (11), it is clear that the ML es-
timate of & is simply

(12)

which is closely related to the DFT of the measurements y. We
observe that this result does not depend on the noise covari-
ance matrix V.

We now consider the parametric form of the spectrum
u = u(n). Because the likelihood is invariant to reparamet-
rization, the likelihood of the observation for the parameter
vector 5 can be computed from equation (11) as

g, = Fly,

L) = p(Y = yla(n)). (13)

An ML estimate of # is found by maximizing the likelihood

M, = arg maxt (). (14)
Such maximization is, in general, nonlinear and depends on
the parametric spectrum model. ML estimation from equa-
tion (14) requires a joint maximization over 6 and ¢. In
our implementation, we choose to split equation (14) into
two separate maximizations: the first over @ and the second
over ¢. Although this choice can lead to suboptimal results, it
makes it easier to change the parametrization of the spectrum
in the implementation. These two optimizations can be cycli-
cally repeated until a convergence criterion is satisfied. A
sensible initial value for the ¢p maximization can be obtained
from equation (12). When the noise covariance matrix is
diagonal, this initial guess is exact.

From equation (13), it can be shown that the ML esti-
mation is equivalent to a (nonlinear) generalized least-
squares fit

i = argmin(y - Fa(n)) V7' (v — Fa(m)). (15)

This relation indicates the similarity between the proposed
ML method and least-squares spectral analysis methods
(Lomb, 1976; Scargle, 1982).

Algorithm 1 in Table 1 summarizes a possible imple-
mentation of the proposed approach. The spectrum uy, is
computed and an initial estimate ¢ for the phases is obtained
from it. The likelihood function is maximized, considering as
optimization variable only 6, and using the initial guess for
the phases. This optimization can, in general, be performed
numerically using, for example, gradient descent methods.
Whether the numerical optimization is able to achieve the
optimal solution depends on the specific functional form
of the parametric spectrum and, possibly, on an initial guess
for the parameter vector . In addition, when the parametric
spectrum is known analytically, a more sophisticated optimi-
zation can be devised. After an ML estimate of @ is obtained,
phases are optimized. This latter optimization can also be
performed numerically, perhaps supplying an explicit ex-
pression of the gradient to the numerical optimization rou-
tine. The two latter optimization steps can be repeated
cyclically to improve the fit.

Incomplete Data

In the presence of gaps, we observe only n < N
samples. This is modeled with the measurement matrix
PeR™V as appeared in equation (5). First, we seek an
estimate of the nonparametric spectrum u. This is needed
to obtain an initial estimate of the signal phases. This is
an underdetermined problem. Second, we consider the esti-
mation of parameters for a parametric spectrum as in the pre-
vious section.

Nonparametric: Maximum A Posteriori Estimation

The estimation of the spectrum # € R" from observations
y €R" is an underdetermined problem. We choose to treat the
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spectrum as a random variable U , in contrast with the previous
section in which the spectrum was treated as an unknown

deterministic value. We introduce a prior distribution on U
in order to regularize the underdetermined problem.

The noise covariance matrix is V, = W' = PT'PT. We
observe that, in contrast with the complete data case, this is
not a Toeplitz matrix. We treat the spectrum as a random
variable U with a Gaussian prior p(it)

U~N(0,a'T), (16)

in which a is a regularization parameter to be determined. Us-
ing Bayes theorem, the likelihood of equation (10), and the
prior of equation (16) we find that the posterior probability is

p@|Y =y, a) < p(Y = y|u)p(u|a) (17)

= ypexp(—' Wyi/2 + ' Wymg), (18)
in which

vg =N 0;my, W;HN (0;0,a7'T) (19)

W[]mf] = FTPTWZy (20)

W; = FTPTW,PF + al. (21)

For a given a, the maximum a posteriori (MAP) estimate of u
is

Observe that for P =1 and a = 0, the above estimate coin-
cides with the estimate in equation (12).

The value of a to use in equation (22) can be estimated
from the data with the ML criterion. The likelihood of the
observations as a function of «a is

P =yl = [ p(¥ = y. il (23)
— [ =ylipGladi (24)
=N (y;0,V 2y (25)

By maximizing equation (25), we can obtain an ML estimate
ayy, of a to use in equation (22).

The observed MAP estimation of u is equivalent to a gen-
eralized least-squares fit with ridge regression regularization:

u = arg min(y — PFa)"(PTW,P)~!(y — PFa) + alju|?.
(26)

S. Marano, B. Edwards, G. Ferrari, and D. Fih

Parametric: ML Estimation

ML estimation of 77 in the incomplete case is analogous
to the complete case. To find initial phase estimates, ¢ is
necessary to find the MAP estimate of u. In addition, because
the covariance matrix V, = PT'PT is no longer Toeplitz,
some simplification may be beneficial in the numerical im-
plementation. These details are described in the Appendix.

From equations (3) and (6), the conditional PDF of ¥
given n is

p(Y|n) = N (Y;PFa(n). Vy). (27)

An ML estimate of # is found by maximizing the likeli-
hood arg max, p(Y = yn).

Algorithm 2 in Table 1 summarizes a possible imple-
mentation of the proposed approach for the incomplete data
case. First, an appropriate value for the regularization con-
stant ¢ is found with the ML criterion. Using this value,
we find an MAP estimate of the nonparametric spectrum
and then an initial estimate for the phases. Similar to the
complete data case, an ML estimate for @ is found, keeping
the phases fixed to the initial guess. After an ML estimate of
0 is obtained, phases are optimized.

Numerical Examples and Applications

In this section, we present different examples and appli-
cations to show the capabilities of the method presented in
this article. We consider fitting a simple parametric spectrum
to earthquake recordings using the ML technique described
in the previous section.

We choose to use the spectral model proposed in Brune
(1970), augmented by the attenuation factor from Anderson
and Hough (1984), to fit the shape of earthquake spectra. We
do not consider a factor to account for geometrical spreading,
rather we simply fit the observed spectrum at a given epicen-
tral distance. To simplify the analysis, we also neglect the
presence of site effects.

With these assumptions, the amplitude of the velocity
spectrum is described by

wf)

MO e

e~ /2 (28)

with parameter vector @ = (€2, f,, t*)7. The parameters (2,
fe» and t* represent the long-period spectral displacement
plateau, the source corner frequency, and the anelastic at-
tenuation, respectively. Equation (28) only specifies the am-
plitude spectrum, not the phase spectrum.

It is important to note that the approach proposed in this
article is not limited to fitting the Brune model of equa-
tion (28) but can be used with any other spectral model. We
consider the Brune model merely for the sake of exposition.
The Brune model has been extensively used in the literature,
has a simple parametrization, and is easy to understand. Our
approach could also be used to determine other parameters
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Fitting Earthquake Spectra: Colored Noise and Incomplete Data 7

influencing the spectral shape, for example, by using other
source models (Savage, 1972; Boatwright, 1982), site effects
(Drouet et al., 2008), and can also form the basis of other
analyses, such as determining geometrical spreading (Ed-
wards et al., 2008).

An estimate for the parameter vector € is found using
Algorithms 1 and 2 in Table 1, outlined in the Proposed Ap-
proach section. We fit the Brune model to the recording from
a single horizontal component.

We consider recordings from the Swiss Seismic
Networks (SDSNet and SSMNet) of the 15 October 2014
Diemtigen (M, 3.0) earthquake (see also Data and Resour-
ces). The epicenter was located at 46.65° N and 7.57° E. The
depth of the hypocenter is 9.5 km. The origin time is
19:36:32 UTC. Different stations are used, some with high
SNR, some with low SNR. Both velocimeter and accelerom-
eter recordings are used. Figure 2 shows the position of the
stations and the position of the epicenter within Switzerland.

The signal plus noise-to-noise ratio (SNNR) is com-
puted as the ratio between the power of the event over the
power of the pre-event. The SNNR and SNR are related as

S+ N

SNNR = =~ = SNR + 1. (29)

Complete Data

Example

As a first example, we consider fitting the Brune model of
equation (28) to a complete seismogram using the procedure
described in the Complete Data section. The seismogram is a
recording of the Diemtigen earthquake at the SBAT HG
strong-motion station. The results are summarized in Figure 3.
Figure 3a,b compares the observed seismogram and the ML fit
in the time domain. As discussed in the Proposed Approach
section, the likelihood is equivalent to a least-squares fit in the
time domain. The residual error between observed seismo-
gram and fit is weighted by the covariance matrix.

Figure 3c compares the DFT of the spectrum with the
ML estimate of the parametric spectrum. The parametric
spectrum matches well with the DFT of the signal. We em-
phasize that the high-frequency noise visible between 30 and
55 Hz does not appear to significantly affect the parametric
fit, despite the fact that all frequencies are effectively used in
the procedure. Robustness to noise is provided by the noise
covariance matrix V. The matrix V, is estimated using a
portion of noise before the event, and is not shown here.

Figure 3d shows slices of the log-likelihood function
(13) as a function of . The ML estimate is pinpointed with
a white cross, that is, @y . Because the log likelihood is
proportional to the least-squares misfit, this plot quantifies
the trade-off between the model parameters. Instead of €2,
the variation in estimated magnitude is shown, that is,
AM,, = (2/3)1og(2/ ), in which Qyy is the ML esti-
mate of ). For a reliable estimate of the magnitude it would

Longitude (°)

Latitude (°)

Figure 2. Map of the stations (blue triangles) used in this study
and location of the epicenter (red star).

be necessary to model factors such as the geometrical spread-
ing. For this reason, we display the relative change AM,,
rather than the absolute value M,,. Although trade-offs are
evident in all parameters, we note that trade-offs between
M., and f,. or t* are emphasized due to the scales used: rel-
atively small differences of 0.1-0.2 in M, are dwarfed by
differences of factors of over 2 in f,. and *.

Parametric Fit with Modern Seismograms

We now consider seismograms from the Diemtigen
event recorded at different stations. We compare the ML
method proposed in this article with an approach used in
the literature, applied to individual seismograms.

The comparison method used is based on Edwards et al.
(2011) and Edwards and Fih (2013). We perform an inver-
sion for Brune Fourier amplitude spectrum (FAS) model
parameters *, ) (long-period displacement plateau), and
f. (source corner frequency). The inversion is achieved us-
ing a combined grid-search for f. (at 5% resolution over a
range of values broadly corresponding to stress drops of
0.001-1000 MPa) and Powell’s conjugate direction method
for 2 and 7*. A least-squares minimization of the misfit
between the Brune model to the available data above a
threshold SNR of 3 is used in the log—log domain to simul-
taneously fit the parameters controlling both low- (€2, f.) and
high-frequency FAS amplitudes (t*, f,).

Figures 4-6 depict (a) the seismogram, including both
the pre-event portion used to estimate the noise covariance
matrix and the earthquake portion used to compute the fit;
and (b) the earthquake and noise spectra along with paramet-
ric fits of the Brune model from the proposed method and a
comparison method. The comparison method uses only
frequencies with an SNR greater than 3 and performs a non-
linear least-squares fit in the frequency domain. The line de-
picting the comparison method is solid for the frequencies
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seismogram. (c) Comparison of the fitted parametric spectrum with the discrete Fourier transform (DFT) of the seismogram. (d) Slices of the

log-likelihood function, the white cross pinpoints the ML estimate.

with SNR above the threshold and thus used to compute the
fit, dashed for frequencies below the threshold and not used
by the algorithm. For the proposed ML approach, there is no
such distinction because all the frequencies are used.

In this section, we present results obtained from the
analysis of the north components. The portion of signal used
to compute the fit is determined visually with the aim of in-
cluding most of the energy from the S-wave arrival. For very
low-SNR seismograms, we inspected a band-pass filtered
version of the signal, but the unfiltered seismogram is used
to compute the fit. In selecting the portion used to estimate
the noise, we tried to avoid including any anomalous features.
In Figures 4-6, event and pre-event portions of the trace are
marked with solid and dashed red lines, respectively.

Figure 4 depicts the results obtained for three stations with
high SNR. The station WIMIS and HASLI are located at rock
sites. The station SINS lies on soft sediments known to pro-
duce broadband amplifications. The outcomes of the proposed
ML method and the comparison method are very similar. In

fact, the noise level is significantly smaller than the energy
from the earthquake at almost all frequencies. Therefore all
the frequencies are reliable, the noise-aware scheme of the pro-
posed method is unnecessary and brings no improvement over
the comparison method. The small differences in the obtained
fits of the Brune model can be explained with the different
misfit functions used by the two methods. Observe that at cer-
tain stations the ground velocity is measured, whereas at
others, the acceleration. Also for this reason, among the sta-
tions, the noise spectra are greatly different. In Figure 4b, the
high frequencies are dominated by the internal noise of the
sensor. The fit resulting from the proposed method does
not appear to be affected by high values at these frequencies.

Figure 5 depicts the results obtained for three stations
with high-to-intermediate SNR. The station FUSIO is lo-
cated at a rock site. The station SBAT is on consolidated soil
and is known to exhibit broadband amplification. We observe
that, for the station SBAT, the comparison method fails to
achieve a proper fit and would normally be discarded. In fact,
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Seismograms and spectra from three high signal-to-noise ratio (SNR) stations, north components. (a) Station WIMIS HH,

distance 4 km, SNR = 45 dB. (b) Station SINS HG, distance 23 km, SNR = 40 dB. (c) Station HASLI HH, distance 46 km, SNR = 23 dB.

the frequency band in use is too narrow to successfully
determine the model parameters (compare to Fig. 5c).

Figure 6 depicts the results obtained for three stations
with very low SNR. These stations are chosen because they
are the farthest stations from the epicenter. The stations
SBUH and STSP are located over soft soil, whereas SCUC
is located over a thin layer of rather compact material. In
these settings, the comparison method could not achieve a
meaningful result. In fact, the SNR is extremely low at most
frequencies, and the frequency band with large enough SNR
is narrow or nonexistent. In contrast, our method is able to fit
the spectra properly.

Table 2 summarizes parameters for both the proposed
ML method and the comparison method. Estimated param-
eters are (), f., and ¢*. The parameters f;, and f .. are

provided to the comparison method and correspond to the
frequency range actually used for the fit (i.e., the frequency
range with SNR greater than 3). Stations are sorted according
to decreasing SNR as in Figures 4-6.

Incomplete Data
Example

We now consider fitting the Brune model of equation (28)
to an incomplete seismogram as described in the Incomplete
Data section. We use the recording from the station SBAT HG
used in the previous section. We remove the data in correspon-
dence of two gaps of a different duration and fit the Brune
model to such a seismogram. The results are summarized
in Figure 7. Figure 7a,b compares the observed seismogram
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Seismograms and spectra from three intermediate SNR stations, north components. (a) Station FUSIO HH, distance 86 km,

SNR = 19 dB. (b) Station FUSIO HG, distance 86 km, SNR = 15 dB. (c) Station SBAT HG, distance 101 km, SNR = 10 dB.

and the ML fit in the time domain. The missing data, unknown
to the algorithm, are depicted with a thin gray line.

Figure 7c shows the result of the fit in the frequency
domain. The nonparametric MAP estimate of the spectrum
obtained from the incomplete seismogram is compared with
the DFT of the complete seismogram. Some differences be-
tween the two spectra are visible and are explained with the
presence of the gaps. The ML estimate of the parametric
spectrum is also shown in Figure 7c, both for the complete
data case (same as Fig. 3c) and for the incomplete data case.
The parametric spectrum obtained in the presence of gaps is
in good agreement with the parametric spectrum obtained in
the complete data case. It also matches well with the non-

parametric spectrum. Again high-frequency noise does not
appear to significantly affect the parametric fit. Figure 7d
shows slices of the log-likelihood function from equation (27).
The ML estimate for the complete data case is pinpointed with
a white cross (same as Fig. 3d) and the estimate for the incom-
plete data case is pinpointed with a white dot.

Seismogram Reconstruction

‘We now show how it is possible to fill the gaps using the
parameters estimated in the ML method.

Using the ML estimate of the parameter vector
1= (0,¢)" (compare with equation 27), we suggest to com-
pute an estimate y of the complete seismogram as
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Seismograms and spectra from three low SNR stations, north components. (a) Station SBUH HG, distance 156 km,
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signal plus noise-to-noise ratio.

y =Fu@). (30)

That is, we compute an inverse Fourier transform of the esti-
mated spectrum. The estimated spectrum u(#) relies on the
estimate of the parameter @ controlling the spectral amplitude
and the estimate of the phases ¢p best fitting the observed
seismogram.

Figure 8a,b shows the reconstructed signal for the same
setting of the incomplete data example presented in this sec-
tion. The reconstructed signal, shown with a solid green line,
does not closely match the original unobserved signal, shown
with a solid gray line; the reconstructed seismogram accu-
rately preserves the frequency content although it does not
replicate isolated peak amplitudes.

Impact of Gaps on Estimated Parameters

In this section, we evaluate the impact of gaps on the
estimated parameters. We consider some selected seismo-
grams from the previous section and fit the Brune model
of equation (28) to the incomplete seismogram.

We consider gaps of different duration and position, dis-
tributed uniformly along the entire duration of the signal. Gaps
due to sensor clipping or to failure of a mechanical device
most often appear around the strongest motion. Gaps due
to the minute marks in historical data may appear at any
position. The original seismogram is erased in correspondence
of the gap and the procedure for fitting a parametric spectrum
to incomplete data is applied. Gap durations of up to half the
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Figure 7.  Brune model fit for incomplete data case. (a) Observed seismogram, unobserved seismogram, and time-domain fit. (b) Detail of
three seconds of the seismogram. (c) Comparison of the fitted parametric spectrum with Fourier transform of the complete seismogram and
maximum a posteriori (MAP) estimate of the spectrum from observed (incomplete) seismogram. (d) Slices of the log-likelihood function, the
white cross and the white dot pinpoint the ML estimate for the complete and incomplete data case, respectively.

Table 2
Summary of the Estimated Parameters for the Brune Model
ML Method Comparison Method
Stations SNR (dB) Q (ms) feHz) 1 () Q (m s) feMz) () fuin Hz)  fra (H2)

WIMIS HH 45 3.75 x 107% 5.23 0.021 5.48 x 107% 3.46 0.024 0.29 49.93
SINS HG 40 1.38 x 10795 4.07 0.043 1.17 x 10795 6.90 0.055 0.37 35.59
HASLI HH 23 1.22 x 107% 1.75  0.060 7.91x 1077 234 0.017 0.41 46.00
FUSIO HH 19 1.95 x 10797 21.65 0.058 1.64 x 1077 10.62 0.045 0.51 39.77
FUSIO HG 15 2.01 x 10797 20.67 0.060 1.74 x 1077 17.29 0.059 0.95 24.70
SBAT HG 10 9.62 x 1077 258 0.023  6.12x 107% 0.66  0.000 0.18 15.28
SBUH HG 7 2.72 x 10797 4.59 0.029 N/A
STSP HG —4 2.72 x 107%7 2.08 0016 N/A
SCUC HG N/A 1.92 x 1077 1.75  0.008 N/A

Summary of the parameters for the Brune model (compare with Figs. 4-6). Estimated parameters for both the proposed
maximum-likelihood (ML) method and the comparison method are €, f., and *. The parameters f,;, and f ... define the
frequency range used by the comparison method. N/A, not available. SNR, signal-to-noise ratio.
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Figure 9. Estimated parameters for the incomplete data case. Sta-
tion SBUH HG.

duration of the signal are considered. The portion of the
seismogram used is the same as that used in the previous
section and highlighted in Figures 4 and 5. The fraction

of signal removed is calculated on this selected window
and not on the whole seismogram. It is evident that a gap
of a given duration can remove a different amount of signal
energy depending on its position. For this reason, we con-
sider both the fraction of signal duration observed with
respect to the total duration of the seismogram and the frac-
tion of energy observed with respect to the total energy of
the seismogram.

In Figures 9—12, the x axis depicts the fraction of the
signal duration observed and the fraction of energy observed.
The y axis depicts the variation in estimated magnitude,
which is given by

2. Q

AM,, =—10gQ—, (31)
0

3

with €y being the value estimated using the complete
seismogram, the estimated corner frequency f,., and the
high-frequency attenuation #*. Horizontal dashed lines in-
dicate the reference values, estimated using the complete
seismogram.

With the exception of FUSIO, there is a good agreement
among the reference values estimated for f. and ¢*. The re-
cording at FUSIO is quite unusual, exhibiting two large
peaks (compare with Fig. 5b). The estimated parameters
are significantly different from the other stations. This exam-
ple emphasizes the limitations of single station analysis.

In general, Figures 9-12 show that removing up to
10%—15% of the signal energy produces small changes in the
estimated parameters. We observe that with these gaps there
is no systematic over- or underestimation of the parameters.
In Figure 11, it is possible to see a peculiar pattern, in which
the points appear to branch out as the observed portion of the
signal is reduced. This can be explained by observing the
complete seismogram that is dominated by two large distinct
peaks (compare with Fig. 5b).
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Figure 10. Estimated parameters for the incomplete data case.
Station SINS HG.

Conclusions

In this article, we presented a method for the modeling of
earthquake records. We presented the applicability of this
method applied to fitting a parametric spectrum to earthquake
recordings from modern and historical earthquake recordings.
The contribution of this work is twofold: (a) we model the
presence of colored noise; and (b) we account for the presence
of gaps in the seismogram. In this work, we fitted the model to
a single waveform from a given sensor component.

By properly modeling colored noise, we are able to
weigh the contribution of the different frequencies in relation
to the SNR at each frequency. The proposed method uses all
the available information following the ML criterion. Instru-
ment noise and ambient noise are naturally accounted for in
the proposed framework. We validate the effectiveness of the
proposed method on both modern recordings. Using digital
recordings from the 15 October 2014 Diemtigen (M,, 3.0)
earthquake, we have shown how the method is able to fit
earthquakes with extremely low SNR. Such recordings would
have been unusable by methods present in literature.

S. Marano, B. Edwards, G. Ferrari, and D. Fidh
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Figure 11. Estimated parameters for the incomplete data case.
Station FUSIO HG.

The presence of gaps in the seismogram is a critical issue,
especially in studies of historical earthquakes. In fact, the suc-
cess of the analysis of a historical earthquake is hindered by the
presence of seismograms with incomplete data. The proposed
technique is able to fit a spectrum to a seismogram despite the
presence of gaps. In the proposed method, we do not make any
assumption on the missing portion of the seismogram. We
tested the proposed method by erasing a part of the seismo-
gram inserting gaps of different duration and at different posi-
tions. We observed that the estimated parameters do not greatly
differ from the reference values as long as the fraction of the
energy removed is less than 10%—15% of the total energy. We
also presented a technique to reconstruct the unobserved seis-
mogram preserving the frequency content of the seismogram.

Using a different spectral model, it is possible to account
for more wave propagation effects. The proposed method can
also be extended to multiple stations for the determination of
the seismic moment. Assuming the noise at different stations
is independent, the likelihood of the observations at multiple
stations is simply the product of the likelihood at each sta-
tion. Similarly, it is possible to combine the sensor compo-
nents at a single station. We envision the need for further
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Figure 12. Estimated parameters for the incomplete data case.
Station SBAT HG.

development to account for the correlation of noise among
components or among different stations.

Data and Resources

Data from the recordings of the Diemtigen earthquake
were provided by the Swiss Seismological Service and are
publicly available at http://arclink.ethz.ch (last accessed Oc-
tober 2016). The code used to produce the results presented
was developed by the first author. Both the data presented in
this article and the code to reproduce the results will be made
available online.

Acknowledgments

This work was supported by the Swiss National Science Foundation
project “Advanced Single Station and Array Methods for the Analysis of Am-
bient Vibrations and Earthquake Recording” (200021_153633). With special
thanks to Carlo Cauzzi, Jan Burjanek, and Fabrizio Bernardi for the feedback
provided during the development of this work. We would also like to sincerely
thank the reviewers for sharing their time and expertise in the review process.
Their valuable comments helped us to improve the article.

References

Allen, T. I, P. R. Cummins, T. Dhu, and J. F. Schneider (2007). Attenuation
of ground-motion spectral amplitudes in southeastern Australia, Bull.
Seismol. Soc. Am. 97, no. 4, 1279-1292.

Anderson, J. G., and S. E. Hough (1984). A model for the shape of the
Fourier amplitude spectrum of acceleration at high-frequencies, Bull.
Seismol. Soc. Am. 74, no. 5, 1969-1993.

Atkinson, G. M. (1993). Earthquake source spectra in eastern North
America, Bull. Seismol. Soc. Am. 83, no. 6, 1778-1798.

Atkinson, G. M. (2015). Ground motion prediction equation for small to mod-
erate events at short hypocentral distances, with application to induced
seismicity hazards, Bull. Seismol. Soc. Am. 105, no. 2A, 981-992.

Boatwright, J. (1982). A dynamic model for far-field acceleration, Bull.
Seismol. Soc. Am. 72, no. 4, 1049-1068.

Boatwright, J., G. L. Choy, and L. C. Seekins (2002). Regional estimates of
radiated seismic energy, Bull. Seismol. Soc. Am. 92, no. 4, 1241-1255.

Boatwright, J., J. B. Fletcher, and T. E. Fumal (1991). A general inversion
scheme for source, site, and propagation characteristics using multiply
recorded sets of moderate-sized earthquakes, Bull. Seismol. Soc. Am.
81, no. 5, 1754-1782.

Boore, D. M. (2003). Simulation of ground motion using the stochastic
method, Pure Appl. Geophys. 160, nos. 3/4, 635-676.

Boore, D. M., W. B. Joyner, and L. Wennerberg (1992). Fitting the stochastic
™% source model to observed response spectra in western North
America: Trade-offs between Ac and k, Bull. Seismol. Soc. Am. 82,
no. 4, 1956-1963.

Bora, S. S., F. Scherbaum, N. Kuehn, P. Stafford, and B. Edwards (2015).
Development of a response spectral ground-motion prediction equation
(GMPE) for seismic hazard analysis from empirical Fourier spectral and
duration models, Bull. Seismol. Soc. Am. 105, no. 4, 2192-2218.

Brune, J. N. (1970). Tectonic stress and spectra of seismic shear waves from
earthquakes, J. Geophys. Res. 715, no. 26, 4997-5009.

Cadek, O. (1987). Studying earthquake ground motion in Prague from Wie-
chert seismograph records, Gerland Beitr. Geophys. 96, no. 5, 438-447.

Cauzzi, C., and J. Clinton (2013). A high- and low-noise model for high-quality
strong-motion accelerometer stations, Earthq. Spectra 29, no. 1, 85-102.

Cotton, F,, R. Archuleta, and M. Causse (2013). What is sigma of the stress
drop? Seismol. Res. Lett. 84, no. 1, 42-48.

Douglas, J., B. Edwards, V. Convertito, N. Sharma, A. Tramelli, D.
Kraaijpoel, B. M. Cabrera, N. Maercklin, and C. Troise (2013). Pre-
dicting ground motion from induced earthquakes in geothermal areas,
Bull. Seismol. Soc. Am. 103, no. 3, 1875-1897.

Douglas, J., P. Gehl, L. F. Bonilla, and C. Gélis (2010). A kappa model for
mainland France, Pure Appl. Geophys. 167, no. 11, 1303-1315.
Drouet, S., S. Chevrot, F. Cotton, and A. Souriau (2008). Simultaneous in-
version of source spectra, attenuation parameters and site responses.
Application to the data of the French Accelerometric Network, Bull.

Seismol. Soc. Am. 98, no. 1, 198-219.

Edwards, B., and D. Fih (2013). Measurements of stress parameter and site
attenuation from recordings of moderate to large earthquakes in
Europe and the Middle East, Geophys. J. Int. 194, no. 2, 1190-1202.

Edwards, B., B. Allmann, D. Fih, and J. Clinton (2010). Automatic compu-
tation of moment magnitudes for small earthquakes and the scaling of
local to moment magnitude, Geophys. J. Int. 183, no. 1, 407-420.

Edwards, B., D. Fih, and D. Giardini (2011). Attenuation of seismic shear
wave energy in Switzerland, Geophys. J. Int. 185, no. 2, 967-984.

Edwards, B., T. Kraft, C. Cauzzi, P. Kistli, and S. Wiemer (2015). Seismic
monitoring and analysis of deep geothermal projects in St. Gallen and
Basel, Switzerland, Geophys. J. Int. 201, no. 2, 1020-1037.

Edwards, B., C. Michel, V. Poggi, and D. Féh (2013). Determination of site
amplification from regional seismicity: Application to the Swiss
National Seismic Networks, Seismol. Res. Lett. 84, no. 4, 611-621.

Edwards, B., A. Rietbrock, J. J. Bommer, and B. Baptie (2008). The acquis-
ition of source, path, and site effects from microearthquake recordings
using Q tomography: Application to the United Kingdom, Bull.
Seismol. Soc. Am. 98, no. 4, 1915-1935.

BSSA Early Edition


http://arclink.ethz.ch
http://arclink.ethz.ch
http://arclink.ethz.ch

16

Goertz-Allmann, B. P., and B. Edwards (2014). Constraints on crustal
attenuation and three-dimensional spatial distribution of stress drop
in Switzerland, Geophys. J. Int. 196, no. 1, 493-509.

Gohberg, 1., and V. Olshevsky (1994). Fast algorithms with preprocessing for
matrix-vector multiplication problems, J. Complexity 10,no. 4,411-427.

Hanks, T. C., and R. K. Mcguire (1981). The character of high-frequency
strong ground motion, Bull. Seismol. Soc. Am. 71, no. 6, 2071-2095.

Harrington, R. M., and E. E. Brodsky (2009). Smooth, mature faults radiate
more energy than rough, immature faults in Parkfield, CA, Bull.
Seismol. Soc. Am. 99, no. 4, 2323-2334.

Hough, S. E., J. M. Lees, and F. Monastero (1999). Attenuation and source
properties at the Coso Geothermal Area, California, Bull. Seismol. Soc.
Am. 89, no. 6, 1606-1619.

Kschischang, F. R., B. J. Frey, and H.-A. Loeliger (2001). Factor graphs and the
sum-product algorithm, IEEE Trans. Inform. Theor. 47, no. 2, 498-519.

Ktenidou, O.-J., C. Gélis, and L.-F. Bonilla (2013). A study on the variability
of kappa (k) in a borehole: Implications of the computation process,
Bull. Seismol. Soc. Am. 103, no. 2A, 1048-1068.

Loeliger, H.-A., J. Dauwels, J. Hu, S. Korl, L. Ping, and F. R. Kschischang
(2007). The factor graph approach to model-based signal processing,
Proc. IEEE 95, no. 6, 1295-1322.

Lomb, N. R. (1976). Least-squares frequency analysis of unequally spaced
data, Astrophys. Space Sci. 39, no. 2, 447-462.

Madariaga, R. (1976). Dynamics of an expanding circular fault, Bull.
Seismol. Soc. Am. 66, no. 3, 639-666.

Monahan, J. F. (2011). Numerical Methods of Statistics, Cambridge
University Press, New York, New York, 447 pp.

Oth, A., D. Bindi, S. Parolai, and D. D. Giacomo (2011). Spectral analysis of
K-NET and KiK-net data in Japan, Part II: On attenuation character-
istics, source spectra, and site response of borehole and surface
stations, Bull. Seismol. Soc. Am. 101, no. 2, 667-687.

Ottemoller, L., and J. Havskov (2003). Moment magnitude determination for
local and regional earthquakes based on source spectra, Bull. Seismol.
Soc. Am. 93, no. 1, 203-214.

Raoof, M., R. B. Herrmann, and L. Malagnini (1999). Attenuation and
excitation of three-component ground motion in southern California
mainland, Bull. Seismol. Soc. Am. 89, no. 4, 888-902.

Rietbrock, A., F. Strasser, and B. Edwards (2013). A stochastic earthquake
ground motion prediction model for the United Kingdom, Bull.
Seismol. Soc. Am. 103, no. 1, 57-77.

Savage, J. C. (1972). Relation of corner frequency to fault dimensions, J.
Geophys. Res. 77, no. 20, 3788-3795.

Scargle, J. D. (1982). Studies in astronomical time series analysis.
II-Statistical aspects of spectral analysis of unevenly spaced data,
Astrophys. J. 263, 835-853.

Vannoli, P.,, G. Vannucci, F. Bernardi, B. Palombo, and G. Ferrari (2015).
The source of the 30 October 1930 M, 5.8 Senigallia (Central Italy)
earthquake: A convergent solution from instrumental, macroseismic,
and geological data, Bull. Seismol. Soc. Am. 105, no. 3, 1548-1561.

Appendix

Here, we detail certain implementation solutions that en-
able an efficient implementation of the presented algorithms.
For a large number of measurements N, several computa-
tions described in this article become extremely slow or pro-
hibitive. In fact, matrix operations with N elements may
require too much time and even the storage in memory of
such matrices may not be possible.

The matrix FE€RMY does not need to be defined
explicitly. Indeed it is readily implemented using the fast
Fourier transform (FFT) algorithm. In particular, several sci-
entific libraries implement a function to compute the discrete
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Fourier transform (DFT) assuming a real input signal and a
Hermitian symmetric spectrum.

The matrix—vector multiplication with the inverse of a
Toeplitz matrix is used when evaluating multivariate Gaussian
(e.g., equations 11 and 27). In Gohberg and Olshevsky (1994),
a matrix decomposition enabling a fast implementation of this
multiplication is proposed. Using such an approach, the com-
putational cost is greatly reduced exploiting the FFT algo-
rithm. In addition, it is not necessary to store the entire N x N
matrix in memory, but solely a vector of length N defining the
Toeplitz matrix.

Computation of the determinant of a Toeplitz matrix is
also necessary when evaluating a multivariate Gaussian. We
used a recursive approach for the computation of the deter-
minant of a Toeplitz matrix that is proposed in Monahan
(2011). Also in this case it is not necessary to store the entire
N x N matrix in memory.

In equation (14) and in the corresponding maximization
for the incomplete data, the optimization vector # may be
quite large because it contains M; phases. We computed ana-
lytically the gradient of the objective function 0/0¢ and pro-
vided this information to the numerical optimization routine.
This greatly reduces the time needed for such optimization.

In the incomplete data case, the covariance matrix
V, = PI'P" is no longer a Toeplitz matrix. One simple
approximation is to consider a block diagonal matrix having
Toeplitz blocks and set to zero the matrix elements outside
the diagonal blocks. This approximation corresponds to con-
sidering the noise independent in the different portions of
contiguous data. Each diagonal block is Toeplitz and the fast
method mentioned earlier can be used.
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