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Abstract	
	
As	 the	 complexity	 of	 engineering	 systems	 grows,	 engineers	 increasingly	 need	 to	 be	 able	 to	 use	 a	
range	of	tools	in	order	to	reduce	the	costs,	and	associated	risks,	as	they	work	in	the	various	phases	
of	the	engineering	life-cycle.	In	order	to	help	engineers	operate	successfully	within	this	product	life-
cycle,	 there	 have	 been	 significant	 developments	 in	 modelling	 simulation	 tools.	 Integrating	 these	
tools	 in	 a	 Virtual	 Engineering	 (VE)	 environment	 allows	 engineers	 to	 examine	 the	 potentially	
conflicting	requirements	of	the	different	phases	of	the	life-cycle,	to	develop	a	co-ordinated	approach	
to	 requirements	 capture	 and	product	design	 through	 to	 identifying	potential	 costly	problems	 that	
could	 occur	 later	 in	 the	 development	 and	 operations	 phases.	 Technical	 skills	 development	 to	 use	
these	 tools	 is	 key	 to	 this	 process.	 This	 paper	 presents	 the	 experiences,	 learning	 outcomes	 and	
lessons	learned	in	the	development	and	implementation	of	bespoke	rotorcraft	engineering	training	
programmes.	 The	 programmes	 were	 designed	 using	 a	 Problem	 Based	 Learning	 (PBL)	 framework	
where	knowledge	and	skills	are	gained	through	solving	problems.	Four	cases	studies	are	presented	
in	 the	 paper,	 demonstrating	 how	 this	 PBL/VE	 approach	 can	 be	 used	 in	 the	 training	 programmes.	
Consideration	 of	 the	 future	 use	 of	 VE	 tools	 is	 provided	 together	 with	 future	 challenges	 for	 their	
successful	application.	

	
1. Introduction	
	
Computer	modelling	 and	 simulation	 provide	 an	 efficient	 and	 effective	method	 for	 demonstrating	
both	 fundamental	principles	and	complex	relationships	between	system	 inputs	and	outputs.	 	With	
physical	properties	and	processes	sufficiently	detailed,	exercising	of	simulation	models	can	provide	
insight	and	understandings	of	system	behaviours	that	would	be	extremely	difficult	to	gain	with	the	
‘real’	system.		The	flow	of	data,	information	and	energy	through	a	system	can	be	illustrated	and	the	
consequences	 of,	 for	 example,	 flow	 being	 interrupted	 by	 component	 failures,	 demonstrated	 and	
assessed.		Moreover,	the	impact	of	changes	to	the	system	design	on	such	things	as	performance	or	
resilience	or	weight	can	be	explored.	 	These	 things	are	at	 the	very	heart	of	 the	practice	of	Virtual	
Engineering	 (VE)	 of	 course,	 and	 practising	 engineers	 can	 continue	 to	 develop	 and	 apply	 VE	 skills	
throughout	 their	 careers	 as	 the	 fidelity	 and	 capability	 of	modelling	 and	 simulation	 tools	 increase.		
The	 combination	 of	 product	 and	 process	 modelling,	 the	 creation	 and	 refinement	 of	 the	 virtual	
prototype	and	its	exercise	in	support	of	design,	development	and	certification	require	a	special	set	
of	advanced	engineering	capabilities,	anchored	in	sound	mathematical	practice.	

	
In	skills	acquisition	and	development,	it	is	the	trainee’s	direct	engagement	with	problem	formulation	
and	problem	solving	that	connects	the	new	ideas	and	ways	of	doing	things	with	existing	knowledge	
and	 abilities.	 	 These	 can	 then	 be	 honed	 by	 practice.	 	 The	 combination	 of	 this	 ‘problem-based-
learning’	 (PBL)	and	virtual	engineering	provide	a	powerful	mix	that	can	accelerate	skills	acquisition	
and	consequent	engineering	practices.		This	is	the	topic	of	our	paper.			

	
In	 Section	 2	 the	 underlying	 principles	 and	 practices	 of	 PBL,	 in	 the	 context	 of	 VE,	 are	 explained.		
Section	3	discusses	the	various	tools	that	are	being	used	in	a	variety	of	courses,	including	continuing	
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professional	development	(CPD),	at	 the	University	of	Liverpool	 (UoL).	 	This	 is	 followed	 in	Section	4	
with	a	number	of	case	studies,	 illustrating	how	we	have	used	this	approach	 in	 the	undergraduate,	
graduate	 and	 training	 classes	 at	 Liverpool.	 	 In	 these	 case	 studies,	 the	 skills	 acquisition	 and	
development	are	emphasised.	 	Section	5	 looks	 forward	 to	how	VE	might	be	 further	developed	 for	
training	purposes	finishing	off	with	some	concluding	remarks.		

	
2. Virtual	Engineering	and	Problem-Based-Learning	
	
As	the	name	suggests,	PBL	involves	achieving	a	series	of	learning	outcomes	based	on	the	formulation	
and	 solution	of	problems.	 	 This	 is	 very	much	 in	 tune	with	a	professional	engineer’s	daily	activities	
where	 they	 are	 faced	 with	 turning	 a	 requirement	 into	 a	 design	 and	 then	 on	 to	 a	 product.		
Engineering	 creativity	 and	 artistry	 can	 flourish	 if	 the	 opportunities	 afforded	 by	 ‘problems’	 can	 be	
approached	in	a	constructive	manner.	 	At	Liverpool,	this	challenge	has	motivated	the	development	
of	a	number	of	special	courses,	built	around	the	PBL	concept	and	based	on	the	theory	of	experiential	
learning,	expounded	by	the	philosopher	and	education	reformer,	John	Dewey	[1],	and	the	modern	
interpretations	and	extensions	by	David	Kolb	 [2].	 	Kolb	makes	 the	point	 that	“We	are	 the	 learning	
species,	and	our	survival	depends	on	our	ability	to	adapt	not	only	in	the	reactive	sense	of	fitting	into	
the	physical	and	social	worlds,	but	in	the	proactive	sense	of	creating	and	shaping	these	worlds.		Our	
species	long	ago	left	the	harmony	of	a	non-reflective	union	with	the	natural	order	to	embark	on	an	
adaptive	journey	of	its	own	choosing.”		

	
In	its	broadest	positive	sense,	survival	of	the	human	species	is	about	imagining	and	creating	a	better	
world	where	everyone	is	safe,	has	a	good	quality	of	life	and	knows	how	to	life	in	harmony	with	the	
other	 people	 and	 the	 environment.	 Kolb	 introduced	 the	 'cycle	 of	 learning'	 concept	 illustrated	 in	
Figure	1.	An	obvious	starting	point	is	having	a	concrete	experience,	from	which	follows	observation	
and	 reflection.	 	 People	 naturally	 reflect	 on	 their	 experiences	 and	 PBL	 helps	 us	 to	 articulate	 our	
reflections	in	a	systematic	way	so	that	we	remember	what	we	thought	and	build	on	that	experience	
for	next	time.			

	
A	 big	 step	 is	 then	 taken	 where	 we	 conceptualise	 the	
experience.	 	 For	 engineers,	 this	 requires	 analytic	 and	
'visual'	 thinking,	 and	 conceptual	 or	 physical	 modelling	
skills,	used	to	establish	hypotheses	and	draw	conclusions	
from	the	experience.		In	order	to	plan	what	we	would	do	
differently	 next	 time,	 we	 also	 need	 to	 think	 about	
different	options	and	how	to	develop	our	knowledge	and	
skills	to	address	these.	

	

The	process	 is	not	complete	until	we	have	tried	out	our	
new	 understandings,	 our	 conceptual	 models	 or	
hypotheses,	 on	 a	 new	 scenario,	 creating	 opportunities	
for	more	experiences	and	so	the	cycle	continues	(active	
experimentation).			

	
The	 Kolb	 cycle	 has	 a	 strongly	 intuitive	 flavour	 and	 fits	 naturally	 with	 the	 PBL	 approach.	 	 For	 PBL	
activities	developed	at	 Liverpool,	an	aircraft	with	 its	operational	deficiencies	 is	often	 the	 focus	 for	
knowledge	 acquisition	 (e.g.	 handling	 qualities	 [3]).	 	 This	 method	 of	 learning	 helps	 the	 trainee	 to	
garner	transferable,	technical	and	interpersonal	skills	that	will	serve	them	throughout	their	careers.		
Critically,	 in	 PBL	 the	 tutor	 acts	 as	 a	 facilitator	 rather	 than	 a	 teacher,	 encouraging	 useful	 lines	 of	
questioning	rather	than	providing	explicit	answers,	and,	when	appropriate,	provides	problem-solving	
structures	or	methodologies.		So	the	trainees	take	responsibility	for	their	own	learning,	engaging	in	
active	learning	through	critical	self-reflection,	self-assessment	and	collegial	learning.	

	
One	 additional	 aspect	 of	 Liverpool’s	 PBL	 approach	 worth	 highlighting	 is	 the	 use	 of	 the	 Personal	
Learning	Journal	(PLJ).		The	aim	of	the	PLJ	is	to	record	the	conduct	and	completion	of	required	tasks.	
The	Journal	also	aims	to	encourage	self-reflection	on	what	has	been	learned	and	how	things	could	

Fig	1	The	Kolb	Cycle	of	Learning	[2]	
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be	done	differently.	The	 journal	should	provide	a	rich	source	of	 information	about	a	trainee’s	self-
assessed	knowledge	and	competence	in	the	exercise	of	skills.	The	journal	also	provides	the	basis	of	
an	 external	 assessment	 of	 competence	 in	 terms	 of	 technical	 knowledge	 and	 understanding,	
intellectual	 skills	 and	 abilities,	 ability	 to	 apply	 these	 skills	 in	 practical	 situations	 and	 generally	
transferable	 skills,	 particularly	 relating	 to	 teamwork.	 A	 good	 understanding	 of	what	 is	 required	 in	
terms	of	content	in	the	PLJ	is	important.	A	PLJ	is	not	a	list	of	facts	but	is	a	reflection	by	the	person	on	
how	their	understanding	and	thinking	has	changed	over	a	period	and	why.	

	

So	how	do	VE	and	PBL	go	together?		In	the	following	two	sections	this	question	is	answered	in	some	
detail	but,	first,	some	general	points.		The	use	of	M&S	to	formulate	and	solve	problems	is,	of	course,	
not	 new	 but	 rather	 integral	 to	 engineering	 practice	 in	 the	 form	 of	 predicting	 and	 revealing	
behaviour.	 	 Nowadays	 the	 detail	 in	 state-of-the-art	 simulations	 is	 so	 fine	 that	 only	 experts	 in	 the	
mathematical	assembly	processes	can	have	a	 full	and	complete	understanding.	 	However,	a	 larger	
number	of	engineers	 are	 likely	 to	be	 ‘users’	of	 virtual	 engineering	 tools	 and	 therefore	need	 to	be	
sufficiently	 confident	 in	 the	 modelling	 that	 they	 can	 use	 the	 tools	 intelligently.	 	 This	 ‘validation’	
provides	an	excellent	theme	for	PBL;	what	 is	wrong	with	the	model?	 	The	search	for	and	eventual	
discovery	of,	a	 flaw	can	be	a	profound	 learning	experience.	 	Of	course,	 such	a	PBL	exercise	would	
feature	 evidence	 that	 led	 to	 suspicions	 of	 a	 modelling	 flaw,	 rather	 than	 the	 flaw	 being	 known.		
Another	 example	 might	 be	 the	 use	 of	 simulation	 to	 aid	 understanding	 of	 how	 an	 aircraft’s	
performance	or	handling	qualities	are	 limited;	 this	 is	 likely	 to	 require	pilot	assessment,	hence	 real	
time	piloted	 simulation.	 In	all	PBL	exercises,	problem	 formulation	 is	a	 critical	element	 to	 finding	a	
solution;	too	simple	and	the	problem	may	not	evident,	too	complex	and	the	problem	may	be	hard	to	
find.	 	 PBL	 training	 needs	 to	 emphasise	 this	 aspect,	 and	 the	 need	 to	 take	 time	 with	 this	 early	
formulation	 stage.	 	 These	 aspects	 will	 be	 brought	 out	 more	 descriptively	 in	 the	 case	 studies	 of	
Section	4.	

	
3. Virtual	Engineering	Tools	
	
Central	 to	 the	 development	 of	 the	 rotorcraft	 engineer	 are	 the	 tools	 sets	 available	 for	 them	 to	
maintain	 and	 acquire	 skills	 in	 support	 of	 their	 engineering	 careers.	 A	 wide	 range	 of	 VE	 tools	 are	
available	 from	 Computer	 Aided	Design	 software,	 structural	 design,	 Computational	 Fluid	 Dynamics	
and	flight	mechanics	codes.	This	paper	will	concentrate	on	a	small	number	of	software	and	hardware	
tools	that	have	been	utilised	at	the	Liverpool	to	facilitate	the	use	of	VE	in	training	activities.	

	
UoL	 operates	 two	motion	 research	 flight	 simulators;	 HELIFLIGHT	 [5,5]	 a	 single	 seat	 simulator	 and	
HELIFLIGHT-R	 [6],	which	 features	a	 three	 channel	220	x	70	degree	 field	of	 view	visual	 system,	a	6	
degree	 of	 freedom	 motion	 platform,	 a	 four-axis	 force	 feedback	 control	 loading	 system	 and	 an	
interchangeable	crew	station.	Figure	2	shows	both	simulators,	with	HELIFLIGHT-R	in	the	foreground	
and	HELIFLIGHT	in	the	background.		
	

	
	

Figure	2	HELIFLIGHT-R	simulator	–	internal	and	external	views	
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Flight	 mechanics	 models	 are	 developed	 in	 either	 FLIGHTLAB	 or	 Matlab/Simulink	 and	 the	 current	
aircraft	 library	features	a	range	of	 fixed-wing,	rotary-wing	and	tilt-rotor	aircraft.	The	outside	world	
imagery	is	generated	using	Presagis’	Creator	Pro	software	to	produce	either	geo-specific	or	custom	
visual	databases.	Using	Presagis’	VEGA	Prime	software,	 the	Liverpool	group	has	generated	 its	own	
run-time	environment,	LIVE	(Liverpool	Virtual	Environment),	which	allows	the	simulator	operator	to	
change	environmental	effects	such	as	daylight,	cloud,	rain	and	fog	along	with	maritime	effects	such	
as	sea	state,	ship’s	exhaust	and	rotor	downwash	on	the	sea’s	surface.	A	heads-up	display	can	either	
be	 generated	 using	 an	 LCD	 screen	 with	 a	 beam	 splitter	 located	 above	 the	 instrument	 panel	 or	
projected	 directly	 onto	 the	 dome.	 The	motion	 and	 visual	 cues,	 together	with	 realistic	 audio	 cues,	
provide	 an	 immersive	 environment	 for	 a	 pilot.	 Data	 from	 the	 flight	 models,	 e.g.	 aircraft	
accelerations,	 attitudes	 etc.,	 together	with	 pilot	 control	 inputs	 can	 be	monitored	 in	 real-time	 and	
recorded	for	post-flight	data	analysis.	
	
4. VE	and	PBL	in	practice	-	Case	Studies	
	
The	 following	 case	 studies	 are	 taken	 from	 a	 number	 of	 different	 training	 courses	 given	 by	 the	
authors	over	the	last	15	years.		They	are	necessarily	presented	in	summary	form	but	with	sufficient	
emphasis	 on	 the	 skills	 acquisition	 and	development	 to	 enable	 the	 reader	 to	 appreciate	 the	depth	
and	breadth	of	the	training.	
	
Flight	Handling	Qualities	(FHQs).	VE	and	PBL	are	uniquely	suited	to	developing	knowledge	and	skills	
in	 FHQs	 for	 both	 pilots	 and	 engineers	 [7].	 	 Example	 learning	 outcomes	 are	 listed	 in	 Table	 1.		
Simulation	 models	 of	 sufficient	 fidelity	 are	 required	 to	 derive	 the	 predicted	 HQs	 (metrics,	 e.g.	
bandwidth,	control	power)	and	a	flight	simulator	is	
required	 to	 derive	 the	 pilot-assigned	 HQ	 Ratings	
(HQRs).	 	 A	 comprehensive	 training	 includes	 such	
things	as	mission	analysis,	from	which	mission	task	
elements	 (MTEs)	 can	 be	 defined,	 performing	 trim	
and	 stability	 analysis	 on	 the	 simulation	 model,	
computing	 HQ	 parameters	 and	 establishing	 the	
predicted	 HQ	 levels	 throughout	 the	 flight	
envelope.	 	 Understanding	 the	 physics	 behind	 the	
HQ	predictions	 is	 important	and	can	be	enhanced	
by	 developing	 skills	 in	 using	 reduced	 order	 linear	
models	of	 the	 flight	dynamics	 [3].	 	Trainees	might	
be	asked,	for	example,	to	derive	an	expression	for	
the	 effect	 of	 the	 pitching	 moment	 changes	 with	
speed	derivative,	Mu,	on	the	phugoid	damping;	this	
is	 important	 as	 it	 is	 the	 source	 of	 a	 helicopter’s	
instability	 in	 hover.	 	 	 Or	 they	 might	 need	 to	
understand	 better	 the	 impact	 of	 the	 yawing	
moment	due	to	roll	rate,	Np,	on	Dutch	roll	damping,	as	it	can	affect	the	level	of	gain	used	in	the	yaw	
damping	element	of	the	stability	and	control	augmentation.		Developing	proficiency	in	working	with	
reduced	order	models	to	aid	enlightenment,	is	likely	to	raise	the	confidence	of	the	trainee	as	he	or	
she	moves	on	to	acquiring	skills	working	with	the	full	non-linear	flight	model.	
	
Designing	the	(simulated)	flight	test	 is	a	core	VE	activity	where	the	trainee	engineer	must	focus	on	
engaging	the	pilot	with	the	problems	exposed	through	the	predicted	HQ	analysis.		In	this	sense	the	
activity	is	very	much	a	collaboration	between	pilot	and	engineer,	particularly	if	the	aim	is	to	improve	
the	 HQs	 where	 constant	 dialogue	 is	 needed	 to	 refine	 the	 improvements.	 	 Skills	 developed	 here	
include	 how	 to	 establish	 the	 task	 performance	 standards	 based	 on	 operational	 requirements,	
communication	protocols	during	testing	and	how	to	conduct	a	de-brief	session.		Pilots	will	learn	how	
to	use	 the	HQ	rating	scale	and	engineers	will	 learn	how	to	measure	and	present	 the	performance	
and	workload	data	to	inform	the	de-brief	discussions.	 	 It	 is	 in	this	area	that	the	training	might	also	
provide	opportunities	for	conflict	resolution;	the	pilot	might	be	adamant	that	they	perceived	a	good	

Table	1	Example	Learning	Outcomes	in	FHQ	
PBL	Course	

	

Knowledge	and	Understanding	
• Handling	qualities	standards	for	different	

classes	of	aircraft	and	missions	
• How	aircraft	design	parameters	affect	

handling	qualities	
• Do’s	and	Don’ts	in	the	use	of	HQ	rating	

scales	
		
Skills	and	Abilities	
• Proficiency	in	Modelling	and	simulation	

of	aircraft	flight	dynamics	
• Design	and	conduct	of	HQ	experiments 
• Improvement	of	HQs	through	control	

system	or	airframe	design 
• Maintaining	a	learning	journal 
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performance	 but	 the	 data	 shows	 otherwise;	 or	 the	 engineer	 might	 interpret	 the	 control	 activity	
during	a	task	as	high	workload	but	the	pilot	disagrees	and	returns	a	rating	corresponding	with	 low	
workload.	 	 Such	 situations	 are	 likely	 to	 result	 in	 extensive	 learning	 opportunities	 in	 non-technical	
communication	skills.	

	
FHQ	 was	 initially	 developed	 as	 a	 module	 for	 4th	 year	 undergraduate	 and	 postgraduate	 Masters	
students	at	Liverpool	[7].	The	class	would	typically	be	divided	into	teams	of	5	students.		Each	team	
would	 be	 given	 an	 aircraft	 (simulation	 model)	 and	 a	 mission	 definition	 with	 operational	
requirements.	 	 They	would	 discover	 that	 the	 aircraft	 did	 not	meet	 the	 performance	 and	handling	
qualities	requirements	and	the	first	task	was	to	understand	why	and	quantify	the	magnitude	of	the	
‘problem’.	 	The	second	 task	was	about	 finding	ways	of	modifying	 the	design	and	developing	a	HQ	
augmentation	 system	 to	 fix	 the	 problem	 and	 demonstrate	 operational	 readiness	 in	 terms	 of	
performance	and	HQs.		The	students	starting	point	was	the	knowledge	and	skills	gained	from	3	years	
of	their	aerospace	degree	programme	and	a	key	point	made	in	the	module	specification	was	that,	as	
a	team,	they	would	likely	be	required	to	draw	on	all	of	this	background	to	achieve	success	in	the	FHQ	
module.		

	
An	 example	 from	 the	 FHQ	 VE	 training	 is	 given	 by	 the	 case	 of	 a	 helicopter	 that	 was	 required	 to	
perform	agile	manoeuvres	at	 low	 level	 in	 confined	spaces.	 	 The	 students	 selected	a	 set	of	ADS-33	
mission	 task	 elements	 (MTEs)	 [8]	 including	 the	 hover-turn,	 that	 required	 desired	 performance	
standards	 achieved	 in	 a	 180	 degree	 turn	 in	 10	 seconds.	 	 The	 team	 identified	 one	 of	 the	 critical	
deficiencies	 as	 a	 lack	 of	 yaw	 attitude	 response	
quickness	in	the	basic	aircraft	(magenta	in	Fig.	3).		
Through	 the	 combined	 use	 of	 feedback	
(damping)	and	 feedforward	 (quickening)	control	
they	 were	 able	 to	 improve	 the	 response	 and	
measured	 this	 in	 terms	 of	 the	 ADS-33	 attitude	
quickness	 parameter.	 	 Figure	 3	 shows	 that	 the	
team	was	able	to	increase	the	quickness	to	reach	
the	Level	1-2	HQ	boundary	(blue	 in	Fig.	3).	 	This	
improvement	 in	 agility	 was	 achieved	 without	 a	
penalty	to	stability.	According	to	the	pilot	HQRs,	
the	 assigned	 HQs	 improved	 from	 Level	 3	
(adequate	 performance	 not	 attainable)	 to	 Level	
1	(desired	performance	achieved).	

	
In	all,	the	team	designed	5	MTEs	to	exercise	the	
HQs	 in	 the	 low	 speed	 phase	 of	 the	mission.	 	 The	 improvements	 resulted	 in	 Level	 1	 HQs	 in	most	
areas.	 	 Their	 control	 system	 upgrade	 required	 relatively	 straightforward	 technology,	 although	 the	
team	 recognised	 that	 new	 dual-port	 actuators	 would	 be	 required	 to	 accept	 the	 electronic	 inputs	
from	the	augmentation	system.	

	
The	combination	of	the	use	of	VE	tools	and	the	PBL	framework	enabled	students	engaged	in	the	FHQ	
module	to	apply	and	build	on	their	previous	knowledge	and	understanding	and,	significantly,	 learn	
from	 their	 team	 colleagues;	 mirroring	 what	 they	 will	 likely	 find	 in	 Industry	 as	 they	 tackle	 ‘real’	
engineering	problems.	

	
Conceptual	 Design:	 Early	 conceptualisation	 of	 a	 new	 rotorcraft	 configuration	 to	 meet	 a	 design	
requirement	can	only	be	achieved	 through	VE.	This	 task	 therefore	 lends	 itself	well	 to	a	PBL	based	
training	exercise	to	provide	the	required	learning	outcomes,	as	listed	in	Table	2.		Creation	of	a	virtual	
prototype	 (VP)	 requires	 the	 engineer	 to	 first	 design	 the	 aircraft	 ‘on	 paper’	 to	 establish	 the	
configuration;	 however,	 the	 exact	 form	of	 the	VP	 does	 not	 need	 to	 be	 known,	 only	 its	 functional	
data.	 On	 completion	 of	 the	 conceptual	 design	 exercise,	 the	 data	 is	 transferred	 to	 an	 appropriate	
template	 within	 the	 FLIGHTLAB	 modelling	 and	 simulation	 software	 package.	 This	 allows	 for	 a	
handling	 qualities	 and	 performance	 assessment	 to	 be	 conducted	 to	 determine	 any	 deficiencies	

Fig	3	Yaw	Attitude	Quickness	
(◊	original	aircraft	◊	with	yaw	quickening)	
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against	the	requirements.	These	can	be	validated	using	pilot-in-the-loop	simulation	to	establish	the	
impact	 of	 performance	 shortcomings	 and	 the	 assigned	 HQs.	 Any	 deficiencies	 are	 identified	 and	
improvements	 explored	 through	 airframe	 re-design	 or	 system	 augmentation	 to	 deliver	 the	
requirements.		
	

Table	2	Example	Learning	Outcomes	in	Rotorcraft	Conceptual	Design	PBL	Course	
	
Knowledge	and	understanding	

• Aircraft	configuration	parameters	for	a	range	of	rotorcraft	sizes	and	shapes	
• How	aircraft	design	parameters	impact	requirements,	e.g.	performance	and	

handling	
• Requirements	analysis	

	
Skills	and	abilities	

• Conceptual	aircraft	design	trading	for	an	intended	mission	profile	
• Design	and	conduct	of	pilot-in-the-loop	simulation	trials		
• VP	verification	and	validation	processes	

	
	
The	design	exercise	is	the	core	activity	where	to	progress	the	design,	students	must	gain	knowledge	
and	 understanding	 of	 the	 design	 attributes	 of	 a	 range	 of	 aircraft	 configurations	 and	 develop	
understanding	of	the	physical	impact	of	phenomena	such	as	disc	loading	or	how	the	advancing	blade	
tip	 might	 enter	 the	 transonic	 flow	 region	 if	 not	 carefully	 designed.	 The	 trainee	 engineer	 is	 then	
invited	 to	 trade-off	 design	 characteristics	 based	 upon	 knowledge	 of	 existing	 rotorcraft	 designs	
analysed	throughout	the	case	study.	
	
This	 case	 study	was	 implemented	 as	 part	 of	 an	 aircraft	 design,	 performance	 and	HQ	module	 and	
provided	trainee	engineers	with	the	skills	to	develop	a	tilt	rotor	virtual	prototype	with	Level	1	HQs	
from	a	mission	requirement	document.	An	example	task	 is	to	develop	a	virtual	prototype	of	a	civil	
tilt	 rotor	 for	 an	 Emergency	 Medical	 Services	 (EMS)	 role.	 Since	 a	 tilt	 rotor	 can	 operate	 in	 both	
helicopter	and	fixed	wing	modes,	the	design	addresses	both	these	type	of	aircraft.	The	process	leads	
the	 trainee	 engineer	 through	 one	 possible	 rotorcraft	 design	 methodology,	 where	 the	 rotor	 is	
designed	using	equations	representing	the	fundamental	principles	of	helicopter	flight	while	the	wing	
and	the	airframe	are	scaled	based	upon	fundamental	fixed-wing	parameters.		
	
The	 first	 step	 in	 the	process	 is	 to	determine	 the	payload	 required	 for	 the	mission.	 In	 this	 case,	no	
information	is	given	other	than	aircraft	size	and	maximum	take-off	weight.	The	trainee	engineer	will	
need	 to	 undertake	 a	 literature	 study	 to	 configure	 the	mass	 and	 composition	 of	 an	 EMS	 payload	
based	 upon	 current	 EMS	 helicopter	 specifications.	 The	 rotor	 design	 is	 where	 significant	 learning	
outcomes	 are	 achieved.	 The	 equations	 used	 are	 deceptively	 simple	 but	 are	 unlikely	 to	 be	 applied	
successfully	without	an	understanding	of	basic	rotor	physics.	An	example	of	this	can	be	seen	when	
selecting	the	disc	loading,	rotor	radius	and	rotor	speed.	The	relationship	between	these	parameters	
is	shown	in	Figures	4	and	5.	
	
The	 engineer	 is	 faced	 with	 the	 question	 of	 how	 to	 determine	 these	 parameters	 when	 the	 only	
information	available	is	mass.	The	approach	presented	in	this	case	study	is	that	the	trainee	students	
must	 again	 revert	 to	 a	 literature	 study	 to	 develop	 a	 bounded	 range	 of	 values	 typical	 to	 a	 given	
aircraft	 type.	 	 For	 example,	 there	 is	 no	 clear	 relation	 between	 disc	 loading	 and	 gross	weight	 of	 a	
rotorcraft,	but	a	literature	review	shows	that	helicopter	or	tilt	rotor	disc	loading	values	are	typically	
within	 narrow	 bands.	 	 Nevertheless,	 this	 still	 doesn’t	 allow	 the	 designer	 to	 select	 a	 disc	 loading,	
merely	to	say	that	experience	suggests	it	is	within	a	set	of	bounds	and	that	not	enough	information	
is	currently	available.	It	does,	however,	allow	the	disc	area	and	rotor	radius	to	have	typical	bounds	
applied.		
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Figure	4	Rotor	Disc	Loading		 	 	 	 Figure	5	Rotor	Tip	Speed	

Knowledge	and	understanding	of	rotor	aerodynamics	can	be	introduced	to	further	refine	the	design.	
For	example,	 students	can	utilise	knowledge	of	 rotor	 radius,	 rotor	speed	and	blade	tip	speed	with	
the	effects	of	operating	in	the	transonic	regime	to	refine	the	rotor	radius	and	determine	a	maximum	
operating	speed.	When	the	vehicle	maximum	speed	and	hover	 tip	 speed	have	been	designed,	 the	
max	and	min	rotor	radius	boundaries	found	previously	can	be	applied	to	the	representative	rotor	tip	
speed	line	illustrated	in	Figure	5	which	in	turn	defines	a	rotor	speed	range.	At	this	point,	the	designer	
can	 look	 at	 the	 engines	 needed	 and	 select	 one	which	 has	 an	 appropriate	 power	 and	 size.	 If	 this	
information	 is	not	available,	 enough	 limitations	have	been	 set	 to	allow	 the	designer	 to	 choose	an	
appropriate	 combination	of	 rotor	 speed	and	 radius,	 thus	determining	 the	 rotor	disc	 area	and	disc	
loading.	
	
Although	 the	equations	 are	 rudimentary,	 combined	with	 knowledge	of	 existing	 rotorcraft	 designs,	
they	provide	students	with	a	powerful	technique	for	estimating	and	assessing	a	rotor	configuration.	
Further	design	 composition	 can	 then	be	determined	 such	as	 solidity,	 chord,	 thrust	 coefficient	and	
blade	loading	coefficient	using	simple	relationships,	when	the	designer	defines	the	number	of	rotor	
blades,	 but	 again	 the	 user	 requires	 knowledge	 of	 the	 impact	 of	 the	 variations	 in	 these	 design	
parameters.	
	
On	 completion	 of	 the	 VP	 design,	 trainee	 engineers	 use	 modelling	 and	 simulation	 tools,	 typically	
FLIGHTLAB,	 to	 create	 a	 real	 time	 version	 of	 the	 simulation.	 Even	 though	 a	minimal	 set	 of	 design	
parameters	has	been	established,	many	parameters	 in	the	VP	will	use	default	values	to	create	the	
structure	and	aerodynamic	data	for	the	rotor	blades	and	fixed	wing	aerodynamic	surfaces.	Again	a	
default	control	schedule	is	included	to	allow	inputs	to	the	model	and	to	convert	between	helicopter	
and	aeroplane	modes.	
	
The	handling	qualities	and	performance	of	the	bare	airframe	VP	can	then	be	assessed	 in	the	same	
manner	as	discussed	 in	 the	previous	FHQ	case	 study,	 through	off-line	predicted	handling	qualities	
and	performance	assessment	followed	by	assigned	handling	qualities	assessments	from	pilot-in-the-
loop	 simulation.	 These	 results	 allow	 the	 designer	 to	 identify	 and	 address	 any	 shortcomings	 and	
repair	 deficiencies,	 e.g.	 by	 developing	 a	 Stability	 Control	 Augmentation	 System	 (SCAS)	 to	 deliver	
Level	1	HQs	for	the	defined	mission.	
	
Ship-Helicopter-Operating	 Limits	 (SHOLs):	 	 The	 objective	 here	 is	 to	 transfer	 knowledge	 and	
understanding	 of	 generic	maritime	 helicopter	 operational	 constraints	 through	 the	 simulation	 and	
assessment	 of	 ship-helicopter	 operating	 limits	 (SHOLs)	 and	 handling	 qualities.	 It	 is	 also	 the	
purpose	to	transfer	to	the	trainees,	knowledge	and	skills	that	provide	a	synthetic	view	of	the	ship	
take-off	&	landing	constraints	from	the	pilot’s	point	of	view	and	to	identify	constraints	for	one	of	the	
most	 complex	 and	 complicated	 developments	 prior	 to	 commencing	 a	 maritime	 helicopter	
development	program.	
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Traditional	lectures	cover:		

i. helicopter	 on-shore	 testing	 to	 establish	
predicted	 and	 assigned	 handling	
qualities,	 including	 the	 rational	 for	
mission-task-element	design,	e.g.	super-
slide	 tracking,	 lateral	 re-position	 and	
precision	hover	(see	Fig.	6).			

ii. The	 Dynamic	 Interface	 (DI)	 between	
helicopter	 and	 ship	 embracing	 the	
launch	 from	 and	 recovery	 to	 the	 ship	
i.e.,	 approach,	 line	 up,	 descent	 and	
deceleration	 to	 alongside	 ship,	 hover,	 fly	
over	deck,	landing.	

iii. The	ship	environment,	 including	wind	and	
wave	generation	 (Beaufort	and	sea	state	scales),	ship	and	flight	deck	motion,	air	wake	(air	
flow	over	flight	deck	due	to	ship	superstructure),	natural	wind	effects	(maritime	atmospheric	
boundary	 layer,	 turbulence)	 and	 types	of	degraded	visibility	 (night,	mist,	 fog,	 snow,	 spray,	
windscreen	interface).	

iv. The	 helicopter/ship	 recovery	 including	 locating	 the	 ship,	 controlled	 approach	 (ship	
controlled,	helicopter	controlled,	emergency	low	visibility	approach),	non	visual	guidance	for	
approach	 and	 landing;	 various	 DI	 technologies	 including	 search	 radar,	 precision	 approach	
radar,	 instrument	 guidance	 systems,	 ship	 visual	 aids,	 future	 guidance	 systems	 (emission	
controlled	conditions	–	EMCON),	recovery	profiles/cockpit	displays	and	automatic	recovery.	

The	 learning	 derived	 from	 the	 lectures	 is	 then	 applied	 to	 the	 development	 of	 the	 SHOL	 for	 a	
particular	 ship-aircraft	 combination	 using	 piloted	 flight	 simulation	with	 ratings	 based	 on	 the	 deck	
interface	pilot	effort	scale	(DIPES;	from	1	(deck	landing	easy	to	5	(dangerous))	

Learning	outcomes	

Knowledge	and	understanding:	The	trainees	should	be	able	to	demonstrate	a	wide	knowledge	and	
understanding	of	the	SHOL	process	and	the	difficulties	of	achieving	the	ultimate	limits	due	to	a	range	
of	factors.	The	lectures	are	interspersed	with	team	exercises	designed	not	only	to	test	the	trainees’	
absorption	of	the	information	but	also	to	test	their	application	and	their	ability	to	resolve	issues	and	
problems	during	such	operations,	both	as	individuals	and	as	a	team.	The	trainees	are	encouraged	to	
ask	 questions,	 related	 or	 not	 to	 the	 lectures,	 during	 and	 any	 time	 after	 and	 to	 maintain	 their	
personal	journals.		

Practical	 skills:	On	 completion	 of	 the	 PBL	 training,	 the	 trainees	 will	 be	 able	 to	 conduct	 VE	 SHOL	
exercises,	planning	the	programme,	acting	as	the	flight	engineer	during	the	VE	SHOL	flight	simulator	
exercises,	 or	 as	 the	 project	 engineer	 on	 board	 the	 ship	 directing	 operations,	 modifying	 the	
programme	 as	 required	 by	 the	 results	 and	 the	 conditions.	 	 The	 trainees	 will	 also	 have	 the	
opportunity	 to	develop	skills	 in	modifying	 the	design	of	 the	aircraft,	 implementing	 these	 in	 the	VE	
simulation	and	evaluating	the	results	of	the	upgrades	on	the	SHOL.	

An	 example	 was	 the	 determination	 of	 the	 SHOL	 of	 a	 conceptual	 embarked	 helicopter	 which	 had	
level	1	HQs	for	land	based	MTEs	but	potentially	level	2	characteristics	in	the	DI	when	operating	with	
small	 power	 margin	 (<10%)	 in	 high	 seas	 and	 strong	 ship	 air	 wakes	 from	 some	 quarters	 of	 the	
proposed	SHOL	envelope.	The	basic	SHOL	with	the	ship	in	sea	state	3	was	derived	which	proved	to	
be	 severely	 restricted	 (Figure	 7).	 As	 a	 consequence,	 a	 stability	 and	 control	 augmentation	 system	
(SCAS)	was	designed	 for	 the	heave,	yaw,	pitch	and	roll	axes	 incorporating	collective/yaw	coupling.	
During	the	subsequent	phase	of	the	training,	the	characteristics	which	led	to	the	limited	SHOL	were	
investigated,	 the	 handling	 characteristics	 improved	 to	 level	 2	 and	 the	 re-testing	 of	 the	 modified	
aircraft	SHOL	with	the	ship	airwake	incorporated	is	shown	in	figure,	expanding	the	SHOL	by	20%.	

Figure	6	Deck	landing	mission	task	elements	
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Another	 example	 from	 the	 training	 exercises	 involved	
evaluation	of	ship	visual	aids	in	degraded	visual	environments.		
In	 Figure	 8	 (left),	 the	 SHOL	 of	 the	 original	 model	 (in	 red)	 is	
compared	 with	 the	 new	 model	 (hashed	 red)	 in	 good	 visual	
conditions.	 This	 was	 not	 a	 significant	 advance	 although	 the	
yaw	 departure	 was	 eliminated.	 Figure	 8	 also	 shows	 the	
reduction	caused	by	a	daytime	degraded	visual	environment.	
The	 ship	 featured	 a	 fixed	 horizon	 bar	 on	 top	 of	 the	 hangar	
with	deck	floodlighting.	The	new	model	expands	the	SHOL	for	
direct	 headwinds	 and	 tailwind.	 Figure	 8	 (right)	 shows	 the	
reduction	 in	 the	 SHOL	 in	 degraded	 visual	 conditions	 at	 night	
and	 the	 further	 reduction	 as	 the	 sea	 state	 increased	 to	 5,	
although	the	ship	was	then	equipped	with	a	suite	of	enhanced	
visual	 aids,	 incorporating	 electro-luminescent	 panels	 on	 the	
deck	 and	 forming	 deck	 centreline	 line	 up	 poles,	 stabilised	
horizon	bar	and	deck	floodlighting.	These	aids	clearly	reduced	
the	impact	of	the	high	sea	states	and	resulting	ship	motion.	
	

	

Following	 the	SHOL	tests,	 the	 trainees	analysed	the	data	and	provided	verbal	and	written	reports	
on	 the	 exercise,	 in	 the	 form	 of	 the	 helicopter	 release	 recommendations	 together	 with	 the	
outstanding	issues	associated	with	pedal	margin,	roll	oscillation	and	roll/yaw	control	together	with	
the	 unexplained	 yaw	departure	 for	G90	winds.	 The	 tests	 therefore	 revealed	 further	 design	 issues	
with	the	helicopter	itself	which	required	attention	and	which	would	need	retesting.	

Overall	Outcomes	

The	principal	earning	outcomes	were	that	the	trainees	would	be	able	to	conduct	real	SHOL	tests	
with	confidence,	and	be	able	to	identify	potential	 issues	and	pitfalls.	 	Outcomes	were	assessed	by	
the	trainees’	ability	to	plan	and	conduct	the	SHOL	tests	efficiently,	maintaining	a	good	dialogue	and	
relationship	 with	 the	 test	 pilot	 conducting	 the	 tests.	 Secondly,	 it	 was	 tested	 by	 their	 ability	 to	
analyse	the	results	and	to	determine	the	reasons	for	shortfalls	in	the	SHOL	envelope,	expected	or	
otherwise.	 Thirdly,	 their	 ability	 to	 communicate	 with	 the	 end	 customer	 was	 assessed	 by	
presentation	of	the	results	from	the	SHOL	tests	 in	a	way	which	showed	their	understanding	of	the	
processes	involved	and	the	relative	importance	of	the	facts	presented.		By	the	end	of	the	training,	
they	 should	 have	 comprehensive	 know-how	 and	 means	 to	 further	 analyse,	 define,	 develop	 and	
build	 for	 themselves	 their	 own	 helicopter-ship	 dynamic	 interface	 capabilities,	 using	 simulation,	 to	

	

	

	

	
	

	 	 ULGH	Mk1M	 GVE,	Airwake,	SS3	

	

	

Relative	wind	
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	 				ULGH14M/K		 DVE	Fog,	Night,	Airwake,	SS3	

	 			ULGH14M/K		 DVE	Fog	,	Night,	Airwake,	SS5	

	 	 DIPES	1	 	 	 	 DIPES	4	

	 	 DIPES	2	 	 	 X	 Unacceptable	

	

	

	

	

	
	

	 	 ULGH13M		 	 GVE,	Airwake,	SS3	

	 	 ULGH14M/K			 GVE,	Airwake,	SS3	

	 	 ULGH14M/K			 DVE,	Airwake,	Day,	SS3	

	 	 DIPES	1	 	 	 	 DIPES	4	

	 	 DIPES	2	 	 	 X	 Unacceptable	

Figure	7	Typical	SHOL	envelope	in	good	
visual	conditions,	sea	state	3	with	airwake	

Figure	8	Comparison	of	SHOLs	of	two	helicopters	with	different	levels	of	visibility	and	ship	motion	
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the	 benefit	 their	 navies.	 In	 addition,	 they	 will	 have	 an	 appreciation	 of	 the	 complex	 nature	 of	
maritime	operations.	

	
Simulation	Fidelity:	The	benefits	of	using	virtual	environments	to	provide	a	safe	and	reliable	tool	for	
pilot	training	are	well	established.	In	order	to	have	confidence	in	the	utility	of	the	training	device	its	
level	of	 fidelity	must	be	quantified	 in	some	way.	The	objective	of	 this	 training	activity	 is	 to	enable	
simulation	 engineers	 to	 be	 able	 explore	 the	 simulator	 design	 space,	 within	 a	 VE	 environment,	 to	
examine	 the	 impact	 of	 component	 fidelity	 requirements	 e.g.	 motion	 base,	 field	 of	 view,	
flight/simulator	model	tolerances,	on	the	overall	fidelity	of	the	simulation.	Simulation	engineers	will	
be	familiar	with	current	qualification	standards	such	as	CS-FSTD(H)	[9].	Whilst	the	standards	provide	
a	useful	regulatory	framework	detailing,	for	example,	the	tolerances	for	the	proof	of	match	between	
flight	and	simulation	data	and	what	might	be	considered	as	the	functional	fidelity	of	the	system,	i.e.	
levels	of	replication	of	the	cockpit	layout,	they	do	not	provide	a	robust	methodology	for	the	fidelity	
assessment	of	 the	overall	 simulator	system.	Further,	 they	do	not	cover	 the	 full	 range	of	 rotorcraft	
operational	 training	 requirements	e.g.	 ship-borne	 landings	or	 research	 simulators.	The	activity	will	
provide	 the	 engineers	 with	 a	 methodology	 for	 improving	 current	 standards	 or	 developing	 new	
standards	where	they	do	not	exist.	
	
The	 training	 activity	 would	 begin	 with	 a	 review	 of	 recent	 research	 regarding	 simulator	 fidelity	
standards	and	 the	need	 for	 further	 research.	 For	example,	GARTEUR	Action	Group	HC/AG-12	 [10]	
showed	 that	 the	 relationship	 between	 overall	 fidelity	 and	 the	 “predictive	 fidelity”	 tolerances	
prescribed	by	CS-FSTD(H)	is	sensitive	to	the	nature	and	duration	of	the	manoeuvre.	These	predictive	
fidelity	metrics	are	formulated	using	tolerances,	typically	+/-	10%	against	which	simulation	data	must	
match	 flight	 test	 data	 and	 previous	 studies	 have	 shown	 that	 satisfying	 these	 tolerances	 does	 not	
necessarily	guarantee	that	the	simulator	is	fit	for	purpose.			
	
The	focus	within	these	standards	is	related	to	the	definition	of	component	level	fidelity	rather	than	
the	training	benefit	that	can	be	derived	from	the	simulator.	Existing	standards	do	not	provide	details	
of	 the	 level	 of	 fidelity	 required	 for	 individual	 training	 tasks,	 nor	 a	methodology	 for	 assessing	 that	
fidelity	requirement.	The	Royal	Aeronautical	Society’s	ICAO	9625	advisory	document	[11],	has	made	
a	significant	 step	 to	providing	such	a	 framework	and	can	be	used	 to	 introduce	 to	 the	 trainees	 the	
concept	of	 task	 specific	 fidelity.	At	 its	heart	however,	 the	document	contains	 the	same	tolerances	
that	 exist	 in	 the	 current	 standards	 and	 the	 trainees	 would	 be	 introduced	 to	 the	 need	 for	 a	 new	
methodology	for	assessing	the	overall	fidelity	of	a	synthetic	training	device.			
	
Research	at	UoL	has	produced	a	fidelity	assessment	framework,	based	in	part	on	the	assessment	of	
predictive	fidelity	requirements	using	a	Handling	Qualities	(HQ)	approach	and	also	perceptual	fidelity	
requirements,	and	the	training	activity	will	explore	these	concepts	[12,	13].	The	use	of	HQ	metrics	to	
complement	existing	time-domain	criteria	within	CS-FSTD(H),	in	order	to	identify	the	effect	of	model	
deficiencies	on	overall	fidelity,	will	be	introduced	and	the	methodology	for	developing	new	criteria	
demonstrated.		For	perceptual	fidelity	assessments,	a	Simulator	Fidelity	Rating	(SFR)	scale	has	been	
developed	 at	 UoL,	 and	 its	 utilisation	 for	 subjective	 fidelity	 assessment	 will	 be	 a	 key	 part	 of	 the	
training.	The	SFR	scale	is	fundamentally	driven	by	two	components:	adaptation	of	task	strategy	and	
relative	task	performance	either	between	the	simulator	and	flight	or	between	a	simulator	baseline	
model	 and	 a	 “variation”.	 The	 following	 illustrates	 how	 these	 predictive	 and	 perceptual	 fidelity	
metrics	can	be	used	to	examine	flight	model	fidelity	[14].	
	
CS-FSTD(H)	 requires	 that,	 following	a	 longitudinal	 step	 input,	 the	on-axis	 response	 -	 the	pitch	 rate	
(and	pitch	attitude)	from	longitudinal	cyclic	-	should	be	within	the	tolerances	shown	as	the	broken	
lines	 in	 Figure	 10,	 and	 the	 off-axis	 response	 (e.g.	 roll	 response)	 should	 be	 of	 ‘correct	 trend	 and	
magnitude’.	 The	 on-axis	 response	 tolerances	 in	 CS-FSTD(H)	 are	 either	 ±10%	 of	 the	 achieved	 peak	
attitude,	or	±3	deg/sec	of	the	rate,	whichever	is	less	restrictive.		The	off-axis	responses	in	Figure	9	all	
exhibit	 the	 correct	 trend	 so	 it	 becomes	 a	 matter	 of	 interpretation	 whether	 the	 magnitudes	 are	
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‘correct’	and	it	is	at	this	point	the	trainees	will	apply	one	of	the	complimentary	HQ	metrics,	inter-axis	
couplings,	to	examine	the	impact	of	model	“deficiencies”	on	the	fidelity	of	the	model.			

																	 	
	
	
	
	
Whilst	 the	 responses	 shown	 in	 Figure	 9,	 satisfy	 the	 qualification	 requirements,	 increasing	 the	
pitch/roll	 cross	 coupling	 to	 12.5%	 in	 the	 model	 degrades	 the	 handling	 qualities	 into	 Level	 2,	
suggesting	that,	beyond	this,	the	fidelity	of	the	simulation	may	be	compromised.		
	
	

	
	
	
	
The	 results	 in	 Figures	 11	 and	 12	were	 obtained	 from	 flight	 and	 simulation	 trials	where	 the	 same	
methodology	was	applied;	an	incremental	change	in	the	coupling	response	and	use	of	the	SFR	scale	
to	examine	the	effect	of	the	change	on	overall	fidelity	for	two	ADS-33E-PRF	manoeuvres,	a	precision	
hover	 and	 an	 accel-decel.	 The	 flight	 tests	were	 conducted	 using	 the	National	 Research	 Council	 of	
Canada’s	Bell	412	Advanced	Systems	Research	Aircraft	(ASRA,	in-flight	simulator),	which	has	a	fly-by-
wire	flight	control	system	enabling	user-defined	control	laws	to	be	flown.	The	results	show	that	the	
SFRs	degrade	as	coupling	strength	increases,	as	might	expected.	A	methodology	can	thus	be	derived	
to	 identify	 an	 acceptable	 parameter	 variation,	 in	 this	 cross-coupling	 to	 derive	 fidelity	 tolerances.	
From	the	results	presented,	it	is	expected	that	the	tolerance	on	pitch/roll	cross	coupling	for	Level	1	

Figure	9	–	On	and	off-axis	rate	responses	to	a	0.5	
inch,	4s	lateral	cyclic	input	for	cross	coupling	

variations	

Figure	10	-	ADS-33E-PRF	Pitch/Roll	Coupling	
Requirements	for	Aggressive	Agility	

Figure	11	-	SFRs	awarded	for	cross	coupling	tests	
HELIFLIGHT-R	and	ASRA	–Precision	Hover	MTE	

Figure	12	-	SFRs	awarded	for	cross	coupling	
tests	HELIFLIGHT-R	and	ASRA	–	Accel-Decel	MTE	
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fidelity	 for	 the	 Precision	 Hover	 task	 may	 lie	 between	 30%	 and	 40%	 cross	 coupling	 (an	 inter-axis	
coupling	of	approximately	0.7	-	see	Figure	10),	but	this	value	would	be	smaller	for	the	accel-decel	at	
approximately	 20%	 cross	 coupling	 (inter-axis	 coupling	 of	 approximately	 0.4).	 This	 result	 illustrates	
that	 fidelity	 is	 task	dependant,	which	 is	not	currently	considered	 in	 the	CS-FSTD(H)	standards,	and	
will	allow	the	trainees	to	develop	new	task	specific	criteria	for	their	training	applications.	
	
5. Looking	Forward	and	Concluding	Remarks	

	
The	 aim	 of	 this	 paper	 has	 been	 to	 highlight	 a	 number	 of	 VE	 tools	 and	 processes	 available	 to	
rotorcraft	 engineers	 to	 enable	 them	 to	 develop	 new	 skills	 to	 address	 future	 rotorcraft	 design,	
development	and	operational	challenges.	It	should	be	noted	that	whilst	the	case	studies	presented	
in	 this	 paper	 were	 aimed	 at	 enabling	 the	 acquisition	 and	 development	 of	 personal	 skills	 in	 a	
particular	area	this	should	not	occur	in	an	isolated	fashion.	The	strength	of	the	VE-PBL	approach	to	
knowledge	 acquisition	 and	 development	 for	 rotorcraft	 engineers	 is	 that	 a	 variety	 of	 technical	
disciplines	 can	 collaborate	 effectively	 together	 to	 assess	 and	 understand	 the	 impact	 of	 design	
changes	 in	one	domain	upon	another,	which	is	key	to	reducing	costs,	time	to	market	and	ensuring	
the	design	is	‘correct	first	time’.	

	
In	terms	of	software	developments,	more	capable,	higher	fidelity	tools	are	available	to	be	used	by	
engineers	to	address	current	and	future	requirements	for	rotorcraft	designs.	However,	there	needs	
to	be	a	reality	check	in	this	process,	the	question	of	how	good	is	good	enough	needs	to	be	addressed	
in	all	aspects	of	the	use	of	VE	tools.	Adding	complexity	to	the	tools	does	not	necessarily	equate	to	
improving	 fidelity	 in	 the	 application	 stage.	 VE	 tools	 need	 to	 be	developed	 to	 allow	 the	 sharing	of	
design	 information	across	 technical	disciplines	 to	assess	 the	 impact	of	 changes	on	one	domain	on	
another.	 In	 addition	 tools	 are	 needed	 to	 also	 preserve	 corporate	 lessons	 learned	 for	 the	 next	
generation	 of	 engineers.	 It	 is	 hoped	 that	 this	 paper	 demonstrates	 that	 the	 career	 of	 a	 rotorcraft	
engineer	can	be	enhanced	through	the	availability	of	VE	tools	coupled	with	an	understanding	of	the	
capabilities	of	the	tools	and	how	they	might	best	be	employed	in	support	of	the	end	goal.	
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